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11 Hidden Markov Models (HMMs)

11.1 Model and Problem Description

We consider here a somewhat different model, which evolves on a discrete (finite)

state space. The following elements describe the model:

1. A finite state space: X = {1, . . . , M} with random states Xk ∈ X .

2. The state dynamics is described by a time-homogeneous Markov chain:

p(Xk+1 = j|Xk = i) = a(j|i) ≡ Aij

with initial conditions π0 = (p(X0 = i))i∈X .

3. Measurements Yk ∈ Y are obtained, and depend on the current state only:

p(Yk = y|xk
0, y

k
0) = p(Yk = y|xk) .

Define b(y|x) = p(Yk = y|Xk = x). The measurement space may be discrete, in

which case b(·|x) is a probability mass function (pmf); or it may be continuous,

and then b(·|x) will denote a probability density function (pdf).

The quantities (A, b, π0) are the natural model parameters. In general, we have some

model parameters θ on which the above depend.

It is usually assumed that the Markov chain Xn is ergodic (irreducible and non-

periodic). The output process Yn can be shown to inherit basic properties (station-

arity, ergodicity, mixing) from the state process.
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The basic computational problems for the HMM model are:

1. Output sequence probabilities: Compute p(yn
0 ).

2. State estimation: Given the measurements yn
0 , estimate Xn

0 .

3. System identification/learning: Given yn
0 , estimate the model parameters θ.

The first two items assume known model (A, b, π0). In the third the goal is to

estimate the model, including the ‘hidden’ state dynamics.

Note that p(yn
0 ) is the likelihood function, that will be used for identification when

the model parameters are unknown.
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11.2 Output-Sequence Probabilities

The following computations which involve a given state sequence are easy:

p(xn
0 ) =

n∏

k=0

p(xk|xk−1
0 )

(where p(x0|x−1
0 )

4
= π(x0)),

p(yn
0 |xn

0 ) =
n∏

k=0

p(yk|xk)

p(yn
0 , xn

0 ) =
n∏

k=0

p(xk|xk−1)p(yk|xk) .

To compute p(yn
0 ), we can use

p(yn
0 ) =

∑
xn
0∈Xn

p(yn
0 , xn

0 )

However, as the number of possible sequences xn
0 is exponential, this direct compu-

tation becomes unfeasible unless n is small. This computation can be done much

more efficiently using either forward or backward recursions.

Forward recursion: Compute p(xk, y
k
0) recursively as follows:

p(xk+1, y
k+1
0 ) = b(yk+1|xk+1)

∑
xk∈X

p(xk, y
k
0)a(xk+1|xk)

with p(x0, y0) = b(y0|x0)π(x0).

We then obtain

p(yn
0 ) =

∑
xn

p(xn, yn
0 ) .

This requires O(nM2) operations, as opposed to O(nMn) for direct computation.

Backward recursion: We can similarly compute p(yn
k+1|xk) as follows:

p(yn
k |xk−1) =

∑
xk

p(yn
k+1|xk)a(xk|xk−1)b(yk|xk)
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starting from p(yn
n+1|xn)

4
= 1. Here we have p(yn

0 ) ≡ p(yn
0 |x−1).

Posterior state distribution: Another quantity of interest is the conditional

(’smoothed’) state distribution p(xk|yn
0 ). The forward and backward recursions may

be combined to obtain this quantity. First,

p(xk, y
n
0 ) = p(xk, y

k
0 , y

n
k+1) = p(xk, y

k
0)p(yn

k+1|xk) .

This follows from the conditional independence of Y k
0 and Y n

k+1 given xk. We may

now compute p(xk|yn
0 ) = p(xk, y

n
0 )/p(yn

0 ).

Furthermore, the pairwise state distribution (that will be required later) can be

computed as

p(xk−1, xk|yn
0 ) =

1

C
p(xk−1, y

k−1
0 )p(yn

k+1|xk)a(xk|xk−1)b(yk|xk)

where C =
∑

xk,xk−1
{numerator} is the normalization constant.
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11.3 MAP State Estimation

We now wish to find an estimate for the state sequence xn
0 , given the measurement

sequence yn
0 . The primary concept here is the MAP estimator.

Single-state estimator:

For each 0 ≤ k ≤ n, we can simply estimate xk as

x̂k = arg max
xk

p(xk, y
n
0 )

where the latter probability was computed above.

State Sequence Estimation: The Viterbi Algorithm

We are usually interested in estimating the entire state sequence xn
0 . Not that this

is not the same as the combined single-state estimates {x̂k}n
k=0, that might yield

unlikely (even 0-probability) sequences. We therefore consider

x̂n
0 = arg max

xn
0

p(xn
0 , y

n
0 )

where

p(xn
0 , y

n
0 ) =

n∏

k=0

p(xk|xk−1)p(yk|xk) .

The Viterbi algorithm gives an iterative solution to this problem, which is a partic-

ular case of the Dynamic Programming algorithm.

