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5 The Continuous-Time Kalman Filter

The Model: Continuous-time linear system, with white noises state and measure-

ment noises (not necessarily Gaussian).

Goal: Develop the continuous-time Kalman filter as the optimal linear estimator

(L-MMSE) for this system.

One way to develop the continuous-time filter is as the limit (with ∆T → 0) of the

discrete time case. The derivation below follows a direct approach, based on the

innovations process, introduced by Kailath, and will be somewhat informal.

A rigorous but very accessible treatment may be found in: M. Davis, Linear Es-

timation and Stochastic Control, 1977. However, this more advanced treatment is

only essential in the nonlinear estimation problem.
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5.1 The continuous time model

We consider the state-space model

d

dt
xt = Ftxt + wt , t ≥ 0

zt = Htxt + vt

where:

• {wt} and {vt} are zero-mean white-noise processes, namely

E(wtw
T
s ) = Qtδ(t− s), E(vtv

T
s ) = Rtδ(t− s)

E(wtv
T
s ) = 0

• {wt}, {vt} and x0 are uncorrelated.

• E(x0) = x0 and cov(x0) = P0 are given.

• We shall assume that Rt is non-singular.

A simplifying assumption: We assume in the derivation below that x0 = 0, hence

xt
.
= E(xt) = 0. Otherwise, xt is given by ẋt = Ftxt and needs to be added in some

of the intermediate equations. The filter equations are the same.

Remark: The white processes above are not rigorously defined, due to the δ-covariances,

and indeed their sample-paths are quite “hectic”. A rigorous definition of such

processes (and the above model) is based on their integral — e.g., a Brownian mo-

tion in the Gaussian case.
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State Covariance Propagation: Πt := cov(xt) satisfies

d

dt
Πt = FtΠt + ΠtF

T
t + Qt (1)

with Π0 = cov(x0).

Proof: A naive proof approach by differentiating E(xtx
T
t ) inside the expectation runs

into trouble, because of the unusual properties of wt. The following two options lead

to the correct answer:

1. As a limit of the discrete-time case, with the approximation:

x(k+1)ε = (I + εFkε)xkε + wkε, with E(wkεwlε) = εQkεδkl, and ε → 0.

2. Explicitly solving for xt: Let Φ(t, s) denote the n× n state transition matrix,

namely the unique solution (for each s) of

d

dt
Φ(t, s) = FtΦ(t, s), Φ(s, s) = I (2)

Then

xt = Φ(t, 0)x0 +

∫ t

0

Φ(t, s)wsds . (3)

This can be used to derive the covariance equation.

Example: Consider the stationary case – the system and covariance matrices are

time independent.

Then the white noise processes have constant spectral densities:

Sw(ω) = Q, Sv(ω) = R

and the noise-to state transfer function is

T (s) := Tw→x(s) = (sI − F )−1 .

When this system is stable, the state spectral density is given by Sx(ω) = T (jω)QT ∗(jω),

and the measurement spectral density is Sz(ω) = HSx(ω)HT + R.
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5.2 Filter Derivation

Let Zt = {zs, s < t}. We need to calculate x̂t = EL(xt|Zt).

Define the innovations process:

z̃t := zt − EL(zt|Zt) (4)

Observe that

z̃t = zt −HtE
L(xt|Zt) = Htx̃t + vt (5)

where x̃t = xt − x̂t.

Properties of z̃t:

z̃t is a zero-mean white noise process (exercise). Its covariance equals:

E(z̃tz̃
T
s ) = Rtδ(t− s) . (6)

Note: same covariance as zt !

It can also be shown that Z̃t and Zt are linearly equivalent, so that

EL(·|Zt) = EL(·|Z̃t) .

It follows that x̂t can be expressed as a linear function of Z̃t:

x̂t =

∫ t

0

g(t, s)z̃sds (7)

The kernel g(t, s) is easily computable via the orthogonality principle. Since x̃t :=

(xt − x̂t) ⊥ z̃s for s < t,

E(xtz̃
T
s ) =

∫ t

0

g(t, r)E(z̃rz̃
T
s )dr

=

∫ t

0

g(t, r)δ(s− r)Rsdr = g(t, s)Rs, s < t .
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Therefore,

x̂t =

∫ t

0

E(xtz̃
T
s )R−1

s z̃sds (8)

Differentiate to obtain a differential equation for x̂:

d

dt
x̂t =

∫ t

0

E(ẋtz̃
T
s )R−1

s z̃sds + E(xtz̃
T
t )R−1

t z̃t (9)

Now, define Kt = E(xtz̃
T
t )R−1

t , substitute ẋt from the state equation, note (8), and

that E(wtz̃
T
s ) = 0 for s < t. These give

d

dt
x̂t = Ftx̂t + Ktz̃t = Ftx̂t + Kt(zt −Htx̂t) . (10)

Using (5)

Kt := E(xtz̃
T
t )R−1

t = E(xtx̃
T
t )HT

t R−1
t + 0 = PtH

T
t R−1

t (11)

where Pt := E(x̃tx̃
T
t ).

Calculating Pt:

Recall that x̃t = xt − x̂t. Using (10),

d

dt
x̃t = (Ft −KtHt)x̃t + wt −Ktvt . (12)

As in (1), this implies

d

dt
Pt = (Ft −KtHt)Pt + Pt(Ft −KtHt)

T + Qt + KtRtK
T
t (13)

with P0 given.

An alternative expression: by substituting Kt from (11) and rearranging,

d

dt
Pt = FtPt + PtF

T
t + Qt −KtRtK

T
t . (14)

This is the (differential) Riccati Equation - a quadratic matrix differential equation.
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To summarize: The filter equation is given by (10)

d

dt
x̂t = Ftx̂t + Ktz̃t = Ftx̂t + Kt(zt −Htx̂t)

with the gain (11)

Kt := E(xtz̃
T
t )R−1

t = PtH
T
t R−1

t .

The covariance may be computed by (the Joseph form)

d

dt
Pt = (Ft −KtHt)Pt + Pt(Ft −KtHt)

T + Qt + KtRtK
T
t

or (14)
d

dt
Pt = FtPt + PtF

T
t + Qt −KtRtK

T
t .

Note: if the state and measurement noises are correlated, namely

E(wtv
T
s ) = Stδ(t− s) ,

then the gain in (11) becomes Kt = (PtH
T
t + St)R

−1
t , and the covariance update

(13) should be modified by adding −(StK
T
t + KtS

T
t ) on the right.
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