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Chapter 1: Transmission Lines 
 
In this chapter we shall first recapitulate some of the topics learned in the 
framework of the course "Waves and Distributed Systems'' and then we shall 

extend the analysis to topics that are of 
importance to microwave devices. But first a 
few examples: 
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1.1 Simple Model 
First we shall examine the propagation of an electromagnetic 
wave between two parallel plates located at a distance a  one 
of the other as illustrated in the figure. The principal 
assumptions of this simple model are as follows:  
1.  No variation in the x  direction i.e. = 0x .  
2.  Steady state e.g.  exp j t .  
3.  The distance between the two plates (a ) is very small so that even if there is any 
(field) variation in the y  direction, it is negligible on the scale of the wavelength ( )a   

 0.
y z y
  


  
      (1.1.1) 

4. The constitutive relations of the vacuum: 
     0 0= , = 

   
D E B H  where 7

0 = 4 10    [Henry/meter] and  
     12

0 = 8.85 10   [Farad/Meter].  
 
 

 
 
 

a

y
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Based on the assumptions above, ME may be simplified.  
(a) Gauss' law = 0 = 0 = .z z zE E E const  

 
  we 

conclude that zE  is uniform between the two plates. 
Imposing next the boundary conditions on the two plates  

 ( = 0) = 0 ( = ) = 0z zE y E y a     (1.1.2) 
                which means that the longitudinal electric field vanishes ( 0)zE .  

(b)  In a similar way the magnetic induction satisfies = 0
 

B  and it may be shown     
 that the longitudinal component of the magnetic induction vanishes ( = 0)zB .  

(c)  Faraday's equation reads =  
 
E j B  thus explicitly  

          
1 1 1 1 : =
0 0 = 1 : =

0 1 : 0 = 0

x y z x z y x

z y z x y

x y z

E j B
j B E j B

E E


 

 
    


    (1.1.3) 

There is no variation in the y  direction therefore since = 0xE  for both = 0y  
and =y a , as in the case of zE , we have 0xE  therefore = 0yB  thus  

 = .y o xE j H
z




    (1.1.4) 

 

a
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(d) Ampere's law reads = 
  

H j D , or explicitly taking 
advantage of the vanishing components we get  

 

1 : 0 = 01 1 1
0 0 = 1 : =

0 0 1 : 0 = 0

xx y z

z y z x y

x z

j D H j D
H

   





 (1.1.5) 

            hence  

 = .x o yH j E
z




    (1.1.6) 

From these two equations [(1.1.4) and (1.1.6)] it can be readily seen that we obtain the 
wave-equation for each one of the components:  

 
2 2

2 2

=
 = 0

=

x o y

y

y o x

H j E
z E

z cE j H
z






 
        
 

    (1.1.7) 

 which has a solution of the form  

 = exp expyE A j z B j z
c c
        

   
    (1.1.8) 

a
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 It is convenient at this point to introduce the notation in terms of 
voltage and current. The voltage can be defined since = 0


E d ; it 

reads  
 ( ) = ( ) . yV z E z a  (1.1.9) 

 In order to define the current we recall that based on the boundary conditions we have 
1 2( ) = 
  n H H K  where 


K  is the surface current. Consequently, denoting by w  the 

height of the metallic plates, the local current is = zI K w  or  
 ( ) = ( ) .xI z H z w     (1.1.10) 

Based on these two equations [(1.1.9)–(1.1.10)] it is possible to write  

y o x o o

x o y o o

V I aE j H j V j I
z z a w z w

I V wH j E j I j V
z z w a z a

   

   

                   
                         

   (1.1.11) 

 The right hand side in both lines of (1.1.11) represent the so-called transmission line 
equation also known as telegraph equations.  

a
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x zw
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 

 

( )

( )

d V z j I z
dz
d

L

I z j V z
z

C
d





 

 
  (1.1.12) 

C  being the capacitance per unit length whereas L  is the inductance per unit length;  

ando o
a wL C
w a

    . As expected, these two equations lead also to the wave equation   

 

2
2

2
= ( ) ( ) = 0

= ( )

dV dj LI z V zdz dz
dI j CV z LCdz 

 

 

       

 






    (1.1.13) 

The general solution is ( ) =   j z j zV z Ae Be  and correspondingly, the expression for 
the current is given by  

 1( ) = =dV j z j zI z Ae Be
j L dz L

  
 
    

    (1.1.14) 

 defining the characteristic impedance 1 = = 
 


c

LCZ
L L

 or ,c
LZ
C

  we get   

a

y

x zw
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 1( ) = .
c

j z j zI z Ae Be
Z

     
    (1.1.15) 

In the specific case under consideration  

 = = , = = .
o

c o

o

a
awZ LCw w c

a

   


    (1.1.16) 

 
1.2  Coaxial Transmission Line 

 
 
As indicated in the previous case, two parameters are to 
be determined: the capacitance per unit length ( )C  and 
the inductance per unit length ( )L . According to 
(1.1.11) these two parameters can be determined in 
static conditions. We determine next the  capacitance 
per unit length of a coaxial structure. For this purpose 
it is assumed that on the inner wire a voltage oV  is 
applied, whereas the outer cylinder is grounded. 

2Rint

2Rext
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Consequently, the potential is given by  

 ln( / )( ) = .
ln( / )

 ext
o

int ext

r Rr V
R R

 (1.2.1) 

 and the corresponding electric field associated with this potential is  

 1 1= = .
ln( / )


 
r o

int ext

E V
r r R R

 (1.2.2) 

 The charge per unit surface at = extr R  is calculated based on 1 2( ) =  
 

sn D D  and it is 
given by  

 
 

0
0

1= .
ln /

 s
ext ext int

V
R R R

     (1.2.3) 

 Based on this result, the charge per unit length ( ) z  may be expressed as  
  

 
 ext 0 ext 0

ext ext

int

0
ext int

1 2
ln /

= 2 = 2 = .
ln

o
s

z

VQ R R
R

V
R R R

R

   
  

 
 

             (1.2.4) 

 Consequently, the capacitance per unit length is given by  
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 0
0 ext int

/ 2= .
ln( / )

zQC
V R R


  (1.2.5) 

 
 
In a similar way, we next calculate the  inductance per unit length. Assuming that 

the inner wire carries a current I , based on Ampere law the azimuthal magnetic field is  

 0( ) = .
2
IH r

r 
    (1.2.6) 

With this expression for the magnetic field, we can calculate the magnetic flux. It is given 
by  

  ext ext

int int

= ( ) = ln .
2

R

o z o zR

RIdrH r
R 


      (1.2.7) 

 The inductance per unit length  z  is  

              ext

int

/ = ln .
2

oz RL
I R




  
  

 
    (1.2.8) 

  
 
 

o

 z

I

2Rint

2Rext
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To summarize the parameters of a coaxial transmission line  

 

ext

int

1= ln
2c o

RLZ
C R

c






 
  

 



    (1.2.9) 

Exercise 1.1: Determine cZ  and   for a coaxial line filled with a material ( , r r )? 
 
 
Comment: When evaluating the inductance the skin-depth was tacitly assumed to be 
zero. What happens if this is not the case.  

2Rint

2Rext
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1.3  Low Loss System 
 

Based on Ampere's law we obtained  

 = ( ) = ( ),   
  

o
dH j E I z j CV z
dz

 

   (1.3.1) 
where we assumed a line without dielectric ( r ) and Ohm ( )  loss. In the case of 
dielectric loss we have  

 =   r j     (1.3.2) 
 or in our case  

 .j C j C G Y        (1.3.3) 
 In a similar way based on Faraday's law  

 = ( ) = ( )o r
dE j H V z j LI z
dz

     
  

    (1.3.4) 

 and the magnetic losses  
 =   r r rj  

allows us to extend the definition according to  
    j L j L R Z     (1.3.5) 

 hence the equations  

a

y

x zw
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( ) = ( )

( ) = ( )

d I z YV z
dz
d V z ZI z
dz




 (1.3.6) 

may be conceived as a generalization of the transmission line equations in the presence of 
loss.  The characteristic impedance for small loss line is  

 = 1
2 2 

       
c

Z L G RZ j
Y C C L

    (1.3.7) 

 and the wave number, assuming a solution of the form  exp z , 

 

2 2

2 2 2 2 2

=

2 2

1
4 8 8

o

o

j
GZR

Z

RG G RLC
LC C L

  



 
  





 
   

 





    (1.3.8) 

 
Exercise 1.2: Prove the relations in Eq. (1.3.8).  

 
 

a

y
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1.4  Generalization of the Transmission Line Equations 
 

 
 

The fundamental assumptions of the analysis are: 
(i) TEM, (ii) the wave propagates in the z  direction, (iii) we distinguish between 

longitudinal ( z ) and transverse ( ) components = 1


  


 
zz
. 

From Faraday law, =   
  

o rE j H , we obtain  

 

1 ( )1 1 1
= 1

0 1

 

   

  







x z yx y z

x y z y z x

x y z x y y x

E

E
E E E E

    (1.4.1) 

 thus  
1 : =

1 : 1 =
1 : =
1 : = 0 1 : = 0.

 
 

 


 

 

  
   

   

  

  

x z y o r x
z o r

y z x o r y

z x y y x z

E j H E j H
E j H z

E E E
    (1.4.2) 
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 In a similar way, from Ampere's law we have  

1 : 1 =
=

1 : = 0.

 
 


 

 

 
   

  

  
  

  
z o r

o r

z

H j E
H j E z

H
 (1.4.3) 

 From the two curl equations  
2

2

= 0 = ( ) ( , ) = 0

= 0 = ( ) ( , ) = 0,

 

 
    

    

     

     

  

  
E E g z x y

H H h z x y
  (1.4.4) 

 we conclude that the transverse variations of the transverse field components are 
determined by 2D Laplace equation justifying the use of DC quantities adopted above 
(capacitance and inductance per unit length). From the other two equations we get the 
wave equation  

2

2

1

1 1 1 = [ ],

z o r

z z o r z o r o r

E Hj
z z z

E Hj j j E
z z

 

     

 

 


   
      

    
            

 

    
   (1.4.5) 

 or explicitly  
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2 2

2 2 = 0.r r E
z c

   

 
  


 (1.4.6) 

 The last equation determines the dynamics of ( )g z  [see (1.4.4)] and 

the solution has the form ( ) =  j zg z e  where = ( / )   r rc . Note that  

 
1 1

1 1

o r
z o r z

o r

o r
z o r z

o r

E j H E H
z

H j E H E
z

  
 

  
 


  


  


     



     



   

   
    (1.4.7) 
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As in the previous two cases, in what follows we 
show how the electric parameters can be calculated 
in the general case and for the sake of simplicity we 
assume that the medium has uniform transverse and 
longitudinal properties. The electric field in the entire space is given by 

= ( )  
 

 j zE e  whereas the magnetic field is  

 = ( 1 ) .  
  

 


o r
z

o r

j zH e     (1.4.8) 

 Note that associated to this electric field, one can define the voltage  
 2 2 2

1 1 1
= = =       

 
 

s s s

o s s s
V E d d d     (1.4.9) 

 such that ( ) = 
o

j zV z V e . On the two (ideal) conductors the electric field generates a 
surface charge given by  

= ,   


s o rn E                                     (1.4.10) 
 therefore the charge per unit length is  

= = ( ).   
  


 s o r

z

Q dl dl n E          (1.4.11) 

 Since by virtue of linearity of Maxwell's equations 

1

2

V

0Vxy
z

0V
s

s
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the charge per unit length is  proportional to the applied 

voltage 0=
 z

Q CV  we get  

 
0

1= ( ).o rC dl n E
V

  
     (1.4.12) 

 In a similar way, the magnetic field generates on the metallic electrode (wire) a surface 
current given by  

 = .
 

sJ n H     (1.4.13) 

 Since it was shown that = 1 
  

 
o r

z
o r

H E  we conclude that  

 = [1 ] ( )1o r o r
s z z

o r o r

J n H n E n E   
          

           (1.4.14) 

 hence the total current is  

  0 1 o r
s z

o r

I J dl dl n E 
      

       (1.4.15) 

 At this point rather than calculating the inductance per unit length we combine the 
previous result for the charge per unit length and (1.4.15) the result being  

1

2

V

0Vxy
z

0V
s

s
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 = = .
/

o r

o ro

z r ro r

dl n E
I c

Q dl n E

 
 

  







 











 (1.4.16) 

However, having established this relation between the current and the charge per unit 
length we may use again the linearity of Maxwell's equations and express 0/ = zQ CV . 
Substituting in Eq. (1.4.16) we get  

 0

0

=
r r

I c
CV  

    (1.4.17) 

but by definition  

 0

0

= ,c
V Z
I

    (1.4.18) 

which finally implies that  

 1 = .
 c r r

c
CZ

 

 This result leads to a very important conclusion namely, in a transmission line of 
uniform electromagnetic properties it is sufficient to calculate the capacitance per 
unit length. Bearing in mind that = /cZ L C  we find that once C  is established,  

1

2

V

0Vxy
z

0V
s

s
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2

1= .r rL
C c
    (1.4.19) 

 It is important to re-emphasize that this relation is valid only if the electromagnetic 
properties ( , ) r r  are uniform over the cross-section. 
 
Exercise 1.3:  Calculate the capacitance per unit length of two wires of radius R  which 
are at a distance > 2d R  apart. After considering the  ideal case (  ), discuss the 
finite conductivity case. 
 
Another quantity that warrants consideration is the average power  

     

 

* *

* *

1 1= R 1 = R 1 1
2 2

1 2 1= R
2 4

2= = [ ].

o r
z z z

o r

o r o r
o r

o r o r o r

e e m
o o r r r r

P e dxdy E H e dxdy E E

e dxdy E E dxdy E E

cW W W

 
 

     
     

     

   

   

      

     



 

 

     

   
 (1.4.20) 
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Exercise 1.4: In the last expression we used the fact that =e mW W  -- prove it. 

Exercise 1.5:  Show that the power can be expressed as 2 *1 1= | | =
2 2c o o oP Z I V I . 

Finally, we may define the energy velocity as the average power propagating along the 
transmission line over the total average energy per unit length  

 en = = .
 e m r r

P cV
W W

 

Exercise 1.6:  Show that the material is not frequency dependent, this quantity equals 
exactly the group velocity. What if not? Namely r ( )  . 
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1.5 Non-Homogeneous Transmission Line 

 
There are cases when either the electromagnetic properties or the 
geometry vary along the structure. In these cases the impedance per unit 
length ( )Z  and admittance per unit length ( )Y  are z -dependent i.e.  

 

( ) ( ) ( )

( ) ( ) ( ).

dV z Z z I z
dz

dI z Y z V z
dz

 

 
    (1.5.1) 

As a result, the voltage or current satisfy an equation that to some extent differs from the 
regular wave equation  

 
 

2

2

( ) ( )( ) ( )

ln ( ) ( ) ( ) ( )

d V dZ z dI zI z Z z
dz dz dz

d dVZ z Z z Y z V z
dz dz

  

   
 

    (1.5.2) 

A solution of a general character is possible only using 
numerical methods. However, an analytic solution is 
possible if we assume an "exponential'' behavior of the 

 



 22

form  

 
 

   
( ) exp

exp
o

o

Z z j L qz

Y z j C qz







 
 (1.5.3) 

 Substituting these expressions in Eq. (1.5.2) we get  

 
2

2
2

( ) = 0  o o
d V z dVq L C V

dz dz
    (1.5.4) 

 therefore assuming a solution of the form 1( ) =  z
oV z V e  we conclude that  

 2 2 2 2
1

1 1= 4 4 .
2 2o o o oq q L C q q L C              

    (1.5.5) 

In a similar way, the equation for the current is given by  

 
2

2 ln[ ( )] ( ) = 0. 
d I dI d Y z YZI z
dz dz dz

    (1.5.6) 

Assuming a solution of the form 2=  z
oI I e  we obtain  

 2 2 2 2
2

1 1= 4 4 .
2 2o o o oq q L C q q L C         
   

    (1.5.7) 

It is convenient to define  

 
2

2

0 0

,
4c

q
L C

      (1.5.8) 
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which sets a "cut-off'' in the sense that for < c  both 1  and 1  are real. 
The second important result is that the impedance along the transmission 
line  

 
1

0

2
0

( ) = = (0)
( )

z

cz

V eV z qzZ e
I z I e





   

  (1.5.9) 
 is  frequency independent. 
 
Exercise 1.7: Plot the average power along such a transmission line as well as the 
average electric and magnetic energies. What is the energy velocity? 
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1.6  Coupled Transmission Lines 
 

 
   Microwave or high frequency circuits consist 

typically of many elements connected usually with wires that 
may be conceived as transmission lines. The proximity of 
one line to another may lead to coupling phenomena. Our purpose in this section is to 
formulate the telegraph equations in the presence of coupling. With this purpose in mind 
let us assume N  transmission lines each one of which is denoted by an index 

(= 1,2 )n N  -- as illustrated in the figure above. Ignoring loss in the system we may 
conclude that the relation between the charge per unit length of each "wire'' is related to 
the voltages by  

 
1

=
N

n n
nz

Q C V


      (1.6.1) 

 , nC  being the capacitance matrix per unit length. In a similar way, it is possible to 
establish the inductance matrix per unit length relating the voltage on wire   with all the 
currents  

 
=1

= .



