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a b s t r a c t

By combining static electric and laser fields for generation of field-emitted electrons, it is possible to generate
a quasi-monoenergetic train of electron microbunches by controlling the anode–cathode spacing such that the
time of flight of the electrons becomes independent of the laser field. Such quasi-monoenergetic microbunches
with pulse durations that are a fraction of the laser wavelength would be ideal for radiation sources as well as
compact accelerators.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A train of electron bunches plays a pivotal role in many novel
radiation sources as well as in advanced acceleration paradigms [1–4].
Ideally, the microbunch length should be a small fraction of the driving
laser wavelength and it should have a narrow energy spread (i.e., quasi-
monoenergetic) in order to be accelerated uniformly or produce a
narrow radiation spectrum (quasi-monochromatic) [5–8].

A prime example where a train of fs-microbunches separated by
the laser wavelength is needed is as an electron injection source for
dielectric laser accelerators (DLA) [4]. The electric field within the chan-
nels of the DLA accelerating structure oscillates at the laser frequency.
Hence, only electrons at the proper phase with respect to this field are
accelerated and this optimum phase point has a periodicity equal to the
laser wavelength. Moreover, the channel gap size is only of order one
wavelength; hence, the emitter area of the injection source should also
be this same order of size to maximize injection of the electrons into the
channel.

One way to produce fs-microbunches is by combining static field
emission with the oscillating electric field of a laser beam. The latter
propagates parallel to the diode’s electrodes and with the electric field
perpendicular to both the cathode and the anode. Each one of the
two electric field components, on its own, is not sufficient to generate
significant field emission from the cathode. In fact, when the oscillating
field is anti-aligned with the static field, emission is suppressed. Thus,
significant electron emission only occurs during a fraction of each half-
cycle of the laser field, thereby generating a train of ultrashort fs-
microbunches separated in time by the period of the laser.
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This basic scheme of combining a static field and oscillating field
from a laser beam on a cathode has been experimentally demonstrated
by several different research teams [9–11] and is essentially an ex-
tension to optical wavelengths of earlier work done using microwaves
[12–14]. Hommelhoff, et al., [9] demonstrated several key attributes of
this process: (i) Emission of electrons during a half-cycle of the laser
field from tungsten cathodes, (ii) generation of electron pulses of 1 fs
duration, and (iii) an average of about 200 electrons per microbunch
corresponding to 3 × 1015 electrons per second for the mode-locked
1-GHz laser that was being used. It was also pointed out that their results
yielded current densities and invariant brightnesses comparable to
photocathodes, which implies that space-charge effects are manageable.

Ganter, et al., [10], demonstrated high peak currents (2.9 A) and
indicated that low normalized emittances (< 0.05 mm-mrad) are feasi-
ble. These approaches were also quite different from that of Hernandez-
Garcia and Brau [15–17] who demonstrated photoelectric field emission
from needle cathodes where the laser intensity dominated over the field
emission and could even damage the cathode.

This work by others on laser-driven field emitters with arbitrary
choice of parameters did not result in an electron beam (e-beam) source
suitable for injecting into an acceleration structure. One key character-
istic they lacked was generating microbunches with low energy spread.
We demonstrate in this quasi-analytic study that a proper choice of the
static and oscillating electric field components results in an improved
microbunches generation scheme. The three main characteristics of this
paradigm are: (i) quasi-monoenergetic electrons can be emitted from the
laser-driven field emitters by controlling the anode–cathode (A–K) gap
size, and the static and oscillating field as well as the space-charge in
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the diode. (ii) Accounting for the global (static) space-charge effect, we
demonstrate within an excellent approximation that the bunch profile
can be considered Gaussian. (iii) The transverse dynamics of the bunch
is established and the normalized emittance is shown to be conserved
along the diode gap.

2. Simplified 1D model – ‘‘resonant particle’’

Our fundamental assumption is that the electron emission is gov-
erned by field emission rather than photo-emission thus throughout this
study we rely on the Fowler–Nordheim (FN) equation [18] as adapted
by Barbour, et al., [19] for tungsten,

𝐽 (FN) = 𝐽 (FN)
0

[

𝐹
𝐹cr (𝐹 )

]2
exp

[

−
𝐹cr (𝐹 )
𝐹

]

(1)

where 𝐹 (V∕cm) is the effective electric field that acts locally on the
surface of the cathode, 𝐽 (FN)

0 A∕cm2 = 7.18 × 109𝜙2𝑓 2 (𝑦), 𝜙 is the work
function (eV), which for tungsten has a value of 4.5 eV, 𝐹cr (𝐹 ) =
6.83 × 107𝜙3∕2𝑓 (𝑦) , and 𝑓 (𝑦) is an elliptic function of the variable
𝑦 = 3.79 × 10−4𝐹 1∕2𝜙−1; this function accounts for the effects of the
mirror-image potential [20–22].

Although the FN equation was developed for static conditions, it is
still valid for short pulses because the tunneling time it takes the bound
electron to traverse the potential barrier is much shorter than one period
of the laser field. Furthermore, the effective electric field 𝐹 includes
the field enhancement factor (𝛽) that increases the magnitude of the
applied field 𝐸, i.e., 𝐹 = 𝛽𝐸 and it accounts for the roughness and other
geometric effects on the emitting surface.

In the framework of the 1D model, we consider a one-dimensional
(1-D) geometry (see Fig. 1) that utilizes a cathode consisting of carbon
nano-tubes (CNTs) spread over the cathode surface. These CNTs have
demonstrated [23,24] enhancement factors much larger than the ones
assumed here. Moreover, the CNTs can be deposited over a cathode
area small on the scale of the wavelength

(

𝜆0
)

of the illuminating laser
e.g., 0.5𝜆0 × 0.5𝜆0 [25]. Such a cathode will produce an electron beam
well matched to the small entrance opening of a realistic dielectric laser
accelerator [4] structure ∼ 𝜆0.

