
Learning in Complex Systems Spring 2011

Lecture Notes Nahum Shimkin

4 Reinforcement Learning – Basic Algorithms

4.1 Introduction

RL methods essentially deal with the solution of (optimal) control problems using on-line

measurements. We consider an agent who interacts with a dynamic environment, according

to the following diagram:

.

¾

¾

-

Agent Environment

Action

State

Reward

Our agent usually has only partial knowledge of its environment, and therefore will use

some form of learning scheme, based on the observed signals. To start with, the agent

needs to use some parametric model of the environment. We shall use the model of a

stationary MDP, with given state space and actions space. However, the state transition

matrix P = (p(s′|s, a)) and the immediate reward function r = (r(s, a, s′)) may not be

given. We shall further assume the the observed signal is indeed the state of the dynamic

proceed (fully observed MDP), and that the reward signal is the immediate reward rt, with

mean r(st, at).

It should be realized that this is an idealized model of the environment, which is used by the

agent for decision making. In reality, the environment may be non-stationary, the actual

state may not be fully observed (or not even be well defined), the state and action spaces

may be discretized, and the environment may contain other (possibly learning) decision

1

makers who are not stationary. Good learning schemes should be designed with an eye

towards robustness to these modelling approximations.

Learning Approaches: The main approaches for learning in this context can be classified as

follows:

• Indirect Learning: Estimate an explicit model of the environment (P̂ and r̂ in our

case), and compute an optimal policy for the estimated model (“Certainty Equiva-

lence”).

• Direct Learning: The optimal control policy is learned without first learning an ex-

plicit model. Such schemes include:

a. Search in policy space: Genetic Algorithms, Policy Gradient....

b. Value-function based learning, related to Dynamic Programming principles: Tem-

poral Difference (TD) learning, Q-learning, etc.

RL initially referred to the latter (value-based) methods, although today the name applies

more broadly. Our focus in the chapter will be on this class of algorithms.

2

Within the class of value-function based schemes, we can distinguish two major classes of

RL methods.

1. Policy-Iteration based schemes (“actor-critic” learning):

policy improvement"actor"

"critic" policy evaluation

{V(x)}

control
policy

learning
feedback

environment

The “policy evaluation” block essentially computes the value function under the current

policy (assuming a fixed, stationary policy). Methods for policy evaluation include:

a. “Monte Carlo” policy evaluation.

b. Temporal Difference methods - TD(λ), SARSA, etc.

The “actor” block performs some form of policy improvement, based on the policy iter-

ation idea: π̄ ∈ argmax{r + pV }. In addition, it is responsible for implementing some

“exploration” process.

2. Value-Iteration based Schemes:

These schemes are based on some on-line version of the value-iteration recursions: V ∗
t+1 =

maxπ[rπ + P πV ∗
t]. The basic learning algorithm in this class is Q-learning.

3

4.2 Example: Deterministic Q-Learning

To demonstrate some key ideas, we start with a simplified learning algorithm that is suitable

for a deterministic MDP model, namely:

st+1 = f(st, at)

rt = r(st, at)

We consider the discounted return criterion:

V π(s) =
∞∑

t=0

γtr(st, at) , given s0 = s, at = π(st)

V ∗(s) = max
π

V π(s)

Recall our definition of the Q-function (or state-action value function), specialized to the

present deterministic setting:

Q(s, a) = r(s, a) + γV ∗(f(s, a))

The optimality equation is then

V ∗(s) = max
a

Q(s, a)

or, in terms of Q only:

Q(s, a) = r(s, a) + γ max
a′

Q(f(s, a), a′)

Our learning algorithm runs as follows:

• Iniialize: Set Q̂(s, a) = Q0(s, a), for all s, a.

• At each stage n = 0, 1, . . . :

– Observe sn, an, rn, sn+1.

– Update Q̂(sn, an): Q̂(sn, an) := rn + γ maxa′ Q̂(sn+1, a
′)

We note that this algorithm does not tell us how to choose the actions an. The following

result is from [Mitchell, Theorem 3.1].

4

Theorem 1 (Convergence of Q-learning for deterministic MDPS)

Assume a deterministic MDP model. Let Q̂n(s, a) denote the estimated Q-function before

the n-th update. If each state-action pair is visited infinitely-often, then limn→∞ Q̂n(s, a) =

Q(s, a), for all (s, a).