 

N

n n
nz

L I  (1.6.2) 
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Having these two equations [(1.6.1)–(1.6.2)] in mind, we may naturally extend the 
telegraph equations to read  

 
=1 =1

( ) = ( ) ( ) = ( ).
N N

n n n n
n n

d dV z j L I z I z j C V z
dz dz        (1.6.3) 

Subsequently we discuss in more detail phenomena linked to this coupling process 
however, at this point we wish to emphasize that the number of wave-numbers 2( )  
corresponds to the number of ports. This is evident since  

 0 0( ) = ( ) =     j z j zV z V e I z I e ,    (1.6.4) 
 enabling to simplify (1.6.3) to read  

 0 0 0 0= =
= =V LI I CV   

   
    (1.6.5) 

 thus the wavenumber is the non-trivial solution of  
 2 2 2 2

0 0= == = = =
[ ] = 0 or [ ] = 0LC V C L I      

 
    (1.6.6) 

wherein 
=
  is the unity matrix. Clearly the normalized wave number  22 /c    are 

the eigen-values of the matrix 
= =
LC  (

==
= C L  since both matrices are symmetric) and if the 

dimension of 
=
C  and 

=
L  is N  then, the number of the eigen wavenumbers is also N . 
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1.7  Microstrip  
 
 

In this section we discuss in some detail some 
of the properties of a microstrip which is an 
essential component in any micro-electronic as well 
as microwave circuit. The microstrip consists of a 
thin and narrow metallic strip located on a thicker 
dielectric layer. On the other side of the latter, there 
is a ground metal; the side walls have been 
introduced in order to simplify the analysis and the 
width w  is large enough such that it does not affect the physical processes in the vicinity 
of the strip. We examine a simplified model of this system and for this purpose we make 
the following  assumptions:    (i)  The width of the device is much larger than the height 
( )w h  and the width ( )w  of the strip. (ii)  The charge on the strip is distributed 
uniformly. We also postulate, the existance of the TEM mode1. 

 
 Our goal is to calculate the two parameters of the transmission line:  capacitance 

and inductance per unit length. With this purpose in mind we shall start with 
                                                 
1 As subsequently shown, the fact that the dielectric does not fill the entire volume, causes the mode not to be pure TEM 

r
x

y
h r



w
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evaluation of the capacitance therefore let us assume a general 
charge distribution on the strip  

( ) | |<
2 2( ) =

0 | |>
2 2

s

wx x
x

wx




 
  


                               (1.7.1) 

 With the exception of =y h  the potential is given by  

 
=1

=1

sin sinh 0

( , ) =
( )

sin .

n
n

n
n

nx nyA y h
w w

x y n y hnx wB e y h
w

 

 






             
       

 




    (1.7.2) 

 The continuity of the potential at =y h  implies  

sinh

( , = ) = sin sinh = s n

=

i

.

n n
n

n

n

n

x nh nxx y h A n B
w w w

nhA B
w





      
   

 
 
 

 
     



 
    (1.7.3) 
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The electric induction yD  is discontinuous at this plane. In each 
one of the two regions the field is given by  

( , < ) sin cosh

( , > ) sin exp ( ) .

y o r n
n

y o n
n

n nx nyD x y h A
w w w

n nx nD x y h B y h
w w w

   

  

            
     

                 




   (1.7.4) 

With these expressions, we can write the boundary conditions i.e., 1 2( ) =  
 

sn D D  in 
the following form  

( ) | |<
2 2sin cosh =

0 | |> .
2 2


   

                        


o n r n
n

wx xn nx nhB A
ww w w x

  (1.7.5) 

Using the orthogonality of the sin  function we obtain [for this reason the two side walls 
were introduced]  

1 2 2cosh = ( )sin .

2

n r n
o

w
nh nxB A dx xww n w

  
 

 
                (1.7.6) 

r
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y
h r


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The next step is to substitute (1.7.3) into the last expression. The 
result is  

1 2 2sinh cosh = ( )sin .

2

   
 

 
                     n r

o

w
nh nh nxA dx xww w n w

  (1.7.7) 

Consequently, subject to the assumption that  x  is known, the potential is known in the 
entire space and specifically  at =y h  is given by  

1 1 2 2( , = ) = sin ( )sin .
1 ctanh 2

n o
r

w
nx nxx y h dx xwnhw n w

w

  
  

 
              

 

   (1.7.8) 

In principle, this is an integral equation which can be solved numerically since the 
potential on the strip is constant and it equals 0V ;  many source solution. 

At this point we employ our second assumption namely that the charge is uniform 
across the strip and determine an approximate solution. The first step is to average over 
the strip region, | / 2 | / 2x w   . The left hand side is by definition constant thus  
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1 2= ( , = )

2

(1/ )(2/ ) 1 2 2= sin ( )sin .
1 ctanh 2 2

o

o

n
r

w

V dx x y hw

w w
n nx nxdx dx xw wnh w w
w



   


 

 

      
                               



  

    (1.7.9) 
Explicitly our assumption that the charge is uniformly distributed, implies /   zQ , 
therefore  

2

0

1 2 1 1 2= sin
1 ctanh 2

o
nz

r

w
Q nxV dxwnhn w

w


  

  
  

             

   

and finally the capacitance per unit length is  
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y
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22

/2/=
1/ sincsin 2 21 ctanh

oz

o

n
r

QC
n n nV

nh w
w

 
 




   

          
 


     (1.7.10) 

 
With this expression we can, in principle calculate all the parameters of the 

microstrip. For evaluation of the inductance per unit length we use the fact that the 
dielectric material cannot have any impact on the DC inductance. Moreover, we know 
that in the absence of the dielectric ( = 1 r ), the propagation number is / c  and the 
characteristic impedance satisfies  

 1 1 ( = 1)= 1 = .
( = 1) ( = 1)


 

r
c

r r

LZ
C c C

    (1.7.11) 

Since the DC magnetic field is totally independent of the dielectric coefficient of the 
medium (electric property), we deduce from the expression of above that  

 2

1( = 1) = ,
( = 1)




 r
r

L
c C

    (1.7.12) 

or explicitly  
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2

=0

2 1= exp (2 1) sinh (2 1) sinc (2 1) .
2 1 2o

h hL
w w w

     
 

                        
 (1.7.13) 

With the last expression and (1.7.10) we can calculate the characteristic impedance of the 
microstrip  

1/2 1/22 2

=0 =0

sinh( )sinc ( ) sinc ( )2= = ,
2 1 (2 1)[1 ctanh( )]c o

r

he hLZ
C h


  

  


   

              
  (1.7.14) 

 where (2 1) /   h h w  and (2 1)
2
 

  
w

. The next parameter that remains to be 

determined is the phase velocity. Since L  and C  are known, we know that =  LC  
implying that  

 
 

2

=0
ph 2

=0

sinc ( ) 1
2 1 1 ctanh( )1= = .

sinc ( ) exp sinh( )
2 1

r hV c
LC h h



 


 



 








 








    (1.7.15) 
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Contrary to cases encountered so far the dielectric material fills only part of the entire 
volume. As a result, only part of the electromagnetic field experiences the dielectric. It is 
therefore natural to determine the effective dielectric coefficient experienced by the 
field. This quantity may be defined in several ways. One possibility is to use the fact that 

when the dielectric fills the entire space we have the phase velocity in p =
h

r

cV  it 

becomes natural to define the  effective dielectric coefficient as 
2

eff 2
ph

c
V

   thus  

 
 

2

=0
e 2

=0

sinc ( ) exp sinh( )
2 1= .
sinc ( ) 1

2 1 1 ctanh( )

ff

r

h h

h


 





 



 










 




    (1.7.16) 

 
The following figures illustrate the dependence of the various parameters on the 

geometric parameters.  
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                 (a)                                          (b)                                                (c) 

 
(a) Characteristic impedance vs.  ;  = 2h mm, = 20w mm, = 10 r  and 100  . 
(b) Phase velocity vs.   ; = 2h mm , = 20w mm, = 10 r  and 100  . 
(c) Effective dielectric coefficient vs.  ; = 2h mm , = 20w mm, = 10 r  and 100  .  
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                  (a)                                          (b)                                                  (c) 
 

(a) Characteristic impedance vs.  the height h ; = 2 mm, = 20w mm, = 10 r , 100  . 
(b) Phase velocity vs. the height h ; = 2 mm , = 20w mm, = 10 r ,  100  . 
(c) Effective dielectric coefficient vs. the height h ; = 2 mm, = 20w mm, = 10 r , 

100  .  
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Finally the figure below shows several alternative configurations
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Exercise 1.8: Determine the effective dielectric coefficient relying on energy 
confinement. 
Exercise 1.9:  What fraction of the energy is confined in the dielectric and how the  
various parameters affect this fraction? 
Exercise 1.10: Examine the effect of the dielectric coefficient on ,c effZ  and phV . 
Compare with the case where the dielectric fills the entire space. (For solution see 
Appendix 11.1) 
Exercise 1.11: Show that if ,w h   the various quantities are independent of w . 
Explain!! (For solution see Appendix 11.2) 
Exercise 1.12:  Analyze the effect of dielectric and permeability loss on a micro-strip. 
Exercise 1.13: Calculate the ohmic loss. Analyze the effect of the strip and ground 
separately. 
Exercise 1.14: Determine the effect of the edges on the electric parameters ( , )L C .  
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1.8  Stripline 
 
Being open on the top side, the microstrip has limited ability to confine the 

electromagnetic field. For this reason we  examine now the stripline which has a metallic 
surface on its top. The basic configuration of a stripline is illustrated below 

The model we utilize first replaces the central strip with a wire as illustrated below  
and as in Section 1.7 our goal is to calculate the parameters of the line. 
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For evaluation of the capacitance per unit length it is first assumed that the charge density 
is given by  

 ( , ) = ( ) ( ),   
 z

Qx y x y h     (1.8.1) 

 and we need to solve the Poisson equation subject to trivial boundary conditions on the 
two electrodes. Thus  

 

2 =

( = 0) = 0 ( , ) = ( )sin .
( = ) = 0

t
o r

n
n

nyy x y x
d

y d


 

  


  
    

 



     (1.8.2) 

 Substituting the expression in the right hand side in the Poisson equation we have  
22

2 ( ) ( ) sin = ( ) ( )    
 

               
 n n

n o r z

d n ny Qx x x y h
dx d d

   (1.8.3) 

 and the orthogonality of the trigonometric function we obtain  
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22

2

2( ) = ( ) sin = ( ),   
 

              
n n

o r z

d n Q nhx x Q x
dx d d d

    (1.8.4) 

 where  

 2 sin .
 

     
n

o r z

Q nhQ
d d

 

The solution of (1.8.4) is given by  

 
exp > 0

( ) =
exp < 0

n

n

n

xA n x
d

x
xB n x
d






     


     

    (1.8.5) 

 and since the potential has to be continuous at = 0x  then  
 = ,n nA B     (1.8.6) 

 integration of (1.8.4) determines the discontinuity:  

 
=0 =0

= [ ] = .n n
n n n n

x x

d d nQ A B Q
dx dx d
  

 

       
 

    (1.8.7) 

 From (1.8.6) and (1.8.7) we find  

 

x 

y 

d h 

ε



 41

 = = = sinc .
2

n
n n

o r z

Q Q h hA B n
n d d

d


  

 
    

 
 

    (1.8.8) 

 This result permits us to write the solution of the potential in the entire space as  

=1

=1

sinc sin 0
( , ) =

sinc sin 0.

no r z

no r z

nx
Q h nh ny de x

d d d
x y

nx
Q h nh ny de x

d d d


 

 



 

 





              

 

            





    (1.8.9) 

 
At this stage we can return to the initial configuration and assume that the central 

strip is a superposition of charges iQ  located at ix  and since the system is linear, we 
apply the superposition principle thus  

| |/( , ) = sinc sin exp .i
i

n io r z

x xh d nh nyx y Q n
d d d

  
 

                
    (1.8.10) 

 In the case of a continuous distribution we should replace  
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| |1= ( )

i

i
i

n nx x x x
d dQ e dx Q x e

     
 

      (1.8.11) 

 and consequently  
/ 1( , ) = sinc sin ( )exp | | ,

no r z

h d nh ny nx y dx Q x x x
d d d

  
 

                   
   (1.8.12) 

 which again leads us to an integral equation; note that the surface changes density as 
( ) = ( ) /s zx Q x  . As in the microstrip case, we shall assume uniform distribution 

therefore  
/2/( , ) = sinc sin exp | | ./2

o

no r z

Qh d nh ny nx y dx x x
d d d

  
  

                  
   (1.8.13) 

 The potential is constant on the strip  
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 1
2

=1

/21= ( , = )/2

/2 /2( / ) 1 1= exp | |sin /2 /2

o

o

no r z

V dx x y h

h d Q nh nh ndx dx x x
d d d



  
 





 




                     



  
 (1.8.14) 

 and the two integrals may be simplified to read  
1/ 2 / 21 1 exp = 1 exp sinhc/2 /2 2 2 2

n n n ndx dx x x
d d d d
   

 

                                   
    

     (1.8.15) 
 such that  

2

=1

2( / )
= sinc 1 exp sinhc .

2 2

o

o
no r z

hh d Q
nh n nV
d d d

  
 


 
                          

   (1.8.16) 

 The last result enables us to write the following expression for the capacitance per unit 
length  

 
1

2
2

/ 1= = sinc 1 exp sinhc( )
2

o z
o r n n

no

Q d nhC
V h d

   


                  
   (1.8.17) 
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 whereas = / 2  n n d , thus with it the characteristic impedance reads  

  
2

21 2= = sinc 1 exp sinhc( ) .c o n n
nph r

h nhZ
CV d d

  


         
   (1.8.18) 

The two frames show the impedance dependence on the width and height of the strip 
10    
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Exercise 1.15:  Determine the inductivity per unit length and analyse the dependence of 
the various characteristics on the geometric parameters. (For solution see Appendix 11.3) 
Exercise 1.16:  Compare the dependence of the various characteristics of the stripline 
and microstrip as a function of the geometric parameters. 
Exercise 1.17:  Compare micro-strip and strip-line from the perspective of sensitivity to 
the dielectric coefficient. (For solution see Appendix 11.4) 
Exercise 1.18: Determine the error associated with the assumption that the charge is 
uniform across the strip. 
Exercise 1.19: Analyze the effect of a strip of finite thickness. Remember that 
throughout this calculation the strip was assumed to have a negligible thickness. 
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1.9  Resonator Based on Transmission Line 
  

1.9.1  Short Recapitulation 
Resonant circuits are of great importance for oscillator circuits, tuned amplifiers, 

frequency filter networks, wavemeters for measuring frequency. Electric resonant circuits 
have many features in common, and it will be worthwhile to review some of these by 
using a conventional lumped-parameter RLC  parallel network as an example, the Figure  
illustrates a typical low-frequency resonant circuit. The resistance R  is usually only an 
equivalent resistance that accounts for the power loss in the inductor L  and capacitor C  
as well as the power extracted from the resonant system by some external load coupled to 
the resonant circuit. One possible definition of 
resonance relies on the fact that at resonance the 
input impedance is pure real and equal to R  
implying  

 *

2 ( )= .
/ 2

l m e
in

P j W WZ
II
      (1.9.1) 

 Although this equation is valid for a one-port 
circuit, resonance always occurs when =m eW W , if we define resonance to be that 
condition which corresponds to a pure resistive input impedance or explicitly 

0 = 1/ LC ; note that these are the lumped capacitance ( )C  and inductance ( )L .  

R L CinZ V

I
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An important parameter specifying the frequency selectivity, and performance in general, 
of a resonant circuit is the quality factor, or Q . A very general definition of Q  that is 
applicable to all resonant ( = )e mW W  systems is  

 0 (time average energy stored in the system)= .
energy loss per second in the system

Q       (1.9.2) 

 hence,  
 0 0= = / .Q RC R L      (1.9.3) 

 In the vicinity of resonance, say 0=   , the input impedance can be expressed in a 
relatively simple form. We have  

 
2
0

2
0 0

= = .
2 1 2 ( / )


      in

RL RZ
L j R j Q

    (1.9.4) 

 A plot of inZ  as a function of 0/   is given below. 
When | |inZ  has fallen to 1/ 2  (half the power) of its 
maximum value, its phase is 45  if 0<   and -45   if 

0>   thus  

 
0

02 = 1 =
2Q

Q


 
         (1.9.5) 

R

inZ

90

90
0


BW

inZ

inZ

R707.0
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 The fractional bandwidth BW  between the 0.707 R  points is twice this value, hence  

 0 1= = .
2



Q
BW

               (1.9.6) 

 If the resistor R  in Fig. 8 represents the loss in the resonant circuit only, the Q  give by 
(1.9.3) is called the unloaded Q . If the resonant circuit is coupled to an external load that 
absorbs a certain amount of power, this loading effect can be represented by an additional 
resistor LR  in parallel with R . The total resistance is now less, and consequently the new 
Q  is also smaller. The Q , called the loaded Q  and denoted LQ , is  

 
0

/ ( )= .