For our 1-D analysis, however, we assume with reference to Fig. 1
that the vertical size of the cathode region filled with CNTs is much
less than the laser wavelength whereas the horizontal size is much
longer than one laser wavelength. The anode–cathode (A-K) gap might
be many laser wavelengths long e.g., 𝑔 ∼ 1 mm, and the laser beam
fills the entire A-K gap with its electric field oriented perpendicular to
the cathode surface. As explained subsequently, if we assume a laser
wavelength of 𝜆0 ∼ 10 μm and a laser pulse duration of 𝜏𝐿,𝑝 ∼ 30 ps
then, as illustrated schematically in Fig. 1, there will be a train of
hundreds of microbunches traveling within the A-K gap during the laser
pulse. This is in contrast to the work by Hommelhoff, et al., [9], [26]
where femtosecond laser pulses were used, thereby limiting the number
of microbunches traveling within the A-K gap to only a few. This
train of microbunches will affect the electron emission and microbunch
characteristics through charge shielding and space charge spreading.
These effects will be included in our analysis below.

In order to convey the essence of our concept we ignore momentarily
the charge shielding and transverse effects. The field between the
cathode and anode consists of the superposition of the static field,
𝐸st = 𝑉st∕𝑔, and the laser field, 𝐸L, so that the net field 𝐸 (𝑡) is given by

𝐸 (𝑡) = −𝐸st − 𝐸L cos (𝜔𝑡 + 𝜓) (2)

where 𝜔 = 2𝜋𝑐∕𝜆0 is the laser frequency and 𝑡 is time; 𝑔 is the A-K
spacing. It is important to point out here that full control of the phase
(𝜓) is assumed. In other words, t = 0 represents the instant the net
effective field on the cathode is the largest. Furthermore, the motion of
the electrons in the direction parallel to the propagation of the wave
(x) is ignored. Without loss of generality, we conceive that the emitting
strip represented by our 1D cathode is located at the maximum of the

Fig. 1. (Color online) Schematic of the conceived optical injector: On the left the cathode
consists of a polished metal with a narrow strip of carbon nano-tubes (CNT). This strip
alone emits electrons every half cycle of the laser field; edge effects are neglected in the
framework of this model. The A-K gap is designed such that each microbunch traverses the
gap in an integer number of laser periods. Consequently, the kinetic energy of the emerging
electrons is independent of the laser amplitude. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

propagating electric field namely, 𝐸L cos (𝜔𝑡) =
{

𝐸L cos
[

𝜔 (𝑡 − 𝑥∕𝑐)
]}

𝑥=0
or for the case of a standing wave𝐸L cos (𝜔𝑡) = 𝐸L

[

cos (𝜔𝑡) cos (𝜔𝑥∕𝑐)
]

𝑥=0.
Subject to the assumption mentioned above, in the cathode–anode gap,
the equation of motion of the 𝑖th electron emitted at t = 0 is
𝑑2𝑧𝑖
𝑑𝑡2

= 𝑒
𝑚

[

𝐸st + 𝐸L cos
(

𝜔𝑡 + 𝜓𝑖
)]

(3)

whose solution, subject to the initial conditions 𝑧𝑖 (𝑡 = 0) = 0 and
�̇�𝑖 (𝑡 = 0) = 0, is straightforward

𝑧𝑖 (𝑡) =
𝑒
𝑚

{

𝐸st
1
2
𝑡2 −

𝐸L

𝜔2

[

cos
(

𝜔𝑡 + 𝜓𝑖
)

− cos
(

𝜓𝑖
)

+ 𝜔𝑡 sin
(

𝜓𝑖
)]

}

. (4)

Provided the electrons are not impinging back on the cathode, the time
it takes the 𝑖th electron

(

𝑡0,𝑖
)

to reach the anode is

𝑔 = 𝑒
𝑚

{

𝐸st
1
2
𝑡20,𝑖 −

𝐸L

𝜔2

[

cos
(

𝜔𝑡0,𝑖 + 𝜓𝑖
)

− cos
(

𝜓𝑖
)

+ 𝜔𝑡0,𝑖 sin
(

𝜓𝑖
)]

}

. (5)

Evidently, this time can be made independent of the laser’s amplitude
provided two conditions are satisfied

𝜔 𝑡0,𝑖 = 2𝜋𝑛0
𝜓𝑖 = 0

(6)

where 𝑛0 is an integer that, as we demonstrate next, represents the
number of laser time periods it takes the particle to traverse the A-K gap.
Explicitly, substituting these values [Eq. (6)] into Eq. (5), we obtain the
‘‘resonant particle’’ transit time

𝑡0 =
𝑔
𝑐

√

2𝑚𝑐
2

𝑒𝑉st
. (7)

This is to say that the transit time
(

𝑡0
)

is an integer number (𝑛0) of laser
time periods

(

𝑇0 = 𝜆0∕𝑐
)

; hence, in addition to the zero-phase condition
(𝜓 = 0), we have

𝑡0 =
𝑔
𝑐

√

2𝑚𝑐
2

𝑒𝑉st
= 𝑛0𝑇0. (8)
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Fig. 2. Resonant (red) and off-resonance (blue) trajectories. Top frame illustrates the
relevant trajectories along the entire gap — the two are indistinguishable. Central and
lower frames zoom in at the input and output correspondingly. Close to the cathode,
the laser field plays a dominant role and it is negligible close to the anode. The width
is designed such that secondary emission electrons will play no role — see text. The
parameters of the simulation:𝜆0 = 10.64

[

μm
]

, 𝐸𝐿 = 0.314
[

GV∕m
]

, 𝑉st = 100 [V] , 𝑛0 = 489
and 𝑔 = 4.837𝜆0. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

These two conditions are the pillars of our paradigm and it is important

to reiterate that the residue of mod
(

𝑔
𝑐𝑇0

√

2 𝑚𝑐
2

𝑒𝑉st
, 1
)

= 0 as well as the
fact that the energy of the emerging resonant particle is 𝑒𝑉st.

