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2 Statistical Estimation: Basic Concepts

2.1 Probability

We briefly remind some basic notions and notations from probability theory that

will be required in this chapter.

The Probability Space:

The basic object in probability theory is the probability space (Ω,F ,P), where

Ω is the sample space (with sample points ω ∈ Ω),

F is the (sigma-field) of possible events B ∈ F , and

P is a probability measure, giving the probabilty P(B) of each possible event.

A (vector-valued) Random Variable (RV) x is a mapping

x : Ω → IRn .

x is also required to be measurable on (Ω,F), in the sense that x−1(A) ∈ F for any

open (or Borel) set A in IRn.

In this course we shall not explicitly define the underlying probability space, but

rather define the probability distributions of the RVs of interest.
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Distribution and Density:

For an RV x : Ω → IRn, the (cumulative) probability distribution function (cdf) is

defined as

Fx(x) = P(x ≤ x)
4
= P{ω : x(ω) ≤ x} , x ∈ IRn .

The probability density function (pdf), if it exists, is given by

px(x) =
∂nFx(x)

∂x1 . . . ∂xn

.

The RV’s (x1 , . . . , xk) are independent if

Fx1 ,...,xk
(x1 , . . . , xk) =

K∏

k=1

Fxk
(xk)

(and similarly for their densities).

Moments:

The expected value (or mean) of x:

x ≡ E(x)
4
=

∫

IRn

x dFx(x) .

More generally, for a real function g on IRn,

E(g(x)) =

∫

IRn

g(x) dFx(x) .

The covariance matrices:

cov(x) = E{(x− x)(x− x)T}

cov(x1,x2) = E{(x1 − x1)(x2 − x2)
T} .

When x is scalar then cov(x) is simply its variance.

The RV’s x1 and x2 are uncorrelated if cov(x1,x2) = 0.
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Gaussian RVs:

A (non-degenerate) Gaussian RV x on IRn has the density

fx(x) =
1

(2π)n/2 det(Σ)1/2
e−

1
2

(x−m)T Σ−1(x−m) .

It follows that m = E(x), Σ = cov(x). We denote x ∼ N(m, Σ).

x1 and x2 are jointly Gaussian if the random vector (x1;x2) is Gaussian.

It holds that:

1. x Gaussian ⇐⇒ all linear combinations
∑

i aixi are Gaussian.

2. x Gaussian ⇒ y = Ax is Gaussian.

3. x1,x2 jointly Gaussian and uncorrelated

⇒ x1,x2 are independent.

Conditioning:

For two events A,B, with P(B) > 0, define:

P(A|B) =
P(A ∩B)

P(B)
.

The conditional distribution of x given y:

Fx|y(x|y) = P(x ≤ x|y = y)

.
= lim

ε→0
P(x ≤ x | y − ε < y < y + ε) .

The conditional density:

px|y(x|y) =
∂n

∂x1 . . . ∂xn

Fx|y(x|y) =
pxy(x, y)

py(y)
.

In the following we simply write p(x|y) etc. when no confusion arises.
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Conditional Expectation:

E(x|y = y) =

∫

IRn

x p(x|y) dx .

Obviously, this is a function of y : E(x|y = y) = g(y).

Therefore, E(x|y)
4
= g(y) is an RV, and a function of y.

Basic properties:

∗ Smoothing: E(E(x|y)) = E(x).

∗ Orthogonality principle:

E([x− E(x|y)] h(y)) = 0 for every scalar function h.

∗ E(x|y) = E(x) if x and y are independent.

Bayes Rule:

p(x|y) =
p(x, y)

p(y)
=

p(y|x)p(x)∫
p(y|x)p(x) dx

.
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2.2 The Estimation Problem

The basic estimation problem is:

• Compute an estimate for an unknown quantity x ∈ X = IRn,

based on measurements y = (y1 , . . . , ym)′ ∈ IRm.

Obviously, we need a model that relates y to x. For example,

y = h(x) + v

where h is a known function, and v a “noise” (or error) vector.

• An estimator x̂ for x is a function

x̂ : y 7→ x̂(y) .

• The value of x̂(y) at a specific observed value y is an estimate of x.

Under different statistical assumptions, we have the following major solution con-

cepts:

(i) Deterministic framework:

Here we simply look for x that minimizes the error in y ' h(x). The most

common criterion is the square norm:

min
x
‖y − h(x)‖2 = min

x

m∑
i=1

|yi − hi(x)|2 .

This is the well-known (non-linear) least-squares (LS) problem.
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(ii) Non-Bayesian framework:

Assume that y is a random function of x. For example,

y = h(x) + v, with v an RV. More generally, we are given, for each fixed x,

the pdf p(y|x) (i.e., y ∼ p(·|x)).

No statistical assumptions are made on x.

The main solution concept here is the MLE.

(iii) Bayesian framework:

Here we assume that both y and x are RVs with known joint statistics. The

main solution concepts here are the MAP estimator and the optimal (MMSE) estimator.

