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Abstract

Most of the traffic in Internet networks belongs to TCP flows. The Internet network
seems to be too complex to be fully analyzed. Feedback mechanisms of TCP, numerous
protocols and complex flow interactions, together with a variety of different topologies,
imply a complex statistical problem. In fact, currently there is no complete statistical
network model.

In this work we present a novel approach to the analysis of a network in which most of the
traffic consists of TCP flows. We find the traffic distribution of all network components,
which are centralized around a bottleneck. By exploring deeply the nature of the packet
losses, we find that they are bursty and correlated. This insight provides us with a novel
model for the TCP congestion window, leading to statistical models of single links, and
finally escalating to the level of distributions of the largest components. We utilize the
achieved models to construct the pattern of the arrival rate to queues, and derive the
distribution of the bottleneck queue size and a resulting loss rate for the network.

We end up with the first complete statistical description of the entire network. Further
we prove that the number of packets on most network link sections follows a Gaussian
distribution, and analyze as well the parameters of this distribution, thus providing a key
insight into the general statistical behavior of Internet traffic.



Abbreviations

cwndi TCP Congestion window size. Upper index i means the window belongs to the flow i

w Same as cwnd
W Sum of all cwndi

lik Traffic which belongs to the flow i on Line k
bcwnd Distribution of the burst of packets traveling on the Lines after passing the buffer
Li Total traffic on Line i
ri Transmission rate of flow i

R Total transmission rate of all flows
G/D/1/K Queue with Generally distributed arrival, Deterministic service distribution,

1 active buffer with space for K packets.
l(n) Distribution of the number of lost packets in window of size n with at least one loss.
pe(n) Effective packet loss for window of size n
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Chapter 1

Introduction

In this section we will introduce the Large Network that we want to study, and will define
its basic components. Next we will discuss our goals towards the large network analysis
and what are the problems and difficulties which interfered to do it so far. We give then
a comprehensive list of the related work on the TCP congestion control and buffering in
large networks. Finally we present shortly the innovations and main contributions in our
work, and redefine the problem as a dumbbell topology problem.

1.1 Large Networks

We refer primarily to the general case of a large topology, with a large number of TCP
flows consuming a group of bottleneck links. We may see this topology as a group of
independent instances of multiple sources and multiple destinations together with many
routers. Figure 1.1 illustrates the suggested scenario.

Analyzing large networks, nowadays, is a highly challenging task, catching a large amount
of interest due to the constantly growing dimensions of Internet network deployment.
Talking about traffic in large networks, we refer mostly to the TCP data stream. In
modern networks most of the traffic is TCP, while the percentage may vary from 80%−85%
at minimum up to 98% at maximum, depending on the network conditions [23][21]. A
thorough network understanding is needed in order to be able to plan the requirements
for the backbone routers.

The complexity of the connections and routers which monitor a millions of flows, implies
several problems. Numerous sites of congestions arising as a result of slow links in some
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Figure 1.1: General Case Topology Multiple sources contacting a multiple destinations.
Some routers inside the network which is presented by cloud may be a bottlenecks

routers may slow up the routing from the large group of sources to the corresponding large
group of destinations. In addition a limited buffer can start abruptly dropping packets of
many flows thus causing a sudden slow-down for these flows.

Research of such a network implies two main objectives: First we would like to develop
the probabilistic models which will describe the statistical behavior of the network and its
components. We would like to understand, using these models, what are the reasons of
congestions and of high packet loss rate.
Second - we would like to obtain a planning ability. For example, having a demand for
a given packet loss rate and being constrained by a limited link capacity, we would like
to be able to plan the buffer size that will answer these demands. In contrary, the buffer
size may be fixed and we intend to plan according to the tradeoff of packet loss and link
capacity of a bottleneck.

1.2 Obstacles and Difficulties

Nowadays, to the best of our knowledge, there is no work that gives a comprehensive
description of large networks. We will nominate the main reasons to the absence of such
a model.
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According to the TCP algorithm [24], every flow maintains a dynamic congestion win-
dow, which represents the allowed number of unacknowledged packets in the network. A
group of algorithms, namely Slow Start, Congestion Avoidance, Fast Retransmit and Fast
Recovery were designed to fit this window to the congestion in the network, on the path
that is traversed by the data packets, according to the accepted acknowledgements.
The complicated TCP behavior and TCP feedback property are serious problems, espe-
cially if we are about to analyze the congestion window (cwnd) distribution. The diversity
of algorithms (Slow Start, Congestion Avoidance, Fast Retransmit, Fast Recovery) intro-
duced by Newreno implies a complex cwnd behavior.

A decisive obstacle is formed by the statistical dependency of various connections to the
same router, sharing a same bottleneck. A correlation may be observed between the traffic
belonging to the different flows, and between their congestion windows as well.

The research of the distribution of the Queue(Q) might be involved with a complex queue-
ing analysis. The serving rate is deterministic, but the input rate is a function of the arrival
rate probability distribution function. This implies a complex G/D/1/K analysis.

The large network might be difficult to simplify to a simple pattern such as dumbbell
topology, for instance. Multiple bottlenecks might be involved, different link capacities for
the different flows are potentially complicating aspects as well. Flexible topologies - flows
can join and leave frequently. Some flows can change their routing paths. As a special
problem we would like to mention the problem of lost acks, as well as the acks that are
routed on different paths.

As we mentioned - most of the traffic is TCP, but still a small percentage of other protocols
exists: UDP, ICMP, Short temporary TCP flows and more - all of these contribute as well
to the total complexity.

1.3 Dumbbell Topology

We would like to introduce an approach to simplify the large network to a specific case. We
present here as well several assumptions and a justification for using such a simplification.
For the purpose of analysis we introduce a simplified pattern of our model as it appears on
Figure 1.2. A single bottleneck imposes a specific behavior on all the connections which
route their data streams through it. A limited buffer and a slow link after it dictate the
performance of all the involved TCP flows.
There is a difficulty in dividing the entire large network into separate components, because
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Figure 1.2: Simplified scenario of a dumbbell topology

of the strong interrelationships and variability of the global networks. In order to simplify
the pattern of the topology we present the following assumption regarding single flows:

Assumption 1 Every flow has only one bottleneck throughout its path.

This assumption relies on the observation that few flows practically have more than one
bottleneck, and that flows having more than one bottleneck actually mainly depend on the
most congested one. We believe that dividing a large network into several sets of dumbbell
topologies reflects quite reliably the real world, due to the existence of the bottlenecks in
particular spots like backbone routers and main routers in networks. A dumbbell topology
was also used in buffering considerations in [5],[11]. [15],[22] are additional examples of
sources which utilize a dumbbell topology for the TCP analysis.
If so, we refer to the scenario based on the following assumption:

Assumption 2 All clients have a unique common bottleneck.

All the packets have to pass through this same link with limited capacity, denoted from
now on - forward bottleneck. Consider a large number of clients, each one connected with
its own link to the router, denoted from now on - client forward access links. The router
has to redirect the packets to the servers, using the slow link first.

In addition consider the client backward access links and the backward bottleneck. The
backward bottleneck line may not have the same capacity limit as the forward bottleneck,
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as we primarily discuss the congestion only in the forward direction, that is, there is no
actual bottleneck on the backward bottleneck line.
We assume that large networks may be reduced to a dumbell topology scale and perform
our analysis on the presented dumbbell topology, working separately on its components.

Next, we would like to clear out several assumptions which we will utilize later, regarding
the dumbbell topology we will use.

Assumption 3 Link capacities of the client forward & backward access links are unlim-
ited, i.e. very large comparatively to the forward bottleneck.

Based on previously stated Assumptions 1 and 2 we state as well:

Assumption 4 We assume that the only queue size limit encountered in the topology is
before the forward bottleneck. Other queues are assumed to be unlimited, therefore we
expect the packet loss to happen only in this queue.

Every client runs its own TCP source, while the destination is the common server or a
individual servers, provided that the bottleneck is common. The described topology has
a tree form therefore no routing alternatives, for simplicity, are available.

Assumption 5 The latency of the forward & backward access links is uniformly dis-
tributed according to some known distribution.

Acknowledgements do not necessarily arrive on the same link for each client, and our
analysis is not constrained by this condition. In addition, we assume that the overwhelming
part of all the flows are long provisioned TCP flows. We assume, however that a small
percentage of short TCP flows (the flows that finish before they even exit a Slow Start
phase for instance) or UDP flows is also present. Our analysis refers, therefore, to the
long TCP flows only, in presence of a small proportion of UDP or/and short TCP flows.
Next we discuss assumptions related to the losses:

Assumption 6 The general packet loss probability p is modeled as constant.

In fact, there are fluctuations in the packet loss probability if we measure over a very short
time intervals, but they are quite negligible. There are some works that model the packet
loss probability as variable, as is discussed in the next section, but we are convinced that
in the steady state the model of the constant p is truthful enough.
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Assumption 7 No acks are lost throughout the TCP connections - the only losses are
caused by data segments lost.

There are 3 main reasons for no acks loss: First the acks are of very small size (40 byte)
and their probability to get lost is low. Second the accumulative method of acknowledging
almost cancels the influence of the losses. In addition the bottleneck is normally present
only in one direction. Research on the lost acks was done in [16].

1.4 Related work

Only a few sources in the literature try to give a full picture of the network, while
most of the work is concentrating on the buffer occupancy distribution or buffer sizes
comparisons. Other works are dealing just with the packet loss derivation using a fixed
sets of assumptions. A significant amount of work dealing particularly with the cwnd

parameter distribution is also present. For simplicity we divide our comparison according
to the topics.