Note that in the framework of this scheme we assume a homogeneous
oscillating electric field across the A-K gap. Hence, the absence of
inhomogeneous field components implies the lack of nonlinear forces
that can give rise to any significant ponderomotive forces acting on the
electrons. More on this topic will be discussed subsequently.

3. Off-resonance conditions

Our next step is to assess the off-resonance conditions, which will
indicate the amount of bunch spreading that will occur due to electrons
being emitted over a finite phase of the laser field. Consider a particle
whose relative phase is 𝜓𝑖 = 0 + 𝛿𝜓𝑖 and it is a small deviation from
that of the resonant particle

(

|

|

𝛿𝜓𝑖||≪ 𝜋
)

. This phase deviation causes
a change in the time, 𝛿𝑡𝑖 = 𝑡0,𝑖 − 𝑡0, it takes this particle to traverse the
A-K gap. Thus according to Eq. (5)
(

1 +
𝐸st
𝐸L

)

(

𝜔𝛿𝜏𝑖
)2 + 2

𝐸st
𝐸L

𝜔𝑡0
(

𝜔𝛿𝑡𝑖
)

− 2𝜔𝑡0𝛿𝜓𝑖 = 0 ⇒

𝛿𝑡𝑖 =
𝐸st

𝐸st + 𝐸L
𝑡0
⎡

⎢

⎢

⎣

−1 +

√

√

√

√1 + 2
𝐸L

(

𝐸st + 𝐸L
)

𝐸2
st

𝛿𝜓𝑖
𝜔𝑡0

⎤

⎥

⎥

⎦

.
(9)

Clearly, a stable trajectory occurs as long as the argument of the square
root is positive

𝛿𝜓𝑖 > −𝜋
𝑛0𝐸2

st

𝐸L
(

𝐸st + 𝐸L
) . (10)

In addition, we impose that the time deviation is small on the scale of
one laser period |

|

𝛿𝑡𝑖||≪ 𝑇0; hence

𝛿𝜓𝑖 ≪ 𝜋
𝑛0𝐸2

st

𝐸L
(

𝐸st + 𝐸L
)

[

(

1 +
𝑛0𝐸st

𝐸st + 𝐸L

)2
− 1

]

. (11)

These last two conditions constrain the upper and lower bounds of 𝛿𝜓i
and, hence, the spread of the electrons in terms of the laser and static
fields as well as the number of laser periods 𝑛0. Note, for given values
of 𝐸L and 𝐸st , that the range for acceptable values of 𝛿𝜓i becomes less
constrained for larger values of 𝑛0. Hence, there is a benefit to operating
at relatively large A-K spacing.

The phase variation among the off-resonance particles causes velocity
variations among the emerging electrons. For determining this variation,
we keep in mind that, according to Eq. (4), the velocity of the resonant
particle as it reaches the anode is v0 = �̇�

(

𝑡0
)

= 𝑒𝐸st𝑡0∕𝑚 . Consequently,
the velocity variation 𝛿v𝑖 = �̇�𝑖

(

𝑡0,𝑖
)

− v0 is given by

𝛿v𝑖 =
𝑒
𝑚

(

𝐸st + 𝐸L
)

𝛿𝑡𝑖 = v0
⎡

⎢

⎢

⎣

−1 +

√

√

√

√1 +
𝐸L

(

𝐸st + 𝐸L
)

𝑛0𝐸2
st

𝛿𝜓𝑖
𝜋

⎤

⎥

⎥

⎦

(12)

where we used the expression for 𝛿𝑡𝑖 developed in Eq. (9).
Fig. 2 gives an example of the resonant and off-resonance trajecto-

ries. We see for the set of parameters chosen that there is only a 0.2%
difference in the longitudinal position between the resonant and off-
resonance electrons when they arrive at the anode. Hence, the bunch
spreading is negligible.

Before proceeding, it is important to quantify the constraint imposed
by the condition that limits the validity of the result in Eq. (5), namely,
that the field-emitted electrons do not impinge back on the cathode and
generate secondary electrons. As shown in Fig. 2, we observe that if 𝜓𝑖 ≠
0 (off-crest), the electrons after one period may impinge on the cathode
and thus generate secondary electrons. While this is not destructive to
our paradigm, it may alter the energy spread of the emerging electrons
(at the anode); therefore reducing its appeal. For this reason we specify
the conditions necessary to preclude this effect. According to Fig. 2 and
Eq. (4), this effect occurs if an electron encounters the cathode surface
after one period of the wave and implies the following two conditions
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�̇�𝑖
(

𝑡 = 𝑡bd
)

= 0 ⇒ 𝐸st𝜔𝑡bd − 𝐸L
[

− sin
(

𝜔𝑡bd + 𝜓bd
)

+ sin
(

𝜓bd
)]

= 0

𝑧𝑖
(

𝑡 = 𝑡bd
)

≥ 0 ⇒ 𝐸st
1
2
𝜔2𝑡2bd − 𝐸L

[

cos
(

𝜔𝑡bd + 𝜓bd
)

− cos
(

𝜓bd
)

+𝜔𝑡bd sin
(

𝜓bd
)]

≥ 0 (13)

where the subscript ‘‘bd’’ refers to the backward-traveling electron. For
most practical conditions we may assume that 𝐸st ≪ 𝐸L and, as such,
the solution of the first condition is 𝜔𝑡bd ≃ 2𝜋

(

1 − 𝐸st∕𝐸L
)

; therefore,
the second condition indicates that we must have

𝜓bd ≤ 𝜋
𝐸st
𝐸L

. (14)

As we will show later, 𝐸L needs to be greater than 𝐸st, for example,
𝐸st∕𝐸L ∼ 0.1. This means 𝜓bd can be quite large, e.g., ∼0.1𝜋; hence,
our paradigm can operate over a relatively wide range of the laser field
phase, i.e., it is not restricted to only the very peak of the field.

