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6 The Steady-State Filter

6.1 Problem and Main Results

We focus here on the stationary (time-invariant) model:

Tpy1 = Fop+wy

zr = Hzp + v
where
E(wyw) = Qbp, E(vgv) = Ré, E(wpv]) =0

zo ~ (To, ), xoL{vk, wi}

R > 0 (“non-singular problem”).

The KF equations, with Ty = Zy—1 and Pp = Pyjp—1:
jfk—i—l = F@k + Kk(zk - H@k)
K, =FPH"(HP,H" + R)™

P =F[P,— PPHY(HP,H" + Ry 'HP,F* +Q .

Note: this filter is still time-varying in general !

Question: Does the filter become stationary asymptotically ?



The main results of this section are summarized as follows.

Theorem 1. Assume that:

(i) The pair [F, H] is detectable.
(i) The pair [F,G] is stabilizable, where G; = /Q (i.e., GiGT = Q).

Then

(a) P, — P >0as k — oo, for any Py > 0.
The limit P is the unigue non-negative-definite solution of the
Algebraic Riccati Equation (ARE):
P=F[P—-PH"(HPH" + R)"'HP|F" + Q.
(b) (F — KH) is stable, where

K = lim K, =FPH"(HPH" + R)™".

k—o00

We shall explain and prove these results below.

Remarks

1. Conditions (i) + (ii) hold trivially when the system is asymptotically stable
(i.e., F is stable).

2. If the optimal filter is started with Py = P, it is immediately stationary.

3. In many applications the (sub-optimal) stationary filter is employed, i.e., K

is replaced by K.

4. The stationary filter K} := K is optimal w.r.t. the asymptotic criterion:

lim E{(x, — &) (2, — 3)7} .

t—o0



6.2 Basic Properties of LTIV State Systems

Consider the linear time-invariant (LTIV) system:
Tpyr = Fap+Guy; xo=a®
Yo = Huy

with x € R", u € R", y € R™.

Stability:
The system is asymptotically stable (x), — 0 for u, = 0) iff | N(F)| <1,i=1...n.

We call such a matrix I’ stable.

Controllability:

The pair [F,G] is controllable iff any one of the following equivalent conditions is

satisfied:

1.Va?, o/ e R" Hug,..., up_1}st. z, =2/
2. rank [G, FG,..., F"'G] = n.
3. 30 FIGGT(FT) > 0,

4. rank [\ —F:G]=n VA
(equivalently, V X = \;(F)).

5. The modes (= eigenvalues) of (F'+GK) can be assigned arbitrarily by choosing
K.



If [F, G] is not controllable, there exists a similarity transform 7 s.t.

o Fs G,
T'FT = . T7'G =
0 F 0
and [Fy, Gy] is controllable .

The modes of F} are the “controllable modes”, and those of F; are the “uncontrol-

lable modes”.

Stabilizability:

[F, G| is stabilizable iff any one of the following equivalent statements holds:

(i) 3K s.t. (F+ GK) is stable.
(ii) All uncontrollable modes of F' are “stable”: |\;(Fy)| < 1.

(iii) rank [\l — F:G]=n V[N > 1

Observability and Detectability:

Observability means that xy can be determined from

{ug, yp; k=0,1,...,n—1}.

Detectability means that the non-observable modes of I’ are stable.

In particular, 5 K s.t. the “observer matrix” [F' — K H| is stable.

Algebraically:

o [F, H] is observable iff [FT HT] is controllable.

e [F,H] is detectable iff [FT, H"] is stabilizable.



Obviously,
e controllability = stabilizability
e observability = detectability

e asymptotic stability = {stabilizability+detectability}.

Stationary behavior of LTIV systems

Consider the system

Tpp1 = Fap + Gug, k> ko,

with the usual assumptions on {wy} and zy,.

Let E(xg,) = mo, cov(xy,) = I1°.

