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Two-slab all-optical spring
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It is demonstrated that a waveguide consisting of two dielectric slabs may become an all-optical spring when
guiding a superposition of two transverse evanescent modes. Both slabs are transversally trapped in stable
equilibrium due to the optical forces developed. A condition for stable equilibrium on the wavenumbers of the
two modes is expressed analytically. The spring constant characterizing the system is shown to have a maxi-
mal value as a function of the equilibrium distance between the slabs and their width. © 2007 Optical So-
ciety of America
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Electromagnetic forces on neutral bodies may prove
to be the foundation of a variety of future opto-
mechanical systems. In addition to the vast research
devoted to the manipulation of small particles by la-
ser light,1 one of the subjects that have been investi-
gated is the trapping of a mirror in a stable equilib-
rium state by using radiation pressure. A typical
configuration is that of a Fabry–Perot cavity consist-
ing of two mirrors, where the radiation pressure on
one of the mirrors may be balanced by an external
mechanical force.2,3 This scheme has been recently
experimentally characterized as an optical spring.4

In contrast to the Fabry–Perot system where ra-
diation is incident perpendicularly upon each mirror,
waveguide eigenmodes propagate in the longitudinal
direction while exerting pressure on the guiding
structure in the transverse direction.5–8 It was re-
cently shown that two mirrors guiding light between
them may experience both attractive and repulsive
forces according to the transverse behavior of the
mode they guide.7 In fact, transverse propagating
modes, namely, eigenmodes with real transverse
wavenumbers, were found to always be repulsive. On
the other hand, transverse evanescent modes may be
repulsive or attractive, depending on whether their
transverse fields are odd or even functions of the
transverse coordinate, respectively.

When both an attractive and a repulsive mode are
propagating in a two-mirror waveguide, the total
transverse force may trap each mirror in a stable
equilibrium state. To some extent, this effect re-
sembles the optical binding of dielectric particles by
scattered laser light.9 Since only optical forces are re-
sponsible for the equilibrium, we may consider the
system an all-optical spring. Such a stable equilib-
rium has been demonstrated for a waveguide consist-
ing of two Bragg mirrors.7 Although the diverse prop-
erties of Bragg mirrors may be exploited for
controlling the radiation pressure in a two-mirror
waveguide,5,7 for the realization of an all-optical
spring, Bragg reflection may not be necessary. In-
stead, the two transverse evanescent modes that are
required may be guided by total internal reflection.

In this Letter the optical forces in a two-slab sys-
tem consisting of two infinite lossless dielectric slabs,
as illustrated in Fig. 1, are investigated. By using a

total internal reflection mechanism, the transverse
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oscillations of the field in the Bragg reflector are
avoided, and the radiation pressure effects for a
given power are enhanced. It is demonstrated for the
first time to our knowledge that this configuration
may become an all-optical spring, and a general ana-
lytic expression for the condition for stable equilib-
rium to occur is developed, as well as an expression
for the spring constant. In addition to the obvious ad-
vantage in implementation, the simplicity of the sys-
tem allows us to gain insight into the stable equilib-
rium phenomenon.

Derivation of the dispersion relations in the two-
slab system illustrated in Fig. 1 may be found in Ref.
10, and recently the propagation of light in this type
of nano-waveguide was demonstrated.11 In what fol-
lows, we focus on the lowest even TM mode (Ex is
even) and the lowest odd TE mode (Hx is odd); both
are assumed to be at wavelength �0 with correspond-
ing angular frequency �0=2�c /�0, propagating in the
z direction. Obviously, in a practical device that has a
finite size in the y direction, the modes are hybrid
rather than being pure TE or TM. However, the
larger this dimension is, the more accurate the
present analysis becomes.

For each mode, the Maxwell stress tensor12 is used
to compute the force per unit area per unit power
�Nm−2 W−1� FA and FR for the attractive TM and for
the repulsive TE, respectively; negative values of the
force represent attraction, whereas positive values
represent repulsion. Figure 2 shows contours of the
two normalized forces as a function of the distance
between the slabs D and the slabs’ width �, for slabs
of permittivity �r=3.452�11.9. The normalization is
by �c�0�y�−1, where �y is the width in the y direction
through which the power flows. It is seen that the

Fig. 1. Two-slab waveguide. Hz for the odd TE mode is su-

perimposed on the schematic of the system.
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force generally tends to be stronger for shorter dis-
tances between the slabs.

Since there is no interaction between the TM and
TE modes, if both are excited in the waveguide, the
total force is the sum of each of their forces. Denoting
the ratio between the power of the repulsive mode to
the power of the attractive mode by ��PTE/PTM, the
total force per unit area per unit power is given by

FT�D� = �FA�D� + �FR�D��/�1 + ��. �1�

For some arbitrary distance between the mirrors D0
to become an equilibrium point, i.e., FT�D0�=0, the
power ratio � must satisfy the equation

� = − FA�D0�/FR�D0�. �2�

At the equilibrium point D0, the spring constant may
be defined by

K = − �dFT

dD �
D=D0

, �3�

so that K�0 corresponds to stable equilibrium,
whereas K�0 represents unstable states.

Using Eqs. (1)–(3), we may compute the values of K
as a function of the slabs’ width � and the equilib-
rium point D0, assuming that the dependence of � on
D is negligible. In Fig. 3, we focus on the range of pa-
rameters for which a stable equilibrium is obtained.
The contours of the spring constant K normalized by
K0� �c�0

2�y�−1 are shown in Fig. 3(a), and the corre-
sponding values of the power ratio � are presented in

Fig. 2. (Color online) Contours of the transverse force per
unit area per unit power in the two-slab waveguide normal-
ized by �c�0�y�−1 as a function of the slabs’ width and the
distance between the slabs. (a) Even TM attractive force
�−FA� (dB). (b) Odd TE repulsive force FB (dB).