1.4.1 cwnd parameter - distribution and statistical models

Note that we sometimes refer to the cwnd as w - a window distribution of the single TCP
process. Most of the works deal mainly with the moments calculation of w, particularly
the mean and the variance [21][1][20]. The main contrast between our work and the other
works on cwnd is that we strongly rely on the correlated nature of the losses, while others
assume independency. Previous attempts to emphasize the bursty nature of losses were
done on [3],[12]. We present in our work a full description of the distribution of the
correlated losses.

Reference [14] performs both a discrete and a fluid model, and makes a comparison be-
tween them. The discrete model is performed by SMP (Semi Markov Process). For the
fluid model there is an assumption of Poisson arrival. The losses are uncorrelated, an
assumption with which we argue. Another work that utilizes SMP is [7]. The pdf in [2] is
derived using differential equations. The packet loss p is independent for any packet. It
is assumed that only one packet can be lost for any window. The packet loss, however, is
modeled as depending on the window size. The solution is derived by solving a stochastic
differential equation. The CDF rather than the PDF is derived in [18]. Authors present
3 loss models (correlated, not correlated, partially correlated). These models are imple-
mented in their own simulator and then compared to the NS2 result. The losses of the

7



acks are addressed as well.

There are models as well that perform derivation for the idealized TCP, with the congestion
avoidance only. In [19] the packet losses are independent events with equal probability. W
is not limited, and we demonstrate in our work that when this limit is relaxed, the model
is not suitable for small p. The packet arrival is presented as a Poisson process, the loss
process is also presented as a Poisson process with another mean. Using the definition of
these two processes the distribution and mean and variance of w is derived, as a function
of the ratio of those two Poisson processes.

The model in [9] is based on a very simple Markov chain, without any correlations between
successive loss events being considered, then any lost event is just a single packet loss. The
model is simplified by omitting the Timeout (TO). Our model is based on a simple Markov
chain as well, but we present a more precise result, based on more accurate transition
probabilities. Also, as we mentioned, it is incorporating correlated losses. There is an
approximation for the case when p → 0 in this work, for which the results are more
precise.

1.4.2 Works Dealing with Buffer Sizing and Network Considerations

We would like to mention as well numerous works which we found as most interesting,
dealing with the buffer sizing and packet loss derivation. Our work deals mostly with
small buffers, and we derive the packet loss, which is a function of the buffer size as well.
We treat in the conclusions some aspects regarding large buffers as well.

First we would like to refer to the rule-of-thumb presented in [28]. The main objective in
buffer sizing was to keep the link always busy and avoid any unexploited link. The rule of
thumb states that the buffer size is given by B = C×RTT , where C is the bottleneck rate
and RTT is the round trip time. This rule of thumb implies very large and slow buffers,
typically using a slow DRAM and inflicting a great queueing delay on all the traversing
flows.

Our major inspiration is given by [5]. This article proposes the Stanford Model - Gaussian
model for the total W (sum of cwnd of all flows sharing the same bottleneck), and for the
Q (the size of the queue in the buffer before the bottleneck) as well. As we mentioned, we
gave a slight emphasis to the smaller buffers, and we couldn’t see the Gaussian distribution
in the queue. However, we observed the Gaussian distribution not only on the W but also
on the various links groups in the topology. We confirm that the condition for the Gaussian
distribution is desynchronization among the flows.
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We assume, as well that the buffer is small enough, or even smaller than in the Stanford
Model. Using the bottleneck link capacity (C), it is expressed as B ≈ C × RTT/

√
N/α,

for a number of flows equal to N , then α can be up to 20.

In [4] the packet loss is derived using the M/M/1/K model, as a function of load, while
the load is derived by summing throughputs of the flows, and dividing by the link capacity
C. Finally the closed form formulae for calculating the loss probability p given buffer size
are derived. Unlike our approach, the analysis uses Poisson arrival.

In [10], in contrary, no Poisson arrival is put in use, but a ”paced” pattern of the arrival is
suggested. The pacing phenomenon is said to correctly model networks with small buffers
and slow access lines. The buffer as small as in the order of O(log(Wmax)) , where Wmax

is the maximum permitted cwnd, still can suffice to provide tolerable packet loss. For
overprovisioned networks the buffer size is given as a function of the desired load θ and
the overprovision factor ρ. For the paced scenario the packet loss is proved to be lower
than O(1/W 2

max). These results are theoretical basis for the described scenario, while we
present results that are good for underprovisioned network, i.e. the bottleneck link is
below its maximum capacity, and the packet arrival is general, but bursty (no Poisson
assumption yet), ruled solely by the TCP dynamics. In addition, this work completely
relaxes the dependence of the buffer size on the bandwidth-delay product. Quite similar
assumptions and conclusions to [10] are brought in [6].

An approach developed in [8] allows to find B according to two alternative constraints.
First is the desired load - it is proven, that for a load of almost 100% a buffer of just a
tenth of the rule-of-thumb can suffice to generate a packet loss of less than 5%. We show
in our model that for w with packet loss that high, the flows can evolve their cwnd up
to no more then 5-6 packets, or even less. The second is the desired packet loss. The
number of the lost packets in a congestion event is observed to be a linear function of the
number of flows. The slope of the linear dependency is some α which is found through
the simulations. The result is good however for 5 to 200 flows, for more then 200 flows it
stops to behave linearly.

In [25] a Poisson arrival is assumed again. It is stated that this assumption is actually
not realistic but for short timescales is still acceptable. Therefore, the loss probability
can be calculated from a Markov chain model, M/M/1/K. Instability is discussed: the
instability, or the size of the oscillations in the buffers instantaneous occupancy arises with
the synchronization of the flows. For the small buffers - increasing the size of the buffer
causes instability - large oscillations. Too small buffers lower the utilization. The buffer
size can be found at the intersection of the equation of the loss probability as a function
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of the load, and the differential equation of the load, at the equilibrium point. We do not
treat in our work the stability problem.

The analysis of the M/D/1 approximation used for the packet loss equation as a function
of the load in [26]. It is suggested, that a small buffer actually promotes desynchronization
of the flows. Actually we can give a strong confirmation to this conclusion, as we observed
it clearly in our NS2 [30] simulations.

1.5 Major Contributions

We present in our work a novel approach of analyzing the entire network, in which most
of the traffic is consumed by TCP connections. As we mentioned, we simplify the large
network to the more tractable scenario of the single bottleneck, represented as dumbbell
topology.

Our approach to derive a packet loss is to develop a closed loop of the models, assuming
a preliminary knowledge of the loss rate and then finding the real packet loss by finding
the fixed-point solution of an equation of the form p = f(p). We assume, first, that we
know the distribution of cwnd, and use it in order to find the traffic distribution on the
lines entering the queue before the bottleneck. Using this traffic distribution on the lines
we find the arrival rate on each corresponding line and consequently the total arrival rate.
Next we use this total rate for the queue analysis to find the distribution of the queue
occupancy and finally find the packet loss rate, using the queue distribution, finishing the
closed loop.

In order to make the loop complete the model of cwnd is needed, and we find it by exploring
the correlation of losses. Our objective is to find the model of cwnd knowing the packet
loss probability p, in order to use this model of cwnd in the closed loop we just have
presented. We explore the packet loss nature and we find that the packet loss is rather
bursty. Using this burstiness we prove that the packet losses are highly correlated. This
correlation leads to the conclusion that several packets might be lost during each packet
loss event. Taking advantage of Newreno capabilities to treat several lost packets in a
same Fast Recovery session, we offer a novel model for the distribution of w that treats
correctly the correlated packet losses, utilizing the deep insight on queue dynamics. We
develop a detailed Markov chain that allows to track very precisely the distribution of w
measured with various NS2 simulations, for different packet loss levels.

Using the developed distribution of w we find the distribution of the number of packets
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on every link. We prove that the total number of packets on various link sections is Gaus-
sian distributed. We show that the total number of packets in the topology is Gaussian
distributed as well, thus accomplishing the statistical modeling, which started with the
single flow distribution statistics and ended with the complete statistical description of
the entire network.

We define a new notion - bcwnd - a burst of packets that is traveling the lines after passing
the queue and find its distribution. Using this bcwnd we find the distribution of traffic on
the links in all locations of the topology, and finally find W (the total window - sum of
congestion windows of all flows), ending up a first complete statistical description of the
large network.

Our conclusions are that even for quite small buffers the packet loss is still tolerable,
and the network performs correctly. We present numerous results for the packet loss
predictions. Our analysis is unique in the sense of deriving the packet loss without using
any load considerations, and also without any assumptions on the arrival probability
distributions.

1.5.1 Thesis Outline

The rest of the work is organized as follows: Chapter 2 contains the closed loop for
derivation of the packet loss p. Chapter 3 presents the model of cwnd and studies the
correlated losses. Chapter 4 gives the models of the different components of the dumbbell
topology. Chapter 5 summarizes simulations and results that check the correctness of
our analysis and discusses some special cases. We finalize our work in Chapter 6, which
presents conclusions.
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Chapter 2

Closed Loop for the Packet Loss

Rate Derivation

In this section we develop step by step a model for the packet loss rate for a network
which is represented by dumbbell topology with a given set of propagation times of all
flows, which are traversing a bottleneck with a limited buffer of size B followed by a link
of serving rate C. We assume no additional global parameters about the network.
The closed loop is presented in Figure 2.1 We assume first that the general packet loss
rate p is given, and find a distribution of the congestion window cwnd. Next we find the
distribution of the traffic on the forward client access lines - for each flow. We progress
next to the rate of each flow and to the total arrival rate to the bottleneck queue. We
use the achieved distribution of the rate to construct a pdf of the queue Q and finally to
compute the packet loss rate p.