4. Static space-charge effect

So far we have considered the dynamic of the electrons subject to
the assumption that the electron is extracted by the combination of the
two electric fields and ignoring the field generated by the electrons
themselves. Next we focus our attention on the global space-charge
effect on field emission and, more specifically, on the screening of
the cathode by the space-charge distributed in the A-K gap. As the
electron microbunches are propagating in the A-K gap, they form a
charge distribution that tends to shield the cathode, thereby reducing
the net field experienced by the electrons. To account for this charge
shielding effect, we consider first the static effect assuming that all the
electrons are uniformly distributed along the gap, and solve Poisson’s
equation to yield the potential in the gap

𝛷 (𝑧) = 𝑧
𝑔

(

𝑉st −
𝑒𝑁 (𝐴𝐾)

el
𝜀0𝐴𝑔

𝑔2

2

)

+
𝑒𝑁 (𝐴𝐾)

el
𝜀0𝐴𝑔

𝑧2

2
. (15)

𝑁 (𝐴𝐾)
el is the average number of electrons traversing the A-K gap, A is the

area of the cathode, and 𝜀0 is the vacuum permittivity. The second term
in the brackets represents the field-reduction due to charge shielding.
Including the static charge shielding field in the equation of motion for
the resonant particle

(

𝜓𝑟 = 0
)

[Eq. (3)], its solution reads

𝑧𝑟 (𝑡) =
(𝑒∕𝑚)𝐸eff

𝜔2
p

[

cosh
(

𝜔p𝑡
)

− 1
]

+
(𝑒∕𝑚)𝐸L

𝜔2 + 𝜔2
p

[

cosh
(

𝜔p𝑡
)

− cos (𝜔𝑡)
]

(16)

wherein the plasma frequency is defined by 𝜔2
p = 𝑒2𝑁 (𝐴−𝐾)

el ∕𝑚𝜀0𝐴𝑔 and
the effective static electric field 𝐸eff =

(

𝑉st∕𝑔
)

−
(

𝑒𝑁 (𝐴𝐾)
el ∕2𝜀0𝐴

)

≡
𝐸st − 𝐸SC. Thus, ensuring the motion is independent of 𝐸𝐿 entails that
cosh

(

𝜔p𝑡0
)

− cos
(

𝜔𝑡0
)

≃ 0; therefore, in addition to the condition
𝜔𝑡0 = 2𝜋𝑛0 we must impose 𝜔2

𝑝𝑡
2
0 ≪ 1 . Satisfying these requirements

yields a new expression for g that includes charge shielding effects,
𝑔 = 𝑒𝐸eff𝑡20∕2𝑚, or explicitly

𝑔
𝜆0

= −𝑉 sc +
√

𝑉
2
sc + 𝑉 st (17)

wherein 𝑉 st = 𝑛20
(

𝑒𝑉st∕2𝑚𝑐2
)

and 𝑉 sc = 𝑛20
(

𝑒2𝑁 (𝐴𝐾)
el 𝜆0∕8𝜀0𝐴𝑚𝑐2

)

.
Further, keeping in mind that the number of electrons in the A-K gap
is 𝑁 (𝐴𝐾)

el = 𝑛0 × number of electrons in one bunch and ignoring transients
associated with the head of the train of micro-bunches, the charge per
unit surface area in the A-K gap is given by the following integral
equation

𝑁 (𝐴𝐾)
el
𝐴

= 𝑛0
104
𝑒 ∫

3𝑇0∕2

𝑇0∕2
𝑑𝑡

× 𝐽𝐹𝑁

{

𝛽
100

[

𝑉st
𝑔

− 𝑒
2𝜀0

𝑁 (𝐴𝐾)
el
𝐴

+ 𝐸L cos (𝜔𝑡)

]}

. (18)

Table 1
Typical parameters and results of the dc SC simulation.

𝜆0
[

μm
]

10.64
𝛥𝑦 [mm] 1
𝛥strip

[

𝜆0
]

0.5
𝛽 100
𝑔
[

𝜆0
]

5.0
𝑛0 500
𝑁 (1)

el 1000 100 10
𝑉st [𝑉 ] 147.4 106.7 102.6
𝐸st

[

MV∕m
]

2.771 2.006 1.929
𝐸SC

[

MV∕m
]

0.849 0.085 0.008
𝐸eff

[

MV∕m
]

1.921 1.921 1.921
𝐸𝐿

[

GV∕m
]

0.033 0.029 0.026
𝜎 0.035 0.033 0.032
𝐽max

[

A∕cm2] 973.16 102 10.65

Table 1 summarizes the parameters values for a representative numeri-
cal integration of Eq. (18) with the last seven lines in the table yielding
the final results. The elliptical function was approximated by 𝑓 (𝑥) =
1 − 𝑥1.69 . The number of electrons in one microbunch is varied over a
wide range, i.e., 𝑁 (1)

el = 10, 100, 1000, while at the same time adjusting
the values of the other parameters, e.g., 𝐸st, in order to maintain a
geometry of 𝑔 = 5𝜆0. The resulting current density pulses are within an
excellent approximation (0.1%) Gaussian with a normalized standard
deviation of 𝜎 ∼ 0.03 (11𝑜), namely, exp

[

− 1
2

(

𝑐𝑡∕𝜆0
𝜎

)2
]

, and with peak

values of 𝐽max
[

A∕cm2] ∼ 10.6, 102 , 973, respectively. This 11◦ phase
range demonstrates the relatively wide acceptance range that is possible
[see Eq. (14)].

