5 The Continuous-Time Kalman Filter

The Model: Continuous-time linear system, with white noises state and measurement noises (not necessarily Gaussian).

Goal: Develop the continuous-time Kalman filter as the optimal *linear* estimator (L-MMSE) for this system.

One way to develop the continuous-time filter is as the limit (with $\Delta T \rightarrow 0$) of the discrete time case. The derivation below follows a direct approach, based on the innovations process, introduced by Kailath, and will be somewhat informal.

A rigorous but very accessible treatment may be found in: M. Davis, *Linear Estimation and Stochastic Control*, 1977. However, this more advanced treatment is only essential in the nonlinear estimation problem.

5.1 The continuous time model

We consider the state-space model

$$\frac{d}{dt}x_t = F_t x_t + w_t, \quad t \ge 0$$
$$z_t = H_t x_t + v_t$$

where:

• $\{w_t\}$ and $\{v_t\}$ are zero-mean white-noise processes, namely

$$E(w_t w_s^T) = Q_t \delta(t-s), \quad E(v_t v_s^T) = R_t \delta(t-s)$$
$$E(w_t v_s^T) = 0$$

- $\{w_t\}, \{v_t\}$ and x_0 are uncorrelated.
- $E(x_0) = \overline{x}_0$ and $\operatorname{cov}(x_0) = P_0$ are given.
- We shall assume that R_t is non-singular.

A simplifying assumption: We assume in the derivation below that $\overline{x}_0 = 0$, hence $\overline{x}_t \doteq E(x_t) = 0$. Otherwise, \overline{x}_t is given by $\dot{\overline{x}}_t = F_t \overline{x}_t$ and needs to be added in some of the intermediate equations. The filter equations are the same.

Remark: The white processes above are not rigorously defined, due to the δ -covariances, and indeed their sample-paths are quite "hectic". A rigorous definition of such processes (and the above model) is based on their *integral* — e.g., a Brownian motion in the Gaussian case.

 $\mathbf{2}$

State Covariance Propagation: $\Pi_t := cov(x_t)$ satisfies

$$\frac{d}{dt}\Pi_t = F_t \Pi_t + \Pi_t F_t^T + Q_t \tag{1}$$

with $\Pi_0 = \operatorname{cov}(x_0)$.

Proof: A naive proof approach by differentiating $E(x_t x_t^T)$ inside the expectation runs into trouble, because of the unusual properties of w_t . The following two options lead to the correct answer:

- 1. As a limit of the discrete-time case, with the approximation: $x_{(k+1)\epsilon} = (I + \epsilon F_{k\epsilon})x_{k\epsilon} + w_{k\epsilon}$, with $E(w_{k\epsilon}w_{l\epsilon}) = \epsilon Q_{k\epsilon}\delta_{kl}$, and $\epsilon \to 0$.
- 2. Explicitly solving for x_t : Let $\Phi(t, s)$ denote the $n \times n$ state transition matrix, namely the unique solution (for each s) of

$$\frac{d}{dt}\Phi(t,s) = F_t\Phi(t,s), \quad \Phi(s,s) = I$$
(2)

Then

$$x_t = \Phi(t,0)x_0 + \int_0^t \Phi(t,s)w_s ds \,.$$
(3)

This can be used to derive the covariance equation.

Example: Consider the stationary case – the system and covariance matrices are time independent.

Then the white noise processes have constant spectral densities:

$$S_w(\omega) = Q, \quad S_v(\omega) = R$$

and the noise-to state transfer function is

$$T(s) := T_{w \to x}(s) = (sI - F)^{-1}.$$

When this system is stable, the state spectral density is given by $S_x(\omega) = T(j\omega)QT^*(j\omega)$, and the measurement spectral density is $S_z(\omega) = HS_x(\omega)H^T + R$.

5.2 Filter Derivation

Let $Z_t = \{z_s, s < t\}$. We need to calculate $\hat{x}_t = E^L(x_t|Z_t)$.

Define the innovations process:

$$\tilde{z}_t := z_t - E^L(z_t | Z_t) \tag{4}$$

Observe that

$$\tilde{z}_t = z_t - H_t E^L(x_t | Z_t) = H_t \tilde{x}_t + v_t$$
(5)

where $\tilde{x}_t = x_t - \hat{x}_t$.