The model of cwnd involves an exhaustive research of the packet loss nature and the
correlation between lost packets and we postpone it to the next chapter which will be
devoted for this model.

Before we start with the first phase of the loop - we would like to divide the dumbbell
topology into several components, and to name all the components, as defined in Figure
2.2. We define the propagation times of the links which are located before the bottleneck,
i.e. the client forward access links, as tpi1, where i stands for the number of the link and
1 means the enumerator of this group of lines. We denote the propagation times of the
client backward access links as tpi2. Denote as li1(t) the instantaneous number of packets
that present on client forward access link i, and li2(t) the instantaneous number of packets
that present on client backward access link i. The sum of all packets on client forward
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Figure 2.1: Closed loop for finding the packet loss rate by solving a fixed point equation

Figure 2.2: Lines - basic components of a dumbbell topology
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Table 2.1: Matrix of covariance coefficients of 5 arbitrary flows, in a scenario which
included a network with 500 flows. The covariance coefficients are very far from the
maximum 1.

access links is L1(t) and its distribution is L1. Equivalently we denote the sum of all
packets on the backward client access links, bottleneck link, backward bottleneck link,
and their distributions respectively by L2(t), L3(t), L4(t), and L2, L3, L4. In addition to
the client access links there are 2 groups of links after the bottleneck to (and from) the
corresponding connection server - denote them as server forward access links and server
backward access links. The corresponding definitions will be as follows: tpi5, li5, L5 for the
forward direction and tpi6, li6, L6 for the backward direction.

2.1 Model of the l1i

We assume a given model of the TCP congestion window cwnd and find the model of li1
in this subsection. We would like to emphasize several observations about cwnd, which
we will utilize as assumptions for our model. Denote the congestion window of each flow
as cwndi.

Assumption 8 Independence - we assume that the cwndi of different flows are statisti-
cally independent.

The cwndi dynamics of each flow is controlled by its own rtti and the Q state. All the flows
eventually contribute to the final Q state, as well as to the occupancy of the bottleneck
link. However, for a steady state we can say that the pdf of the cwndi of each flow is
equally influenced by the distribution of Q, which is unique and common to all cwndi, as
stated Assumption 4. We strengthen our statement by simulation results of the covariance
between cwndi of different flows, which were measured to be very low (comparatively to the
variance), thus indicating a good approximation to the statistical independency. Table 2.1
presents an example of the low covariance. We need the assumption about distributions
to start the model description:
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Assumption 9 We assume as well that the cwndi are equally distributed.

The packets, and also the acks, are being sent in a highly bursty manner. The service
rates of the client forward access links are high (Assumption 3), and the time of sending
a packet is very short comparatively to the rtti. Based on this fact we have the following
assumption:

Assumption 10 As a result of bursty transmissions, all the packets (or acks), belong-
ing to the window of some flow i, are always present on the same line, i.e. either
L1,L2,L3,L4,L5 or L6.

They also may be present in the buffer, but since it is small enough, and the queueing
delay is also negligible, we neglect here this probability. This assumption will not fit for
special cases, when the latencies of the lines are extremely short, or when the capacities
of these lines are limited to a small number of packets. Since this is not our situation, the
only argument against this assumption would be that the packets should be scattered on
the lines as a result of TCP dynamics. We argue against this approach as well, and show
that a uniform distribution of the packets on the lines is far from the real situation and
leads to an incorrect description of the traffic. The uniform distribution is also argued in
[11],[12].
Before proceeding to the model of li1 we would like to make a short discussion about
rtt and the queueing delay. For a service rate C the worst case delay of an arbitrary
packet is BN ∗ 1/C seconds for one packet, when the buffer is full. For a buffer of a size
given by the Stanford Model, BN = C ∗ RTT/sqrt(N), the queueing delay will satisfy
tq ≤ RTT/(BN ∗ sqrt(N)) ∗ BN , where BN is the buffer size in a topology containing
N flows, answering exactly the Stanford model rule. (The maximum Queue size is equal
to BN , and this is a worst case for the tq) Therefore, as long as we use buffers which
fit the Stanford model or less, we can neglect the queuing delay and state the following
assumption:

Assumption 11 rtt equals twice the propagation time, i.e. rtti ≈ 2tip, for each flow i.

Where tip is the propagation time, i.e. the time which taken by a packet belonging to
a flow i to travel from the source to the destination. We derive the distribution of the
packets on li1 in the following theorem:
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Figure 2.3: Linear presentation of the pdf of number of packets on forward access links

Theorem 1 The number of packets belonging to the flow i on line L1 is distributed as:

(2.1.1) li1 =

{
0 with probability 1− tpi1/rtti

n with probability tpi1/rtt
i ∗ Pr(w = n)

Proof 1 Using the Assumption 10, the probability that no packets are present on L1 is
1 − tpi1/rtti. The probability of presence of any number of packets is independent of the
distribution of the cwnd, therefore the probability of n packet being present is tpi1/rtt

i ∗
Pr(w = n).
2

We also compare the presented model with a fluid model where packets are distributed
uniformly on all the lines. According to this model the number of packets present on
li1 is given by l1(t)i = wi(t) ∗ tpi1/rtti. The maximum number of packets, therefore is
wmax · tpi1/rtti.
Figure 2.3 and 2.4 display that our model is fairly close to the measured results, throughout
all the scale. There is also a presentation of comparison with the fluid model, which doesn’t
fit. As we see there is a positive probability that wmax = 64 packets are present on li1.
The alternative fluid model cannot get to wmax at all.
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Figure 2.4: Logarithmic presentation of the pdf of number of packets on forward access
links.

2.2 Arrival rates of single flows and total arrival rate

Denote the distribution of the arrival rate of flow i as ri. ri is the distribution of the
number of packets arrived in δt seconds. Our objective in this section is to use the model
for li1 to generate the model for the rate of each flow i, ri, and then, using this rate
distribution, to find the distribution of the total transmission rate on client forward access
links. The resulting rate will lead us to the queue distribution and finally to the packet loss
for the entire topology, thus accomplishing the final merge of all the probability models we
introduced so far. Hence we would like to get an insight on the forward access links. We
know the pdf of the instantaneous number of packets. We assumed that, taking advantage
of the short transmission time, and the TCP dynamics as well, all the packets in the same
window are coming in a single burst. We are interested in finding ri, the number of packets
arrived in δt seconds. The choice of δt must satisfy a condition δt � ttr, when ttr is the
transmission time of the maximum size burst. The demonstration of the ri is illustrated
on Figure 2.5. The transmission is bursty and the distribution of li1 represents, actually,
the number of packets arrived in tpi1 seconds. To find the arrival rate in δt seconds we
utilize the following additional assumption:

Assumption 12 Given the pdf of li1, the probability that on some link i x > 0 packets

17



Figure 2.5: Model of the rate - number of packets sent in δt time

arrive within δt, such that δt < tpi1, is P (li1 = x) ∗ δt
tpi

1
.

Using the Assumption 12 we can conclude that the rate arrival will be according to the
li1 distribution, and the arrival of any burst of packets within period δt can occur with
probability δt/tpi1. We define the pdf of the rate for the flow i, denoted as ri in the
following theorem:

Theorem 2 The number of packets ri of flow i arrived during δt < tpi1 is distributed as:

(2.2.2) Pr(ri = x) =

 Pr(li1 = x) ∗ δt
tpi

1
for 0 < x ≤ 64

1− δt/tpi1 + Pr(li1 = 0) ∗ δt
tpi

1
for x = 0

Proof 2 Assumption 12 gives us the probability for the packet arrival of any size larger
then zero. The complementary probability, therefore, stands for the no arrival event.
2

That is, there is a packet burst arrival of any size (including the size of zero packets) with
probability δt/tpi1, weighed by the probability of the size of the arrival, otherwise there
is no arrival. There is a probability of zero arrival as well, because li1 can have no single
packet (and in fact most of the time it is empty).

Next we assume the following assumption before finding the total arrival rate:

Assumption 13 Independence - we assume that the ri are statistically independent.
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Since both the cwndi and li1 are statistically independent, this assumption is absolutely
natural. The total arrival rate R is given by the following theorem:

Theorem 3 For a large number of flows N � 1, the total arrival rate R from the forward
access links has a Gaussian distribution:

R ∼ Norm(ΣiE(ri),Σivar(ri))

Proof 3 Using the independence stated in Assumption 13, E(R) =
∑

nE(ri(t)), var(R) =∑
n var(r

i(t)). The distributions of the ri are similar but with different parameters. In
order to prove the Gaussian nature of R, we use the Lindeberg Central Limit Theorem,
showing that the Lindeberg condition is true (by Zabell [29]).

Denote as µi the expected value of the arrival rate on the client forward access link E(ri),
and denote as σi its standard deviation. We define the following sum : s2N =

∑N
i=1 σ

2
i .

Then, for every ε > 0 we want to prove the following condition:

(2.2.3) lim
N→∞

N∑
i=1

E(
(ri − µi)2

s2N
: |ri − µi| > ε · sN ) = 0

where E(U : V > c) is E(U1{V > c}), i.e., the expectation of the random variable
U1{V > c} whose value is U if V > c and zero otherwise. This is the Lindeberg condition
for the Lindeberg Central Limit Theorem. We can rewrite the condition as follows:

(2.2.4) lim
N→∞

N∑
i=1

E(
(ri − µi)2

s2N
· 1{|ri − µi| > ε · sN}) = 0

The meaning of this condition is that there is no capture phenomena, in which a unique
flow or a small share of all the flows seize the major part of the link capacity.