Proof: Let

∆n , ‖Q̂n −Q‖∞ = max
s,a

|Q̂n(s, a)−Q(s, a)| .

Then at every stage n:

|Q̂n+1(sn, an)−Q(sn, an)| = |rn + γ max
a′

Q̂n(sn+1, a
′)− (rn + γ max

a′′
Q(sn+1, a

′′))|
= γ|max

a′
Q̂n(sn+1, a

′)−max
a′′

Q̂n(sn+1, a
′′)|

≤ γ max
a′
|Q̂n(sn+1, a

′)−Qn(sn+1, a
′)| ≤ γ∆n .

Consider now some interval [n1, n2] over which all state-action pairs (s, a) appear at least

once. Using the above relation and simple induction, it follows that ∆n2 ≤ γ∆n1 . Since

γ < 1 and since there is an infinite number of such intervals by assumption, it follows that

∆n → 0.

Remarks:

1. The algorithm allows the use of an arbitrary policy to be used during learning. Such

as algorithm is called Off Policy. In contrast, On-Policy algorithms learn the properties of

the policy that is actually being applied.

2. We further note that the “next-state” s′ = sn+1 of stage n need not coincide with the

current state sn+1 of stage n + 1. Thus, we may skip some sample, or even choose sn at

will at each stage. This is a common feature of off-policy schemes.

3. A basic requirement in this algorithm is that all state-action pairs will be samples ”often

enough”. To ensure that we often use a specific exploration algorithm or method. In fact,

the speed of convergence may depend critically on the efficiency of exploration. We shall

discuss this topic in detail further on.

5

4.3 Policy Evaluation: Monte-Carlo Methods

Policy evaluation algorithms are intended to estimate the value functions V π or Qπ for

a given policy π. Typically these are on-policy algorithms, and the considered policy is

assumed to be stationary (or ”almost” stationary). Policy evaluation is typically used as

the “critic” block of an actor-critic architecture.

Direct Monte-Carlo methods are the most straight-forward, and are considered here mainly

for comparison with the more elaborate ones. Monte-Carlo methods are based on the simple

idea of averaging a number of random samples of a random quantity in order to estimate

its average.

Let π be a fixed stationary policy. Assume we wish to evaluate the value function V π,

which is either the discounted return:

V π(s) = Eπ(
∞∑

t=0

γtr(st, at)|s0 = s)

or the total return for an SSP (or episodial) problem:

V π(s) = Eπ(
T∑

t=0

r(st, at)|s0 = s)

where T is the (stochastic) termination time, or time of arrival to the terminal state.

Consider first the episodial problem. Assume that we operate (or simulate) the system

with the policy π, for which we want to evaluate V π. Multiple trials may be performed,

starting from arbitrary initial conditions, and terminating at T (or truncated before).

After visiting state s, say at time ts, we add-up the total cost until the target is reached:

v̂(s) =
T∑

t=ts

Rt .

After k visits to s, we have a sequence of total-cost estimates:

v̂1(s), · · · , v̂k(s) .

We can now compute our estimate:

V̂k(s) =
1

k

k∑
i=1

v̂i(s) .

6

By repeating these procedure for all states, we estimate V π(·).

State counting options: Since we perform multiple trials and each state can be visited several

times per trial, there are several options regarding the visits that will be counted:

a. Compute V̂ (s) only for initial states (s0 = s).

b. Compute V̂ (s) each time s is visited.

c. Compute V̂ (s) only on first visit of s at each trial.

Method (b) gives the largest number of samples, but these may be correlated (hence, lead

to non-zero bias for finite times). But in any case, V̂k(s) → V π(s) is guaranteed as k →∞.

Obviously, we still need to guarantee that each state is visited enough – this depends on

the policy π and our choice of initial conditions for the different trials.

Remarks:

1. The explicit averaging of the v̂k’s may be replaced by the iterative computation:

V̂k(s) = V̂k−1(s) + αk

[
v̂k(s)− V̂k−1(s)

]
,

with αk = 1
k
. Other choices for αk are also common, e.g. αk = γ

k
, and αk = ε (non-decaying

gain, suitable for non-stationary conditions).