Note that the net static field
(

𝐸eff = 𝐸st − 𝐸SC
)

is constant despite
the fact the number of electrons in the microbunch changes by a
two orders of magnitude. Therefore, we conclude that this exponential
growth of the current density is due to the laser field

(

𝐸L
)

and the field
enhancement factor(𝛽). However, interestingly, the magnitude of the
laser field does not change appreciably as 𝑁 (1)

el increases and the ratio
𝐸st∕𝐸L remains roughly constant, i.e., ∼ 0.1.

The minute standard deviation (𝜎) of the current density for a given
bunch that is achievable following the proposed approach is a numerical
demonstration of the bandwidth control expressed in Eqs. (10)–(11),
thereby revealing the potential of the proposed paradigm.

It should be pointed out that the Child–Langmuir (CL) limiting
current density, for 𝑉st ∼ 100 V and 𝑔 ∼ 5𝜆0, namely 𝐽CL ≃ 52 A∕cm2, is a
factor of 17 higher than the average current density 𝐽max × 𝜎 ∼ 3 A∕cm2

— considering the middle column in Table 1. However, it is half the
peak current density, which is consistent with results reported in the
literature whereby perveance more than twice CL was measured [27]
for the case of short pulses.

5. Energy spread

The control we have with the static and laser field components on
the current density emitted at the cathode affects also the energy spread
of the electrons reaching the anode. For an estimate, let us examine the
resonant particle trajectory 𝑧𝑟

(

𝑡0
)

= 𝑔 and the question is what is the
energy-spread resulting from the finite bunch duration at the location of
its generation plane (z = 0), namely, at the cathode. With the Gaussian
distribution mentioned above, 𝐺 (𝑡, 𝜎) = 𝑐

𝜆0𝜎
1

√

2𝜋
exp

[

− 1
2

(

𝑐𝑡
𝜆0𝜎

)2
]

, the
average velocity of an electron when reaching the anode is

⟨�̇�⟩ = ∫

∞

−∞
𝑑𝑡𝐺 (𝑡, 𝜎) �̇�

(

𝑡0 + 𝑡
)

≃ �̇�𝑟
(

𝑡0
)

+ 1
2

(

𝜎𝜆0
𝑐

)2
𝑧𝑟

(

𝑡0
)

(19)

in a similar way, the standard deviation is

(𝛥�̇�)2 = ∫

∞

−∞
𝑑𝑡𝐺 (𝑡, 𝜎)

[

�̇�
(

𝑡0 + 𝑡
)

− ⟨�̇�⟩
]2 ≃

(

𝜎𝜆0
𝑐

)2
�̈�2𝑟

(

𝑡0
)

. (20)
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Consequently, the relative energy spread at the anode is proportional to
the current density spread at the cathode

(𝛥�̇�)2

⟨�̇�⟩2
≃
(

𝜎𝜆0
𝑐

)2 �̈�2𝑟
(

𝑡0
)

�̇�2𝑟
(

𝑡0
) ≃

𝐸2
L

𝑛20𝐸
2
st

∼ 10−4 (21)

which, for the parameters in Table 1, is of the same order of magnitude
as that of RF photo-injectors.

It is important to emphasize that the Gaussian distribution of the
emitted electrons is not accidental nor a result of a specific set of
parameters. If we return to the revised Fowler-Nordheim formula,
Eq. (1), and assume the peak current occurs at 𝑡 = 0, then the peak
field (F ) intensity occurs at the same time implying that
𝐹 (𝑡)

𝐹cr [𝐹 (𝑡)]
≃ 𝐶0 − 𝐶2𝑡

2 (22)

up to a second-order Taylor expansion, where 𝐶0 and 𝐶2 represent the
appropriate coefficients. Substituting in Eq. (1), when sufficiently apart
from the peak value of the current density, the exponential term is
dominant; therefore

𝐽FN ∝ exp
[

−
(

𝐶2∕𝐶2
0
)

𝑡2
]

. (23)

6. Dynamic space-charge effect

To recapitulate, our first step was to demonstrate the concept by
neglecting space-charge effects. The second step was to account for the
static charge shielding effect assuming that the charge associated with
the emitted electrons is uniformly distributed within the A-K gap. It was
shown that this affects the emission, but this effect does not change the
energy of the microbunches since each electron is slightly decelerated
during the first half of the gap and it is slightly accelerated by the
same amount during the second half. On the other hand, although the
repulsion of the electrons from each other has negligible effect on the
emission process, it can cause the microbunches to lengthen and this
may become detrimental for the electrons emerging from the anode.