We proceed with several statements about the mean of the arrival rate of each TCP flow
and its bound. The mean of the ri, according to its pdf given in Theorem 2 is as follows:

(2.2.5) E[ri] = µi = 0 ∗ (1− δt

tpi1
) +

δt

tpi1
∗

∑
Pr(li1 = n) ∗ n

where rtti is approximately equal to
∑6

k=1 tp
i
k. The propagation times of all the links tpi1

are limited and chosen out of some uniform distribution within positive bounds. Hence,
the expected value of the ri is bounded as follows:

(2.2.6)
δt

max(tpi1)
≤ µi ≤

δt

min(tpi1)
∗ wmax
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Figure 2.6: Model of rate for 2000 flows. The horizontal axis stands for the total number
of packets transmitted in δt time. The vertical axis is the probability scale.

where wmax is predefined TCP maximum cwnd (awnd), and normally is equal to 64. The
value of |ri−µi| is bounded as well. This follows from the bound on the value of ri, which
is limited in the range 0 to wmax = 64. Thus |ri − µi| ≤ wmax.

Next, we find for every ε some N0, such that for N ≥ N0, sN will fulfill the condition
sN ≥ wmax/ε, where wmax, as defined, is the maximum window limit imposed by the TCP.
This N0 exists because s2N grows linearly with N. Then we have:

(2.2.7) Pr(|ri − µi| > ε · sN ) ≤ Pr(|ri − µi| > ε · Wmax

ε
) = 0

Using the last equation we can find for any ε such N0 , which will satisfy the Lindeberg
condition. 2

We showed that the transmission rate is Gaussian. We would like to verify if we could get
a better model, by using a Poisson distribution. The Poisson model with the same mean
gives very small variance and - see Figure 2.6

Additional results for the rate are introduced in the Chapter 5.
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2.3 Queue distribution and Packet Loss Derivation

In this subsection we find the Q distribution and the general packet loss approximation
p. We suggest two ways to find the Q distribution. Having the pdf of the total arrival
rate R, we can easily derive the packet loss of the entire topology, provided we know B -
the bottleneck buffer size and C - the bottleneck capacity. The derivation may be done
numerically, for example by a simple MATLAB simulation of the Markov chain of the
Q, with R as the distribution of the arrival and a deterministic service of rate C. For the
simulation we produce a sufficiently long vector and filter it through the Q, dropping the
packets when Q = B.

An alternative analytical way to find the Q distribution is using the G/D/1/K analysis,
in which we use the rate distribution R we just found in place of a generally distributed
input. We implemented the algorithm used in [27], we briefly describe this algorithm
in Appendix A. The results are presented on Figure 2.7. We compare 4 graphs in this
figure. The measured graph has a smooth edge when Q is close to B and to 0. We could
not reproduce such a smooth behavior because of the burstiness assumption and discrete
analysis. We assumed that all the packets arrive in the same burst simultaneously, however
in fact there is a very short range between the arrivals of the sequential packets. An
additional confirmation for this conclusion is provided by the graph of the exact measured
arrival rate, which was simulated with the Markov Chain. We can see exactly the same
type of discrepancy in this case. It is worth mentioning that we found the distribution of
the Q using the models of li1, ri and R. Thus, we performed already the major part of the
closed loop.
We should expect therefore, as is seen from the graph, that the packet loss will be somewhat
higher in our model than in the measured results. We confirm this when we introduce the
final results for p.

2.3.1 Derivation of the packet loss rate p

We continue with the derivation of the packet loss rate p. The distribution of Q gives us
a straightforward way to compute p, as long as it is constant (using Assumption 6). The
loop of models p ⇒ cwnd ⇒ li1 ⇒ ri ⇒ R ⇒ Q can be written actually as expression
f(p). Because of the last relation Q ⇒ p, holds p = f(p). (We didn’t show yet the
first part of this loop as we postpone it to the next chapter.) We find p by solving the
equation p = f(p), using a gradient descent algorithm. We use first some p for finding
the cwnd, then we perform all the distribution models as were described in this section
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Figure 2.7: Example of Q distribution for 2000 flows with Buffer of 580 packets The
four pdf lines represent the measured Q by NS2 simulation, the model of the Q, using
the modeled rate, then the modeled Q, using the measured rate, and finally the G/D/1/K
result. The drawbacks of the discrete analysis are clearly seen on the edges of the Q
distribution. We also model the Q with the rate measured by NS2, to stand this drawback
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Table 2.2: Packet loss results, solved by finding fixed point of p=f(p). The packet loss gives
an upper bound of the simulated value.

and get some new p out of Q distribution. We make a correction against the gradient
of the error, multiplying the error by some ”step”, and adding the product to the old p.
We repeat this process, till the error is small enough. The results for several cases are
summarized in Table 2.2. We performed the fixed point solutions using the closed loop
of the statistical models, and the results as expected give an upper bound which is quite
tight, comparatively to the measured values.

Once we have found p the closed loop of statistical models is finished. We have now the
ability to find the packet loss of a topology with given rtt distribution, buffer size and
bottleneck link service rate. We used a distribution of cwnd in this section, and in next
chapter we show how we find this model, exploring the nature of correlated losses.

2.3.2 Complexity of the Calculation

The calculation of p demands running the gradient descent algorithm for several iterations.
The convergence may be achieved through typically less then 50 iterations in case the
original assumption was far from the fixed point. In case it was close the convergence is
very quick and can take less than 10 iterations. The exact number of needed iterations is
depends on the desired precision.
Next, we are about to discuss the complexity of a single iteration.

1. cwnd calculation - constant complexity: O(1)

2. li1 models for N flows: O(N)

3. ri models of the flows: O(N)

4. model of R - the total rate: O(1)
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5. Calculating the pdf of Q and the final packet loss: O(I), where I represents the complex-
ity of calculation of the pdf of Q. O(I) depends on the approach used, and is polynomial
in B.

6. p correction: O(1)

For a small number of flows, the complexity of finding the fixed point is independent on the
number of flows N, and depends on the desired precision of p. We performed our solution
for the approach of calculating the Q with a Markov Chain simulation with vector R.
The length of the simulation determines the level of precision. The process may be done
by building the transition matrix of the Markov Chain of Q and then finding the steady
states. The size of this matrix is B ×B. The solution which utilizes a G/D/1/K analysis
depends on the size of the buffer, because the convergence of Q is iterative and depends
on the number of possible states. Therefore, in both approaches, O(I) is dependent of B
and the desired precision level. For the cases of millions flows O(N)� O(I) and the final
complexity would be approximated as O(2N).
In summary the final complexity may be bound for any case of topology by O(2N+I).
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Chapter 3

Model of congestion window

distribution

The distribution of the cwnd, i.e. the steady state pdf of the TCP congestion window
size, has its special importance. To the best of our knowledge only a handful sources in
the literature derived a full distribution, while most of the sources concentrated on its
average and the average throughput calculation. The precise model for the w distribution
is needed in order to derive the distribution of the number of packets on forward access
links li1, as we saw in the previous section. We start this section with a research of the
correlated losses. We show and prove that the distribution of the lossy bursts is identical
for any network condition. We use this distribution to define the effective packet loss, and
to build a simple Markov Chain for the cwnd, by utilizing the property of Newreno that
during the Fast Recovery multiple packets can be recovered, without additional window
reduction. Next, we introduce a few possible refinements for this Markov Chain, including
an approximation of Slow Start. Finally we bring a comparison of our model to the NS2
simulated results, for the different packet loss rates.

3.1 Correlated Losses

The basic idea we promote in this section is the fact that losses in a window are correlated.
As a consequence, in any window with losses, the probability that more than one packet
was lost is not negligible. This statement stands in opposite to the models from the
literature with uncorrelated losses - in which the probability of every packet to fall is
independent and equal to p , and so the probability for 2 or more packets to be lost is
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Figure 3.1: Distribution of the number of lost packets in a single window, given that at
least one packet was lost in this window. This histogram brings results for all possible sizes
of windows in common.

very small and negligible.
Therefore, unlike most of the models we saw before, our model is strongly based on the
correlated losses. We measured, using NS2, the distribution of the number of lost packets,
given the loss already happened in a single window. It can be seen from Figure 3.1 that
in less than half of the cases the number of lost packets was just 1. In other cases 2, 3 or
more packets were lost. We observe that this distribution is not dependent on the packet
loss probability p, and once the loss event happened - the same probability for 1,2,3 or
more packets to be lost is observed, independently of the general packet loss rate in the
network.

It is worth mentioning, that by now we didn’t take into consideration the window sizes,
and we demonstrated results for all possible windows in common. It is clear that for a
window of size 3 no more than 3 packets could fall so the correlation is even stronger when
it follows from Figure 3.1.

Let’s discuss the distribution of the losses for the different window sizes. Using again NS2
simulations, we researched separately the loss distribution for different window sizes. The
results are presented on Figure 3.2 and Figure 3.3. These results encourage us to form the
following assumption:

Assumption 14 The distribution of the number of lost packets (lost burst) in a window
of size n, given that at least one packet was lost, is independent of the general network
packet loss, and independent of other network parameters (buffer size, link capacity, RTT
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Figure 3.2: Distribution of the number of lost packets according to the window size, given
that at least one packet was lost in this window. This figure brings results separately for
the window sizes 2,8,6,10,12,14. 3 cases of p presented here. For all 3 different packet
loss cases shown here, the distribution is the same. ( NS2 simulated results)

distribution).