Recall that 11, = F Iy FT + GQGT, where I}, = cov(zy).

Theorem 2. Suppose F' is stable. Then

(i) As kg — —o0, the processes {xy} converge to a (wide-sense) stationary process
{7}, with E(7;) =0, E(7z}) = 1L

Moreover, E(z,z]) = FFUI for k > 1.
(ii) II is the unique non-neg.-definite solution of

M- FIOF' =GQGT . (2)

Note: It follows that
1. For fixed ko, E(z}) — 0 and cov(zy) — II as k — oo.

2. If we start with mg = 0 and I1° = I, then {z}}r>, is stationary.



Lyapunov’s equation and stability

Equation (2) is the discrete-time Lyapunov equation (for II). Let us write it in the

following form:

P—-FPF' =qQ. (3)

This (linear) equation has a unique solution P iff X\;(F)\;(F) # Lforall1 <i,j <n.

This solution is symmetric if ) is. We henceforth assume that @) is symmetric.

The following basic relations exist between stability of F' and positive-definite solu-

tions to the Lyapunov equation.

1. F is stable iff there exist P > 0, @) > 0 that satisfy (3).
2. If F is stable, then the solution P is unique, symmetric, and P = Y o= F'Q(FT)".
3. If F is stable and Q > 0 (Q > 0), then P >0 (P > 0).

4. If F' is stable, Q@ > 0, and [F,1/Q)] is controllable, then P > 0.



6.3 Proof of Theorem 1

The proof proceeds along the following steps:

1. VP >0, {P} is bounded [provided (F, H) is detectable].

2. The map f from Py to Py, is monotone, i.e.,

P>P>0= f(P)>f(P).
3. For Py =0, P, /' P for some P > 0.
4. (F — KH) is stable [provided (F,/Q) is stabilizable].
5. P, — P for any Py > 0 (with P as in 3.).

Step 1.

Since (F, H) is detectable, 3 K s.t. (F' — K;H) is stable. Consider the sub-optimal
filter
.%'kJrl = Fﬁl%k + Kl(zk — Hi’k) .

It is easily verified that
Frp1 = Tpps — Tpp1 = (F — K H) &g + (wy, — Kyop)

By stability of (F' — K1H) and the above-quoted results, it follows that II, :=
cov (&) is bounded; however # is sub-optimal, so that P, < IIj.

Step 2.

Recall that Py, = H}}n 9( Py, K), where

g(P.K)=(F-KH)P(F—-KH)" + KRK" +Q .



Thus, if Pk > Pk,

Pk—l—l = m[}n g(PkaK) :g(Pk7K*> > 9<P/€7K*)

> m[%n g(pk,K) = Pk—H .

Step 3.

Suppose Py = 0. Then P, > Py, = 0. But from Step 2 it follows that P, > P; etc.,
namely Py, > P, k > 0. But since {P;} is bounded by Step 1, then P, — P
for some P > 0. Obviously, P must be a stationary point of the covariance update
equation, hence solves the ARE.

(Uniqueness of the solution will follow from Step 5).
Step 4: Stability of (F — KH).

With K the (stationary) gain corresponding to P, the ARE is
Q

_ o _ o o —
P=(F-KH)P(F-KH) +KRK' +GGT . (4)

Let v be a left-eigenvector of (F — K H) with eigenvalue A. Then

(wPv*) = [A? (vPv*) + o(KRK '+ GiG])v" . (5)

>0

Obviously this implies that |[A| < 1. It only remains the show that |A| = 1 is

impossible. If |A| = 1, we have from (5) and the definition of v:
(1) v(F—-KH)= v
(2) vK =0 (recall the R > 0)
(3) vG1=0.

But (1) 4+ (2) imply vF = Mv or v(A — F) = 0. Together with (3) this gives
v[A — F, G1] = 0. This contradicts the assumption that (F, G;) is stabilizable.
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Step 5: P.—P YPB>0.
Suppose we use the stationary suboptimal filter K, = K to obtain the estimator %k
We show that its error covariance converges to P. Defining &y, = Ty — %k we obtain

jk—&-l :(F—FH){i‘k—FUk—f-wk .

