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Field emission from a rectangular metallic grating is considered, ignoring space-charge effects. It is
shown that there is an optimal geometry of the grooves for extraction of maximum current or current
density. © 1999 American Institute of Physics.@S0003-6951~99!00408-8#

Generation of free electrons is important in many elec-
trons devices.1 Present technology facilitates good control of
the geometry of grooves or tips on scales of microns and
below. In the past the effect of various geometric configura-
tions on the emission of electrons has been considered2–6

with the main emphasis on evaluating the geometric en-
hancement factorb of a singleemitter. Even when multiple
emitters are involved, as is the case of field emitters arrays,
each tip is isolated and controlled individually thus, in zero
order, the coupling effect between adjacent tips is neglected.
When the coupling is considered we found grating geom-
etries facilitate generation of maximum current and others
lead to maximum current density. In order to envision the
reason for such a maximum to occur we have to bear in mind
that once the tips are apart from each other, the electric field
may be large and consequently the current density at its peak
is high but the total current generated in a unit length of the
structure is small since the emitting area is miniscule. At the

other extreme, if the tips are very close to each other, they
affect each other and the electric field~at the tip! is relatively
small and again the total current generated in a unit length is
small although the emitting area is considerably larger. Be-
tween these two low values, the current is expected to
achieve a maximum value.

In order to examine in detail this effect, we have inves-
tigated a two-dimensional system as illustrated in the upper
frame of Fig. 1. It consists of a uniform anode and a corru-
gated cathode with rectangular grooves and teeth. The period
of the system is denoted byL, the anode-cathode gap is
denoted byg, the tooth’s width isd, its height ish and a
voltageV0 is applied to the anode. For this relatively simple
geometry, we can calculate the electrostatic potential distri-
bution in the entire volume. The boundary conditions on the
anode (z5g) and on the grooves impose the following so-
lution of Laplace’s equation:
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These quantities enable to express the relations obtained
when imposing the boundary conditions, atz50, in terms of
BÎ 5@ I=1V= #21UI thus the two sets of amplitudes read
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the identity matrix is denoted here by (I=). This quasi-
analytic formulation enables good estimate of the numerical
error, defined bya!Electronic mail: levi@ee.technion.ac.il
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