In another words, p influences both the probability of a loss in a window, and the window
size distribution; but given both of these (i.e., given that there was at least one loss in
a window of some given size n), the distribution of the number of losses in the window
is fixed. If so, once there was a packet loss event in the window - the distribution of the
number of the lost packets for the same window size will be the same. This is a strong
assumption, which we confirmed by NS2 simulations. We discuss it more in detail, next,
towards a possible explanation.

We provide some intuition next for the distribution we saw. Q is changing and balancing
and reaches its peak from time to time, approximately periodically, and it stays in the
peak for some period, where it fluctuates from B to B − b, where b is some number of
packets variating from 1 to nearly 3. Most of the time b = 1. The losses can occur only
when Q is at its peak period. For the high packet loss these peak periods last longer, and
happen more often, but once the peak period occurred, the mutual dynamics of a packet
arrival and Q fluctuations are approximately the same. Particularly, if we compute the
ratio of the arrival to the frequency of the fluctuations of Q - we will see approximately
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Figure 3.3: Distribution of the number of lost packets according to the window size, given
that at least one packet was lost in this window. This Figure is the same as Figure 3.2,
but with more examples of window sizes (window sizes 2 to 17), and with different overall
packet loss rates. (NS2 simulated results)
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the same ratio for the different p and network conditions. The example could be seen in
Figure 3.4.

We observed the same behavior of the Queue for buffers of size which was more then
Stanford model size, and a distribution of the bursty losses holds for quite large buffers,
covering the range of small and medium (Stanford Model size) buffers at least. Quite
similar fluctuation could be spotted as well in even larger buffers, which sizes approaching
a rule-of-thumb size. We may expect, therefore the same distribution of the correlated
losses even for the large buffers.

3.2 The Packet Loss Event probability

We define the pe - the Packet Loss Event probability per packet - as a per-packet probability
that drops (no matter how many) happened in a window, i.e. the probability this window
experienced a loss event, per packet. The probability of the Loss Event for window size
n, then, is equal to pe ∗ n. pe(n) refers to the losses for window size w = n. We do not
discriminate the packets according to their location in the window. This leads us to the
additional assumption:

Assumption 15 pe(n) is equal for every transmitted packet in the same window of size
n.

pe(n) is the effective packet loss, which is independent for every packet, in window of size
n. Intuition: in another words, we effectively use the scenario with uncorrelated packet
losses, with packet loss equal to pe. The reason for such an interpretation is the quality
of Newreno, which is able, using the Fast Retransmit and Fast Recovery , to recover from
several lost packets in the same window almost at the same price as if only one packet was
lost. In order to justify the last statement we utilize the following assumption:

Assumption 16 The recovery process from any number of losses takes one RTT.

We need this assumption in order to build a simple Markov Chain. Obviously this as-
sumption doesn’t reflect the real situation, because Fast Recovery may last for several
RTT. However, in steady state it proves itself as justifiable because it leads us to a fairly
precise final model of cwnd.
Clearly, pe(n) < p, for all n > 1, where p is the original packet loss, observed in the
network, per single packet, which is constant in the steady state (Assumption 6). We
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Figure 3.4: The dynamical behavior of the Q during the peak period. The points correspond
to the arrivals of the new packets. We mark a point evert 10 new arrivals. Two different
cases of p are demonstrated here. The rates of the arrival and the fluctuations of Q have
approximately the same form in both cases.
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state here an important theorem which will promote us to the future analysis of the cwnd
distribution.

Theorem 4 For congestion windows of size w = n, pe(n)/p = const independently of p.

Proof 4 We prove the theorem for some n. Denote by St the total number of windows
with losses of size n, for some period t. In each window, 1 to n packets could be lost.
Denote by βt the number of times windows of size n were transmitted during that period.
Then, according to the pe definition, we have a per-packet packet loss event probability,
which is equal for every packet in the window:

(3.2.1) pe = lim
t→∞

St
n ∗ βt

Denote E(l(n)) the average number of lost packets l(n) in a window of size n, given at
least one packet in the window was lost. Since, using Assumption 14 the distribution of
number of lost packets is constant and independent of n, its expected value is also constant
and independent of n.

Denote as B the event that some arbitrary packet was lost. Denote as AB the event that
at least one packet was lost in the window which contained this arbitrary packet marked
as B. The general packet loss p, for some arbitrary packet observed in the network can be
presented by Total Probability Law:

(3.2.2) p = Pr(B|AB) ∗ P (AB) + Pr(B|ACB) ∗ P (ACB)

Clearly, only the first term contributes to the p because Pr(B|ACB) = 0.

For the window of the size n, the probability of some packet in the window to be lost, then
at least one packet was lost, is the ratio of the expected number of lost packets, given at least
one packet was lost, to the total number of packets in the window, where Assumption 15
was used. This yields:

(3.2.3) Pr(B|AB) = E(l(n))/n.

The probability of the Packet loss event, according to the definition is:

(3.2.4) P (AB) = pe(n) ∗ n

Which is valid for any packet B. Finally, substituting the Equations 3.2.3 and 3.2.4 into
Equation 3.2.2 we obtain:

(3.2.5) pe(n) =
p

E(l(n))
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Figure 3.5: Graph of pe/p
The ratio presented here is derived from different scenarios of p, for w=1 to 20. The
results were retrieved from the traces of NS2 simulations. For the larger windows it lacks
the precision because they are too rare to happen. For example for p = 2% the window
never exceeds 20 packets, so for higher window the results are quite occasional, as in the
matter of fact they are irrelevant (the window cwnd reaches these values very rarely)

Since E(l(n)) is fixed, we obtain that pe(n)/p = const, for any network, which proves the
theorem. 2

It is clear that once p is higher then pe is higher as well, but the relation above stays
constant. Note that we believe that this relation still holds even if we impose the scenario
with larger B (order of rule-of-thumb [28]). Figure 3.5 gives the comparison for different
scenarios and illustrates the Theorem 4. We may conclude, therefore, that the ratio of the
packet loss event to the packet loss probability is constant for the dumbbell topology and
we may use it for modeling the w for almost all possible scenarios.

So far we analyzed the correlation between the losses for the different cwndi sizes. In order
to accomplish the prerequisites we need, for defining the Markov Chain for the cwndi, we
still lack the total probability of the loss for the window size w = n. We assumed in
Assumption 15 for that purpose that for every window w = n , the loss probability for
every packet is independent, however it causes the packet loss event. That is, the loss
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Figure 3.6: Transition for the halving probability. At least on packet was lost. For the
model with independent losses this probability is approximated as p ∗ n

Figure 3.7: Simple Markov chain chart

may equally occur for any packet in the window, leading to the packet Loss Event as a
consequence. The total packet loss, which leads to the window halving is equal to pe(n)∗n
- as shown on Figure 3.6.
In fact our model is close to the model that utilizes independent losses, but instead of
the expression p ∗ n we used pe(n) ∗ n for the transaction which corresponds to halving
the window size. We also utilize the Assumption 7, as we treat a unique source of all the
losses in the entire topology, thus influencing the Markov chain of a cwnd.

The loss probability for every window rises with n. We neglect here the probability of
timeout, and treat it separately. There is an alternative approach for utilizing the pe(n),
which gives us a slightly more precise results, but it is more complex as it based on
the details of TCP lossy dynamics. It is described in the designated subsection for the
improvements of this model. Next we define the Markov Chain for cwndi.

3.3 Markov Chain for cwndi

We define the Markov chain, using 3 basic transitions, for the initial model, as shown in
Figure 3.7. The transition from w to w/2 is the most common, and caused by losses which
didn’t lead to the slow start. Each of these transitions implies a packet loss event, and
the total probability, as we found in the previous section, is equal to pe(n) ∗ n. We rely
here on the important quality of the Newreno dynamics. We assume that any number
of losses in the window leads to a single window reduction and Newreno handles all the
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losses within the same Fast Recovery and Fast Retransmit session. The transition to stage
w = 1 is constant for small n and it is zero for the higher n. The reasonable solution for
the TO is keeping a small table of constants for the TO for different p ranges for every
state n. Assuming that the TO probability is constant leads to a small discrepancy in the
mean of the final model, compared to the measure values. Finally we find the probability
of increasing the window, by substraction of the other probabilities from 1.

3.4 Improvements and extensions to the model

We introduce in this subsection improvements for the implementation of the cwnd Markov
Chain, we also discuss the Slow Start option. We present now a more complex way to
find the transition of window halving using pe, which relies more strongly on the nature of
TCP Newreno. The window is halved once the 3rd sequential duplicate ack received. The
Fast Retransmit is performed - transmitting the missing packet, and then Fast Recovery
is started. Fast Recovery may inflate the window some more before it is actually halved.
Some packets are sent when those two algorithms are active. The thorough explanations
and examples for these two algorithms can be found in [24]. For simplicity and due to the
Markovian limitations we assume that the window just immediately halved.

3.4.1 Halving Probability

We present here a new analysis of the Markov Chain transition probabilities. We would like
to emphasize first the interpretation of the losses by the duplicate acks. In TCP packets
are transmitted one by one, each packet for each successful ack, as long as the number
of transmitted packets complies with the Slow Start or Congested Avoidance algorithms.
The moment a predefined number of duplicated acks is received, the window is halved and
the transmission process complies with the Fast Retransmit and Fast Recovery algorithms.