Since (F — K H) is stable, it follows from above-quoted results on stationary behavior
that ¥y := cov (i) — P > 0, where P is the unique non-negative solution of the

(Lyapunov) equation:
P=(F-KH)P(F-KH)"+KRK +Q.
However, substituting K this is just the ARE which is satisfied by P, hence P = P.

Now, Ty is sub-optimal so that P, < ¥, — P. On the other hand, by monotonicity
of f : Py — Pgyy, it follows that P, > PY — P, where P? is the covariance for
Py =0.

Hence P, — P. ]



6.4 Spectral Factorization in State Space
a. Definitions (reminder)

o Let { X} be a (wide-sense) stationary process, with covariance Ry, = E(X; X[, ,).

e The power spectrum of X, is

o0

Se(z) = Z{Ri} == Y z"Ry.

k=—0o0
By symmetries in { Ry} it follows that S,(2) = ST (27!). Thus, poles and zeros
appear in inverse pairs, (z;, ,z; ).

1
E.g., S.(z) = =)

e A (Wiener-Hopf, or canonical) spectral factorization of S, is

Sa(2) = W(2) W(2)",

where W (z) has no poles nor zeros outside the unit circle; thus, W(z) is stable

and minimum-phase.

The problem of spectral factorization is non-trivial in the MIMO case. The use of

state-space methods (and Kalman Filter formulas) provides an explicit solution.

b. The Factorization Formula

Suppose that {z;} is a stationary process, which may be modeled as the output of

a LTIV system driven by white noise:
Trp1 = Fap+wy
2z = Huxp + vy

with the usual noise assumptions.
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We assume that F' is stable. Further, the initial conditions (zo = 0 and Fp) are such

that xy (hence zj) is stationary. It follows that
S.(2) =T,(2)QTw(z Y + R

where T,(2) £ H - (2 — F)~1,

Theorem 3. Let P and K be the steady-state Kalman covariance and gain for the

model system, and Ty(z) 2 I + H(zI — F)"' K. Then
W(z) 2 Ty(2) - [R + HP HT)M?

provides a spectral factorization of S,(z). That is: W(z) is stable, with stable
inverse, and S, (z) = W ()W (z~1)T.
c. Proof

The theorem above follows from the following two lemmas, which can be proved us-
ing some algebraic manipulations. It is however much easier (and more illuminating)

to use previous results on the innovations process.

Lemma: Consider the model system above. Then (even with F' unstable, but

assuming that P and K are well defined)

S.(2)=To(2) [R+ HP H'| Ty(z™ ")
where Tp(2) 2 1 + H(zI — F)"' K.
Proof: Recall the renewal representation of z; (with Py = P):
B = Fap+ K5
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where
2k = Zk — E(Zk| Zk;—l) = H(ZL‘k — {i‘k) “+ v .
We know that Z, is white, with covariance E(2, ) = HPHT + R. Hence S:(z) =

HPHT + R. Noting that Ty(z) is the transfer function from Z to z, the required

expression for S, follows. ]

Lemma: If F is stable, then Ty(z) is stable and with stable inverse.

1

Proof: Stability is trivial by definition of 7j. To compute Tp(z)~!, note that we

have an explicit “inverse” state model that creates Z from z:

Zﬁk_;,_l = (F—KH)ik—kfzk

2]@ = —Hﬁ?k + 2z
It follows that
— -1__
To(2)™' = —H(z[ —(F— KH)) K +1. (6)
But we know that (F — K H) is stable if F is stable. O

We note that the last expression for Ty(z) ™! can also be derived using the “matrix

inversion lemma”:

[A+BC'DT ' =At - A'Bl[C+ DA ' Bt DT AL
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