A problem related to estimation is the regression problem: given measurements

(xk, yk)
N
k=1, find a function h that gives the best fit yk ' h(xk). h is the regressor,

or regression function. We shall not consider this problem directly in this course.
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2.3 The Bayes Framework

In the Bayesian setting, we are given:

(i) px(x) – the prior distribution for x.

(ii) py|x(y|x) – the conditional distribution of y given x = x.

Note that p(y|x) is often specified through an equation such as y = h(x,v) or

y = h(x) + v, with v an RV, but this is immaterial for the theory.

We can now compute the posterior probability of x:

p(x|y) =
p(y|x)p(x)∫
p(y|x)p(x) dx

.

Given p(x|y), what would be a reasonable choice for x̂?

The two common choices are:

(i) The mean of x according to p(x|y):

x̂(y) = E(x|y) ≡
∫

x p(x|y) dx .

(ii) The most likely value of x according to p(x|y):

x̂(y) = arg max
x

p(x|y)

The first leads to the MMSE estimator, the second to the MAP estimator.
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2.4 The MMSE Estimator

The Mean Square Error (MSE) of as estimator x̂ is given by

MSE(x̂)
4
= E(‖x− x̂(y)‖2) .

The Minimial Mean Square Error (MMSE) estimator, x̂MMSE, is the one that mini-

mizes the MSE.

Theorem: x̂MMSE(y) = E(x|y = y).

Remarks:

1. Recall that conditional expectation E(x|y) satisfies the orthogonality principle

(see above). This gives an easy proof of the theorem.

2. The MMSE estimator is unbiased : E(x̂MMSE(y)) = E(x).

3. The posterior MSE is defined (for every y) as:

MSE (x̂|y) = E(‖x− x̂(y)‖2 |y = y) .

with minimal value MMSE(y). Note that

MSE(x̂) = E
(
E(‖x− x̂(y)‖2 |y)

)

=

∫

y

MSE(x̂|y)p(y)dy .

Since MSE(x̂|y) can be minimizing for each y separately, it follows that mini-

mizing the MSE is equivalent to minimizing the posterior MSE for every y.

Some shortcomings of the MMSE estimator are:

– Hard to compute (except for special cases).

8



– May be inappropriate for multi-modal distributions.

– Requires the prior p(x), which may not be available.

Example: The Gaussian Case.

Let x and y be jointly Gaussian RVs with means

E(x) = mx , E(y) = my ,

and covariance matrix

cov


x

y


 =


Σxx Σxy

Σyx Σyy


 .

By direct calculation, the posterior distribution px|y=y is Gaussian, with mean

mx|y = mx + ΣxyΣ−1
yy(y −my) ,

and covariance

Σx|y = Σxx − ΣxyΣ−1
yyΣyx .

(If Σ−1
yy does not exist, it may be replaced by the pseudo-inverse.) Note that the

posterior variance Σx|y does not depend on the actual value y of y!

It follows immediately that for the Gaussian case,

x̂MMSE(y) ≡ E(x|y = y) = mx|y ,

and the associated posterior MMSE equals

MMSE(y) = E(‖x− x̂MMSE(y)‖2|y = y) = trace(Σx|y) .

Note that here x̂MMSE is a linear function of y. Also, the posterior MMSE does not

depend on y.
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2.5 The Linear MMSE Estimator

When the MMSE is too complicated we may settle for the best linear estimator.

Thus, we look for x̂ of the form:

x̂(y) = Ay + b

that minimizes

MSE (x̂) = E
(
‖ x− x̂(y) ‖2

)
.

The solution may be easily obtained by differentiation, and has exactly the same

form as the MMSE estimator for the Gaussian case:

x̂L(y) = mx + ΣxyΣ−1
yy(y −my) .

Note:

• The LMMSE estimator depends only on the first and second order statistics

of x and y.

• The linear MMSE does not minimize the posterior MSE, namely MSE (x̂|y).

This holds only in the Gaussian case, where the LMMSE and MMSE estima-

tors coincide.

• The orthogonality principle here is:

E
(
(x− x̂L(y)) L(y)T

)
= 0 ,

for every linear function L(y) = Ay + b of y.

• The LMMSE is unbiased: E(x̂L(y)) = E(x).
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2.6 The MAP Estimator

Still in the Bayesian setting, the MAP (Maximum a-Posteriori) estimator is defined

as

x̂MAP(y)
4
= arg max

x
p(x|y) .

Noting that

p(x|y) =
p(x, y)

p(y)
=

p(x)p(y|x)

p(y)
,

we obain the equivalent characterizations:

x̂MAP(y) = arg max
x

p(x, y)

= arg max
x

p(x)p(y|x) .

Motivation: Find the value of x which has the highest probability according to the

posterior p(x|y).

Example: In the Gaussian case, with p(x|y) ∼ N(mx|y, Σx|y) , we have:

x̂MAP(y) = arg max
x

p(x|y) = mx|y ≡ E(x|y = y) .

Hence, x̂MAP ≡ x̂MMSE for this case.
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2.7 The ML Estimator

The MLE is defined in a non-Bayesian setting:

∗ No prior p(x) is given. In fact, x need not be random.