If the duplicated ack is received in the first half of the window, there is still space to
accomplish the number of transmissions up to the half of the window, therefore additional
packets are transmitted. One of the transmitted packets then, is the retransmission of the
packet which caused a 1st duplicate ack (Fast Retransmit ). Acks that are received on the
second part of the window then, are disregarded, because we cannot transmit anything
more anyway as a result of their arrival, because the window reached its maximum (it has
been just halved).
On the other hand, if the loss happened in the second part of the window, we take into
account all acks, that were accepted till the lost packet. In this case the new packet is

34



sent for each received ack and once the first duplicate ack received, the only additional
transmitted packet will be the packet which is retransmitted during the Fast Retransmit ,
because the new window size (after the halving) wouldn’t allow to perform any additional
transmissions.

Therefore, we subdivide the computing of the halving probability to two cases:

• The lost packet event happened before we transmitted half of the current window.
Denote the halving probability in this case as Ph1. In this case we do not care what
happened with packets in the second part of the window. In case of additional losses, we
just assume that there was no TO, and a normal process of Fast Retransmit and Fast
Recovery handled the problem. If so, the window is halved (actually Fast Retransmit
and Fast Recovery are started first). The w reduction probability in this case is:

(3.4.6) Ph1 = pe ∗ (1− pe)w/2 ∗ w/2

i.e. the event may happen in any place of this first half of the window, since anyway - the
window is completed to half in this case. We assumed that the packet loss event affected
only one packet, and that effectively pe is independent for all packets in the window (in
contrary to p) as we discussed in the pe derivation. The expression pe∗(1−pe)w/2 stands
for the probability of a single loss in the first half of the window, i.e. one packet was
lost with probability pe and w/2 packets were transmitted correctly. Since pe reflects
effectively independent losses, and it is reasonably small, the probability of two losses
in this half (and in the entire window as well) is negligible. The location of the lost
packet may be anywhere in the first w/2 packets and that is why we multiply by w/2.

• The lost packet event happened after the current window transmitted its half or more.
Denote the halving probability in this case as Ph2. In this case the retransmission
happens in the next window, and the new packets are transmitted during the Fast
Recovery , only if cwnd allows it. We conclude that in this case the window reduction
probability is:

(3.4.7) Ph2 =
w−1∑

i=w/2+1

pe ∗ (1− pe)i

Explanation: we sum all cases in which more than half of the packets were acked first,
and then the lost event occurred. The location of the duplicate ack was the last, while
acks that were accepted before were successful. That is why we do not take into account
here the location of the duplicate ack since it was the last one. The last packet in the
window is not counted as well because it refers to the Fast Retransmit , which belongs
already to the next window.
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Finally, as the two cases are independent, and in a case of loss either one of them can
happen the halving probability will be:

(3.4.8) Ph = Ph1 + Ph2.

3.4.2 Slow Start

Next step to improve the model is considering the Slow Start algorithm. We apply this
improvement to the first model with ”first order” steady states already computed. Slow
Start happens only after timeout. So we count the probability for states wi = 2, 4, 8, 16, 32.
The maximum window size is wmax = 64, typically. We call those states states of inter-
ests, and for them we compute the Slow Start probability. The condition that the next
increment of the window will be Slow Start and not the Congestion Avoidance is, that the
last fall obeys both of the following conditions:

1. The window was reduced to 1 as a result of TO (timeout).

2. The last window before TO was accepted was at least twice the current window (in
order to make the ssthresh to allow the Slow Start increment up to this window size)

Both conditions are dictated by TCP dynamics. We compute the Slow Start probability
by observing what happens after the last loss. Denote by n the size of the state of interest.
We first find the probability that the last loss will allow the window to be below n. We
will distinguish three loss cases:

• A window halving loss followed by Congestion Avoidance.

• A timeout loss, starting from a window size of less than 2n, that would therefore not
go through the transition n→ 2n in the Slow Start.

• A timeout loss, starting from a window size of above 2n, that would therefore go through
the transition n→ 2n in the Slow Start.

Denote as π the steady state probability which we found first, without Slow Start, CAn
is the transition probability for incrementing the window to n + 1 from state n, Hn the
probability of window halving, and TOn will be the probability of TO in state n. The
probability that the fall caused a timeout (from any other state) is then:

(3.4.9) P (Timeout) =
∑

P (Timeout|n) ∗ πn =
∑
n

πn ∗ TOn
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The probability that the next transition will be an increment by 1(CA), happens when
the loss resulted from window halving, is given as follows:

(3.4.10) P (CAn) =
∑

P (CAn|m) ∗ πm =
n∗2+1∑
m=2

Hm ∗ πm

Clearly, states that are above 2n+ 1 are irrelevant (otherwise the fall will result in states
that are higher then the one we are interested in). We are interested in the probability
then TO happened in states that are at least 2 ∗ n. For states that were lower, the next
ssthresh value wouldn’t allow to go high to the state of interest by Slow Start, because the
Congestion Avoidance will start before reaching the state of interest, due to the ssthresh
limit.

(3.4.11) P (Timeoutn) =
∑

P (Timeoutn|m) ∗ πm =
∑

m≥2∗n
πm ∗ TOm

Clearly, holds P (Timeoutn) < P (Timeout), because in the first argument of the inequality
we count only a part of all the timeouts. The total probability that the last loss will
cause to reach the state of interest(either by Slow Start or by Congestion Avoidance) is
P (CAn) + P (Timeout). The probability to get to the state of interest by Slow Start, i.e
of reaching the window of size n by Slow Start, is therefore:

(3.4.12) P (Sln) = P (Timeoutn)/(P (CAn) + P (Timeout))

The probability for increasing the window in the state of interest is the same, and we can
split it now to two different probabilities: pass the state of interest by Slow Start, or by
Congestion Avoidance. If so, we change the steady state probability for the relevant states,
by reducing the CAn by weighting it by (1− P (SLn)), and adding the new transition to
the n ∗ 2 state, with probability CAn ∗ P (Sln).

We present the comparison of the model, with the model including the extensions (second
approach for the window decrease) and the simulated statistics in Chapter 5. Very close
pdf form and good results for the mean and variance are achieved, for low, high and
medium packet loss.

3.4.3 Convergence of the Markov Chain

We would like to prove next the convergence of the Markov Chain (MC) which we con-
structed to the steady states.

Lemma 1 All states of the MC are positive recurrent
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Proof of Lemma 1 To prove recurrency we need to show that:

(3.4.13)
∞∑
k=1

P kii =∞

where P kii is the probability to get back to state i in k steps. Denote the relation i↔ j for
two states i and j as communicating states. It is trivial that 1 ↔ j for all j 1 to wmax,
where wmax is the maximum allowed congestion window, since it is possible to get to each
state from state cwnd = 1. Since it holds

(3.4.14)
∞∑
k=1

P k11 =∞

state cwnd = 1 is recurrent. The last equation is due to the fact that for all k, P k11 > ε,
because it is assumed that in any state at time k−1 there is a positive probability ε to get a
timeout, therefore, considering all states is enough to show that the Equation 3.4.14 holds.
Since if i ↔ j and i is recurrent, then j is recurrent as well - all states are recurrent.
The expected value of time of getting back to each state is finite therefore all the states are
positive recurrent. 2

Lemma 2 The MC of cwnd is non-periodic.

Proof of Lemma 2 State i is be periodic with some period d if Pnii = 0 for any n which
satisfies nmodulo d 6= 0. Since there is no such d for any state - all states are non-periodic.
2

Corollary 1 Since the MC is positive recurrent and non-periodic it is ergodic

Lemma 3 The MC of cwnd is irreducible.

Proof of Lemma 3 For all couples of states i and j exists k ≥ 0 and m ≥ 0 such that
P kij > 0 and Pmji > 0. The statement above holds because there is a positive probability for
TO , and state cwnd = 1 communicates with every state. 2

Theorem 5 MC of cwnd converges to its steady state, i.e. the limit

(3.4.15) limn→∞P
k
ij = πj

exists and is independent on state i.

Proof 5 The proof stems from Lema 3 and Corollary 1
2
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Chapter 4

Towards the full model of the

traffic

We finished the closed loop of probability models by deriving the packet loss rate, proving
that the total arrival rate to the queue is Gaussian. We would like to present in this chapter
the analysis of the traffic on the Lines of the dumbbell topology, as was demonstrated in
Figure 2.2. We first find the model of L1. Then, we present the distribution of the size of
the burst which travels the lines after the Q. We use this distribution to find the traffic
on L2, L4,L5,L6, and finish with a model for W - the sum of all cwnd.

4.1 Model of L1

The L1 is the only part of the network which is before the bottleneck, i.e. no packets
were lost yet. Knowing the distribution of li1 we can easily find the distribution of L1.
Remember, that the cwndi of different flows are independent (Assumption 8), therefore
we can assume the same about the li1. We derive L1 by following theorem:

Theorem 6 L1 ∼ Norm(ΣiE(li1),Σivar(li1))

Proof 6 li1 are distributed according to the same function, but the parameters are different
(Theorem 1). Therefore we have to prove a Lindeberg condition in order to use the Central
Limit theorem. The proof is identical to the proof of Theorem 3. We just will show here
the Lindeberg condition in this case:

Denote as ηi the expected value of the number of packets on the client forward access
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link E(li1), and denote as σi its standard deviation. We define the following sum : s2n =∑n
i=1 σ

2
i . Then, for every ε > 0 holds:

(4.1.1) lim
n→∞

n∑
i=1

E(
(li1 − ηi)2

s2n
: |li1 − ηi| > ε · sn) = 0

the proof continues identically to the proof of the Theorem 3.
2

We bring the comparison of the modeled L1 to the measured one in the Chapter 5.

