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8 Nonlinear Filters

In many applications the basic system we consider is nonlinear, and cannot be

accurately described by a linear model. Nonlinearity can arise both in the state

dynamics and in the measurement equation. Alternatively, the noise statistics may

be complex (e.g., highly non-unimodal), so that a Gaussian or 2nd order model is

not adequate to describe it. In all these case we need to extend the basic filter to

accommodate such non-linear effects.

Consider the general state-space model:

xk+1 = fk(xk, wk) , k ≥ 0

zk = hk(xk, vk) ,

where {vk, wk} are white noise sequences under the “usual” (strict sense) indepen-

dence assumptions, with known distributions. The initial state distribution p(x0) is

given as well.

As before, we wish to estimate xk based on Zk = (z0 , . . . , zk).

Consider first the optimal (MMSE) estimator,

x̂k = E(xk|Zk) .

Unfortunately, in general there is no simple way to compute x̂k, without first comput-

ing the entire distribution p(xk). Consequently, some approximations are required.

Furthermore, in certain cases a mere point estimator x̂k cannot adequately describe

the state distribution.
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The most common current approaches to state estimation in nonlinear models are:

1. The extended Kalman filter

2. Sigma-point Filters (aka Unscented Kalman Filter)

3. Particle Filters

The first two are Kalman-like filters, that are based on linearization of the system

around the estimated trajectory. The third approach tries to approximate the entire

distribution p(xk) using simulation (Monte-Carlo) techniques. We will describe these

filters in turn.

8.1 The State Evolution Equations

Let us first write the equations for computation of the conditional distribution

p(xk |Zk). This computation can be done recursively, using the following two stages:

1. Time Update. Compute p(xk+1|Zk) from p(xk|Zk):

p(xk+1|Zk) =

∫
p(xk+1|Zk, xk) p(xk|Zk) dxk

=

∫
p(xk+1|xk) p(xk|Zk) dxk ,

where p(xk+1|xk) is induced by the state equation.

2. Measurement Update. Compute p(xk+1|Zk+1) from p(xk+1|Zk):

p(xk+1|Zk+1) = p(xk+1|Zk, zk+1) =
p(xk+1, zk+1|Zk)

p(zk+1|Zk)

=
p(zk+1|xk+1, Zk)p(xk+1|Zk)∫

( −”− ) dxk+1

=
p(zk+1|xk+1)p(xk+1|Zk)∫

( −”− ) dxk+1

,

where p(Zk|xk) is induced by the measurement equation.

Given p(xk|Zk), we can obviously compute

x̂k = E(xk|Zk) =

∫
xkp(xk|Zk)dxk
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its MSE E(||xk − x̂k||2|Zk), etc. However, the computation of p(xk|Zk) using nu-

merical integration techniques is complex, and becomes unfeasible if x is high-

dimensional.

We therefore seek approximate solutions.

8.2 Observer-Like Filters

Motivated by the linear case, we will first look for sub-optimal filters of the form:

x̂k|k = x̂k|k−1 +Kk(zk − hk(x̂k|k−1))

x̂k+1|k = fk(x̂k|k) ,

where

fk(xk) = E(fk(xk, wk) |xk)

hk(xk) = E(hk(xk, vk) |xk) .

Note that in the common model:

xk+1 = f(xk) + g(xk)wk

zk = h(xk) + i(xk)vk

(where wk and vk are zero-mean), we simply have

f(xk) = f(xk) ,

h(xk) = h(xk) .

The problem still remains: How to choose Kk, and how to estimate the covariance

Pk.

For that purpose we can use linearization.
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8.3 Linearization

The linearized model at time k around some state xok (and 0 noise levels) is

xk+1 ' f(xok, 0) + Fk(xk − xok) +Gkwk

zk ' h(xok, 0) +Hk(xk − xok) + Ikvk ,

where

Fk =
∂fk(x,w)

∂x

∣∣∣∣
(x0

k,0)

Gk =
∂fk(x,w)

∂w

∣∣∣∣
(x0

k,0)

Hk =
∂h(x, v)

∂x

∣∣∣∣
(x0

k,0)

Ik =
∂hk(x, v)

∂v

∣∣∣∣
(x0

k,0)

and all derivatives are evaluated at the point x = x0k, w = 0, v = 0. This gives

a linear system (+ bias), and we can compute the KF gain and covariance with

respect to (Fk, Gk, Hk, Ik).