L L
L

RR R RQ
L

    (1.9.7) 

The external Q , denoted eQ , is defined to be the Q  that would result if the resonant 
circuit were loss-free and only the loading by the external load was present. Thus  

 
0

=


L
e

RQ
L

    (1.9.8) 

 leading to  

 1 1 1= .
L eQ Q Q

    (1.9.9) 

 Another parameter of importance in connection with a resonant circuit is the decay factor 
 . This parameter measures the rate at which the oscillations would decay if the driving 
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source were removed. Significantly, with losses present, the energy stored in the resonant 
circuit will decay at a rate proportional to the average energy present at any time (since 

*lP VV  and *W VV , we have lP W ), so that  

 0
2= = exp 2dW tW W W

dt  
    
 

    (1.9.10) 

 where 0W  is the average energy present at = 0t . But the rate of decrease of W  must 
equal the power loss, so that  

 2= =


 l
dW W P
dt

 

and consequently,  

 0 0

0

1 = = = .
2 2 2

 
 

l lP P
W W Q

    (1.9.11) 

 Thus, the decay factor is  proportional to the Q . In place of (1.9.10) we now have  

 0
0= exp .W W t

Q
 

 
 

    (1.9.12) 
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1.9.2  Short-Circuited Line 

 By analogy to the previous section, consider a short-circuited line of length l , 
parameters , ,R L C  per unit length, as in Fig. 10. Let 0= / 2l  at 0=f f , that is, at 

0=  . For f  near 0f , say 0=  f f f , 0 0= 2 / , / = /l f l c         , since at 
0 , =  l . The input impedance is given by  

tanh tan= tanh( ) = .
1 tan tanh

  
 



in c c

l j lZ Z j l l Z
j l l

 (1.9.13) 

 But tanh l l  since we are assuming small losses, so that 
1 l . Also 0 0 0tan = tan( / ) = tan / /             l  

since 0/   is small. Hence  

 0

0 0

/=
1 /
     

    
   

     
in c c

l jZ Z Z l j
j l

 (1.9.14) 

 since the second term in the denominator is very small. Now 

= /cZ L C , 1= = ( / 2) /
2

 cRY R C L , and 0= =  l LCl ; so 

0/ =  l LC , and the expression for inZ  becomes  

 ,,cZ

l

inZ
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 1= = .
2 2

 
 

    
 

in
L l CZ R j l LC Rl jlL
C L

  (1.9.15) 

 It is of interest to compare (1.9.15) with a series 0 0 0R L C  circuit illustrated 
above. For this circuit  

  2
0 0 0 0= 1 1/ .inZ R j L L C    

If we let 2
0 0 0= 1 / L C , then   2 2 2

in 0 0 0= / .Z R j L      Now if  0 =     is small 
then   

 0 02 .inZ R jL       (1.9.16) 
 By comparison with (1.9.15), we see that in the vicinity of the frequency for which 
0= / 2l , the short-circuited line behaves as a series resonant circuit with resistance 

0 = / 2R Rl  and inductance 0 = / 2L Ll . We note that ,Rl Ll  are the total resistance and 
inductance of the line; so we might wonder why the factors 1/ 2 arise: recall that the 
current on the short-circuited line is half sinusoid, and hence the effective circuit 
parameters 0 0,R L  are only one-half of the total line quantities.The Q  of the short-
circuited line may be defined as for the circuit    

  0 0 0

0

= = = .
2

  


L LQ
R R

    (1.9.17) 

inZ

0R

0L

0C
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1.9.3  Open-Circuited Line 
By means of an analysis similar to that used earlier, it is readily verified that an open-
circuited transmission line is equivalent to a series resonant circuit in the vicinity of the 
frequency for which it is an odd multiple of a quarter wavelength long. The equivalent 
relations are  

 
  0

2
0 0 0 0 0 0

/ 2 / = / 2

/ 4, / 2, / 2, 1/
in cZ l j Z Rl j Ll

l R Rl L Ll L C

    

 

     
   


    (1.9.18) 

Comment: Note that formally from (1.9.13) in the lossless case i.e., = tan in cZ jZ l  we 
conclude that there are many (infinite) resonances 
since tan( ) l  vanishes for = l  but also for 

= l n , = 1,2,3n  corresponding to all the 
"series'' resonances. In case of "parallel'' resonances 
the condition tan  l  is satisfied for 

=
2
 l n , = 1,2,n . In practice, only the first 

resonance is used since beyond that the validity of 
the approximations leading to the equations are 
questionable. 

0R

0L

0C

cZ

l

inZ 
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1.10  Pulse Propagation 
  

1.10.1  Semi-Infinite Structure 
So far the discussion has focused on solution of problems in the frequency domain. 

In this section we shall discuss some time-domain features. Let us assume that at the 
input of a semi-infinite and lossless transmission line we know the voltage pulse 

0( = 0, ) = ( )V z t V t . In general in the absence of reflections  

 ( )( , ) = ( )      j t j zV z t d V e     (1.10.1) 
 and specifically  

 ( = 0, ) = ( )   j tV z t d V e     (1.10.2) 

 or explicitly, the voltage spectrum ( )V  is the Fourier transform of the input voltage   

 0
1 1( ) = ( = 0, ) = ( ) .

2 2
j t j tV dtV z t e dtV t e 

 
 

 

      (1.10.3) 

 Consequently, substituting in Eq.(1.10.1) we get   

 

1( )( , ) = ( = 0, )
2

1 ( ) ( )= ( = 0, )
2

j t j z j tV z t d e dt V z t e

j t t j zdt V z t d e

   


  


 

 

 

 

  

  

 

 
   (1.10.4) 



 54

 and in the case of a dispersionless line we have ( ) =    rc
 which leads to  

 ( , ) = ( = 0, ) = = 0, =r r
z zV z t dt V z t t t V z t t
c c

  




           
     (1.10.5) 

implying that the pulse shape is preserved as it propagates in the z -direction. If the 
phase velocity is frequency-dependent, then different frequencies propagate at different 
velocities and the shape of the pulse is not preserved. As a simple example let us assume 
that the transmission line is filled with gas  

 
2

2( ) = 1 .


 


 p     (1.10.6) 

 Since  

  2 21( , ) = = 0, exp ( )
2 p

zV z t dt V z t d j t t
c

   






            (1.10.7) 

 it is evident that sufficiently far away from the input, the low frequencies ( < ) p  have 
no contribution and the system acts as a high-pass filter. 

 
The dispersion process may be used to determine the frequency content of a signal. 

In order to envision the process let us assume that the spectrum of the signal at the input 
is given by  
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2

=1
( ) = exp

M

v
V a 




 


  
     

     (1.10.8) 

 where all the parameters are known and that / 1    ; note that at the limit that 
/ 0     the Gaussian function behaves very similar to Dirac delta function. In such 

a case it is convenient to expand  

 
=

1 ( )( ) ( ) ( )
2 ( ) 

 

      
 

 
   

     (1.10.9) 

 and also to use the fact that  

 

( )1 1 ( )= = ( ) =
2 ( )

1 1 1 ( )= .
2 ( )

gr

ph

V c c c

V c

      
   

  
 

        






   (1.10.10) 

With these two observations, we now aim to develop an analytic expression for the 
voltage at any location z  and at any time t . Specifically, to demonstrate that the peak of 
the Gaussian pulses depends on = / ( )gr rt z V  and reveal the way this signal varies in 
space. 
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The voltage variation in time is given by  

  2

( )( , ) = ( )

( )= exp

j t j zV z t d V e

j t j za d e 


 

   

   












        



 
   (1.10.11) 

 wherein the wave number is ( ) = ( )   
c

 therefore,  
2

=

( , ) = exp

1exp ( ) ( )
2 ( )

V z t a d

j t j z
c






 

 

 

 


     
 





  
     

                  

 
  (1.10.12) 

 Rearranging the terms we have  
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2
2

( , ) = exp ( )

exp (

1 1

( )
2 (

)

exp ( )

)

2 (
.

)
z d

z z d

j

zV z t a j

t

t
c

d j

c d

c c d





  











 




 

  

 





 

  
 

      

    

   

 
    
  

    
  
   

 









  (1.10.13) 

 The first term in the integrand can be written as  

 exp ( )
gr

z
V

j t 
 
  

 


  



    (1.10.14) 

 whereas for the second term it is convenient to write  

 
=

1 1 1 1 1=
2 ( ) gr ph

d
c d V V   


  

          
    (1.10.15) 

 and define  

 2 2
, ,

2

1 11 .
( ) gr ph

c cj z
c Vz V


   


 

     
    

    (1.10.16) 
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 Consequently,  
2

2

( , ) = exp ( ) exp ( )

= exp exp .
( )

gr

ph gr

z zV z t a j t d j t
c V

z za j t d j t
V V


   

 

   
 

      

   










                            
                           

 

 
  

     (1.10.17) 
 The integral may be evaluated analytically since 

2
= 





 d e  such that finally we 
get  

 
2

=1 , ,

( , ) = ( ) exp exp .
2

M

gr gr

zz zV z t a z j t t
V V


  

  

 
 
 
 
 
 
 

                         
 (1.10.18) 

 According to (1.10.16) the width of the pulse varies with the distance from the input. 
 

Comment: Discuss possibilities of spectrum measurement by its decomposition in space. 
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1.10.2  Propagation and Reflection 
 Other phenomena which may significantly affect the propagation of a pulse along a 

transmission line are discontinuities. For a glimpse into those phenomena let us consider 
three transmission lines connected in series.  

 
 
 
 
 
 
 
 
 
 
 
 
 
The reflection and transmission coefficients in the frequency-domain are  

    

1Z 2Z 3Z

0z  z d

 
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2
1 3 2 1 3 2

2
1 3 2 1 3 2

1 3
2

1 3 2 1 3 2

2

cos ( ) sin ( )=
cos ( ) sin ( )

2=
cos ( ) sin ( )

= .

Z Z Z j Z Z Z
Z Z Z j Z Z Z

Z Z
Z Z Z j Z Z Z

d

 
 


 

 

  
  

  
    (1.10.19) 

 With these coefficients we aim to determine the transmitted signal in the time domain. 
Assuming that the incoming voltage is  

  ( )
1( , ) = ( )expinV z t d V j t j z    




       (1.10.20) 

 wherein  

 ( )1( ) = ( = 0, ) .
2








 in j tV dtV z t e     (1.10.21) 

 Based on this expression, the transmitted signal is  
  ( )

3( , ) = ( )exp ( )( ) ( )trV z t d V j t j z d      



      (1.10.22) 

 which assuming dispersionless transmission lines entails  
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 

 

   

( ) ( )

1 3
3

2
1 3 2 1 3 2

1, = ( = 0, )
2

4 exp exp
.

1 exp 2 ( ) 1 exp 2 ( )

tr in j tV t z d dt V z t e

z dZ Z j j t
V

j Z Z Z j Z Z Z




 

 

 

 

    
  

   
  

            

 
  (1.10.23) 

 We now define  

 
2

1 3 1 3 2 1 3 2
2 2

2 1 3 1 3 2 1 3 2 1 3 2

4 ( )= , =
( ) ( )

Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z Z Z Z Z

     
     

 

  
 enabling us to write  

3 2( ) ( )

2

exp
1( , ) = ( = 0, ) .

2
1 exp 2

tr in

z d dj t t
V V

V z t dt V z t d
j d
V


 

 

 

 

       
    

 
  

 

   (1.10.24) 

 Since < 1  we may expand  
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=0

1 =
1







 u
u

    (1.10.25) 

 and further simplify  
( ) ( )

3 2

=0 2

1( , ) = ( = 0, ) exp
2

exp 2 .

tr in z d dV z t dt V z t d j t t
V V

j d
V





  


 

 

 



         
   

 
  

 

 


 (1.10.26) 

 The integration over   is straight forward resulting in a Dirac delta function therefore  

 ( ) ( )

=0 3 2

( , ) = = 0, (2 1) .tr in z d dV z t V z t
V V





  
  

   
 

     (1.10.27) 

 A delay in the occurrence of the pulse reflects in the third term. The term = 0  
represents the first pulse which reaches the output end. After a full round-trip, the second 
contribution occurs. Effects of round-trip time and pulse duration as well as the sign of   
are revealed by the following frames.  
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 1.11  Appendix 

1.11.1  Solution to Exercise 1.10 
 

 
 
 
 
 
Microstrip: 
dependence of 
various 
parameters on 
the geometric 
parameters and 
the dielectric 
coefficient. For 
all the graphs the 
paramters are 
(when they are 
not the variable): 

= 2  mm, 
= 20w  mm, 
= 2h  mm, 
= 10 r  and 
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= 0,1 100  .  
 

1.11.2  Solution to Exercise 1.11 
Show that if ,w h  the various quantities are independent of w . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dependence of various parameters in 

w. [ = 2  mm, = 10 r , = 2h  mm and 
= 0,1 100  ].  
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 1.11.3  Solution to Exercise 1.15 

 Determine the inductivity per unit length and determine its dependence on the 
various  parameters.  
The inductivity per unit length of the stripline can be determined according to Eq. 
(1.7.12)  2= 1/ ( = 1)rL c C   substituting the expression for the capacitance per unit length 

given by Eq. (1.8.17)  
2

2
0

=1

sinh( )= 2 sinc 1 exp n
n

n n

h hL n
d d

  


           
  

where 1=
2

  
n n

d
.  

 
 

 
 
 
  
The figure shows the inductance per unit length of a 

stripline as a function of h . Clearly it is symmetrical around 
the maxima point = 2h  mm, corresponding to the 
symmetrical stripline configuration. [ = 4d  mm, = 2  mm, 
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= 1,2, 200n ].  
    

  
The figure shows the dependence of L  on  , the strip 

width. The inductance per unit length of the stripline decreases 
as the strip width increases, and saturates as   becomes very 
large compared to h . From this result one can conclude that 
the inductance per unit length of a metallic wire is larger than 
that of a strip [ = 2h  mm, = 4d  mm = 1,2, 200n ].  

    
 

 
  
 
 
 
 
The characteristic impedance of a stripline as a function 

of d  (Eq. (1.8.18)). The impedance decreases as d  decreases, 
due to increase in the capacitance per unit length of the 
stripline as shown in Figure 20. The symmetrical case where 

= 2d h , is obtained at the knee of the graph corresponding to 
= 4d  mm. An asymptotic behavior is observed as d  becomes 

large compared to ,h . [ = = 2h  mm, = 10 r , 
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= 1,2, 200n ].  
 

1.11.4  Solution to Exercise 1.17 
  
Compare micro-strip and strip-line from the perspective of sensitivity to the 

dielectric coefficient. 
  

 
  
The characteristic impedance of a 

microstrip (the red solid line) and a stripline 
(the blue dotted line) as a function of  r . The 
characteristic impedances of both the microstrip 
and the stripline decrease as  r  increases. This 
result can be explained by noting that increasing 
the dielectric constant increases the capacitance 
per unit length of the line ( )C  and thus 
decreases the characteristic impedance, which is 
inverse proportional to the capacitance 
according to = 1 /c phZ CV , where phV  is the 
phase velocity, in turn  r  decreases phV  but in 
lower rate than the increase of C . [ = = 2h  
mm, = 4d  mm (stripline), = 20  mm, 
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= 1,2, 200n , and = 0,1, 200  ].  
   

 
The derivative of the characteristic impedance of a 
microstrip (solid line) and a stripline (dotted line) as a 
function of  r . At low values of  r , the absolute value 
of the / c rdZ d  is larger in stripline (dotted line) than 
in microstrip (solid line), implying a higher sensitivity 
to variations in  r  in the stripline geometry at that low 
range of  r . As  r  is increased, the sensitivity of the 
microstrip characteristic impedance ( )cZ  becomes 
slightly larger than that of the stripline. At high values 
of  r , the sensitivity of both configurations approach 
zero asymptotically as expected. [ = = 2h  mm, 

= 4d  mm, = 20  mm, = 1,2, 200n , and 
= 0,1, 200  ]. 

     
 
Sensitivity to dielectric coefficient of a 

microstrip (solid line) and a stripline (dotted 
line) as a function of  r . The figure shows 
clearly that the stripline geometry is more 
sensitive with respect to  r  than the microstrip 
configuration [ = = 2h  mm, = 4d  mm 
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(stripline), = 20  mm, = 1,2, 200n , and = 0,1, 200  ].  
The normalized phase velocity of a microstrip (solid line) 

and a stripline (dotted line) as a function of , r phV  of stripline is 

simply /  rc  (for a TEM mode), phV  of microstrip (for the 

quasi-TEM mode) is /  effc , where eff  is given by Eq. (7.17). 
As  r  is increased, /phV c  decreases as expected, according to 

1 /  r  and 1 /  eff  relations, for stripline and microstrip cases 
respectively, where the following inequality holds 1 < < eff r . In 
the special case = 1 r  where only vacuum is experienced by the 
electromagnetic field, phV  is simply c  for both geometries 
[ = = 2h  mm, = 4d  mm (stripline), = 20  mm, 

= 1,2, 200n , and = 0,1, 200  ].  

   
The derivative of the normalized phase velocity of 

a microstrip (solid line) and a stripline (dotted line) as a 
function of  r . The absolute value of the derivative is 
higher for the stripline case compared to the microstrip 
case, implying higher sensitivity in the stripline with 
respect to changes in  r . For relatively high values of  r  
the sensitivity of both configurations approaches zero 
asymptotically [ = = 2h  mm, = 4d  mm (stripline),  
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Chapter 2:  Waveguides – Fundamentals 
 

 
2.1  General Formulation 

 
So far we have examined the propagation of electromagnetic waves in a structure 

consisting of two or more metallic surfaces. This type of structure supports a transverse 
electromagnetic (TEM) mode. However, if the electromagnetic characteristics of the 
structure are not uniform across the structure, the mode is not a pure TEM mode but it 
has a longitudinal field component.  
In this chapter we consider the propagation of an electromagnetic wave in a closed 
metallic structure which is infinite in one direction ( z ) and it has a rectangular (or 
cylindrical) cross-section as illustrated in Fig. 1. While the use of this type of waveguide 
is relatively sparse these days, we shall adopt it since it provides a very convenient 
mathematical foundation in the form of a set of trigonometric functions. This is an 
orthogonal set of functions which may be easily manipulated. The approach is valid 
whenever the transverse dimensions of the structure are comparable with the wavelength.  
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0 r
 0  r
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z
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b

 
 Rectangular waveguide; a  and b  are the dimensions of the rectangular cross section. a  corresponding to 

the x  coordinate, b  to the y  coordinate.  
 