4.2 Distribution of bcwnd

We found cwnd in the previous chapter and we showed that the packets are traveling
on the links in a bursty manner. The packets are starting their way on the dumbbell
topology on L1, when the burst size is equal to cwnd - the size of the congestion window.
When this burst passes the queue, some packets might be lost, according to the packet
loss distribution. We call bcwnd the distribution of the size of the burst after passing the
queue in the buffer. In this section we find the pdf of bcwnd, and then we will be able to
use it to find the distributions of the traffic on the Lines in the next section.
The best approach to find the distribution of bcwnd is using the distribution of l(n) which is
equal to p/pe(n), according to the Theorem 4. The initial size of bcwnd, before entering the
queue is equal to cwnd. We construct a transformation that shows all possible transitions,
from cwnd to all possible sizes of bcwnd. The diagram of this transition is illustrated in
Figure 4.1. For each cwnd of size n the number of packets that can be dropped ranges from
0 to n, according to the distribution of l(n). We deduct the probability of Ploss = pe(n)∗n
from the state bcwnd = n and distribute it among the other states of bcwnd = i, i < n.
This transformation is activated only once for each burst of size cwnd when the burst
of size cwnd passes the buffer, once in a rtt. Therefore each time only one transition is
possible, according the distribution shown in the illustration. The update of the pdf of
bcwnd, according to the presented transformation is done starting from n = 1 till n = 64.
A short description of the update algorithm is as follows:

1. Ploss(n) = pe(n) ∗ n (TO is small and omitted)

2. For each n from 1 to 64 update:

3. Pr(bcwnd = n) = Pr(bcwnd = n)− Pr(cwnd = n) ∗ Ploss(n)
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Figure 4.1: Transition from cwnd to bcwnd. The rightmost transition stands for the no-
loss case. The leftmost transition is then bcwnd is zero, i.e. all packets in the window were
lost. The total distribution of bcwnd is achieved then this chain is applied for all cwnd (of
all possible n)

4. For each i, i=0 to n-1 update: Pr(bcwnd = i) = Pr(cwnd = i) + Pr(cwnd = n) ∗
Ploss(n) ∗ Pr(l(n) = n− i)

Alternatively we may represent the transformation from cwnd→ bcwnd by the following
formula:
(4.2.2)

Pr(bcwnd = n) = Pr(cwnd = n)∗ (1−Ploss(n)) +
64∑

k=n+1

Pr(cwnd = k)∗Ploss(k)∗ l(k−n)

The difference in the two presentations is the complexity of implementation, as the algo-
rithm is easier to implement. That is, if we represent l(n) for all n as a matrix we should
treat diagonals instead of rows or columns.

The expected value and the variance of bcwnd is smaller then that of cwnd as it shown
on Figure 4.2

We can use now this pdf for the probability models of the traffic on the Lines.
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Figure 4.2: Distribution of bcwnd

4.3 Distribution of L2,L3,L4,L5,L6

In this section we derive distributions of L2,L3,L4,L5,L6, as previously shown in Figure 2.2.
We start with L3 because its traffic has special property. In fact, the only bottleneck is
before the L3. The packets injected to the L3 are emitted by the queue. The capacity of
this line is limited, because the rate of the emission C is limited as well. We approximate
that the occupancy of L3 therefore is most of the time at its maximum and therefore
constant.

L5 is the next line after L3 for the packets to travel. Since the server forward access
links are not equal but distributed uniformly, the number of packets on each line li5 is
independent. The fact that all the packets leave the same emission point - inserts some
dependency. Still, assuming that the li5 are independent we can show that L5 can be
approximated as Gaussian as well, using the same method as we did for L1. In the lines
L6 and the following L4, which include only acks, the dependency is weaker , because the
packets to these lines are injected from the different sources. We find the distribution of
li2, li4 ,li5, li6 exactly by the same method which we used to find li1, with the only difference
that we use bcwnd. Next, we utilize Lindeberg Cental Limit theorem again, to find the
Gaussian distributions of L2,L4,L5,L6, according to li2, li4 ,li5, li6 respectively. We compare
these models with an alternative approach, and discuss the precision in Chapter 5.
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4.4 Distribution of W

Denote as well the common window distribution: W =
∑

i cwnd
i, where i = 1...N , N

is the number of clients. We may express the total number of packets circulating the
topology as follows:

(4.4.3) T = L1 + L2 + L3 + L4 + L5 + L6 +Q

For a small packet loss we may neglect the percentage of the lost packets, stating approx-
imately T = W . Utilizing the statistical independence of cwndi we can model the W .
Denote the wi(t) as a distribution of process cwndi(t) of every flow.

Theorem 7 The sum W of cwnd of all flows has a Gaussian distribution.

W ∼ Norm(ΣiE(wi),Σivar(wi))

Proof 7 Since all the flows are modeled as independent (Assumption 8), and equally dis-
tributed (Assumption 9, from the Central Limit Theorem we deduce:

E(W ) =
∑

nE(wi(t)), var(W ) =
∑

n var(w
i(t)) The sum of i.i.d. random variables

converges to a Gaussian distribution. 2

Therefore, once we found the distribution of wi(t), we have complete statistics for W ,
which is, according to the Central Limit Law, Gaussian distributed. We stated earlier
that for low packet loss approximately W = T . We can refine the approximation by
assuming that W is a delayed equivalent of T and the difference is the lost packets, which
are not considered in W . We thus have: W ≈ TOTAL

1−p .
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Chapter 5

Simulation Results

In this chapter we present simulation results of the entire model and explain the differences
between various cases. We performed NS2 simulations for several hundreds flows (500 to
2000) with dumbbell topology. We randomized the propagation times of access links, thus
making the tpi1,tpi2,tpi5,tpi6, to be uniformly distributed (Assumption 5) within different
ranges (20 − 100 msec. for the lower bound and 50 − 500 msec. for the higher bound).
The propagation time of the bottleneck link tp3, tp4, was 20 msec. We implemented also
a small percentage (about 5%) of short TCP flows, to create some noise, but we did our
measurements only with long-provisioned TCP flows. We sampled the window size of all
flows, and also measured the traffic distribution on the Lines. Sampled vectors give us a
histograms, which lead to the normalized pdf. We present first the results of the cwnd
model. Next we discuss the transmission rate results. Finally we introduce the graphs
for L1 and show the Gaussian functions for all the parts of the network. An additional
paragraph on the influences of changing the parameters of the network and special cases
concludes this section.

5.1 CWND Model Simulation Results

We verified with the simulated results the precision of the model of W by applying both
approaches for the halving probability which we presented. We bring here the CDF and
PDF for 3 different cases of p. Figures 5.1, 5.2, 5.3 represent the PDF for low, medium
and high packet losses, while Figures 5.4, 5.5, 5.6 represent the CDF for the same cases.
We can see that for all three packet losses the model is very close both in CDF and PDF.
The alternative approach for the halving calculation improves slightly for the medium and
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Figure 5.1: Probability Distribution Function, low packet loss case.

high packet loss. We conclude that the model is correct for the entire range of interest of
packet losses.

5.2 Gaussian Model of W and Access Links

We present the comparison of our probability models of W , and Lines, to the measured
results. We used a model of cwndi and li1 to produce the Gaussian models. First we
find the model for cwnd using a given p. Second we find the distributions of all li1 using
Equation 2.1.1. Finally we use Theorem 3 to find the L1 parameters using the Central
Limit Law. Figure 5.7 demonstrates the result. In spite of the models not being 100%
precise the results for L1 are still close enough. The most influencing result on the entire
model is the mean of cwnd. The skew of order of 1 packet can cause the shift of about
5% of the mean of L1. Therefore, as can be observed, in this example the model of cwnd
yielded very precise results.

Next we show the results of the model of L2, which we computed using bcwnd. Typically,
as we mentioned in the introduction to this section, tpik might be distributed differently
for all k, k = 1...6. We compare our model based on bcwnd with an alternative approach
as follows: We take the already produced model of L1, we multiply it by factor 1 − p

and then scale it by the ratio of means of propagation times, which yields an equation as
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Figure 5.2: Probability Distribution Function, medium packet loss case.

Figure 5.3: Probability Distribution Function, high packet loss case.
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Figure 5.4: Cumulative Distribution Function, low packet loss case.

Figure 5.5: Cumulative Distribution Function, medium packet loss case.
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Figure 5.6: Cumulative Distribution Function, high packet loss case.

Figure 5.7: Model of L1 for 500 flows, low packet loss
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Figure 5.8: Model of L2 vs. alternative approach.

follows:

(5.2.1) L2(t) = L1(t) ∗ (1− p) ∗ mean(tpi2)
mean(tpi1)

Figure 5.8 demonstrates the comparison. Comparing this alternative with our model we
see that it lacks the precision both in expected value and in variance. The main reason
for that is that scaling by the propagation times mean is not reliable and depends on the
distribution of propagation times.

It is worth mentioning that our model for L2 is also less precise then the model of L1, for
instance. The reason for that is that different li2 have some small correlation. Unlike the
traffic of L1, the traffic of another links is influenced by the common factors - queue and
L3 as a common Line, which are non Gaussian and insert some correlation. We assumed
a zero correlation which is correct for L1, but is an approximation for the other lines. We
discuss further the influence of this correlation in this chapter as well.

The example of the Gaussian distributions of Lines and W is demonstrated on Figure 5.9,
where we can see 5 Lines that comply with the Gaussian distribution, together with the
distribution of W.