∗ The distribution p(y|x) of y given x is given as before.

The MLE is defined by:

x̂ML(y) = arg max
x∈X

p(y|x) .

It is convenient to define the likelihood function Ly(x) = p(y|x) and the log-likelihood

function Λy(x) = log Ly(x), and then we have

x̂ML(y) = arg max
x∈X

Ly(x) ≡ arg max
x∈X

Λy(x) .

Note:

• Often x is denoted as θ in this context.

• Motivation: The value of x that makes y “most likely”.

This justification is merely heuristic!

• Compared with the MAP estimator:

x̂MAP(y) = arg max
x

p(x)p(y|x) ,

we see that the MLE lacks the weighting of p(y|x) by p(x).

• The power of the MLE lies in:

∗ its simplicity

∗ good asymptotic behavior.
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Example 1: y is exponentially distributed with rate x > 0, namely x = E(y)−1.

Thus:

F (y|x) = (1− e−xy) 1{y≥0}

py|x(y) = x e−xy 1{y≥0}

x̂ML(y) = arg max
x≥0

x e−xy

d

dx
(x e−xy) = 0 ⇒ x = y−1

x̂ML(y) = y−1 .

Example 2 (Gaussian case):

y = Hx + v (y ∈ IRm , x ∈ IRn)

v ∼ N(0, Rv)

Ly(x) = p(y|x) =
1

c
e−

1
2

(y−Hx)T R−1
v (y−Hx)

log Ly(x) = c1 − 1

2
(y −Hx)T R−1

v (y −Hx)

x̂ML = arg min
x

(y −Hx)T R−1
v (y −Hx) .

This is a (weighted) LS problem! By differentiation,

HT R−1
v (y −Hx) = 0 ,

x̂ML = (HT R−1
v H)−1 HT R−1

v y

(assuming that HT R−1
v H is invertible: in particular, m ≥ n).
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2.8 Bias and Covariance

Since the measurement y is random, the estimate x̂ = x̂(y) is a random variable,

and we can relate to its mean and variance.

The conditional mean of x̂ is given by

m̂(x)
4
= E(x̂|x) ≡ E(x̂|x = x) =

∫
x̂(y) p(y|x) dy

The bias x̂ is defined as

b(x) = E(x̂|x)− x .

The of estimator x̂ is (conditionally) unbiased if b(x) = 0 for every x ∈ X .

The covariance matrix of x̂ is,

cov(x̂|x) = E((x̂− E(x̂|x))(x̂− E(x̂|x)′|x = x)

In the scalar case, it follows by orthogonality that

MSE(x̂|x) ≡ E((x− x̂)2|x) = E((x− E(x̂|x) + E(x̂|x)− x̂)2|x)

= cov(x̂|x) + b(x)2 .

Thus, if x̂ is conditionally unbiased, MSE(x̂|x) = cov(x̂|x).

Similarly, if x is vector-valued, then MSE(x̂|x) = trace(cov(x̂|x)) + ||b(x)||2.

In the Bayesian case, we say that x̂ is unbiased if E(x̂(y)) = E(x). Note that the

first expectation is both over x and y.
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2.9 The Cramer-Rao Lower Bound (CRLB)

The CRLB gives a lower bound on the MSE of any (unbiased) estimator. For

illustration, we mention here the non-Bayesian version, with a scalar parameter x.

Assume that x̂ is conditionally unbiased, namely Ex(x̂(y)) = x. (We use here Ex(·)
for E(·|X = x)). Then

MSE(x̂|x) = Ex{(x̂(y)− x)2} ≥ J(x)−1 ,

where J is the Fisher information:

J(x)
4
=− Ex

{
∂2 ln p(y|x)

∂x2

}

= Ex

{(
∂ ln p(y|x)

∂x

)2
}

.

An (unbiased) estimator that meets the above CRLB is said to be efficient.
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2.10 Asymptotic Properties of the MLE

Suppose x is estimated based on multiple i.i.d. samples:

y = yn = (y1 , . . . , yn) , with p(yn|x) =
n∏

i=1

p0(yi|x) .

For each n ≥ 1, let x̂n denote an estimator based on yn. For example, x̂n = x̂n
ML.

We consider the asymptotic properties of {x̂n}, as n →∞.

Definitions: The (non-Bayesian) estimator sequence {x̂(n)} is termed:

∗ Consistent if: lim
n→∞

x̂n(yn) = x (w.p. 1).

∗ Asymptotically unbiased if: lim
n→∞

Ex(x̂n(yn)) = x .

∗ Asymptotically efficient if it satisfies the CRLB for n →∞, in the sense that:

lim
n→∞

Jn(x) ·MSE (x̂n) = 1 .

Here MSE(xn) = Ex(x̂n(yn)− x)2), and Jn is the Fisher information for yn.

For i.i.d. observations, Jn = nJ (1).

The ML Estimator x̂n
ML is both asymptotically unbiased and asymptotically efficient

(under mild technical conditions).
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