Fig. 3. (Color online) (a) Spring constant K of the two-slab
waveguide normalized by K0� �c�0

2�y�−1 as a function of the
slabs’ width and the equilibrium distance between the
slabs. Negative values of K were replaced by zeros. (b)
Power ratio � (dB) of the repulsive and attractive modes.
Fig. 3(b). A maximal value of the spring constant is
obtained for ��0.12�0 and D0�0.12�0, and the opti-
mal spring constant is Kmax/K0�3.8 with a power ra-
tio ��1.25. As a specific example, consider �0
=1.55 	m and �y=10�0, for which Kmax�3.4

108 Nm−3 W−1. Taking the density of Si, which is
��2.3 g/cm3, and total flowing power P=1 W, the
corresponding mechanical resonance is �KmaxP / ����
�0.9 MHz. Oscillation in such a relatively low fre-
quency ensures that the light frequency is un-
changed, thus justifying the above analysis under
static conditions. In addition, transient phenomena
leave the waveguide at the group velocity of the
modes and consequently cannot build up in time.

As the permittivity of the slabs �r is increased, the
forces of each mode become stronger, and with them
the maximal spring constant that may be obtained.
In Fig. 4(a), the maximal spring constant Kmax is
plotted as a function of �r, beginning with �r=2.1,
11.9, and then 20–50 in increments of 10. In this
range of �r, the spring constant increases from
Kmax/K0�0.08 for �r=2.1 to Kmax/K0�36.3 for �r
=50. For each maximal value of K, the corresponding
values of the slabs’ width and the equilibrium dis-
tance are given in Fig. 4(b). As expected, these two
geometric quantities decrease with �r.

Further insight into the effect of the spring may be
gained by examining the expression for the force as a
derivative of the energy. For one mode, the resulting
force per unit area per unit power is given by5,6,13

F = −
1

�0�y

��

�D

W

P
, �4�

where W is the energy per unit length stored in the
waveguide, P is the total flowing power, �� ,D� is the
angular frequency of the mode, and  is its longitu-
dinal wavenumber. At a specific frequency �0, we
have �� ,D�=�0, and by differentiating this implicit
function, the force may be expressed in the form

F = −
1

�0�y
�−

�

�D

��

�
	W

P
=

1

�0�0

�

�D
, �5�

where the equality between the energy and the group
velocities, i.e., �� /�=P /W, was used. Hence the dis-
persion function �D� at �0 contains all the informa-

Fig. 4. (Color online) (a) Maximal spring constant of the
two-slab waveguide as a function of the slabs’ permittivity
�r. (b) Slabs’ width and equilibrium distance corresponding

to the optimal spring, as a function of �r.
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tion on the transverse pressure per unit power, and it
is proportional to the negative of a potential function
from which the force can be derived. Accordingly, for
an attractive (even) mode A� �0, and for a repulsive
(odd) mode R� �0, where the derivative with respect
to D is denoted by a prime.

When both an attractive and a repulsive mode are
present, as discussed above, the total force may be
derived by F=T� /�0�y, where T� �A+�R� / �1+��.
In Fig. 5(a), the functions A, R, and T for the opti-
mal spring of �r=3.452 are presented. The stable
equilibrium region of T around D0�0.12�0 is mag-
nified in Fig. 5(b), showing a maximum which is, in
fact, the minimum of the potential well in which the
slab is trapped; the minimum of T represents an un-
stable equilibrium point. The higher the permittivity
is, the deeper and narrower the potential well of the
optimal spring becomes. For �r=50, the potential well
is about twice as narrow and twice as deep as the po-
tential well of Fig. 5(b) ��r�11.9�.

It is now possible to obtain an explicit condition for
stable equilibrium on behavior of the two modes’ dis-
persion functions. For equilibrium at some separa-
tion D0, the force must vanish, which requires that

A� + �R� = 0. �6�

The equilibrium is stable if the slope is negative, so
that

A� + �R� � 0, �7�

or alternatively, the spring constant reads, using Eqs.
(3), (5), and (6),

K =
1

�0�y

A� R� − R� A�

R� − A�
, �8�

and K�0 for stable equilibrium points. The expres-
sion of Eq. (8) is among the important results of this

Fig. 5. (Color online) (a) Longitudinal wavenumber func-
study, and it is valid for any type of mirror used. Fi-
nally, the explicit condition for stable equilibrium on
the dispersion of the modes, bearing in mind that
R� �0 and A� �0, is given by A� R� �R� A� , or

�R� /A� �� � 0. �9�

The above inequality states that the ratio between
the absolute values of the repulsive and attractive
forces should decrease with D for a stable equilib-
rium to be formed.

In conclusion, a two-slab optical spring formed by a
superposition of two propagating eigenmodes was
presented and investigated, and an analytic expres-
sion for the spring constant was developed. The
spring constant exhibits a maximal value as a func-
tion of the equilibrium distance and the slabs’ width.
The volume outside the waveguide is almost free of
radiation, suggesting that objects may be placed
there and apply mechanical forces against the optical
spring, which could be used, for instance, for force
measurement.
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tions of the attractive mode A, the repulsive mode R, and

their weighted sum T, normalized by 0��0 /c, for the op-
timal spring with �r=3.452. (b) Magnification of the stable
equilibrium region of A. The equilibrium distance is indi-
cated by a vertical dotted line.