We still need to determine x0k. The ideal choice would be x0k = xk (the actual system

state). However, xk is unknown.

The following choices are feasible:

(i) Static linearization: Choose some fixed nominal value: xok ≡ xo. This may

work well if {F,G,H, I} depend weakly on x.

(ii) Predefined trajectory: If an approximate nominal trajectory (x∗k) is known

beforehand, we can use x0k = x∗k.

(iii) The current estimate: Choose x0k as the most recent estimate of xk, namely

x0k , x̂k|k−1 or x̂k|k). This gives rise to the extended KF.
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8.4 The Extended Kalman Filter (EKF)

The EKF proceeds as follows:

B Start with x̂k|k−1 and Pk|k−1.

B Measurement Update (x̂k|k−1 → x̂k|k ):

� Compute Hk and Ik at x̂k|k−1.

� z̃k = zk − hk(x̂k|k−1).

� Compute Kk, x̂k|k, Pk|k, using the usual equations.

B Time Update (x̂k|k → x̂k+1|k):

� Computer Fk and Gk at x̂k|k.

� x̂k+1|k = fk(x̂k|k).

� Pk+1|k = FkPk|kF
T
k +GkQkG

T
k .

Remarks:

1. The EKF is a heuristic filter based on first-order approximation. It is not

optimal, and no guarantee of bounded error is provided a-priori.

2. The EKF is non-stationary. Its gain Kk and covariance Pk must be computed

on-line.

3. The computed covariance matrix Pk is no longer the actual error covariance,

but rather an estimate.

It might happen, for example, that Pk is small while the actual error is large;

this causes “filter divergence”.

4. The EKF may fail completely in highly nonlinear problems. However, in many

applications it performs well, after some tuning.

5. The covariances Qk, Rk should be taken large enough to “cover” also for lin-

earization errors.
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The Iterated EKF: A simple improvement of the EKF is obtained by repeating

the linearization step with the new value of x̂k. This applies to the measurement

update, as follows:

B start with x̂0k|k = x̂k|k−1.

B for i = 1 , . . . , N :

– compute H i
k, I ik and z̃ik at x̂ik|k

– compute Ki+1
k , x̂i+1

k|k , P i+1
k|k .

N may be fixed as a small integer (say 4), or the iteration may continue until the

difference is small.
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8.5 The Unscented Kalman Filter (UKF)

The Unscented KF takes another approach to linearization – which uses representa-

tive sample points. It was shown is various applications to be more robust than the

EKF, while requiring the same order of calculations. Moreover, it does not require

to analytic computation of the derivatives of the nonlinearities, and not even that

these derivatives exist.

Original References:

S. Julier, J. Uhlmann and H. Durrant-Whyte, “A new method for the nonlinear

transformation of means and covariance in filters and estimators”, IEEE Trans. on

Automatic Control, March 2000, pp. 477–482.

S. Julier, J. Uhlmann, “Unscented filtering and nonlinear estimation”, Proceedings

of the IEEE, March 2004, pp. 401–422.

a. Estimating nonlinear functions of random vectors

Let x be a random vector with known mean mx and covariance Px. Let y = f(x)

be a nonlinear transformation of x, and suppose we want to estimate the mean my

and covariance Py of y. Possible approaches include the following:

1. Local linearization: Let F = ∂F (x)
∂x

∣∣∣
x=mx

. Then y ' F (x−mx)+f(mx), hence

m̂y = f(mx) and P̂y = FPxF
T .

This approach leads to the Extended KF.

2. Monte-Carlo sampling: Here we assume that the distribution px of x is given.

We sample random points {X1, . . . ,XN} from px, and compute Yi = f(Xi) for

i = 1, . . . , N . We can new estimate:

m̂y =
1

N

N∑
i=1

Yi , P̂y =
1

N

N∑
i=1

(Yi − m̂y)(Yi − m̂y)T .

In fact, we can use {Y1, . . .YN} to estimate the entire distribution py.