The first step in our analysis is to establish the basic assumptions of our approach: 
  

a) The electromagnetic characteristics of the medium:  0= r    and 0= r   . 
b) Steady state operation of the type  exp j t . 
c) No sources in the pipe. 
d) Propagation in the z direction --   zexp jk z ;  zk  can be either real or imaginary or 

complex number. 
e) The conductivity ( )  of the metal is assumed to be arbitrary large (  ). 
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Subject to these assumptions Maxwell's Equations may be 
written in the following form  

 = =E j H H j E   
    

    (2.1.1) 
 Substituting one equation into the other we obtain the wave equation  

2 2

2 2
2 2

2 2
2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
v v

= 0 = 0

0
v v

E j H H j E
E E j j E H H j j H

E E E H H H

E H

E

 
   

 

 

 

        
           

               
   

   

               
       

         
       

       

   


0H 





  (2.1.2) 

 where v = 1/   is the phase-velocity of a plane wave in the medium. Specifically, we 
conclude that the z  components of the electromagnetic field satisfy  

 
2 2

2 2
2 2= 0, = 0

v vz zE H    
      
   

    (2.1.3) 

0 r
 0  r

x

y
z

a

b



 75

 and subject to assumption (d) we have  

 
2 2

2 2 2 2
2 2= 0 = 0.

v vz z z zk E k H 
 

   
        
   

 

As a second step, it will be shown that assuming the longitudinal components of the 
electromagentic field are known, the transverse components are readily established. For 
this purpose we observe that Faraday's Law reads  

 z

1 1 1
= = .

x y z

x y

x y z

E j H jk j H
E E E

       
  

    (2.1.4) 

 
z z

z z

(i) 1 : = =
(ii) 1 : ( ) = =

(iii) 1 : = = .

x y z y x y x y

y x z x y x y x

z x y y x z x y y

z

zx

zE jk E j H jk E j H
E jk E j H jk E j H

E

E
E

E j E E j HH

 
 
 

     
      

       





 

In a similar way, Ampere's law reads  

 z

1 1 1
= = ,

x y z

x y

x y z

H j E jk j E
H H H

     
   

    (2.1.5) 
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 or explicitly  
z

z z

(iv) 1 : = =
(v) 1 : ( ) = =

(vi) 1 : = = .

x y z y x x z y y

y x z x y y x x

z x y y x z x y y x

z

z

z

H jk H j E j E jk H
H jk H j E j E jk H

H H j E H H j

H
H

E

 
 
 

   
     

     





 

From equations  (ii) and  (iv) we obtain  
z

2 2
z z z

z
z2 2

z

1 1
( /v)

( /v)

y x z y z
x y x z

x y y z
x x z y z

jkH E H
jk E j H E k k
j E jk H H jE k E H

k


  






 
                    

 (2.1.6) 

 It is convenient at this point to define the transverse wavenumber  

 
2

2 2
z2v

k k
       (2.1.7) 

That as we shall shortly see, has a special physical meaning.    
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This allows us to write the last two expressions in the following 
form  

 z
2 2= ,x x z y z
jk jE E H

k k


 


    (2.1.8) 

 z
2 2= .y x z y z

j jkH E H
k k


 


    (2.1.9) 

 In a similar way, we use equations  (i) and  (v) and obtain  

 z
2 2=y y z x z
jk jE E H

k k


 


       (2.1.10) 

 z
2 2= .x y z x z

j jkH E H
k k


 

       (2.1.11) 

 Equations (2.1.8),(2.1.10) and (2.1.9),(2.1.11) can be written in a vector form  

 z
2 2= 1z z z

jk jE E H
k k


  

 

   


    (2.1.12) 

 z
2 2= 1 .z z z

jk jH H E
k k


  

 

   


    (2.1.13) 
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Comments:   

1. The wave equations for zE  and zH  with the corresponding boundary conditions and 
the relations in ((2.1.12)--(2.1.13)) determine the electromagnetic field in the entire 
space (at any time).  

 
2. Note that the only assumption made so far was that in the z  direction the 

propagation is according to  zexp jk z . No boundary conditions have been 
imposed so far.  

 
3. Therefore it is important to note within the framework of the present notation that 

TEM mode ( = 0, = 0)z zH E  is possible, provided that 0k   or substituting in the 
wave equations  
 2 2= 0; = 0.E H    

 
    (2.1.14) 

    4. By the superposition principle and the structure of ((2.1.12)--(2.1.13)), the  
        transverse field components may be derived from the longitudinal ones. 

 
Complete Solution = ( = 0) and( = 0) ( = 0) and ( = 0)

Transverse Electric(TE) Transverse Magnetic(TM)
z z z zE H E H   .  
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2.2  Transverse Magnetic (TM) Mode [ = 0zH ] 

 
In this section our attention will be focused on a specific case where = 0zH . This 

step is justified by the fact that equations ((2.1.12)--(2.1.13)) are linear, therefore by 
virtue of the superposition principle (e.g. circuit theory) and regarding zH  and zE  as 
sources of the transverse field, we may turn off one and solve for the other and vice 
versa. As indicated in the last comment of the previous section, the overall solution is, 
obviously the superposition of the two. The boundary conditions impose that the 
longitudinal electric field zE  vanishes on the metallic wall therefore  

 , ,

,
= sin sin .z n m

z nm
n m

jk zmx nyE A e
a b

     
   
   

     (2.2.1) 

 This further implies that the transverse wave vector, k , is entirely determined by the 
geometry of the waveguide (substitute in (2.1.3))  

 
2 2 2

2 2
z2= = .

v
m nk k
a b
  


       
   

    (2.2.2) 

 From these two equations we obtain  
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2 22 2
2 2

z, , 2 2

2 22

z 2

= =
v v

= .
v

n m
m nk k
a b

m nk
a b

   

  


        
   

        
   

 (2.2.3) 

  
This expression represents the  dispersion equation of the electromagnetic wave in the 
waveguide. 

 
Exercise 2.1: Analyze the effect of the material characteristics on the cut-off frequency. 
 
Exercise 2.2: What is the impact of the geometry? 
 
Exercise 2.3: Can two different modes have the same cut-off frequency?  
What is the general condition for such a degeneracy to occur?  
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Comments:   
a) Asymptotically ( vk  ) this dispersion relation behaves as if 

no walls were present i.e. zvk  .  
 

 
b) There is an angular frequency c, ,n m  for which the wavenumber zk  vanishes. This is 

called the  cutoff frequency.  

 
2 2 2 2

, , ,

1v = v = v ,
2m n mcc n

m n m nk
a b

f
a b

  
                 
       

  (2.2.4) 

               where v = / r rc   . 
 

c) Below this frequency the wavenumber zk  is imaginary and the wave decays or grows 
exponentially in space. 

 
d) The indices n  and m define the mode ,m nTM ; m 

represents the wide transverse dimension ( x ) whereas n  
represents the narrow transverse dimension ( y ).  
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2.3  Transverse Electric (TE) Mode [ = 0zE ] 

 
The second possible solution according to (2.1.12)--(2.1.13) is when = 0zE  and 

since the derivative of the longitudinal magnetic field zH  vanishes on the walls (see 
(2.1.12)) we conclude that  

 , ,
,

,

= cos cos .z n m
z m n

m n

jk zmx nyH A e
a b

     
   
   

     (2.3.1) 

 The expression for the transverse wavenumber k  is identical to the TM case and so is 
the dispersion relation. However, note that contrary to the TM mode where if n  or m 
were zero the field component vanishes, in this case we may allow = 0n  or = 0m  
without forcing a trivial solution. 
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For convenience, we present next a comparison table of the 
various field components of the two modes. 
 TM mode TE mode

 z= sin sin zmn
z mnmn

mx ny jkE A e
a b

     
   
   

   = cos cos zmn
z mnmn

mx ny jkH B e
a b

     
   
   

  

2= sin cosx mnmn

j n mx nyH A
k b a b
   



     
     
     

   2= cos sinx mnmn

j n mx nyE B
k b a b
   



     
     
     

  

2= cos siny nmmn

j m mx nyH A
k a a b
   



      
     
     

   2= sin cosy mnmn

j m mx nyE B
k a a b
   



          
     

   

 = 0zH = 0zE

 z
2= cos sinx mnmn

jk m mx nyE A
k a a b

  



      
     
     

   z
2= sin cosx mnmn

jk m mx nyH B
k a a b

  



      
     
     

  

 z
2= sin cosy mnmn

jk n mx nyE A
k b a b

  



      
     
     

    z
2= cos siny mnmn

jk n mx nyH B
k b a b

  



      
     
     

   

 
1/22

, ,( ) ( )
, ,= ; 1 c m nTM TM

x mn mn y mn mn

f
E Z H Z

f



  
   

   
 

1/ 22
, , ,( )

, ( )= ; 1y mn c m nTE
x mn mnTE

mn

E f
H Z

Z f




  

    
   

 

( )
, ,= TM

y mn mn x mnE Z H  ,
, ( )= x mn

y mn TE
mn

E
H

Z
  

 
Exercise 2.4: Check all the expressions presented in the table above. 
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Comments:   

1. The  phase velocity of the wave is the velocity an imaginary observer has to move 
in order to measure a constant phase i.e. z =t k z  const.. This implies,  

 
1/22

p 2
z

v = v 1 .c
h

f
k f



 

  
 

    (2.3.2) 

2. The phase velocity is always faster than v!! Specifically, in vacuum the phase 
velocity of a wave is larger than c . In fact close to cutoff this velocity becomes 
"infinite"!! 

3. The  group velocity is defined from the requirement that an observer sees a constant 
envelope in the case of a relatively narrow wave packet. At the continuous limit this 
is determined by  

 
1/22

gr 2
z

v = = v 1 .cf
k f
  

   
    (2.3.3) 

4. The group velocity is alway smaller than v . Specifically, in vacuum it is always 
smaller than c . It is the group velocity is responsible to information transfer. 

5. When the waveguide is uniform  
 2

ph gv v = v .r     (2.3.4) 
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2.4  Power Considerations 
 

2.4.1  Power Flow 
 Let us now consider the power associated with a specific TM mode; say  

 , ,= sin sin .z n m
z mn

jk zmx nyE A e
a b

     
   
   

 

 At this stage, for simplicity sake, we assume that this is the  only  mode in the 
waveguide. Based on Poynting's theorem, the power carried by this mode is given by  

  z,0 0
= R .

a b

mn mnP e dx dy S      (2.4.1) 

 Explicitly the longitudinal component of the Poynting vector is  

  

* * *
, , ,

2 2( ) ( )

,

1 1= ( ) 1 = [ ]
2 2
1= .
2

z m n z x y y x m n

TM TM
y x

m n

S E H E H E H

Z H Z H

  

   

 

  (2.4.2) 

Above cutoff the characteristic impedance is a real number therefore the next step is to 
substitute the explicit expressions for the magnetic field components and perform the 
spatial integration:  

0 r
 0  r

x

y
z

a

b



 86

  

2 2( )

0 0

2 22 2
2( )

4

2

2 2
2( )

2

1=
2

1=
2

1= .
2

2

4

2

a bTM
mn y x

TM
mn

k

TM
mn mn

P Z dx dy H H

m nZ A
k a b

abP Z A
k

a b   

 







   

 
        
    




 

 



(2.4.3) 

 The last expression represents the  average power  carried by the specific mode. 
 
Exercise 2.5: What is the power at any particular point in time? 
Exercise 2.6: Since the two sets sin( / )mx a  and sin( / )ny b  are two orthogonal sets of
functions, the total average power carried by the wave in the forward direction is a 
superposition of the average power carried by each individual mode separately. In other 
words show that 

,
= mnn m

P P . 

Exercise 2.7: Show that below cutoff, the power is  identically zero although the field is 
not zero. 
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Exercise 2.8: Note that the average power is proportional to the 
average magnetic energy per unit length. Calculate this quantity. Compare it with the 
average electric energy per unit length. 
Exercise 2.9: Calculate the energy velocity of a specific mode v = /EM EMP W  . Compare 
to the group velocity. What happens if the frequency is below cutoff? 
Exercise 2.10: Repeat the last exercise for a superposition of modes ,n mA . 
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2.4.2  Ohm Loss 
 So far it was assumed that the walls are made of an ideal metal ( )   . If this is 

not the case ( ) a finite amount of power is absorbed by the wall. In order to calculate 
this absorbed power we firstly realize that the magnetic field is "discontinuous" which is 
compensated by a surface current  

 = .sJ n H
      (2.4.4) 

 This current flows in a very thin layer which is assumed to be on the scale of the  skin-
depth [ = /sJ J  ] therefore, the dissipated average power per unit length is given by  

 
21 1= ,

2DP dxdy J
 


    (2.4.5) 

 or explicitly  

 
2

2 21 1= = = ,
2 2 2

s s
D s s

J RP dl dl J dl J
    

  
       (2.4.6) 

 where 2 / o   , / 2s oR    and the integration is over the circumference of 
the waveguide  
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21= .

2D s sP R dl J


  (2.4.7)  

 This is the  average electromagnetic power per unit length which is converted into heat 
(dissipation) due to Ohm loss. Based on Poynting's theorem we may deduce that the 
spatial change in the electromagnetic power is given by  

 D
d P P
dz

      (2.4.8) 

 and since in case of a single mode both P  and DP  are proportional to 2| |A ,  
 2 2and DP A P A     (2.4.9) 

 we conclude that the change in the amplitude of the mode is given by  

 
2

2 2 2 2= 2 ( ) = ( = 0) .
d A zA A z A z e

dz
       (2.4.10) 

 The coefficient   represents the exponential decay of the amplitude and based on the 
arguments of above is given by  

 .
2

DP
P

      (2.4.11) 

 
Let us denote by (0)

zk  the wavenumber in a lossless waveguide. Subject to the 
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assumption of small losses ( (0)
zk  ) we can generalize the 

solution in a waveguide with lossy walls by (0)
z z=k k j . 

  
Exercise 2.11: Based on the previous calculation of the power show that this parameter is 
given by  

  
2 3 2 3

TM
, 2 2 2 32

2 1=
1 ( / )

s
m n

c

R m b n a
b m b a n af f







    (2.4.12) 

sR  is the surface resistance. Note that  is very large close to cutoff.   Explain the 
difficulty/contradiction. 

 
2.4.3  Dielectric Loss 

 If the dielectric coefficient of the material is not ideal, in other words, it has an 
imaginary component = ' ''

r j   , then the wavenumber is given by  

 (0)
z z (0)

z

1 ,
2

''k k j
c ck
      (2.4.13) 

 where we assumed that (i) the dielectric loss is small and (ii) the system operates remote 
from cutoff conditions [i.e. (0)

z /''k c  ]. 
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We can now repeat the entire procedure described in the 
previous subsection for a TE mode. Here are the main steps and 
results  0 01 and 2ng g    

 

 
 

,
,0 0

22* *
, ( )

= cos cos , = e ,

1 1= = .
2 2

a bz mn
z mn mn z mn

z mn x y y x x yTEmn mnmn

jk zmx nyH B e P R dx dyS
a b

S E H E H E E
Z

     
   
   

    

 

(2.4.14) 

  
2 22 2 2 2

2
( ) 4 4

2 2
2

( ) 2

1 1 1 1 1 1=
2 2 2 2 2

1=
8

mn mnTE
mn

mnTE
mn

n mP B a b a b
Z k b k a

ab B
Z k

     

 
 



        
         (2.4.15) 

  
2 2 2 2 2

(TE)
2 2 2 22

2 1= 1 .
2

1

s c n c
mn

c

R f g fb b m ab n a
b a f a f m b n af

f





                                
 

 (2.4.16) 
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Exercise 2.12: Check equation (2.4.16). In particular check the cases = 0n  or = 0m . 
Repeat all the exercises from the above (TM mode) for the TE mode. Make a comparison 
table where relevant. 
Exercise 2.13: Note that both ( )TE  and ( )TM  are large close to cutoff and increase as 
  for large frequencies. In between there is a minimum loss for an optimal 

frequency. Calculate it. 
Exercise 2.14: Calculate the loss very close to cutoff. 
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2.5  Mode Comparison 
 

 
  
  

Mode comparison for a rectangular waveguide. 
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2.6  Cylindrical Waveguide 
  

2.6.1  Transverse Magnetic (TM) Mode [ = 0]zH  
 
In this section we shall investigate the propagation of a wave in a cylindrical 

waveguide. The longitudinal component of the electric field satisfies  
 2 2[ ] = 0,zk E       (2.6.1) 

 where 
2

2 2
2=

v zk k
   or explicitly  

 
2 2

2
2 2 2

1 1 = 0.zk E
r r r r  

   
      

    (2.6.2) 

 The solution of this equation subject to the boundary conditions ( = ) = 0zE r R  reads  
z, ,

, , ,
,

= cos( ) sin( ) ,s n
z n s n n s n s

n s

jk zrE J p e A n B n
R

 
       

     (2.6.3) 

where ( )nJ u  is the n 'th order  Bessel function of the first kind. This function behaves 
similar to a trigonometric function (sin  or cos ). It has zeros, denoted by ,s np  i.e.,  

 , ,: ( ) 0.s n n s np J p   
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The first few zeros of the Bessel function are tabulated next.  
  

 s=1  s=2  s=3 
n=0 2.405 5.52 8.654 
n=1 3.832 7.016 10.174 
n=2 5.135 8.417 11.62 

 
Substituting (2.6.3) in (2.6.2) we obtain  

 
22 2

,
2 2 2

1 1 = 0s n
z

p
E

r r r r R

    
          

    (2.6.4) 

 thus  

 
22
,2

z,

22
,2 2

,2 2 2= .
v

=
v

s n
z

s n
s n

p
k k

p
k

R R
 



 
    

 
    (2.6.5) 

 Based on this expression the characteristic impedance of the TM mode is given by  

 z, ,( )
,

v
= .s nTM

s n

k
Z 


    (2.6.6) 
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2.6.2  Transverse Electric (TE) Mode [ = 0]zE  
 

In this case the wave equation reads  
 2 2[ ] = 0zk H       (2.6.7) 

 and its solution has the form  
z ,

, , ,
,

= cos( ) sin( ) ,s n
z n s n n s n s

s n

jk zrH J p e A n B n
R

 
       

     (2.6.8) 

 where  

 , ,
=

= 0 : ( ) = 0.z
s n n s n

r R

H p J p
r

   


    (2.6.9) 

 The first few zeros of the derivatives of the Bessel function are   
 s=1  s=2  s=3 

 n=0 3.832 7.016 10.174 
n=1 1.841 5.331 8.536 
n=2 3.054 6.706 9.970 

thus 

 
22

,( )
, z, ,

, ,

= , =
v v

s nTE
s n s n

z s n

p
Z k

k R
 

         
    (2.6.10) 
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2.6.3  Power Considerations 
According to Maxwell's Equations for a single mode we have  

 2= , = , = / .z r
z r TM

TM

jk EE E H H E Z
k Z  


  


 

Consequently, the average Poynting vector is  

  *1= 1
2z zS E H  

 
 

and the average power flowing in the waveguide  

 

 

 

* * *

. . . .

2
2 22

. . . .

2 2
2 2

2 4. . . .