2. For discounted returns, the computation needs to be truncated at some finite time Ts,

which can be chosen large enough to guarantee a small error:

v̂(s) =
Ts∑

t=ts

(γ)t−tsRt .

7

4.4 Policy Evaluation: Temporal Difference Methods

a. The TD(0) Algorithm

Consider the total-return (SSP) problem with γ = 1. Recall the fixed-policy Value Iteration

procedure of Dynamic Programming:

Vn+1(s) = Eπ(r(s, a) + Vn(s′)) = r(s, π(s)) +
∑

s′
p(s′|s, π(s))Vn(s′) , s ∈ S

or Vn+1 = rπ + P πVn, which converges to V π.

Assume now that rπ and P π are not given. We wish to devise a “learning version” of the

above policy iteration.

Let us run or simulate the system with policy π. Suppose we start with some estimate V̂

of V π. At time n, we observe sn, rn and sn+1. We note that [rn + V̂ (sn+1)] is an unbiased

estimate for the right-hand side of the value iteration equation, in the sense that

Eπ(rn + V̂ (sn+1)|sn) = r(sn, π(sn)) +
∑

s′
p(s′|sn, π(sn))Vn(s′)

However, this is a noisy estimate, due to randomness in r and s′. We therefore use it to

modify V̂ only slightly, according to:

V̂ (sn) := (1− αn)V̂ (sn) + αn[rn + V̂ (sn+1)]

= V̂ (sn) + αn[rn + V̂ (sn+1)− V̂ (sn)]

Here αn is the gain of the algorithm. If we define now

dn , rn + V̂ (sn+1)− V̂ (sn)

we obtain the update rule:

V̂ (sn) := V̂ (sn) + αndn

dn is called the Temporal Difference. The last equation defines the TD(0) algorithm.

8

Note that V̂ (sn) is updated on basis of V̂ (sn+1), which is itself an estimate. Thus, TD

is a “bootstrap” method: convergence of V̂ at each states s is inter-dependent with other

states.

Convergence results for TD(0) (preview):

1. If αn ↘ 0 at suitable rate (αn ≈ 1/no. of visits to sn), and each state is visited i.o.,

then V̂n → V π w.p. 1.

2. If αn = α0 (a small positive constant) and each state is visited i.o., then V̂n will

“eventually” be close to V π with high probability. That is, for every ε > 0 and δ > 0

there exists α0 small enough so that

lim
n→∞

Prob(|V̂n − V π| > ε) ≤ δ .

b. TD with `-step look-ahead

TD(0) looks only one step in the “future” to update V̂ (sn), based on rn and V̂ (sn+1).

Subsequent changes will not affect V̂ (sn) until sn is visited again.

Instead, we may look ` steps in the future, and replace dn by

d(`)
n , [

`−1∑
m=0

rn+m + V̂ (sn+`)]− V̂ (sn)

=
`−1∑
m=0

dn+m

where dn is the one-step temporal difference as before. The iteration now becomes

V̂ (sn) := V̂ (sn) + αnd
(`)
n .

This is a “middle-ground” between TD(0) and Monte-Carlo evaluation!

9

c. The TD(λ) Algorithm

Another way to look further ahead is to consider all future Temporal Differences with a

“fading memory” weighting:

V̂ (sn) := V̂ (sn) + α(
∞∑

m=0

λmdn+m) (1)

where 0 ≤ λ ≤ 1. For λ = 0 we get TD(0); for λ = 1 we obtain the Monte-Carlo sample!

Note that each run is terminated when the terminal state is reached, say at step T . We

thus set dn ≡ 0 for n ≥ T .

The convergence properties of TD(λ) are similar to TD(0). However, TD(λ) often converges

faster than TD(0) or direct Monte-Carlo methods, provided that λ is properly chosen. This

has been experimentally observed, especially when function approximation is used for the

value function.

Implementations of TD(λ):

There are several ways to implement the relation in (1).

1. Off-line implementation: V̂ is updated using (1) at the end of each simulation run, based

on the stored (st, dt) sequence from that run.