Define the joint log-likelihood function Ln(xn
0 )

4
= log p(xn

0 , y
n
0 ). Then

Ln(xn
0 ) = c0(x0) +

n∑

k=1

ck(xk−1, xk)

where ck(xk−1, xk) = log(p(xk|xk−1)p(yk|xk)). That is,

ck(i, j) = log(a(j|i)b(yk|j)) for k ≥ 1, and c0(j) = log(π0(j)b(y0|j)) .
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Obviously, Lk(x
k
0) = Lk−1(x

k−1
0 ) + ck(xk−1, xk).

Let

vk(xk) = max
xk−1
0

Lk(x
k
0) , xk ∈ X

It is easily verified that

vk(j) = max
i
{vk−1(i) + ck(i, j)} , j ∈ X

and maxxn
0
Ln(xn

0 ) = maxj vn(j). The maximizing state sequence is now obtained as

x̂n = arg max
j

vn(j) ,

x̂k = arg max
i
{vk(i) + ck+1(i, x̂k+1)}
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11.4 Joint Parameter and State Estimation

Consider the problem of estimating the natural model parameters: θ = (A, b, π0).

When the state sequence is observed, this is an easy task. However, when only the

measurements are available, it becomes considerably harder.

The basic estimator here is the MLE:

θ̂ = max
θ∈Θ

p(yn
0 |θ)

where Θ is the set of feasible parameters.

Some basic observations:

• It is hard to compute (and optimize) p(yn
0 |θ).

• However, it is “easy” to compute p(yn
0 , xn

0 |θ). Unfortunately, xn
0 is unknown.

To exploit the last observation, we can use the following two-step iterative scheme:

1. Given some estimate θ̂m, compute p(xn
0 |yn

0 , θ̂m) ≡ p̂(xn
0 ).

2. Using p̂(xm
0 ), get an improved estimate θ̂m+1.

The resulting algorithm is known as the Baum algorithm (1966). It is a special case

of the EM algorithm (1977).
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The Baum Algorithm:

Recall that yn
0 is given. Define the log-likelihood function:

L(θ) = log p(yn
0 |θ)

which we wish to maximize.

For a given estimate θ̂m, define the following auxiliary function:

Q(θ, θ̂m) = E
{

log p(xn
0 , y

n
0 |θ) | yn

0 , θ̂m

}

≡
∑
xn
0

p(xn
0 |yn

0 , θ̂m) log p(xn
0 , y

n
0 |θ) .

This may be viewed as an “averaged” log-likelihood function.

The algorithm is, in principle:

(1) Expectation stage: given θ̂m, compute Q(θ, θ̂m) [using p(xn
0 |yn

0 , θ̂n)].

(2) Maximization stage: θ̂m+1 = arg maxθ Q(θ, θ̂m).

In general, this algorithm increases the likelihood L(θ̂m) at each stage, as we show

below. However, it can only find local maxima of L(θ).

8



The Re-estimation Formulas:

The process of obtaining θ̂m+1 from θ̂m is often called re-estimation. Explicit for-

mulas can be given in certain cases.

We start by computing p(xt−1, xt|yn
0 , θ̂m). This can be done using the backward/forward

iteration (see section 11.2), with the model θ̂m. Now

• π̂0 and Â(j|i) are given by

(π̂0)j = p(x0 = j|yn
0 , θ̂m)

â(j|i) =

∑n
t=1 p(xt−1 = i, xt = j|yn

0 , θ̂m)∑n
t=1 p(xt−1 = i|yn

0 , θ̂m)

• If Y is discrete, then

b̂(y|i) =

∑n
t=0 p(xt = i, yt = y|yn

0 , θ̂m)∑n
t=0 p(xt = i|yn

0 , θ̂m)

• If Y is Gaussian, with (yt|xt = i) ∼ N (µi, Ri), then

µ̂i =

∑n
t=0 p(xt = i|yn

0 , θ̂m) yt∑n
t=0 p(xn = i|yn

0 , θ̂m)
= “averaging” over yt .

R̂i = similar averaging, with yt replaced by (yt − µ̂i)(yt − µ̂i)
T .
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11.5 The EM Algorithm

We briefly describe the EM algorithm in a general (abstract) setting, not restricted

to HMMs.

The basic model:

θ – Unknown parameter, θ ∈ Θ ⊂ IRr.

X – Hidden variable (or “state”).

Y – Observation (noisy function of the state).

We assume that pθ(x) and pθ(y|x) are known. Hence we can compute (in principle)

pθ(y) =

∫

x

pθ(y|x)pθ(x)dx .

Define the log-likelihood function:

L(θ) = log pθ(y) .

Our goal is to compute the maximum likelihood estimator:

θ̂ = arg max
θ∈Θ

L(θ) .