1 1= Re = Re
2 2

1 | | 1= e = Re
2 2

1 1= Re = Re
2 2

r rc s c sz

r
rc s c s

TM TM TM

z z
z zc s c s

TM TM

P da E H da E H E H

EER da da E E
Z Z Z

k kda E da E
Z k Z k

 




 

 
 

          
               

      
   

 

 

 

 

.   (2.6.11) 

 In order to further simplify the last expression let us examine the wave equation:  
  2 2 = 0zk E       (2.6.12) 
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 we multiply by the complex conjugate of zE   
  * 2 2 = 0z zE k E       (2.6.13) 

 and integrate over the entire cross section  

  

2* 2 2

2 2* 2

= 0

= 0.

 

   

    
       




z z z z

z z z z z

da E E k E

da E E E k E     (2.6.14) 

 The first term in the integrand is zero since  
 * *= = 0z z z zda E E d E E             


  

hence  
 2 22= .z zda E k da E       (2.6.15) 

 Now back to the propagating power for a superposition of modes starting from the 
expression for a single mode we get 
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     

2 2
2 2

, 4 2
, ,

, ,
2 ,

0 0

', ' ' ', '
', '

1 1= Re =
2 2

cos( )
1=

2 / v cos( ' )

z z
s n z zTM TM

s n s n

z
n s n n s

R s n

n s n n s
s n

k kP da E da E
k kZ Z

k rA J p n
k R

P d drr
rA J p n

k R





  


 







  
    

      
    

 


 



 

The integration over the angle is straight forward 

 
2

, '0

1 = 0
cos( )cos( ' ) 2 , = 1 = 0

2
n n n n

n
d n n g g

n

    


 


  

and after integration over r we get 

   

2 2
2, , 2

, , ,2
, , , ,,

1=2 ( )
22

z s n
n s n n n s s sTM

n s s s ns n

k RP g A J p
kZ

  
 

    

where we used  

 
2

2
, , ' , , '0

( )
2

R

n n s n n s n n s s s
r r Rdr r J p J p J p
R R

                  (2.6.16) 
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 In the case of a single mode we have  

 
2 222 , ,

, , 2 2
,

( )1= Re .
2 v v

n n s n s
s n s n n

n s

J p p
P RA R g R

p R
 



                 
  (2.6.17) 

Note that there is power flow only if the wave is above cutoff and as in the rectangular 
case, the the total power is the superposition of the power in each mode separately 
  
Exercise 2.15: Calculate the average energy per unit length stored in the 
electromagnetic field. 
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2.6.4  Ohm Loss 
 Now to the general expression for the losses. Starting from the dissipated power  

 

 

 
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2
2 2 ,( )
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2
22 2
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22
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1 1= = =
2 2 2

1= 2
2

1= 2
2 v

r nsss
D s n z s s TM

ns

n nss
n nsTM

nsns

n nss
n ns

ns

ERP J d R H d R d
Z

J pR k R Rg A R
pRZ

J pR R Rg A R
pR





 


 
 
 

  
  

   

      

  (2.6.18) 

  which finally entails for a single mode  

 ,( ) v1= .
v
ph snTM s

ns
R

R



 
 
 

    (2.6.19) 

Exercise 2.16: Check Eq. (2.6.19). 

Exercise 2.17: Calculate  TE
ns . 

Exercise 2.18: Calculate the exponential decay due to dielectric loss.  
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Mode comparison for cylindrical waveguide. 
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  Wave Type  TM 01   TM 02   TM11   TE 01  TE11   
  
Field distribution 
in cross-sectional 
plane, at plane of 
maximum 
transverse fields 

  

Distributions
Below Along

This Plane

Distributions
Below Along

This Plane

 
   

 
Field distribution 
along guide  

Field components 
present  

, ,z rE E H  , ,z rE E H  , , , ,z r rE E E H H   , ,z rH H E  , , , ,z r rH H H E E    

 p  or p   2.405   5.52   3.83  3.83   1.84  
 ( )ck    2.405


   5.52


  3.83


   3.83


  1.84


  

  ( )c    2.61   1.14   1.64   1.64   3.41   
 ( )cf    0.383

 
  0.877

 
  0.609

 
  0.609

 
   0.293

 
  

Attenuation due to 
imperfect 
conductors  

2

1
1 ( / )

s

n c

R
f f 

 
2

1
1 ( / )

s

n c

R
f f 

 
2

1
1 ( / )

s

n c

R
f f 

 
2

2

( / )
1 ( / )

s c

n c

R f f
f f 

  
2

1
1 ( / )

s

n c

R
f f 
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2.7  Pulse Propagation 
Let us consider an azimuthally symmetric TM mode described by  

  0
=1

( , , ) = ( ) exp ( )z s s s
s

rE r z t J p d j t z
R

  
 


         (2.7.1) 

wherein 2 2 2 2 2= / /s sp R c   and ( )s   is the Fourier transform of this field component 
at = 0z   

 02 0
2

1

1 1( ) = exp ( , = 0, ).
2( )

2

R

s s z

s

rdr r J p dt j t E r z t
R RJ p

 






       
    (2.7.2) 

 Let us now calculate the energy associated with the radiation field as it propagates in 
an empty waveguide. The transverse field components are  

 

 

 

1 2
2=1

2

1 22
2=1 0

2

( , , ) = exp

1( , , ) = exp

s s s
r s s

s
s

s s
s s

s
s

prE r z t J p d j t z
R R

c
pr jH r z t J p d j t z

R R c
c



 


 


 



 



    
   

    
   

 

 



  (2.7.3) 

 therefore, the z -component of the Poynting vector is  
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 

 

1
=1

1
=1 0

( , , ) = exp ( )

1exp ( ) ( ) .

z s s s s
s s

r RS r z t J p d j t z
R p

r RJ p d j t z j
R cp  

 

  



 



 



          
    

             
    

 

 



  (2.7.4) 

 Using the orthogonality of Bessel functions  

 
2

2
1 1 10

= ( )
2

R

s s s
r r RdrrJ p J p J p
R R    

   
        (2.7.5) 

 the power propagating is  

 

 

 

2
2

1
=1

0

( , ) = 2 ( ) exp ( )
2

1exp ( )

s s s s
s s

s s
s

R RP z t J p d j t z
p

Rd j t z j
cp

   



 







      
   

          
   

 





   (2.7.6) 

 and the energy associated with this power  
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   

   

2
2

1
=1

0

( ) = ( , )

= (2 ) ( ) ( )exp ( )exp
2

1 1 exp ( ) .

R

s s s s s
s

s
s s

W z dtP z t

R J p d z d z

R j R dt j t
p c p

   

 












          

   
     
   



  



 

 (2.7.7) 

 With the definition of the Dirac delta function 1 ( )( )
2

j tdt e  


    we have  

    
2

2 2
1

=1
( ) = (2 ) ( ) ( ) ( )exp

2

( ) 1 1 .

R s s s s s
s

s

s o s

RW z J p d z

R j R
p c p

     

 


 


       

   
    
   

   

 (2.7.8) 

 For proceeding it is important to emphasize two features: since the field components are 
real functions, it is evident that the integrand ought to satisfy *( ) = ( )s s   . 
Consequently  

 *( ) = ( )s s       (2.7.9) 
 and  

 *( ) = ( ).s s        (2.7.10) 
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 This last conclusion implies that if the frequency is below cut-off (| |< / )sp c R  then  
 ( ) =| ( ) |s s        (2.7.11) 

 whereas if | |> /scp R   
 ( ) = | ( ) |.s sj         (2.7.12) 

 With these observations we conclude that  
 2 2 /2 2

1 0
=10

2

/

2(2 )( ) = ( )2Re | ( ) |
2

| ( ) | | ( ) || ( ) | .

cp R ss
R s s

s

s s
scp Rss s s s

zRW z J p d e

R Rj R Rd
cp p cp p

  


   





  



          
   

 







  (2.7.13) 

Clearly the first integrand is pure imaginary therefore, its contribution is identically 
zero and as a result, in the lossless case considered here, the energy associated with the 
propagating signal does not change as a function of the location  

2 2
2 2
1 /

=10

| ( ) |(2 )= ( ) 2 | ( ) | .
2

s
s scp Rss s s

RR RW J p d
cp p

  


   
 
 

       (2.7.14) 
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Comments:   
1. Only the propagating components contribute to the radiated energy.  
2. The non-propagating components are confined to the close vicinity of the input 

(where initial conditions were defined).  
3. If all the spectrum is confined to the region 10 < < /p c R , no energy will 

propagate.  
4. Since the waveguide is lossless, the propagating energy does not change as a 

function of z .  
 

Exercise 2.19: Calculate the electromagnetic energy per unit length. Compare with 
(2.7.14). 

  
Let us now simplify the discussion and focus on a source which excites only the first 
mode ( = 1)s  i.e., 0 1 0( , = 0, ) = ( / ) ( )zE r z t J p r R E t  therefore according to Eq.(2.7.2) we get 

0 0 1 02 02
1

,1
0

1 1( ) = ( ')
2( )

2

= ( ')
2

R

s s

s

s

r r j tdr r J p J p dt e E t
R R RJ p

j tdt e E t




 










                



 





  (2.7.15) 
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As an example,  consider a signal starting from t=0 ramping up and oscillating 
and decaying  

      
2

,1
0 0 0 2 2 2
( ) sin exp ( ) =

2 1 2
s

s
t TE t E t h t E
T j T T




  
          

 (2.7.16) 

Substituting in Eq.(2.7.14)  

  
   1

2 4 2 22
12 4 1 1

0 22 2/ 2 2 210 1

1 ( )=
1 2cp R

TJ pW E R d
c p T T

  


  





  
 

       
   (2.7.17) 

 Normalizing to the cutoff frequency, 1/u    as well as 1 1/ , T T     the last 
integral simplifies to read 

 
2 2

2 3 21 1
0 0 21 2 2 2 2 2

1

( ) 1=
4

J p u uW E R du
p T u u T




 




    
     (2.7.18) 

 Its  numerical analysis reveals that  

 
2

2 3 21 1
0 0

1

1 1( )
4 1

J pW E R
p T


  

 
 

  (2.7.19) 

Exercise 2.20: Compare with the dependence of the propagating energy in the frequency 
  when the signal prescribed by Eq.(2.7.16) propagates in free space. 
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2.8  Waveguide Modes in Coaxial Line 
 
2.9 Coaxial Structure – Lossy Dielectric 
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Chapter 3: Waveguides – Advanced Topics 
 
 

After paving the foundations of electromagnetic phenomena in waveguides, in this 
chapter we shall consider some advanced phenomena including:  

1. Hybrid modes, whereby the TM and TE are coupled 
2. Dielectric loaded waveguide 
3. Mode coupling due to geometric discontinuity 
4. Reactive elements  
5. Excitation of Waveguides 
6. Coupling between two waveguides 
7. Surface waveguides 
8. Transients 
9. Cavities 
10. Wedge in a Waveguide 
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3.1  Hybrid Modes 
 
In Section 2.1 it was demonstrated that if the waveguide's electromagnetic 

characteristics are uniform on the cross-section, the transverse components may be 
derived from the two longitudinal components that in turn are independent. For example 
in a rectangular waveguide we had  

 

,

,
,

,

,
,

( , , ; ) = sin sin

( , , ; ) = cos cos

n nx y
z n n x yx y

n n x yx y

m mx y
z m m x yx y

m m x yx y

zx yE x y z A n n e
a a

zx yH x y z B m m e
a a


  


  

  
       

  
       



   (3.1.1) 

 wherein  22 2
r r= /k c      and    222 = / /x x y yk n a n a    for the transverse 

magnetic (TM)  mode or    222 = / /x x y yk m a m a   for the transverse electric (TE) 
mode. The transverse components being given by  

 2 2 2 2= 1 , = 1z zz z z zE E H H Ej j
k k k k

H   
   

   
        

  
 (3.1.2) 
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Let us now assume that the relative dielectric coefficient r( )  depends on the 
transverse coordinates (e.g. x  and y  in a rectangular geometry) and so is the relative 
permeability coefficient r( ) , the goal being to determine the character of the modes 
supported by the structure. Our starting point again is Maxwell's equations  

 0 r 0 r

r 0 r

= ( ) = 0

= ( ) = 0o

E j H H

H j E E

   

   

   

  

   

        (3.1.3) 

 which lead to the following wave equations  

 

0 r 0 r r

2
0 r r 0 r

2
2

r r 0 r2

( ) = ( ) = [ ]

( ) = [ ( )]

= ( ) 1

        

      

             

      

    

  
z z

E j H j H H

E E j H j E

E E j H
c

    

    

      (3.1.4)

Bearing in mind Gauss' law r r( ) = 0 = lnE E E      
    

 we get  
2

2 2
r r r 0 r r2 = ( ln ) ( ln ) 1z zE E j H

c
           

 
        
 

 
  (3.1.5) 
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and in a similar way  
2

2 2
r r r 0 r r2 = ( ln ) ( ln ) 1z zH H j E

c
           

 
         
 

 
  (3.1.6) 

It is evident from these two equations (3.1.5)--(3.1.6) that zE  and zH  are no longer 
independent if transverse variations in the cross-section occur. Modes which are linear 
combinations of TE and TM modes are called hybrid modes and they frequently 
occur in microwave components. 
 

In order to illustrate the coupling of TE and 
TM modes let us consider a dielectric loaded 
waveguide as illustrated in the figure. A fraction of 
the waveguide (0 < )x d  is filled with dielectric 
material r( )  whereas the remainder ( < )d x a  has 
the same characteristics as the vacuum. In each 
region the material is uniform which means that the 
wave equation is 

    
 

 
x

y 

a

b

d

εr 
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2

r2 2
2 = 0

1 zE
c

  

  
    

  
 (3.1.7) 

 and its solution is  
2 2

2
r 2

2 2
2

2

sinh 0

= sin

sinh ( )

z

mA x x d
b cyzE e m

b mB x a d x a
b c

  
 

 

               
 

            
    

  (3.1.8) 

 wherein we impose the boundary condition at = 0x  and =x a .  
 
Similarly, for zH  we have  

 
2

r2 2
2 = 0

1 zH
c

  

  
    

  
    (3.1.9) 

 and  

 
x 

y 

a 

b

d

εr 
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2 2
2

r 2

2 2
2

2

cosh 0

= cos

cosh ( )

z

mC x x d
b cmzH e y

b mD x a d x a
b c

  


 

               
 

            
    

 (3.1.10) 

 Imposing the boundary condition at x=d  leads us to the dispersion relation. In order to 
emphasize the coupling between TE and TM modes we shall develop the dispersion 
relation in two steps. 
 
Step I: we impose the continuity of zE  and zH  facilitating to redefine the amplitudes 
thus A and D  according to  

  
 

v

v

sinh( ) 0
sinh( )

= sin
sinh ( )
sinh ( )

z

x x d
dyzE Ae m

a xb
d x a

a d



 

    
      
  

    (3.1.11) 

 and  

 
x 

y 

a 

b

d

εr 
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  
 

v

v

cosh( ) 0
cosh( )

= cos
cosh ( )
cosh ( )

z

x x d
dyzH De m

a xb
d x a

a d



 

    
      
  

    (3.1.12) 

 wherein    2 22 2/ /m b c         is the horizonthal wave number in the dielectric 

(subscript  ) and    2 22 2
v / /m b c       represents the horizonthal wave number in 

the vacuum (subscript v). It is evident that if = 0d  or =d a  (i.e. the waveguide is filled 
uniformly), the regular solutions may be readily retrieved v =a j n  or =a j n  .  
 
Step II: In our second step if 0 < <d a  we need to impose continuity of yE  and yH  at 

=x d . According to (3.1.2) the transverse components are  

 

0
2 2

2 2
r r2 2

0 r
2 2

2 2
r r2 2

=

=

   
 

   
 

y y z x z

y y z x z

j
E E H

c c
j

H H E

c c


    

 
    

    (3.1.13) 
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d
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 Based on (3.1.13) and (3.1.11)-(3.1.12) we get  

 

0
2 2

2 2
r r2 2

0
2 2

2 2
2 2

( = 0) = tanh( )

( = 0) = tanh[ ( )]

y

y v v

jmE x d A D d
b

c c
jmE x d A D a d

b
c c

 
 

    

 
  

     
  

      
  

 (3.1.14) 

 thus their continuity implies  

 
02 2 2 2

2 2 2 2
r r2 2 2 2

tanh ( ) tanh( )= v v

m m
a d db bA j D

c c c c

 

  


        

   
       

     
            

(3.1.15) 
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Similarly  

 0 r
2 2

2 2
r r2 2

( = 0) = coth( )y
jmH x d D A d

b
c c

 
  

    

       
  

 (3.1.16) 

 0
2 2

2 2
2 2

( = 0) = ( )coth[ ( )]y v v
jmH x d D A a d

b
c c

 
  

        
  

(3.1.17) 

thus  
 

0 0 r
2 2 2 2

2 2 2 2
r r2 2 2 2

coth[ ( )] coth( ) = 0.v v

m m
j j b bA a d d D

c c c c



     
        

   
            

          
     (3.1.18) 
 The dispersion relation, in a matrix form, may by now be expressed using (3.1.15) and 
(3.1.18) 

 

 
x 

y 

a 

b

d

εr 



 123

v v
2 22 2

2 22 2
r 2 2r 2 2

0 0

0 v 0 r
v2 2 2 2

2 2 2 2
r r2 2 2 2

tanh( ) tanh[ ( )] 1 1
1 1

1 1 coth[ ( )] coth( )

d a d
b

c cc j c j

j ja d d
b

c c

m

c

m

c

 




 
       

 

   
        

  
      

   
                 
  
    

      
      

 

= 0
D

A





 
   




 
     (3.1.19) 
 or formally  

 
11 12

21 22

= 0
D

A

  
  
  

    

 

 
    (3.1.20) 

implying that for a non trivial solution the determinant of the matrix must be zero  

  
11 12

2
11 22 12

21 22

det = 0 = 0.
 
    
 
 

 
  

 
    (3.1.21) 

 
x 

y 

a 

b

d

εr 

TE 

TM 
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x 

y 

a 

b

d

εr 

Comments:  
1. The diagonal terms represent the dispersion relation of TE and 

TM modes.  
2. If there are no variations in one transverse dimension (e.g. = 0m ), the TE and 

TM modes are decoupled. Such an example will be considered in the next 
section. 