2. Each dn is used as soon as becomes available, via the following backward update (also

called “on-line implementation”):

V̂ (sn−m) := V̂ (sn−m) + α · λmdn , m = 0, . . . , n . (2)

This requires only keeping track of the state sequence (st, t ≥ 0). Note that is some state

s appears twice in that sequence, it is updated twice.

3. Eligibility-trace implementation:

V̂ (s) := V̂ (s) + αdnen(s) , s ∈ S (3)

where

en(s) =
n∑

k=0

λn−k1{sk = s}

10

is called the eligibility trace for state s.

The eligibility trace variables en(s) can also be computed recursively. Thus, set e0(s) = 0,

and

en(s) := λen−1(s) + 1{sn = s} =

{
λ · en−1(s) + 1 if s = sn

λ · en−1(s) if s 6= sn

(4)

Equations (3) and (4) provide a fully recursive implementation of TD(λ).

d. TD Algorithms for the Discounted Return Problem

For γ-discounted returns, we obtain the following equations for the different TD algorithms:

1. TD(0):

V̂ (sn) := (1− α)V̂ (sn) + α[rn + γV̂ (sn+1]

= V̂ (sn) + α · dn,

with dn , rn + γV (sn+1)− V (sn).

2. `-step look-ahead:

V̂ (sn) := (1− α)V̂ (sn) + α[rn + γrn+1 + · · ·+ γ`Vn+`]

= V̂ (sn) + α[dn + γdn+1 + · · ·+ γ`−1dn+`−1]

3. TD(λ):

V̂ (sn) := V̂ (sn) + α

∞∑

k=0

(γλ)kdn+k .

The eligibility-trace implementation is:

V̂ (s) := V̂ (s) + αdnen(s) ,

en(s) := γλen−1(s) + 1{sn = s} .

11

e. Q-functions and their Evaluation

For policy improvement, what we require is actually the Q-function Qπ(s, a), rather than

V π(s). Indeed, recall the policy-improvement step of policy iteration, which defines the

improved policy π̂ via:

π̂(s) ∈ argmax{r(s, a) + γ
∑

s′
p(s′|s, a)V π(s)} ≡ argmax Qπ(s, a) .

How can we estimate Qπ?

1. Using V̂ π: If we know the one-step model parameters r and p, we may estimate V̂ π as

above and compute

Q̂π(s, a)
4
= r(s, a) + γ

∑
p(s′|s, a)V̂ π(s′) .

When the model is not known, this requires to estimate r and p on-line.

2. Direct estimation of Qπ: This can be done the same methods as outlined for V̂ π, namely

Monte-Carlo or TD methods. We mention the following:

The SARSA algorithm: This is the equivalent of of TD(0). At each stage we observe

(sn, an, rn, sn+1, an+1), and update

Q(sn, an) := Q(sn, an) + αn · dn

dn = rn + γQ(sn+1, an+1)−Q(sn, an)

Similarly, the SARSA(λ) algorithm uses

Q(s, a) := Q(s, a) + αn(s, a) · dnen(s, a)

en(s, a) := γλen−1(s, a) + 1{sn = 1, an = a} .

Note that:

– The estimated policy π must be the one used (“on-policy” scheme).

– More variables are estimated in Q than in V .

12

4.5 Policy Improvement

Having studied the “policy evaluation” block of the actor/critic scheme, we turn to the

policy improvement part.

Ideally, we wish to implement policy iteration through learning:

(i) Using policy π, evaluate Q̂ ≈ Qπ. Wait for convergence.

(ii) Compute π̂ = argmax Q̂ (the “greedy policy” w.r.t. Q̂).

Problems:

a. Convergence in (i) takes infinite time.

b. Evaluation of Q̂ requires trying all actions – typically requires an exploration scheme

which is richer than the current policy π.

To solve (a), we may simply settle for a finite-time estimate of Qπ, and modify π every

(sufficiently long) finite time interval. A more “smooth” option is to modify π slowly in

the “direction” of the maximizing action. Common options include:

(i) Gradual maximization: If a∗ maximizes Q̂(s, a), where s is the state currently exam-

ined, then set {
π(a∗|s) := π(a∗|s) + α · [1− π(a∗|s)]
π(a|s) := π(a|s)− α · π(a|s), a 6= a∗ .

Note that π is a randomized stationary policy, and indeed the above rule keeps π(·|s)
as a probability vector.