We have simulated this dynamic space-charge effect by adding the
space charge term to Eq. (3)

𝑑2𝑧𝑖
𝑑𝑡2

= 𝑒
𝑚

[

𝐸st + 𝐸L cos
(

𝜔𝑡 + 𝜓𝑖
)]

−
𝑒2𝑁 (𝐴𝐾)

el
𝑚𝜀0𝐴𝑔

1
2
[

1 − 2
⟨

ℎ
(

𝑧𝑖 − 𝑧𝑖′
)⟩

𝑖′
]

(24)

and simulation results indicate negligible effect for the relevant param-
eters — consistent with the results reported in [9]. For a quantitative
measure of the de-bunching process, we follow the same approach used
in the previous section for the energy spread, but this time applied to
the space charge effect, namely

⟨𝑧⟩ = ∫

∞

−∞
𝑑𝑡𝐺 (𝑡, 𝜎) 𝑧𝑟

(

𝑡0 + 𝑡
)

≃ 𝑧𝑟
(

𝑡0
)

+ 1
2
�̈�𝑟

(

𝑡0
)

∫

∞

−∞
𝑑𝑡𝐺 (𝑡, 𝜎) 𝑡2

≃ 𝑧𝑟
(

𝑡0
)

+ 1
2

(

𝜎𝜆0
𝑐

)2
�̈�𝑟

(

𝑡0
)

⟨

𝑧2
⟩

= ∫

∞

−∞
𝑑𝑡𝐺 (𝑡, 𝜎) 𝑧2𝑟

(

𝑡0 + 𝑡
)

≃ 𝑧2𝑟
(

𝑡0
)

+
(

𝜎𝜆0
𝑐

)2
[

𝑧𝑟
(

𝑡0
)

�̈�𝑟
(

𝑡0
)

+ �̇�2𝑟
(

𝑡0
)]

.

(25)

The longitudinal spread is 𝛥2
(

𝑡0, 𝜔2
p

)

≡
⟨

𝑧2
⟩

−⟨𝑧⟩2 ≃
(

𝜎𝜆0
𝑐

)2
�̇�2𝑟

(

𝑡0
)

and,
consequently, the relative change in the spread due to the space charge
effect is
|

|

|

|

|

|

|

𝛥2
(

𝑡0, 𝜔2
p

)

− 𝛥2
(

𝑡0, 𝜔2
p ≃ 0

)

𝛥2
(

𝑡0, 𝜔2
p ≃ 0

)

|

|

|

|

|

|

|

≃ 2
𝐸SC
𝐸st

. (26)

According to the simulation results presented in Table 1, the de-
bunching is negligible for the case of 10 electrons in the microbunch
(0.8%); it is acceptable for the case of 100 electrons (8%); and it becomes
very significant (> 60%) with 1000 electrons in the microbunch.

An interesting observation is revealed by this dynamic space-charge
simulation [Eq. (24)]. Since the velocity of the electrons varies in the A-
K gap, the temporal and spatial structure changes within the gap. While
the time difference between two peaks is always equal to the laser period
(𝑇0), the spacing between two peaks varies according to the velocity
of the microbunches. Qualitatively, the spacing between two adjacent
microbunches (𝛥mb) located in the vicinity of a point 𝑧may be described
by

𝛥mb (𝑧) ≃ 𝜆0

√

1
2
𝑒𝐸st𝑧
𝑚𝑐2

. (27)

Clearly, the spacing between any two adjacent bunches is small near
the cathode and it reaches maximum at the anode. This is in contrast
to a relativistic beam where it can be shown that at the anode,
𝛥mb ≃ 𝜆0. Despite this spatial ‘‘distortion’’ at very low velocities, our
analysis indicates the microbunch temporal distribution at the anode is
essentially Gaussian (error of less than 0.1%).

7. Emittance

Our goal in the framework of the current study is to demonstrate
conceptually the paradigm with minimum mathematical complexity.
In this process we ignored 3D electrostatic effects associated with the
anode aperture through which the microbunches exit the injector. It is
tacitly assumed that these effects can be reduced by curving the cathode
as is done in relativistic klystrons [28] or employing electrostatic
focusing, such as multiple electrodes, as done in Spindt field array
systems [29]. In a similar manner, these same self-focusing designs can
be used to control defocusing effects at the anode, which in our scheme
we envision to be a single, microscopic aperture.

While the impact of transverse geometry on beam dynamics can be
minimized, a-priori it is not obvious that a similar treatment will succeed
for the magnetic field associated with the wave and its transverse
variation (x). In this section, we consider not only the electric field
𝐸𝑧 = −𝐸L cos

[

𝜔 (𝑡 − 𝑥∕𝑐)
]

, but also the magnetic field component 𝐻𝑦 =
(

𝐸L∕𝜂0
)

cos
[

𝜔 (𝑡 − 𝑥∕𝑐)
]

, as well as transverse variations so that the
dynamics are determined by the following equations of motion

𝑑2𝑧𝑖
𝑑𝜏2

= 𝐸st + 𝐸L

(

1 −
𝑑𝑥𝑖
𝑑𝜏

)

cos𝜒𝑖 −
1
2
𝜔2
p
[

1 − 2
⟨

ℎ
(

𝑧𝑖 − 𝑧𝑖′
)⟩

𝑖′
]

𝑑2𝑥𝑖
𝑑𝜏2

= 𝐸L
𝑑𝑧𝑖
𝑑𝜏

cos𝜒𝑖

(28)

where the coordinates are normalized with the wavelength, the time
𝜏 = 𝑐𝑡∕𝜆0, and the phase is defined as𝜒𝑖 = 2𝜋

(

𝜏 − 𝑥𝑖
)

. Assuming
the average location of the ensemble of particles and their normalized
velocity at the cathode vanish, i.e.,

⟨

𝑥𝑖 (0)
⟩

= 0 and
⟨

�̇�𝑖 (0)
⟩

= 0, the
emittance at the output based on Lapostolle’s definition, is

𝜀2𝑥
(

𝜏0
)

16𝜆20
≃
⟨

[

𝑥𝑖
(

𝜏0
)

−
⟨

𝑥𝑖′
(

𝜏0
)⟩

𝑖′
]2
⟩

𝑖

⟨

[

�̇�𝑖
(

𝜏0
)

−
⟨

̇𝑥𝑖′
(

𝜏0
)

⟩

𝑖′

]2
⟩

𝑖

−
⟨

[

𝑥𝑖
(

𝜏0
)

−
⟨

𝑥𝑖′
(

𝜏0
)⟩

𝑖′
]

[

�̇�𝑖
(

𝜏0
)

−
⟨

̇𝑥𝑖′
(

𝜏0
)

⟩

𝑖′

]⟩2

𝑖
.