Since L(θ) is hard to maximize directly, we use the two step EM procedure.

a. The EM iteration

Recall that the measurement y is given. We start with some guess θ̂0, and iterate

for m ≥ 0:

(1) E-step: Compute

Q(θ, θ̂m) = E
(
log pθ(X, y)|Y = y, θ̂m

)

=

∫

x

log pθ(x, y)dpθ̂m
(x|y)
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(2) M-step: θ̂m+1 = arg maxθ Q(θ, θ̂m) .

Stop when ‖θ̂m+1 − θ̂m‖ ≤ ε.

b. EM increases L(θ)

We will show below that for every θ and θ̂m,

L(θ)− L(θ̂m) ≥ Q(θ, θ̂m)−Q(θ̂m, θ̂m) . (∗)

Therefore, taking θ̂m+1 = arg maxθ Q(θ, θ̂m), we obtain

L(θ̂m+1) ≥ L(θ̂m)

with equality only if θ̂m+1 = θ̂m (more precisely, if θ̂m is a maximizer of Q(θ, θ̂m)).

To simplify notation, let Êm(·) denote expectation over X with respect to pθ̂m
(x|y).

Then

Q(θ, θ̂m) = Êm (log pθ(X, y)) .

To establish (∗), note that

Q(θ, θ̂m) = Êm log pθ(X, y)

= Êm

(
log pθ(X|y) + log pθ(y)

)

= Êm log pθ(X|y) + L(θ) .

Therefore:

Q(θ, θ̂m)−Q(θ̂m, θ̂m) = Êm

{
log

pθ(X|y)

pθ̂m
(X|y)

}
+ L(θ)− L(θ̂m) .

To show that Êm{. . . } ≤ 0, we use Jensen’s inequality:

E(log Z) ≤ log E(Z) .
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Therefore:

Êm{. . . } ≤ log Êm

(
pθ(X|y, θ)

pθ̂m
(X|y)

)
= log

∫

x

pθ(x|y)

pθ̂m
(x|y)

pθ̂m
(x|y)dx

= log 1 = 0 .

c. EM as a max-max procedure

An interesting interpretation of the EM can be obtained by looking at the function:

F (θ, P0)
4
=

∫

x

log

(
pθ(x, y)

P0(x)

)
P0(x)dx

where P0 is some pdf in x.

It can be shown that:

arg max
P0

F (θ, P0) = pθ(x|y) .

Indeed,

F (θ, P0) =

∫

x

log

(
pθ(x|y)

P0(x)

)
P0(x)dx + L(θ)

and for any pair of distributions q(x) and p(x) we have that

∫

x

log

(
p(x)

q(x)

)
q(x)dx ≤

∫

x

(
1− p(x)

q(x)

)
q(x)dx = 1− 1 = 0

with equality for q = p. Therefore,

max
P0

F (θ, P0) = L(θ) ,

and

max
P0,θ

F (θ, F0) = max
θ

L(θ) .

The EM algorithm can now be viewed as trying to maximize F (θ, P0) by alternately

maximizing in each argument, while keeping the other fixed:

(1) E-step: maximize F (θ̂m, P0) in P0, to get P̂m = pθ̂m
(x|y).
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(2) M-step: maximize F (θ, P̂m) to get θ̂m+1. This is the same as maximizing

Q(θ, θ̂m), since F (θ, P̂m) = Q(θ, θ̂m)− C, where C does not depend on θ.

d. Example: Re-estimation for exponential families

Suppose that p(x) and p(y|x) depend on different parameters. That is

pθ(x, y) ≡ pθ(x)pθ(y|x) = pλ(x)pµ(y|x)

where θ = (λ, µ) ∈ Θ1 ×Θ2.

For HMMs, indeed we have λ = (π0, A) and µ = b.

It follows that

Q(θ, θ̂m) = Êm(log pθ(X, y))

= Êm(log pλ(X))) + Êm(log pµ(y|x))

, Q1(λ, θ̂m) + Q2(µ, θ̂m)

and

max
θ

Q(θ, θ̂m) = max
λ

Q1(λ, θ̂m) + max
µ

Q2(µ, θ̂m) .

Consider the first term. Assume that pλ(x) is an exponential family of distributions,

namely

pλ(x) =
1

α(λ)
β(x) exp

[ s∑
i=1

ci(λ)Ti(x)
]

= β(x) exp
[
c(λ)′T (x)− log α(λ)

]
, λ ∈ IRd .

This includes most distributions of interest, including Gaussian, Poisson, Binomial,

Uniform and more. The vector T (x) is the sufficient statistic of that family.

We the have

arg max
λ

Q1(λ, θ̂m) = arg max
λ

{
Êm[c(λ)′T (x)]− log α(λ)

}

= arg max
λ

{
c(λ)′T̂m+1 − log α(λ)

}
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where T̂m+1 = Êm(T (X)).

We can therefore compute λ̂m+1 as follows:

1. E-step: Compute T̂m+1 = Êm(T (X)).

2. M-step: λ̂m+1 = arg maxλ{c(λ)′T̂m+1 − log α(λ)}
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