(ii) Increase probability of actions with high Q: Set

π(a|s) =
eβ(s,a)

∑
a′ e

β(s,a)

(a Boltzmann-type distribution), where β is updated as follows:

β(s, a) := β(s, a) + α[Q̂(s, a)− Q̂(s, a0)].

Here a0 is some arbitrary (but fixed) action.

13

(iii) “Pure” actor-critic: Same Boltzmann-type distribution is used, but now with

β(s, a) := β(s, a) + α[r(s, a) + γV̂ (s′)− V̂ (s)]

for (s, a, s′) = (sn, an, sn+1). Note that this scheme uses directly V̂ rather than Q̂.

However it is more noisy and harder to analyze than other options.

To address problem (b) (exploration), the simplest approach is to superimpose some ran-

domness over the policy in use. Simple local methods include:

(i) ε-exploration: Use the nominal action an (e.g., an = argmaxa Q(sn, a)) with proba-

bility (1 − ε), and otherwise (with probability ε) choose another action at random.

The value of ε can be reduced over time, thus shifting the emphasis from exploration

to exploitation.

(ii) Softmax: Actions at state s are chosen according to the probabilities

π(a|s) =
eQ(s,a)/θ

∑
a eQ(s,a)/θ

.

θ is the “temperature” parameter, which may be reduced gradually.

(iii) The above “gradual maximization” methods for policy improvement.

These methods however may give slow convergence results, due to their local (state-by-

state) nature.

Another simple (and often effective) method for exploration relies on the principle of opti-

mism in the face of uncertainty. For example, by initializing Q̂ to high (optimistic) values,

we encourage greedy action selection to visit unexplored states. We will revisit those ideas

later on in the course.

Convergence analysis for actor-critic schemes is relatively hard. Existing results rely on a

two time scale approach, where the rate of policy update is assumed much slower than the

rate of value-function update.

14

4.6 Q-learning

Q-learning is the most notable representative of value iteration based methods. Here the

goal is to compute directly the optimal value function. These schemes are typically off-policy

methdos – learning the optimal value function can take place under any policy (subject to

exploration requirements).

Recall the definition of the (optimal) Q-function:

Q(s, a) , r(s, a) + γ
∑

s′
p(s′|s, a)V ∗(s′) .

The optimality equation is then V ∗(s) = maxa Q(s, a) , s ∈ S, or in terms of Q only:

Q(s, a) = r(s, a) + γ
∑

s′
p(s′|s, a) max

a′
Q(s′, a′) , s ∈ S, a ∈ A .

The value iteration algorithm is given by:

Vn+1(s) = max
a
{r(s, a) + γ

∑

s′
p(s′|s, a)Vn(s′)} , s ∈ S

with Vn → V ∗. This can be reformulated as

Qn+1(s, a) = r(s, a) + γ
∑

s′
p(s′|s, a) max

a′
Qn(s′, a′) , (5)

with Qn → Q.

We can now define the on-line (learning) version of the Q-value iteration equation.

The Q-learning algorithm:

– initialize Q̂.

– At stage n: Observe (sn, an, rn, sn+1), and let

Q̂(sn, an) := (1− αn)Q̂(sn, an) + αn[rn + γ max
a′

Q̂(sn+1, a
′)]

= Q̂(sn, an) + αn[rn + γ max
a′

Q̂(sn+1, a
′)− Q̂(sn, an)] .

The algorithm is obviously very similar to the basic TD schemes for policy evaluation,

except for the maximization operation.

15

Convergence: If all (s, a) pairs are visited i.o., and αn ↘ 0 at appropriate rate, then

Q̂n → Q∗.

Policy Selection:

– Since learning of Q∗ does not depend on optimality of the policy used, we can focus

on exploration during learning. However, if learning takes place while the system is

in actual operation, we may still need to use a close-to-optimal policy, while using

the standard exploration techniques (ε-greedy, softmax, etc.).

– When learning stops, we may choose a greedy policy:

π̂(s) = max
a

Q̂(s, a) .

Performance: Q-learning is very convenient to understand and implement; however, con-

vergence may be slower than actor-critic (TD(λ)) methods, especially if in the latter we

only need to evaluate V and not Q.

16