(29)

Analytic examination of this expression indicates that it is independent
of the bunch spread 𝜎2; which is to say that the emittance is given by

𝜀2𝑥
(

𝜏0
)

≃ 𝜀2𝑥 (0) + O
(

𝜎4
)

. (30)

It warrants to also point out that the emittance is independent of the
amplitude of the laser field — see Appendix. These are two additional
results that are pivotal features of our paradigm.

Two interesting features as revealed in Appendix warrant special
attention: (i) subject to the current design, the average transverse
velocity is zero at the cathode and anode, i.e.,

⟨

�̇�𝑖
(

𝜏0
)

⟩

=
⟨

�̇�𝑖 (0)
⟩

= 0.

84



L. Schächter, W.D. Kimura Nuclear Inst. and Methods in Physics Research, A 875 (2017) 80–86

In addition, the average transverse velocity spread is also constant
⟨

�̇�𝑖
2 (
𝜏0
)

⟩

=
⟨

�̇�𝑖
2
(0)

⟩

. (ii) Notwithstanding these zero average veloc-
ities, there is still a very small net transverse movement due to the
magnetic field. Since the wave propagates in the positive direction of
the 𝑥-axis, the electron ensemble is slightly pushed forward

⟨

𝑥𝑖
(

𝜏0
)⟩

=
𝜏0𝐸

2
L(4𝜋)

−2 ; this is a minuscule
⟨

𝑥𝑖
(

𝑡0
)⟩

= 10−11m effect, but evidently
it is not identically zero.

It warrants to point out that Eq. (28) also allows us to establish
transient effects. From the onset, we assumed a steady-state operation
regime, therefore the question is on what time scales this regime is
reached. Solution of Eq. (28) indicates that, for the parameters employed
in the present analysis, equilibrium is reached in less than 50 temporal
periods of the laser field. The first dozen microbunches are somewhat
broader and each one contains more electrons than the rest of the
microbunches. This can be readily understood since for the first few
microbunches, the shielding due to the presence of the charge in the
A-K gap is negligible and the maximum electric field experienced by the
cathode is significantly larger. As a result, the current density is higher
than during steady state operation. Moreover, the microbunch duration
is longer since the threshold for emission is exceeded for an extended
period. We should indicate that these values assume a sharp rise time
(step function) of the laser field and no attempt has been made to taper
this rise time. Doing so may reduce significantly the transient time it
takes the system to reach steady state.

8. Discussion

An important ramification of our paradigm is we are operating in a
field-emission dominated mode rather than a photoemission-dominated
one as demonstrated by Hommelhoff, et al., [9]. As a consequence, the
applied laser field simply adds to the static field, thereby enhancing
the amount of field emission current via the FN equation [Eq. (1)],
but without affecting the energy of the electrons at the anode nor
their energy spread. To accomplish this requires satisfying a specific
relationship between the values of 𝑔, 𝑉st and 𝑛0 via Eq. (8). Moreover, in
order to help counter charge shielding affects, one would like to operate
at high values for 𝐸L; however, the ratio of 𝐸st∕𝐸L should be kept as
large as possible while still satisfying the constraint that 𝐸st ≪ 𝐸𝐿. This
helps ensure an appreciable fraction of the laser field phase is able to
participate in the field emission process while minimizing the amount
of backward traveling electrons [see Eq. (14)]. Hence, 𝐸st should also
be as large as possible while still avoiding significant self-field emission.
Fortunately, a high laser field also suppresses the field emission when
𝐸L is in the negative direction; thus, this should allow operating at
relatively high values of 𝐸st without causing self-field emission.

The wavelength of the laser can have a significant impact on the
output of the electron source. A longer wavelength permits a higher
amount of charge to be emitted per laser cycle while still being con-
strained by the same space-charge limitations. This is because emission
of electrons, whose density is independent of the laser wavelength,
occurs over a longer time duration. A longer wavelength also means
the illuminated area of the cathode will be correspondingly larger as
well as the other physical dimensions of the electron source, such as
the gap size. The larger dimensions will ease construction of the source.
Hence, in principle, a CO2 laser (𝜆0 = 10.6 μm) can generate orders of
magnitude higher charge than a Nd:YAG laser (𝜆0 = 1.06 μm). However,
the phase stability of the laser is important; otherwise, there will be
temporal jitter of the emitted microbunches. For this reason, a mode-
locked laser should be used.

In the framework of the present analysis, the emission process was
represented by the field emission enhancement factor (𝛽) incorporated
in the Fowler–Nordheim (corrected) formula. This factor accounts for
natural microscopic protrusions or man-made geometric features. For
example, emission can be from a metallic edge [30] where the current
density can reach values 109 A∕cm2, limited by the evaporation of the
material. However, if the metallic tips are in close proximity to each

other, then it is possible for the tips to short-circuit the electric fields
of adjacent tips, thereby, effectively making the array of tips act like
a flat surface. We have demonstrated [31] for a metallic grating that
there is an optimum distance of separation between the edges, which
still yields enhancement of the field while minimizing short-circuiting
effects. Periodic bundles of CNTs could be fabricated using this same
design strategy.