Properties of \tilde{z}_t :

 \tilde{z}_t is a zero-mean white noise process (exercise). Its covariance equals:

$$E(\tilde{z}_t \tilde{z}_s^T) = R_t \delta(t-s) \,. \tag{6}$$

Note: same covariance as z_t !

It can also be shown that \tilde{Z}_t and Z_t are linearly equivalent, so that

$$E^L(\cdot|Z_t) = E^L(\cdot|\tilde{Z}_t) \,.$$

It follows that \hat{x}_t can be expressed as a linear function of \tilde{Z}_t :

$$\hat{x}_t = \int_0^t g(t,s)\tilde{z}_s ds \tag{7}$$

The kernel g(t, s) is easily computable via the orthogonality principle. Since $\tilde{x}_t := (x_t - \hat{x}_t) \perp \tilde{z}_s$ for s < t,

$$E(x_t \tilde{z}_s^T) = \int_0^t g(t, r) E(\tilde{z}_r \tilde{z}_s^T) dr$$

=
$$\int_0^t g(t, r) \delta(s - r) R_s dr = g(t, s) R_s, \quad s < t.$$

Therefore,

$$\hat{x}_t = \int_0^t E(x_t \tilde{z}_s^T) R_s^{-1} \tilde{z}_s ds$$
(8)

Differentiate to obtain a differential equation for \hat{x} :

$$\frac{d}{dt}\hat{x}_t = \int_0^t E(\dot{x}_t \tilde{z}_s^T) R_s^{-1} \tilde{z}_s ds + E(x_t \tilde{z}_t^T) R_t^{-1} \tilde{z}_t \tag{9}$$

Now, define $K_t = E(x_t \tilde{z}_t^T) R_t^{-1}$, substitute \dot{x}_t from the state equation, note (8), and that $E(w_t \tilde{z}_s^T) = 0$ for s < t. These give

$$\frac{d}{dt}\hat{x}_t = F_t\hat{x}_t + K_t\tilde{z}_t = F_t\hat{x}_t + K_t(z_t - H_t\hat{x}_t).$$
(10)

Using (5)

$$K_t := E(x_t \tilde{z}_t^T) R_t^{-1} = E(x_t \tilde{x}_t^T) H_t^T R_t^{-1} + 0 = P_t H_t^T R_t^{-1}$$
(11)

where $P_t := E(\tilde{x}_t \tilde{x}_t^T)$.

Calculating P_t :

Recall that $\tilde{x}_t = x_t - \hat{x}_t$. Using (10),

$$\frac{d}{dt}\tilde{x}_t = (F_t - K_t H_t)\tilde{x}_t + w_t - K_t v_t.$$
(12)

As in (1), this implies

$$\frac{d}{dt}P_t = (F_t - K_t H_t)P_t + P_t (F_t - K_t H_t)^T + Q_t + K_t R_t K_t^T$$
(13)

with P_0 given.

An alternative expression: by substituting K_t from (11) and rearranging,

$$\frac{d}{dt}P_t = F_t P_t + P_t F_t^T + Q_t - K_t R_t K_t^T.$$
(14)

This is the (differential) *Riccati Equation* - a quadratic matrix differential equation.

To summarize: The filter equation is given by (10)

$$\frac{d}{dt}\hat{x}_t = F_t\hat{x}_t + K_t\tilde{z}_t = F_t\hat{x}_t + K_t(z_t - H_t\hat{x}_t)$$

with the gain (11)

$$K_t := E(x_t \tilde{z}_t^T) R_t^{-1} = P_t H_t^T R_t^{-1}.$$

The covariance may be computed by (the Joseph form)

$$\frac{d}{dt}P_{t} = (F_{t} - K_{t}H_{t})P_{t} + P_{t}(F_{t} - K_{t}H_{t})^{T} + Q_{t} + K_{t}R_{t}K_{t}^{T}$$

or (14)

$$\frac{d}{dt}P_t = F_t P_t + P_t F_t^T + Q_t - K_t R_t K_t^T.$$

Note: if the state and measurement noises are correlated, namely

$$E(w_t v_s^T) = S_t \delta(t-s) \,,$$

then the gain in (11) becomes $K_t = (P_t H_t^T + S_t) R_t^{-1}$, and the covariance update (13) should be modified by adding $-(S_t K_t^T + K_t S_t^T)$ on the right.