 
Exercise 3.1: Analyze the solution of the dispersion relation as a function of d . 
Specifically, compare to the case = 0d  and =d a . 
Exercise 3.2: Calculate the group velocity and the energy velocity. 
Exercise 3.3: For a given propagating power, determine the ratio of electric and magnetic 
energy (per unit length) as a function of d .  
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3.2  Dielectric Loading – TM01 
 

 
   In the previous section it was concluded that partial 

loading in one direction and the field variations in the other 
direction leads to hybrid modes. Moreover, we claimed 
that if there are no field variations in the second 
transverse direction the modes are not coupled. We 
shall examine this kind of configuration next, namely, a 
partially filled with dielectric r  configuration as 
illustrated in Figure 2. The radius of the waveguide is 
R  and the inner radius of the dielectric is denoted with 

dR . We shall assume a solution of the form 
 ( , ) = ( )expzE r z E r jkz  in which case the amplitude ( )E r  

satisfies  

  
2

2
r2

1 ( ) = 0d dr r k E r
r dr dr c

 
 

  
 

    (3.2.1) 

 
 

Rd R 
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in the dielectric region or explicitly for < <dR r R :  

 
2

2
12

2

1 ( ) = 0d dr k E r
r dr dr c



 

 
 

  
 
  



  (3.2.2) 

 whereas in the vacuum 0 < < dr R :  

 
2

2
22

2
v

1 ( ) = 0.d dr k E r
r dr dr c




 
 

  
 
  



    (3.2.3) 

 It is therefore convenient to define the radial wave number   22 2
v / c k    in vacuum 

(subscript v)  whereas the corresponding quantity in the dielectric is defined as 
 22 2/ c k     based on which the solution reads  

Rd R 
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  0

0

2
0 0

0 2
0 0 0 0

2
0 v v

0 2
0 v v

( ) 0 < <
( ) < <

( ) ( ) ( ) ( ) > 0
( )

(| | ) (| | ) (| | ) (| | ) 0

( ) > 0
( ) =

(| | ) 0

d
z

d

o o

AS r r R
E r

BT r R r R

J r Y R Y r J R
T r

I r K R K r I R

J r
S r

I r

    

    

    
    

 
 


 

 

 
 






 (3.2.4) 

 As in the previous section the dispersion relation will be now determined by imposing 
the boundary conditions at the interface between the two regions. Firstly, we impose the 
continuity of zE  at = dr R :  

 0 0( ) = ( )z d dE AS R BT R     (3.2.5) 
 and secondly, the continuity of H  at = dr R   

 
0 v

0 02 2 22
v

| | | |= ( ) = ( )
/
r z

r d d
r

j EH BT R AS R
rk c






   
  






 
   (3.2.6) 

 wherein  

Satisfies the boundary 
condition on the 
external wall 

Satisfies the boundary 
condition in the center 

Rd R 
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2
1 1 0

0 2
1 0 1 0

2
1 v v

0 2
1 v v

( ) ( ) ( ) ( ) > 0
( )

(| | ) (| | ) (| | ) (| | ) 0

( ) > 0
( ) =

(| | ) 0

oJ r Y R Y r J R
T r

I r K R K r I R

J r
S r

I r

    

    

    
    

 
 

 
 

 
 







(3.2.7) 

From the previous two equations[(3.2.5), (3.2.6)] we obtain the dispersion equation 

 v
0 00 02 2

v

| | | |=rS T S T



 
 

 
    (3.2.8) 

which can be solved numerically as 
illustrated below. 
According to the frequency, the mode 
varies from the characteristics of empty 
space (close to cut-off) of dielectric filled 
case. 

 
 
 
 
 

Rd R 
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Exercise 3.4: Analyse the effect of dR  on the phase velocity, group velocity and ohm 
loss of the metal. What about dielectric loss? 
Exercise 3.5: Analyze the ratio of the electric energy stored per unit length vs. magnetic 
energy per unit length. 
Exercise 3.6: Compare the energy stored in the dielectric with that in air. 
Exercise 3.7: Determine the higher modes of a coaxial line illustrated below. The radii 
are in d ext, ,R R R . 

 
 
 

  
 

R

air
metal

dielectric
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3.3  Mode Coupling 
 
3.3.1  Step Transition – TE mode 

 
A longitudinal change in the cross-section of the waveguide leads to a coupling 

process between virtually all possible modes. Excitation of modes is an inherent process 
associated with the necessity to satisfy the boundary conditions. Whether these modes 
propagate or not, it is only a question of what is the frequency (or frequencies) of the 
incoming signal.  In general, the coupling occurs between TE and TM or between various 
hybrid modes however, in what follows we shall consider a configuration whereby the 
coupling is between the various eigen-modes of a TE mode. 
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x 

y 

z 

z=0 

a 

b 

d 

a 
d 

z=0 x 
z 

  
A TE01 wave propagates from z    towards the discontinuity at = 0z   

  (inc)
0 z= cos expz

xH H jk z
a

 
 
 

    (3.3.1) 

 in a waveguide of width a  and height b ; note that    2 22 / /zk c a   . At the 
discontinuity the width of the waveguide varies abruptly from a  to  <d a . A direct 
result of the discontinuity is a reflected field described by  

     2 2(ref )
0

=0

= cos exp ; = / /z n n n
n

nxH H z n a c
a

  
      

 
   (3.3.2) 
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 m  are the reflection coefficients of the various modes.  
 
Similarly, the transmitted field is given by  

     2 2(tr)
0

=0

= cos exp ; = / /z m m m
m

mxH H z m d c
d

  
      

 
   (3.3.3) 

m  representing the transmitted coefficient of each mode. Three observations at this 
stage:  

1. The amplitude of both reflected ( )m  and transmitted ( )m will be determined by the 
boundary conditions to be imposed shortly.  

2. The character of the mode (propagating or evanescent) is determined by the angular 
frequency ( )  of the incident wave.   

3. The choice of TE01 is dictated by the need for a simple analysis. If a higher mode is 
launched (e.g. TE11) there will be coupling to TM modes. 

 
 
 
 
 
 

 

a 
d 

z=0 x 
z 
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Step 1: Continuity of the y -component of the electric field 
in the range 0 < <x a  implies  

 
( tr)

(inc) (sc) =0
=0

| 0 < <
( | =

0 < < .
y z

y y z
E x d

E E
d x a


 


    (3.3.4) 

 Faraday's law, in our case 0=x y zE j H  , thus  

 

( )
=0 0

(sc)
=0 0

( )
=0 0

| = sin

| = sin

| = sin .

inc
y z o

y z o m
m

tr
y z o m

m

a xE j H
a

a mxE j H
m a
d m xE j H
m d




 


 




       
   

       
   

          



     (3.3.5) 

 Substituting in (3.3.4) we get  

,1

sin 0 < <
[ ]sin =

0 < < .

m
mm m

m

d m x x da mx
m d

m a
d x a

  





  
      

  

   (3.3.6) 

 Using the orthogonality of the trigonometric function we obtain  

 

a 
d 

z=0 x 
z 
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,1 0

1 1[ ] = sin sin ,
2

d

m m m
m

a d m x mxdx
m m a d a

   
  



           
      (3.3.7) 

 or  
 ,1 = ,m m mm m

m

A   


      (3.3.8) 

 wherein the matrix mmA   is proportional to the overlap integral of the modes from both 
sides of the discontinuity  

 
2

0
ssi in12 n .

d

mm
d mA d m x m
a

x
a

x
m d d

 


          
 
 


 
  

     (3.3.9) 

 
 
Step 2: Continuity of the x -component of the magnetic field in the region 0 < <x d  
implies  

  ( ) ( ) ( )
=0 =0| = |inc sc tr

x x z x zH H H     (3.3.10) 

 and since = 0H
 

 or explicitly  = 0z z x xH H     we get at = 0z   

 

a 
d 

z=0 x 
z 
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 (inc)
0 z01

(sc)
0

( tr)
0

= sin

= sin

= sin ( ).

x

x m m
m

x m m
m

a xH H jk
a

a mxH H
m a
d m xH H
m d










   
 

   
 

     



     (3.3.11) 

 Thus, in the region 0z   and 0 < <x d   

0 ,1[ ]sin = sin ;m m m om m
m

a mx d m x
m a m d

   
   



             
     (3.3.12) 

 this time we use the orthogonality of  sin /m x d   in the range 0 x d   we get  

,1 0

1 1= sin sin ,
2

d

m m m m m
m

d a m mdx x x
m m d d a

   
  

                         
   (3.3.13) 

 or  
 ,1= [ ],m m m m m

m
B         (3.3.14) 

 where the matrix m mB   is also proportional to the overlap integral   

 

a 
d 

z=0 x 
z 
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0

sin12 .sin
d

m
m m

m

a mB dx
d m d

m x
a

x
d

m 




 



 
 


 


  
     (3.3.15) 

We can now write (3.3.8) and (3.3.14) in a vector form  
 = and = ( )A B      

        (3.3.16) 
 respectively. Substituting the expression for   we obtain = ( )AB    

   , or 
[ ] = [ ]I AB AB I  


. Finally the amplitudes of the reflected and transmitted 

amplitudes are given by  

 
1

1

= [ ] [ ]

= 2[ ] .

I AB AB I

I BA

 

 





 




     (3.3.17) 

 For evaluation of the matrices A and B  we need to evaluate the integral  

0

1 sin sin = sinc sinc .
                                  

d m x mx d ddx m m m m
d d a a a

     (3.3.18) 

  
 
 
 
 

 

a 
d 

z=0 x 
z 
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With the amplitudes established we may proceed and evaluate 
the power in the system:  

 

2
2 2

inc 0 ,1 0
=1

2
2 2

ref 0 0
=1

2
2 2

tr 0 0
=1

1= | | Re( )
2 2

1= | | Re( )
2 2

1= | | Re( )
2 2

m m
m

m m
m

m m
m

a aP H b j
m

a aP H b j
m

d dP H b j
m

 


 


 










    
 

   
 

     





     (3.3.19) 

 Assuming that at the operating frequency there is only a single propagating mode in 
each region, then the average power may be written as in a transmission line  

 

2 1
inc 1 1 1 0 1 0

1

2 2
ref 1 1 1

2 2 2
tr 2 1 2 2 0 2 0

2

1= | | = , =
2 2
1= | | | |
2
1= | | | | = , =
2 2

k a abP I Z Z I H
ck

P I Z

k d dbP I Z Z I H
ck






 




    (3.3.20) 

 

a 
d 

z=0 x 
z 
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 wherein    2 2
1 = / /k c a   and    2 2

2 = / /k c d  .  
 
Let us examine closely the normalized reflected power 
    ref inc

1 1/P P 
   in the first mode as a function of the  

frequency:  
1. The power can be injected at frequencies  

above  6GHz (a=2.5cm).  
2. To the point whereby the first mode in the  

second part is above cutoff 
8.485cf  GHz ( = / 2d a )  

the reflection coefficient of the first mode is unity.  
3. Above 8.485GHz power can be transferred to the second part therefore the 

reflected power drops yet       inc ref tr
1 1 1=P P P . 

4. Above 12 GHz for which the second mode in the left-hand side may carry 
power, the power reflected in the first mode decreases further yet beyond 
this point      inc ref tr

1 1 1P P P   but rather        inc ref ref tr
1 1 2 1P P P P   . 
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3.3.2  Step Transition – TM0n  Mode in Cylindrical Waveguide 

 
 

   An additional example illustrating mode-coupling due 
to discontinuity in the transverse geometry is brought next. In 
fact, in this case there are two discontinuities, and the first 
and last sections have the same cross section. It will be 
reiterated that even if the incident wave is composed of a 
single (lowest) mode, the coupling causes other modes that in 
turn may carry part of the electromagnetic energy. 

In the left hand side ( < 0z ) of a cylindrical waveguide 
of radius extR , there is an incident and a reflected TM wave  

 

 

 

(inc)
0 0 1 1

ext

(ref )
0 0

=1 ext

( , ) = exp

( , ) = exp ,

z

z s s s
s

rE r z E J p z
R

rE r z E J p z
R




 
 

 
 

 
 

     (3.3.21) 

 where 2 2
ext( / ) ( / )s sp R c    and s  represents the normalized amplitudes of the 
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Rint 
d 

z 
z = 0
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reflected modes. In the region 0 z d   the radius of the waveguide is 
smaller int ext<R R  however for z d  the radius returns to its initial value. 
Consequently, in the other regions we have  

   

 

( )
0 0

=1 int

( tr )
0 0

=1 ext

( , ) = exp exp

( , ) = exp ( )

d
z n n n n n

n

z s s s
s

rE r z d E J p A z B z
R

rE r z d E J p z d
R







 
       

 
 

   
 




    (3.3.22) 

 where 2 2
int= ( / ) ( / )n np R c  .  As previously, the goal is to determine the 

amplitudes of the transmitted and reflected waves ( s  and s ). For this purpose let us 
concentrate on the field components at = 0z .  

   
   

   
   

(left )
,1 10ext

0 1(left )
,1 11 ext

(d)
0int

0 1(d)
int

exp exp
=

exp exp

exp exp
=

exp exp

s s s
s

s s s ssr

n n n n
n

n n n n n nnr

z zjH R rE J p
z zp RE

j A z B zH R rE J p
A z B zp RE





 
 



       
              

       
            



 


  (3.3.23) 

   
With these field components we impose the boundary conditions at = 0z . Continuity of 

 

Rext 

Rint 
d 

z 
z = 0



 141

the radial electric field implies  

 int

int ext

( , = 0 ) 0 < <
( , = 0 ) =

0 < <
r

r
E r z r R

E r z
R r R


 




       (3.3.24) 

 Using the orthogonality of the Bessel functions  

 ext
2

2ext
1 1 10

ext ext

= ( )
2

R

s s s ss
Rr rdrrJ p J p J p

R R
 

   
   
   

     (3.3.25) 

 we obtain from (3.3.24) 
intint

,1 1 12 0
2 =1ext ext ext int

1

1= [ ]
( )

2

R

s s n n n s n
ns n

s
s

R r rA B drrJ p J p
R R p R RJ p
p

 
    

          
  (3.3.26) 

 or  

 ,1
=1

= [ ],s s sn n n
n

A B 


      (3.3.27) 

 where the matrix sn  is proportional to the overlap integral  
int

3
int

, ,2 3 2 0
1 ext i

1
ex

1
intt tn

1 2,
( )

R
s n

s sn s n s n
n s s

n
rJ p

R
p R U U dr r
p J p

J
RR R
rp

 
 

 
 

 


 
   (3.3.28) 
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The continuity of the azimuthal magnetic field in the region int0 < <r R  is 

( ) ( )( , = 0 ) = ( , = 0 )d dH r z H r z 
  . Again we use the orthogonality of the 

Bessel functions in the inner region   
int

2
2int int ext

1 ,1 1 10
=1 ext int

[ ] ( ) = [ ]
2

R

n n n s s s n
sn s

R R R r rA B J p drrJ p J p
p p R R

 
    

     
   

   (3.3.29) 

 hence  
 ,1= ( ),n n ns s s

s
A B        (3.3.30) 

 where using the definition (3.3.28) we have further defined 

 ext
,2

int 1

1 .
( )

n
sn s n

s n

R p U
R p J p

     (3.3.31) 

 From these expressions we can easily deduce the two equations representing the 
boundary conditions at =z d :  

    
=1

exp exp =n n n n ns s
s

A d B d 


        (3.3.32) 
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    ,
=1

= [ exp exp ].s s n n n n n
n

A d B d


    (3.3.33) 

  All four equations (3.3.27), (3.3.30), (3.3.32), (3.3.33) can be formulated 
in a vector (matrix) notation  

 
   
   
 
   

1 1 1

1 1 1 1

3.3.27
3.3.30

3.3.32 0
03.3.33 0

d d d

d d d

A B A I I
A B B I I

Ae Be A I Ie
B I IAe Be e

  
  

 


  

    

  

           
                  
                                

  
  

  
  

 

   (3.3.34) 
 Substituing we get  
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1 1 1 11 1

1 1 11 1 1

1
0

00
or

0
0 0

d

d

d

d

I I I I
I I I I

I I I I
I

e
e

e
eI I I

 


 










 

 

  

   

    
     

    

    
     

    

    
 

    
   
   

    
   
  

 
   

    
   
   

   
   

   
   

(3.3.35) 

or using a short notation 

 11 12

21 22

=
0

Q Q
Q Q

 


    
    

    
    (3.3.36) 

 thus 11 12 =Q Q    and 21 22 = 0Q Q  . Consequently, 
 1 1

22 21 11 12 22 21= , = [ ] .Q Q Q Q Q Q          (3.3.37) 
 The Figure below illustrates the reflection coefficient and power conservation as a 
function of the frequency. We observe that below the cut-off of the second mode all the 
propagating power is in the first mode. As the frequencies exceed the cut-off of the 
second mode, part of the power leaves the system through the second mode.  
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The reflection coefficient as a function of the frequency and energy conservation of the first mode. Note that as 
long as the higher mode is below cutoff, 2 2

1,11,1| | | | = 1   while above cutoff, energy is transferred from the 

first mode to the second and therefore 2 2
1,11,1| | | | 1   .  
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3.4  Reactive Elements 
 Obstacles in waveguides or transmission lines may cause reflections which in turn 

may be detrimental. Power reflected implies obviously reduction in the transmitted power 
but it entails that some energy is stored in the evanescent waves which develop in the 
vicinity of the obstacle. 

 
3.4.1  Inductive Post 

 
As an example we shall examine a cylindrical post and an incident TE01 mode 
determined by  

    2 2
0 1 1( , ) = sin exp ; = ( / ) ( / ) =p

y
xE x z E z a c j
a

        
 

  (3.4.1) 

In zero order this primary field  
excites in the metallic cylinder a 
current density  

( , ) = ( ) ( )yJ x z I z x d    (3.4.2)  
which may be interpreted as surface 
current density  
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,
=1

( ) = ( ) = sin
    

 
y s m
m

xJ x I x d U m
a

      (3.4.3) 

 hence  

 2= sin . 
 