Since we mentioned evaporation, we should consider the stability of
the emission from the CNTs. When multiple tips or sites are emitting,
there is initially unequal emission from the tips. As such, as one site
erodes, the current is diverted to an adjacent site with a corresponding
increase in emission. However, Spindt, et al., [32] demonstrated that by
conditioning an array of metallic tips, the emission can be stabilized. A
similar conditioning process has been applied to an array of vertically-
oriented CNTs where, after conditioning, emission followed the ex-
pected FN behavior resulting in < 30% variation in the emission current
over the array of CNT emitters [33]. As shown in the photomicrographs
of the individual CNTs in [33], each CNT had the same height within a
small fraction of 1 μm.

Assuming that the emitting cathode has been conditioned, the next
source of jitter in the bunch is the DC power supply, since by setting the
A-K gap such that the transit time of the electrons is an integer number of
laser periods, the emission of electrons will be primarily a function of the
static field. Hence, the energy spread of the electrons will be determined
by the stability of the static field. Ultra-stable, high-voltage DC power
supplies are readily available, thereby ensuring very low energy spread.
Furthermore, the A-K gap can be precisely set utilizing piezoelectric-
controlled micrometers that are available with 5 nm resolution [34]. The
absolute gap distance can be measured with a non-contact capacitance
probe that has < 0.1 μm resolution [35]. As mentioned, the anode
is assumed to be a single microscopic aperture rather than a grid to
permit injecting the electrons as a single beam into the DLA accelerating
channel. This has the advantage of facilitating maintaining a precise A-K
spacing while avoiding problems with needing a flat anode grid. Located
between the injector and DLA structure, could be an acceleration cavity
powered by a high voltage pulsed source (e.g., > 100 kV to ∼1 MV) to
increase the energy of the fs-microbunches entering the DLA. E-beam
focusing optics can also be used to focus the beam into the DLA.

Although 100 electrons per microbunch seems small, it should be
kept in mind these microbunches are being generated every optical
period of the laser beam. For a laser beam operating at 10.6 μm, this
means the repetition rate of the pulse train being emitted from the
injector is 2.8 × 1013 Hz! With 100 electrons per microbunch, this
corresponds to an average current of 0.45 mA. If the laser pulse duration
is, say, 100 ns, then there will be 2.8 × 108 electrons (45 pC) per laser
pulse. Hence, the total number of electrons emitted from the injector
can be useful for many applications.

We have also demonstrated in the framework of the proposed
paradigm that the transverse emittance is preserved and a relative
energy spread of less than 0.01% may be anticipated.
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Appendix

Our goal in this Appendix is to develop an approximate solution of
Eq. (28) in order to assess the transverse emittance. Keeping in mind that
the motion is not relativistic and assuming, for the purpose of estimating
the transverse emittance, that the longitudinal structure of the beam is
sufficiently symmetric such that we can employ

1
2
𝜔2
p
[

1 − 2
⟨

ℎ
(

𝑧𝑖 − 𝑧𝑖′
)⟩

𝑖′
]

→
1
2
𝜔2
p

(

1 − 2
𝜆0
𝑔
𝑧𝑖

)

(31)

85



L. Schächter, W.D. Kimura Nuclear Inst. and Methods in Physics Research, A 875 (2017) 80–86

then Eq. (28) simplifies to

𝑑2𝑧𝑖
𝑑𝜏2

= 𝐸st + 𝐸L

(

1 −
𝑑𝑥𝑖
𝑑𝜏

)

cos𝜒𝑖 −
1
2
𝜔2
p

(

1 − 2
𝜆0
𝑔
𝑧𝑖

)

𝑑2𝑥𝑖
𝑑𝜏2

= 𝐸L
𝑑𝑧𝑖
𝑑𝜏

cos𝜒𝑖.

(32)

Subject to the previous assumptions and to the resulting estimates, the
longitudinal dynamics [Eq. (16)] may be approximated by

𝑧 =
(

𝐸st −
1
2
𝜔2
p

) 1
2
𝜏2 + 1

(2𝜋)2
𝐸L

[

1 + 1
2
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]

�̇� =
(
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1
2
𝜔2
p

)

𝜏 + 1
(2𝜋)2

𝐸L

[

𝜔2
p𝜏 + 2𝜋 sin (2𝜋𝜏)

]
(33)

whereas the transverse trajectory is given by

𝑥 (𝜏) = 𝑥 (0) + 𝜏�̇� (0)
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When the particle approaches the anode 𝜏 = 𝜏0, its transverse location
is 𝑥𝑖

(

𝜏0
)

= 𝑥𝑖 (0) + 𝜏0�̇�𝑖 (0) + 𝜏0𝐸
2
L(4𝜋)

−2; thus, assuming the average
location at the anode is at the center,
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average velocity is zero,

⟨

�̇�𝑖 (0)
⟩

= 0, then

⟨

𝑥𝑖
(

𝜏0
)⟩

= 𝜏0𝐸
2
L(4𝜋)

−2
⟨

𝑥2𝑖
(

𝜏0
)

⟩

=
⟨

𝑥2𝑖 (0)
⟩

+ 𝜏20
⟨

�̇�𝑖
2
(0)

⟩

+
[

𝜏0𝐸
2
L(4𝜋)

−2
]2

⟨

�̇�𝑖
(

𝜏0
)

⟩

= 0
⟨

�̇�𝑖
(

𝜏0
)

𝑥𝑖
(

𝜏0
)

⟩

= 𝜏0
⟨

�̇�𝑖
2
(0)

⟩

⟨

�̇�𝑖
2 (
𝜏0
)

⟩

=
⟨

�̇�𝑖
2
(0)

⟩

.

(35)

Substituting these approximate solutions in the expression for the
transverse emittance [Eq. (29)], we obtain the result in Eq. (30), which
indicates that the transverse emittance is conserved in spite of the
presence of the laser field.
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