Next we discuss the result for the model of W in detail. We use Theorem 7 to find
the distribution of W . Figure 5.10 demonstrates the result, when the transmission rate
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Figure 5.9: Gaussian distributions of the packets on the links

Figure 5.10: Model of W for 2000 flows, low packet loss, not significant B

50



Figure 5.11: Model of W for 500 flows, low packet loss, significant B

is high, while B is quite high as well (approximately of a size that complies with the
Stanford Model). The model looks quite precise in spite of the quite large B. The reason
that B is not significant is that due to the high rate, the number of packets in the queue
is comparatively negligible. Next we present a case with 500 flows with much lower total
rate, but a more significant B. Figure 5.11 demonstrates the result. The influence of a
non Gaussian factor is quite easily observed. The model looks now a little bit let precise
because of the non zero covariance between the cwndi. The difference is still very small
(less than 5% in mean and looks large because of the wide scale). The covariance between
two arbitrary flows is low (the covariance coefficient is less than 0.01, but the accumulative
influence of the total covariance is clearly seen, so the variance of the measured W is higher
for 500 flows, than the modeled. This is in contrast to the model of L1 of the same case
(Figure 5.7). The reason for such a difference in precision is that L1 is not directly affected
by the queue, while W contains it.

5.2.1 Gaussian tests

We checked the precision of the measures of the number of packets on all the line with the
QQ-plot method [13] and also with the Lilliefors test [17]. The QQ-plot results for different
Lines presented on Figure 5.12. Our estimations about the compliance of different Lines
with the Gaussian distribution were confirmed by these results.
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Figure 5.12: Gaussian tests with QQ-plot MATLAB tests. The test was performed for all
6 lines. The only clearly non Gaussian line is Line 3 - the bottleneck right after the buffer.
Some of its influence is seen as well on the next line - L5, which has some small deviations
in the 5th quintile

52



Figure 5.13: Example of Arrival Rate pdf, for the p = 2.3% achieved with 500 flows. We
can see that our model gives a slightly higher variance, due to the burstiness assumption.

5.3 Rate Model

The modeled total rate yields a result that is quite close to the measured, as we saw
in Figure 2.6. We can also see that the more flows we have, the more the discrepancy
in variance in our model tends to vanish, compared to Figure 5.13. The effect of the
burstiness is less visible for the larger number of flows.

5.4 Changing the Parameters of the Network and Special

Cases

The network topology is actually defined by set of fixed and small number of parameters
that we already presented: C, B , {rtti}. We will now discuss the effects of changing these
parameters.

5.4.1 Flows with Different Link Service Rates

Among the special cases we may consider adding a capacities on different forward client
access links {Ci}, limiting the link capacity of the flows as well. Clearly, this limitation
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relaxes a burden off the bottleneck. For very low {Ci}, then C is greater then
∑
Ci, the

packet loss on the bottleneck is always zero and the Queue is empty. When the Ci are
limited but not that low, the packet loss drops down, but the nature of the probability
function stays the same.
The difficulty which might rise here is the modeling of cwndi. The window maximum
may now be smaller then 64 packets, or any other maximum predefined during the TCP
connection, due to the limited line which won’t be able to carry 64 packets at once. We
assume that in this case the window maximum will be redefined, and in case we have
flows with different maxima the cwnd distribution must be calculated separately. There is
no problem in finding the distribution of W after that - instead of general Central Limit
case the Lindeberg condition must be proven again. The li1, L1 and the rate models will
stay with no change, and all the functions remain Gaussian. We confirmed this with NS2
results.

5.4.2 Topology with Single Server

We researched the case when all the flows connect to a single server, all tpi5 are equal, and
all tpi6 are equal as well. The traffic which exits L3 is not split but travels till the common
server. The traffic on the lines L3, L5,L6 stays in this case non Gaussian and has the
same distribution as on L3, scaled by the ratio of the propagation times. The Gaussian
distribution stays on L1 and L2, and W is Gaussian as well.

5.4.3 Same Propagation Times

We can simplify the dumbbell topology by assuming all tpik are equal for all k, k = 1...6.
In this case only L1 and W preserve the Gaussian quality. Other Lines have a distribution
form which is identical to L3. The reason for that is that distribution of li2 are identical
now. li1 are transmitted asynchronously from different sources and stay i.i.d. In case we
synchronize the flows by starting them all exactly in the same moment - L1 will lose its
Gaussian property as well, and so does W .
It is worth mentioning that all these cases are strictly theoretical, and are unlikely to
happen in a real network
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Table 5.1: Buffer Size Influence for a Low p

Table 5.2: Buffer Size Influence for a High p

5.4.4 Buffer Size Impact

We promoted the usage of small buffers - we would like to explore the justification of this
approach. We present in Table 5.1 and in Table 5.2 comparisons of performance for 3 cat-
egories of buffers - large (rule of thumb), medium (Stanford model) and small (Stanford
model divided by constant). We can see that the improvement in the performance with
larger buffers is not dramatic, even if we do not consider the queuing delay. We compare
two parameters for the performance - average cwnd and the packet loss. The improve-
ment in both parameters was insignificant, comparatively to the increase in the buffer
size. As long as queuing delay is negligible (Assumption 11), the throughput will change
linearly with the average cwnd, provided that rtti are similarly distributed. Therefore,
improvement in throughput will be close to the improvement in average cwnd.

In order to track further the influence of the buffer particularly on the packet loss we
changed the buffer size for the same topology. The results are presented in Table 5.3.
Graphical presentation is given in Figure 5.14. We can see that significant improvement
happens for the very small buffers. When the buffers are very large, they simply absorb
a major part of the total needed requirement, bringing the average cwnd quite close
to wmax = 64. However, comparing the average cwnd, which is proportional to the
throughput (neglecting the queueing delay), we see very slow improvement, as it shown
on Figure 5.15.
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Table 5.3: packet loss as a function of the buffer size

Figure 5.14: packet loss as a function of B

Figure 5.15: average cwnd as a function of B
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Figure 5.16: packet loss as a function of C

5.4.5 Bottleneck Service Rate Impact

An additional interesting influence we investigated was that of the bottleneck link service
rate C. Unlike the impact of increasing the buffer, which is not straightforward and
causes very slow improvement in the packet loss p, the average cwnd and consequently
the throughput of each flow, the influence of C is straightforward and fast. Increasing C
leads quite quickly p to zero and cwnd to wmax = 64 packets. The decrease in p nearly has
an exponential form. The improvement in cwnd would have an exponential form as well,
once approaching to wmax. The results are demonstrated on Figure 5.16 and Figure 5.17.

Once the service rate is more than the maximum total arrival rate R, no packet loss will
happen in the network and cwnd will be constantly equal to its maximum value.
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Figure 5.17: average cwnd as a function of C
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Chapter 6

Conclusion

In this chapter we bring the summary and useful implications of this work.
We constructed a closed loop of models, which statistically describes the dumbbell topol-
ogy. We started with a model for the traffic on a single access line and proceeded to
the model of the rates on these lines. We found then the model of the total arrival rate.
Using this rate distribution, we found by G/D/1/K analysis the distribution of Q. The
distribution of Q led us to the packet loss p. We found the packet loss numerically by
solving the fixed point equation p = f(p) where f(p) represents the closed loop of models.

We completed the closed loop, in fact, in chapter 3, which was dedicated for the model of
cwnd. We explored the nature of the correlated loses and found distribution of cwnd by
simple Markov Chain, using two different approaches.

Finally, we accomplished the statistical description of the dumbbell topology by finding
the distribution of the traffic on all Lines, proving that all but the bottleneck line comply
to a Gaussian distribution.

The closed loop and the topology description we found can serve two objectives.
First, we obtained a network planning capability. We can fully describe the dumbbell
topology by knowing the buffer size, bottleneck link capacity and the set of rtt of different
TCP sources. We can change at will the link capacity or the buffer size in order to achieve
a certain demand for the packet loss. We can reduce a buffer size in order to maintain
some level of a packet loss as well. In summary - we defined a rule for the tradeoff - buffer
size vs. bottleneck link capacity vs. packet loss. This rule might in the closest future serve
the router planners.
Second, the complete description of the traffic gives as a possibility to track the problems in
the existing networks. The loop of models gives an insight into the network performance.
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We can compare different networks by their average cwnd and by the mean and variance
of the traffic on their lines as well.
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Appendix A

Queue distribution using G/D/1K

discrete analysis

We bring a short summary of the G/D/1/K iterative algorithm for finding the Q distri-
bution, according to [27], using the original notations. Notations are as follows:

• xn(k) - probability that the nth arrival was equal to k packets. Using our notation it
is simply the distribution of the total arrival rate R(k)

• an(k) - distribution of the time interval between the arrival n and n + 1. We assume
that this parameter is constant (zero for all k, but for one value of k , for which it is
equal to 1. For example if this k = 10 then the arrivals happen deterministically every
10 time units.

• un(k) - probability to be in state Q = k at the n-th iteration immediately prior to the
n-th arrival

• u+
n (k) - probability to be in state Q = k at the n-th iteration immediately after the

n-th arrival

The iterative algorithm consists of two steps which are being run every iteration:

step 1

(A.0.1)
u+
n (k) =

∑k
j=0 un(j)xn(k − j) k=0,1,....,B-1

u+
n (B) = 1−

∑B−1
j=0 u

+
n (j) k=B
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step 2

(A.0.2)
un+1(k) =

∑B
j=k u

+
n (j) + an(j − k) k=1,....,B

un+1(0) = 1−
∑B

j=1 un+1(j) k=0

The equilibrium state probabilities converge to:

(A.0.3) u(k) = lim
n→∞

un(k)

We tested this algorithm with queues of various buffer sizes. The complexity of convergence
depends on the size of the buffer B and the desired precision, and may typically take less
then 100 iterations as well as more than 1000.
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