 

m
dU I m

a a
     (3.4.4) 

 This current generates a secondary field  

  (sec)

=1
( , ) = sin expy m m

m

xE x z m z
a


    

 
     (3.4.5) 

 where 2 2 2= ( / ) ( / )m m a c   . In order to establish the relation between the current's 
"harmonics'' and the secondary field we observe that based on Maxwell's equations the 
magnetic field  

 (sec)

=10

1( , ) = sin exp sgn( )x m m m
m

xH x z m z z
j a




    
 

      (3.4.6) 

 enables via its discontinuity condition  
 ,( , = 0 ) ( , = 0 ) =x x y sH x z H x z J      (3.4.7) 

 to determine the amplitudes of the modes describing the secondary field in terms of the 
current on the filament  
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 0= sin .     
m

m

jI dm
a a


  (3.4.8) 

 We have yet to determine the relation between the current ( )I  in the filament and the 
amplitude of the incident wave. This is done by relaxing the condition of our infinitely 
small filament and imposing that the tangential electric field vanishes on the wall of the 
post. Specifically, averaging the electric field  over the azimuthal coordinate at =r R  we 
must get zero total field, namely  

 
2 ( ) (sec)

= cos0
= sin

[ ] = 0.inc
y y x d R

z R

d E E





      (3.4.9) 

explicitly  
 

   
2 0 ,1

0
=1

exp sin
sin cos 0

exp sin
m m

m m m

E R md d R
aR

    


             
 

    (3.4.10) 

 which formally may be rewritten by defining  

    
2(1)

0

1 exp sin sin cos
2m m

md R d R
a

   


          (3.4.11) 

 and  

    
2(2)

0

1 exp sin sin cos
2m m

md R d R
a

   


          (3.4.12) 
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 hence  

   

(1)
(1) (2)0 01

0 1
(2)=1 0

=1

1 sin = 0 = .
/ sin /

m
m m

m m
m

j E adE I m I
a a j c md a


 




      





 


  

     (3.4.13) 
At this stage we may define the reflection coefficient  

    

   

(1)
1

(2)0

=1

/ sin /
=

/ sin /

mm
m

n n
n

j c md a
E j c nd a

 


 


 






    (3.4.14) 

 or for the fundamental  
   

       

(1)
1

1
(2) (2)
1

=2

/ sin /
= .

/ sin / / sin /n n
n

c d a

c d a j c nd a

  


    




 


 
    (3.4.15) 

 At this point it can be shown that since = 1m  is a propagating mode (1) (2)
1 1= Re( )   and 

the second term in the denominator is pure imaginary  

 
 
 

1 (2)(2)
1

(1) (1)
=21 1

1= .
sin /Im( )1
sin /

n

n n

nd a
j j

d a








 

    


 

    (3.4.16) 

 

x 
a 

b 

d 

y 

2R



 150

 
Based on this last result, we conclude that the post may be represented by a reactance 
since according to the equivalent scheme below 

1
1 1= =

1 2 1 2L LZ j X
  

 
          

 and 
 
 

(2)(2)
1

(1) (1)
=21 1

sin /1 Im[ ] 1= .
2 2 sin /

n
L

n n

nd a
X

d a








 
 

Further simplification, is achieved assuming that R d  we get 

    (1)
0

1sin exp sin sin
2m m m

d dm d R m I R
a a




   

 

       
      (3.4.17) 

 
 

     

(2)

0

0
1

2sin exp sin
2

1sin 2 1 sinc
2

m m

k
m k m

k

dm d R
a
dm I R k I R
a


  



 




   
 

               










 (3.4.18) 

 
thus 
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     

 

20 2 1

=2 0

20

14 sin
2 1

=
sin

k
n k n

n kn n
L

I R I R dn
R k R a

X
J R d

R a









 




             
 
 
 

 
 (3.4.19) 

At the limit 0R   or more precisely assuming  1 and 1nR R    thus 
   1 / 2 / !I x x 

    we get 

 

   
 

1In 2 2 1
2

=2 0

t

2

11 4 1 sin
2 1 2 1 ! 2

=
1 sin

a
R kk k

n

n kn
L

R dn
R k k a

X
d

R a









 
 
  



                 
 
 
 

 
 (3.4.20) 
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Exercise 3.8: Analyze (numerically) the dependence of the normalized reactance on three 
parameters; the angular frequency ( ) , its location ( )d  and its radius ( )R . It is possible 
to simplify the two quantities defined in (3.4.11) and (3.4.12) by using  

                       
=

1exp = ( ) ; ( ) = ( 1) ( ).
2

k k
k k k

k

z t t J z J z J z
t






       
  

(For solution see Appendix 3.11) 
Exercise 3.9: Calculate the energy stored in the vicinity of the post and compare it with  
energy per unit length carried by the incident wave. 
Exercise 3.10: Analyze the ratio of electric to magnetic energy stored around the post. 
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3.4.2  Diaphragm 
 
   Another element (obstacle) 

that may deflect radiation but not 
absorb it is the diaphragm. This is a 
thin metallic layer occupying part of 
the cross-section. Consider a 
diaphragm occupying the region 

< <d x a  its thickness being 
negligible compared to the 
wavelength and the skin depth. The 
electric field is given by 

 

     

 

1
=2

0

1
=2

exp exp sin exp sin < 0
=

sin exp sin > 0.

m m
m

y

m m
m

x xj z j z z m z
a a

E E
x xj ze z m z
a a

     

   





                


            




  

    (3.4.21) 
 Let us denote by   0, 0 ( )yE x z E x    the transverse electric field in the aperture, thus     
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 1 1 0

2= 1: 1 = = ( )sin    
 

d xm dx x
a a

       (3.4.22) 

 
0

22 : = = ( )sin .   
 

d

m m
xm dx x m

a a
       (3.4.23) 

 ( )x  represents the horizontal variation of the vertical electric field  yE .  Continuity of 

xH  in the aperture (0 < < )x d  implies  

1 1
=2 =2

(1 )sin sin = sin sin .
                     

       
 m m m m
m m

x x x xj m j m
a a a a

        

     (3.4.24) 
 Substituting (3.4.23) we get  

1 0
=2

42 sin = sin ( )sin
                     
 

dm

m

x x xm dx x m
a j a a a

   


   (3.4.25) 

 and further multiplying and deviding by 11   and using (3.4.22) we finally obtain  

1
0 0

=21

2 'sin ( )sin = 2 sin ( )sin .
1

d dm

m

x x x xdx x j m dx x m
a a a a

    
 

                             
     

     (3.4.26) 
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 Since the admittance is 1

1

2=
1

LY 





 in the left hand side may be rewritten 

0 0
=2

'sin ( )sin = 2 sin ( )sin .
d dm

L
m

x x x xY dx x j m dx x m
a a a a

   


                    
        

    (3.4.27) 

 So far the formulation is exact (of course subject to the specified assumptions). At this 
stage we multiply both sides by ( )x  and integrate over the cross section of the aperture 
and get   

 

2

0

2
=2

0

( )sin
= 2 .

'( )sin

d

m
L

dm

xdx x m
aY j

xdx x
a








            
          










 (3.4.28) 

which evidently entails that the distribution of the electric field in the aperture 
determines the admittance of the diaphragm as experienced by the wave. For a rough  
approximation we may consider the simplest form of ( )x  that satisfies the boundary 
conditions at = 0x  and =x d  but it ignores edge effect namely,  ( )x x d x  . An 

estimate of the edge effect may be considered by   ( )x x d x     with 0 1  .  
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Exercise 3.11: Compare the admittace using the approximation  ( )x x d x   with that 
evaluated by Lewin (Theory of Waveguides)  

 42= 1 sin .
2

L
dY j

a a
 


       
 

Exercise 3.12: What is the effect of the edge of the diaphragm? 
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3.5  Excitation of Waveguides – Probe Antenna  
 
Coupling of fields from one guide to another may be accomplished by means of 

small antennas by means of small radiating apertures located at appropriate positions in 
the common wall separating the two guides. A completely rigorous solution of the 
antenna boundary-value problem in a waveguide is beyond the scope of this course. 
Nevertheless, by making suitable approximations, solutions which shed considerable 
light on the behavior of antennas in waveguides, as well as providing useful engineering 
results, can be obtained for many practical cases. In this section attention will be confined 
to the small coaxial-line probe. 

 
Input impedance. The type 
of coaxial-line probe antenna 
to be analyzed is illustrated 
next. It consists of a small 
coaxial line, terminated in 
the center of the broad face 
of a rectangular guide, with 
its inner conductor extending 
a distance d  into the guide. 
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In order to have the antenna radiate in one direction only, a short-circuiting plunger is 
placed at a distance L  to the left of the probe. The basic concept is to generate a current 
( )I  at a location where the parallel electric field is maximum -- quarter wavelength 
from a short circuiting plane. 

 

b

y

z

L

2Rint

2Rext

 
  The total field in the waveguide could be found if aE  and aH , the total tangential 

fields in the aperture were known. Unfortunately, these aperture fields are unknown, 
but, if the coaxial-line opening is small, we may, to a first approximation, assume that 
the higher-order coaxial-line modes which being excited, are negligible. The field in the 
aperture will then be that associated with the incident and reflected TEM modes in the 
coaxial line. 
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Relying on Poynting's complex theorem we find by denoting by P  the 
power flow far away from the probe that  

 *1 = 2 [ ]
2 y y M EdVJ E P j W W           (3.5.1) 

 where the current density may be approximated, assuming a thin probe, by  

  2 2
int2

int

( )( , , ) = ( ) .y
I yJ x y z u R x h z L

R
      

    (3.5.2) 

This current density excites a TE nm  mode satisfying  

 
2 2

2
02 2

0

1=y y yE j J J
c j y
 


  
     

    (3.5.3) 

 which in terms of Green's function reads  

   
2 2

0 2 2( , , ) = ( , , | , , ) ', ', ' ', ', ' .
'y y y y

cE x y z j dx dy dz G x y z x y z J x y z J x y z
y




         
  

     (3.5.4) 
 In turn Green's function for our configuration is given by  
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 

 

,0
=1, =0 ,

, ,

1( | ') = (1 )sin sin
2

cos cos exp exp ( )

y m
n m n m

n m n m

x xG r r n n
a aab

y ym m z z z z
b b

  

 

            

                       

 

     (3.5.5) 
 Exercise 3.13: Prove that this is the solution of  

 

2
2

2 = ( ) ( ) ( )

( = 0, ) = 0, = 0, ( , , = 0) = 0.
=0,

y

y
y y

G x x y y z z
c

G
G x a G x y z

y y b

   
 

        
 





 

Substituting (3.5.4) and (3.5.2) in (3.5.1) as well as taking advantage of the probe being 
thin we have  

2 2
*0

2 '2( ) ( | ) ( ) ( ) = 2 [ ]
2 M E

j cdyI y dy g y y I y I y P j W W
y

 


            
   (3.5.6) 

 wherein  
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   

 

,0
=1 ,
=0

2
,

1( | ) = , , = | = , , = = (1 )
2

sin 1 exp 2 cos cos

m
n n m
m

n m

g y y G x h y z L x h y z L
ab

h y yn L m m
a b b



  

    


                    


 (3.5.7) 

 In terms of the current at the aperture of the coax (interface coax-waveguide) the current 
is (0)I  therefore, we may define the input impedance  

 
2

2 [ ]
1 | (0) |
2

M E
in

P j W WZ
I

     
     (3.5.8) 

 hence  
2 2*

0 2 '20 0
( ) ( | ) ( ') ( ) .

d d

in
cZ j dyI y dy g y y I y I y

y



     

      (3.5.9) 

 At the end of the probe the current is zero, therefore, for simplicity sake we assume  

 
2( )( ) = =

(0)
I y y dI y

dI
 

 
 

    (3.5.10) 

 or  
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2 2 2

in 0 2 20 0

2= ( | )
d dy d y d cZ j dy dy g y y

d d d



           

     
     (3.5.11) 

 Let us assume now that except the first mode, all the modes are evanescent. Clearly 
their contribution to the impedance is pure imaginary (inductive). Only the propagating 
mode has both imaginary and real contribution to the impedance  

  

     
22

20
in = sin sin sin cos 1 6

18
d hZ L L j L d
ab c a c

     


                
(3.5.12) 

   
Comment:  The required values of L  and d  
to make = 0X  and = cR Z , so that all the 
incident power is coupled into the guide, 
may be found graphically from a plot of the 

= 0X  and =R constant contours in the 
0k d L  plane. Such a plot is given in the 

figure above for a guide of dimensions 
2.3 1 cm and a probe diameter equal to 
0.23cm at a wavelength of 3.14cm. The 
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intersection of the two curves determines the required parameters. From the figure it is 
seen that the self-resonant length of the antenna, corresponding to = 0L  or / 2 , is 

00.28 . Also it is seen that, for 0k d  less than 1.22 ( < 0.61d  centimeter), a value of L  
which will make = 0X  does not exist. The reason is that the TE10  mode standing wave 
between the antenna and the short-circuiting plunger cannot provide enough inductive 
reactance to counterbalance the high capacitive reactance of a short probe. 
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3.6 Coupling between Waveguides by Small Apertures 
 
 Electromagnetic energy may be coupled from one waveguide into another guide or 

into a cavity resonator by a small aperture located at a suitable position in the common 
wall. For apertures whose linear dimensions are small compared with the wavelength, an 
approximate theory is available which states that the aperture is equivalent to a 
combination of radiating electric and magnetic dipoles, whose dipole moments are 
respectively proportional to the normal electric field and tangential magnetic field of the 
incident wave. This theory was originally developed by H.A. Bethe in "Theory of 
Diffraction by Small Holes", Physical Review, vol. 66, pp. 163--182, 1944. 
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3.7  Surface Waveguides 
 
In addition to the closed cylindrical conducting tube and the conventional TEM 

wave-transmission line, there exists a class of open boundary structures which are 
capable of guiding an electromagnetic wave. The field is characterized by an exponential 
decay away from the surface and having the usual propagation function  exp j z  
along the axis of the structure. Moreover it has a discrete spectrum of eigenmodes. This 
type of wave is called a surface wave, and the structure which guides this wave may be 
appropriately referred to as a surface waveguide. Some typical structures that are capable 
of supporting a surface wave are illustrated in Figure 10. These consist of dielectric-slabs, 
fibers, dielectric-coated planes and wires and corrugated planes and wires.    
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z
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Although surface waveguides have several features which are similar to those of the 
cylindrical conducting-tube guide, they have many characteristics which are quite 
different. Some of the outstanding differences are:   

    1.  Propagation with no low-frequency cutoff.  
    2.  Finite number of discrete modes of propagation at a given frequency.  
    3.  Phase velocity smaller than that of plane wave in vacuum.  
 

3.7.1  Dielectric Layer above a Metallic Surface 
 
Consider a TM mode and for the sake of simplicity, yet without significant loss of 

generality, we shall examine the case when = 0y , or more specifically TM01. This mode 
may be derived from the longitudinal electric field 
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Basic configuration of the open dielectric waveguide. 
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 

2
2

r2

2
2

2

sin 0 < <

( , ) = exp

exp ( ) >
z

A x k x d
c

E x z jkz

B x d k x d
c

 



  
      

 
   
   

    (3.7.1) 

 The x -component of the electric field may be derived using Gauss' law ( = 0)E
 
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 
 




  
      

  
   
   



  (3.7.2) 

 for establishing the magnetic field we use Ampere's law ( 0 r=H j E 
  

)  
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 
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
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   
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 (3.7.3) 
 Continuity of the tangential electric field implies  
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r 2: sin =zE A d k B
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 
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  
    (3.7.4) 

 whereas the continuity of the tangential magnetic field  
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    (3.7.5) 

 These two equations lead to the following dispersion relation  
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2

2
2tan( ) = ,rd k

c
        (3.7.6) 

 where 
2

2
r 2d k

c
   . It is also convenient to define 0 r= 1d

c
    therefore, we 

may write  

 
2 2 2

2 2 2 2 2 2
r 02 2 2= ( 1) =d k d k

c c c
     

 
      

 
    (3.7.7) 

 Consequently, the dispersion relation reads  
 

2 2
r 0tan( ) = .       

 (3.7.8) 
  
The two sides of the equation are plotted in  the figure below 
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Clearly for a single mode operation, we require that 0
r

1< <
1c d

  





. 

 
 

We shall examine what happens at low frequencies i.e. 00, 0   . At this limit the 
dispersion relation reads  

 2 2 2
r 0=        (3.7.9) 

The solution of the fourth order polynomial which corresponds to a low-frquency  
propagating wave is  

2
2 2 2 0
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1= 1 4
2 r r

r

  


 
   
  

     (3.7.10) 

 and now substituting the definitions of   and 0  we 
get  

2
2

eff=  
 
 

k
c
  (3.7.11) 

 which is only weakly dependent on the thickness 
(provided d  ) but is dependent on the dielectric 
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coefficient (but > 1r ). To be more accurate 
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        (3.7.12) 

  where the effective dielectric coefficient is unity. 
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The figure below illustrates the dispersion relation of the system. 
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Our next step is to examine the  energy distribution in the system. Denoting 

   2 22 2
r / and /d c k d k c         we calculate the average electric energy 

per unit surface ( )y z   in the dielectric and the air  

 

 2
( ) 2 22 20 r

20

22

0 r

= sin cos4

sin(2 ) sin(2 )= 1 1
8 2 2

dd
E

kdx xW dx A A
d d

A kdd

   


  
  

        
     

           
     


    (3.7.13) 

  

 

2 2
( ) 2 20

2

2 2
2 20

2

= ( ) 1 exp 2sin
4

= ( ) 1 .sin4 2

air
E d

k d x dW A dx
d

k d dA

  


 
 

          
 
 

 



    (3.7.14) 

 Similarly the average magnetic energy  
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 2 2 2 2 2 2 2 2
( ) 2 220 0 r 0 r

02 20

2 2 2
( ) 2 2 0

0 2

sin 21 1= = 1cos
4 4 2 2

1= sin4 2

dd
M

a
M

d dxW dx A A d
d

d dW A

       
  

  
 

     
   


 

   (3.7.15) 
  
 
The ratio of energy stored in the dielectric relative to 
the total energy is illustrated below as a function of 
the frequency 
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Exercise 3.14: Show that for a dielectric layer ( )r  of thickness 2d  there are even TE 
modes that satisfy  

 2 2
0tan =        (3.7.16) 

 and odd TE modes satisfying  
 2 2

0ctan = .         (3.7.17) 
 
What happens at low frequencies in each case?  Calculate the energy ratio in each case. 
 