This approach leads the the Particle Filter that we describe later.
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3. Deterministic sample points: Here we choose deterministic points {X1, . . . ,XN}
and corresponding weights {W1, . . . ,WN} with

∑N
i=1Wi = 1 so that:

mx =
N∑
i=1

WiXi , Px =
N∑
i=1

Wi(Xi −mx)(Xi −mx)T .

We can now compute Yi = f(Xi) and estimate

m̂y =
N∑
i=1

WiYi , P̂y =
N∑
i=1

Wi(Yi − m̂y)(Yi − m̂y)
T . (1)

The points {X1, . . . ,XN} are called sigma points.

This approach leads to the UKF.

b. The Unscented Transform

We now specify the choice of the sigma points. Assuming x ∈ IRn, let

X0 = mx, W0 =
λ

n+ λ

Xi = mx +
√
n+ λ(

√
Px)i , Wi =

1

2(n+ λ)
, i = 1 . . . n

Xn+i = mx −
√
n+ λ(

√
Px)i , Wn+i =

1

2(n+ λ)
, i = 1 . . . n

Here
√
P is the square root of P , namely any matrix M so that MMT = P , and

(
√
P )i is its i-th coloumn. λ is a (positive of negative) parameter that controls the

weight of X0.

It is easily seen that this choice satisfies the required equalities for mx and Px.

Furthermore, the odd central moments are all zero by symmetry.

Remarks:

The parameter λ controls the separation of the sigma points, can be tuned (for ex-

ample) to match 4th moments of px. For the Gaussian distribution, this is obtained

for n + λ = 3. (Verify that for Px = I this choice obtains E(X4
i ) = 3.) However,

note that λ < 0 may lead to loss of positive definiteness of covariance matrices (see

below), hence should be handled with care.
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Efficient and robust algorithms are available to compute
√
P . In particular, the

Cholesky decomposition gives a lower-triangular
√
P .

The estimates m̂y and P̂y are computed as in equation (1).

c. Basic filter equations

Let us return to the dynamic system xk+1 = fk(xk, wk), zk = hk(xk, vk). At stage k,

we start with x̂k−1|k−1 and Pk−1|k−1, which we consider as estimates for the first and

second moments of the random vector xk−1|k−1. The filter equations that we wish

to approximate are:

(i) Time update:

x̂k|k−1 = E(xk|k−1), Pk|k−1 = cov(xk|k−1)

where

xk|k−1 = fk−1(xk−1|k−1, wk−1)

(ii) Measurement update:

x̂k|k = x̂k|k−1 +Kkz̃k

Pk|k = Pk|k−1 −Kkcov(z̃k)KT
k

where

z̃k = zk − ẑk|k−1
ẑk|k−1 = E(hk(xk|k−1, vk))

Kk = cov(xk, zk)cov(z̃k)−1

d. Sigma points for stage k

Let

xa =

 xk−1|k−1

wk−1

vk

 , P a = cov(xa) =

 Pk−1|k−1 0 0

0 Qk−1 0

0 0 Rk


Choose sigma points X a

0 , . . .X a
N for xa (where N = 2(nx + nw + nv)), with weights

W0, . . . ,WN .
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Denote (using Matlab notation) X a
i = [X k−1|k−1

i ;Xw
i ;X v

i ].

e. Time Update

Compute

X k|k−1
i = fk−1(X k−1|k−1

i ,Xw
i ) , i = 0, . . . , N

and

x̂k|k−1 =
N∑
i=0

WiX k|k−1
i

Pk|k−1 =
N∑
i=0

Wi(X k|k−1
i − x̂k|k−1)(X k|k−1

i − x̂k|k−1)T .

f. Measurement Update

Compute

Zk|k−1
i = hk−1(X k|k−1

i ,X v
i ) , i = 0, . . . , N

ẑk|k−1 =
N∑
i=0

WiZk|k−1
i

cov(z̃k) =
N∑
i=0

Wi(Zk|k−1
i − ẑk|k−1)(Zk|k−1

i − ẑk|k−1)T

cov(xk, zk) ≡ cov(xk|k−1, zk|k−1)

=
N∑
i=0

Wi(X k|k−1
i − x̂k|k−1)(Zk|k−1

i − ẑk|k−1)T

and substitute in the filter equations:

Kk = cov(xk, zk)cov(z̃k)−1

x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1)
Pk|k = Pk|k−1 −Kkcov(z̃k)KT

k
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