Exercise 3.15: A metallic "wire'' of radius intR  is coated with a dielectric layer ( )r  the 
external radius being extR . Show that the radial behavior of a TM on  mode is described by  

0 0 int 0 0 int int ext

0 ext

[ ( ) ( ) ( ) ( ) < <
=

( ) >z

B J r Y R Y r J R R r R
E

AK r r R
    

 
 

wherein 2 2 2= /k c   and 2 2 2= / c k  . Demonstrate that the dispersion 
relation is  

1 ext 1 ext 0 int 1 ext 0 int

0 ext 0 ext 0 int 0 ext 0 int

( ) ( ) ( ) ( ) ( )= .
( ) ( ) ( ) ( ) ( )

K R J R Y R Y R J R
K R J R Y R Y R J R

     


       
 

Analyze the mode. 
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3.7.2  Surface Waves along a Dielectric Fiber 

k
R

r

z


 
As a second example of a structure capable of supporting a surface wave, we 

consider a dielectric rod of radius a , as in the figure above.  Dielectric rods are similar in 
behavior to dielectric sheets in that a number of surface-wave modes exist. Pure TM or 
TE modes are possible only if the field is independent of the azimuthal coordinate  . As 
the radius of the rod increases, the number of TM and TE modes also increases. These 
modes do, however, have a cutoff point such that, below some minimum value of 0/R  , 
the mode cannot exist any longer. All modes with angular dependence are a combination 
of a TM and a TE mode, and are classified as hybrid EH or HE modes, depending on 
whether the TM or TE mode predominates, respectively. All these modes, with the 
exception of the HE11  mode, exhibit cutoff phenomena similar to that of the axially 
symmetric modes. Since the HE11  mode has no low-frequency cutoff, it is the dominant 
mode. For small-diameter rods, the field extends for a considerable distance beyond the 
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surface, and the axial propagation constant   is only slightly larger than 0k . As the radius 
increases, the field is confined closer and closer to the rod, and   approaches 0 r= k   
in the limit of infinite radius. Since 0> k , the phase velocity is less than that of plane 
waves in free space. In all of the above respects, the dielectric rod does not differ from 
the plane-dielectric sheet.  Omitting  the term  exp jn j z   , the field expansion 
components are 
r R r R  

0
2

0
2

2

2

= ( )

= ( ) ( )
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r n n n n

n n n n

E A J r
njE A J r B J r

r
jnE A J r B J r

r
H B J r

n jH A J r B J r
r

j nH A J r B J r
r









 

 



   
 

   
 



  
 

   
 

 

0
2

0
2

0
2

0
2

= ( )

= ( ) ( )

= ( ) ( )

= ( )

= ( ) ( )

= ( ) ( )

z n n

r n n n n

n n n n

z n n

r n n n n

n n n n

E C K r
njE C K r D K r

r
jnE C K r D K r

r
H D K r

n jH C K r D K r
r

j nH C K r D K r
r









 

 



   
 

  
 



   
 

   
 

 

 



 178

 
2

2 2
2=

c
    and 

2
2 2

2=
c
  ; , , ,n n n nA B C D  are normalized amplitude; and the 

prime indicates differentiation with respect to the arguments r  or r . 
Imposition of the boundary conditions at =r R  leads to equations for determining 

the relative amplitudes of the coefficients, and also the eigenvalue equation. The 
eigenvalue equation is  

22 2
1 2 1 2 2 1

2 2
1 1 2 2 1 1 2 2 0 1 2

( ) ( ) ( ) ( ) ( )=
( ) ( ) ( ) ( )

n n n n

n n n n

J u K u J u K u n u u
u J u u K u u J u u K u k u u
          

      
     

   (3.7.18) 

 where 1 2= , =u R u R  . When = 0n , the right-hand side vanishes, and each factor on 
the left-hand side must equal zero. These two factors give the eigenvalue equations for 
the axially symmetric TM and TE modes:  

 0 1 0 2

1 0 1 2 0 2

( ) ( )= TM modes
( ) ( )

J u K u
u J u u K u
  

    (3.7.19) 

 0 1 0 2

1 0 1 2 0 2

( ) ( )= TE modes.
( ) ( )

J u K u
u J u u K u
 

     (3.7.20) 

 In addition, 1u  and 2u  are related by the equation  

  
2

2 2
1 2 = 1 .u u R

c
     
 

    (3.7.21) 
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The ratio of   to 0k  as a function of 02 /R   
for a polystyrene rod is given below for 
axially symmetric TM1 and TE1 modes and 
the HE11  dipole mode. Both the TM1 and 
TE1 modes are cut off for 02 < 0.163a  , 
while the HE11  mode has no low-frequency 
cutoff. 
 
 
Comments:       
1.  The problem of exciting surface waves 
differs somewhat from that of exciting a 
propagating mode in an ordinary closed-
boundary guide, in that some of the power radiated by the source goes into the 
propagating field – not necessarily bounded to the dielectric.  
 2.  The conclusion reached in (3.7.12) that there is smooth "transition'' to 0  is not 
general for surface waves. In order to demonstrate this fact let us return to (3.7.19). It is 
possible to write the dispersion relation in the following form  

= 2.56

0.2 0.4 0.6 0.8 1.0 1.21.0

1.1

1.2

1.3

1.4

1.5

11HE 1TE 1TM

0.613

0/2 a

0
/k


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 

 
2 2

1 0
1

2 2 2 2
r 00 0 0 1

1 1 ( )= .
( )

J K
KJ

  
     



 
    (3.7.22) 

 wherein 0 = 1R
c
    and 2 2 2= /R k c   as a function of the frequency for 

several phase velocities reads  

 1

r 0

1 1 1 ( )= .
2 ( )

K
K


  

    (3.7.23) 

 The solution denoted by r( )c   implies  

 
22 2

2 2 2 2 r
2 2 2

( )= = c
c R k k

c c R
  

 
  

 
     (3.7.24) 

 and since for example for r = 3 , the solution is = 0.963c , we conclude that there is no 
solution which is consistent with the assumption 0  . Consequently, there is no 
solution at low frequencies.  
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3.8  Transients in Waveguides 
 
In any waveguide, the phase velocity phv , is a function of frequency. As a 

consequence, all signals having a finite frequency spectrum will undergo dispersion when 
transmitted through a length of guide. The phase relationship between the frequency 
components of the original signal at the feeding point continually changes as the signal 
progresses along the guide. Any realistic analysis should take into account the frequency 
characteristics of the antenna or aperture that couples the signal into the guide as well as 
the characteristics of the circuit elements used to extract the signal at the receiving end. In 
this section we shall consider only the properties of the guide itself. The effect of losses 
and their variation will also be neglected. In practice, this does not lead to significant 
errors, because in most cases the frequency bandwidth of the signal is relatively narrow, 
and the mid-band frequency of operation is usually chosen far enough above the cutoff 
frequency so that the attenuation curve is approximately constant throughout the band. 

Before some time, which we choose as the time origin = 0t , the disturbance in the 
guide is zero. When a current element is introduced into the guide, a disturbance or signal 
is generated. This signal is a solution of the time-dependent field equations. Let 

( , ), ( , )r rt t   be the time-dependent field vectors. For a unit impulse current element 
( )t t   applied at time =t t and located at the point ( , , )x y z   , the field vectors are a 

solution of  
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0

0

=

= ( ) ( ')

t

t t
t



  


 


     


s r r




     (3.8.1) 

 where t  is a unit vector giving the direction of the current element, and r  designates the 
field point ( , , )x y z , while 'r  designates the source point or location. If the Laplace 
transform of these equations is taken, we get  

 

0

0

( , ) = ( , )

( , ) = ( , ) ( ')

s s s
sts s s e



 

 
  

E r H r

H r E r s r r     (3.8.2) 

 
0

stwhere ( ,s)= ( ,t)e dt
 E r r  

 with a similar definition for ( , )sH r . These equations are formally the same as those 
obtained by assuming a time dependence j te  , and the solution may be obtained by the 
methods we have previously discussed. All our previous solutions may be converted into 
solutions of (3.8.2) by replacing j  by s  and j te   by ste  . The Laplace transform has 
the effect of suppressing the time variable. The solution to (3.8.2) constitutes the Laplace 
transform of the time-dependent Green's function. Inverting the transform yields the 
time-dependent Green's function. For an arbitrary spatial and time variation, the solution 
may be obtained by a super position integral. 
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If we restrict ourselves to a line current extending across the narrow dimension of a 
rectangular guide, the appropriate Green's function corresponding to ( )yE r   

 2 2 2 1/2
0

1/22 2 2=1

exp [( / ) / ] | |
( | ', ) = ( ) ( )

( / ) /
n n

n

s st n a s c z z
G s x x

a n a s c

  


      
  

r r  (3.8.3) 

 where ( ) = sin( / )n x n x a  . The inversion of this expression gives us the time-dependent 
Green's function corresponding to the disturbance set up in the waveguide by an impulse 
line current located at ,x z  . A typical term from (3.8.3) gives  

 1/22 2 2

1/22 2 2

2 2 2 1/2
0

exp ( ) ( / ) / | |1
2 ( / ) /

| |[ ( ) ( ) ] 0 < <
=

0 otherwise

C

s t t n a s c z z
ds

j n a s c

n z zcJ c t t z z t t
a c



 



      

  
         

 




  (3.8.4) 

 where 0J  is the Bessel function of the first kind. At any given distance | |z z  from the 
source, the disturbance is zero until a time = | | /t t z z c    is reached when the presence 
of the signal first becomes known to the observer at this position. No information reaches 
the observer in a time interval less than the time required to propagate a disturbance with 
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the velocity of light. The velocity of light is, therefore, the wavefront velocity. 
The time derivative of the above function is  

 
3

2 2 2 1/2
12 2 2 1/2

( / )( ) [ ( ) ( ) ]
[ ( ) ( ) ]

c n a t t nJ c t t z z
c t t z z a

             
    (3.8.5) 

 where 1J  is the Bessel function of the first kind and order 1. The solution for the time-
dependent Green's function which is equal to ( , )y tr  becomes  

   2 2 2 1/2
1

2 2 2 1/2
=10

( / )[ ( ) ( ) ]1( | ', ) = ( ) ( ) ( )
[ ( ) ( ) ]n n

n

J n a c t t z znt t x x c t t
a a c t t z z

  


    
   

   r r (3.8.6) 

 for < < | | /t t t z z c     and zero otherwise.  
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3.9  Waveguide Based Cavities 
  

3.9.1  Power and Energy Considerations 
The goal of this sub-section is to determine a general relation between power, energy and 
impedance at the input of an electromagnetic device. We shall consider the power in a 
volume V  and an envelope S ; through this envelope an average power P  crosses  

  *1= Re .
2

P E H ds 
       (3.9.1) 

 Thus based on the complex Poynting theorem  
* * * *1 1 1 1( ) = 2 .

2 4 4 2V V
E H ds j dV B H E D E J dV             
       

   (3.9.2) 

 Assuming linear medium characterized by = j    , = j     and   we can 
separate the real and imaginary part of this theorem  

 * 2 2 21 1 1 1Re = 2 | | | | | |
2 4 4 2V

E H ds dV H E dV E                   
    

 * 2 21Im = 2 | | | | .
2 4 4V

E H ds dV H E 
              

        (3.9.3) 

  
 



 186

Several comments are in place   
1.  The terms proportional to  or   can be interpreted as loss. 
2.  The reactive energy flow into the volume V  equals exactly 2  the reactive energy 
     difference ( )M EW W  stored in the volume. 
3.  In terms of a lumped parameters ( RLC ): if the current at the entrance is denoted by I   
     and the voltage V , we may write the complex power at the input as  

 * * *1 1 1 1= = ,
2 2 2
VI ZII II R j L

j C



 

  
 

    (3.9.4) 

 where 2| | / 2LP R I  represents all losses in the system, 2| | / 4MW L I  represents the 
average magnetic energy stored in the system whereas 2| | / 4EW C V  represents the 
average electric energy stored in the system hence   

 * 21 1= | | = 2 ( )
2 2 L M EVI Z I P j W W      (3.9.5) 

 or  

 
2

2 [ ]= .1| |
2

L M EP j W WZ
I

      (3.9.6) 

This can be conceived as a generalization of the impedance concept.  
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3.9.2  Rectangular Waveguide Cavity 
 
 

x

y

z
a

db

 
 

Consider a rectangular waveguide shortened at = 0z  and =z d . Without shortening 
plates the wavenumber is given by  

 
1/22 22

2= .nm r r
n m

c a b
    

         
    

    (3.9.7) 

 Because of the shortening planes  

 =nm
l

d
     (3.9.8) 



 188

 thus the resonance frequencies are given by  

 
1/22 2 2

, ,
1= .

2n m l
r r

c n m lf
a b d
  

  

             
      

    (3.9.9) 

We shall examine next electromagnetic field characteristics in a cavity. In particular we 
shall calculate the quality factor of a 101TE . Choosing > >d a b , this is the lowest mode. 
It has the following field (non-zero) components  

 

0

cos

sin

sin

z

x

y r r

xj z j zH Ae Be
a

j a xj z j zH Ae Be
a

j a xj z j zE Ae Be
c a

 

  

    


         
         

          

    (3.9.10) 

 Bearing in mind that yE  vanishes at = 0z  we obtain = 0A B  and applying the 

same condition at =z d  we get = 0 si2 n( ) = 0j d j dAe Be jA d        therefore 
for a non trivial solution   has to satisfy =d l   which is just (3.9.8).  
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Consequently, the mode 101TE  is described by  

 

1/22 2

2

( , ; ) 2 cos sin

( , ; ) 2 sin cos

( , ; ) 2 sin sin

z

x

y

x zH x z jA
a d

a x zH x z jA
d a d

a a x zE x z A
d d a d

 

 

    


        
   
       
   

              
       

    (3.9.11) 

 The electric and the magnetic energy stored in the system  

 
2 2 2

2 2 2
2 2 20 0 0

1 1= | | | 2 | =
4 4 2 2

a b d

E o y o M
a a dW dx dy dz E A b W

a d
   


 

  
 

    

Clearly at resonance the electric energy equals the magnetic energy stored in the system 
therefore the total average energy stored in the cavity is 

 
2

2
2

1= 2 = ( ) 1 | | .
2T E o

aW W bad A
d


 
 

 
    (3.9.12) 

 Next we shall calculate the loss. The surface current is given by =sJ n H
   therefore the 

dissipated power is given by  
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 

2 22
2

loss

2 3 3 3 3 2

| |1 1 1 1= = = = | |
2 2 2 2

=| | 2 2 /

s x s
x

s

J H RJP da da da da H

A R a b d b ad da d

 
   

 
 
 

  

     (3.9.13) 

 Consequently, the quality factor  

 
   

3/22 2 3

2 3 3 3 3

/ / ( )2= = = .
2 (2 2 )

T E

loss loss s

a d adW WQ
P P R a b d b a d d a

   


  
  

    (3.9.14) 

 As an example consider the following parameters  
       

 

7
Cu

0

0.14 nsec5.8 10 Ohm/m , = = = 3 cm = 7.0 GHz , = 1/

0 0.5.02 8 ms2 , 12700, = 2 = / ec/ .s

a b d f T f

R Q Q Q f



  

 



 

  
 

In the case of dielectric losses  

ef

2
loss,

loss f,

1 2= | | = 1 1=
2

1=
d

E
d dV

d

WP dV E Q
P Q Q Q
 




  



   (3.9.15) 

 since the total power loss is the sum of the two mechanisms. 
 
Exercise 3.18: Check whether (3.9.13) is correct. In particular check if zH  does not 
contribute to the relevant surface current. Calculate the impedance in (3.9.6).
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3.9.3  Cylindrical Resonator 
 
In this subsection we briefly repeat the 

previous exercise in cylindrical geometry. 
Consider a cylindrical waveguide of radius R . 
with two shorting planes at = 0z  and =z d . 
We shall examine in this case the 11TE  mode  

 1 11= cosz
r j z j zH J p Ae Be
R

          
 (3.9.16) 

wherein 11 = 1.841p .  Determine all the other field components!!  As in the previous 
subsection 

 
( = 0, ) = 0

2 sin( ) = = / .
( = 0, ) 0

rE z d
jA d d d

E z d

    

    

   (3.9.17) 

 thus 

 
1/22 2

11= .p
c d R
         

    
    (3.9.18) 

  
 

 

2R

d
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Exercise 3.19: Prove that the quality factor for a TE mode is given by  

  

 

 

3/22 2
2

22
2

1
1=

2 1 2

nm
nmTE

nml

s
nm

nm

n lp R
p d

Q
R l R nl Rp Rc d d d p d



  

                     
                 

    (3.9.19) 

 For a TM mode the quality factor is given by  

  

1/22
2

0

> 0
1 1 2=

= 0
1

nm

TM
nml

s
nm

lp R
d

lR
Q d

pc lR
d



 

         

 






    (3.9.20) 

  
Exercise 3.20: Retrieve the result in (3.9.19)--(3.9.20). Compare to a rectangular cavity 
of the same volume or same surface. 
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3.9.4  Open Resonator – Circular  Geometry  
 

In many cases the cavity relies on evanescent waves that decay in one direction and they 
do not carry any power in that direction. One example is illustrated below: A cylindrical 
waveguide of radius R  with a short-circuiting plane at z=0, a dielectric  r  of thickness 
d .  

  
Exercise 3.21: Determine the resonant frequency and the 
quality factor for a TMnm mode. Repeat the exercise for 
TEnm mode. Consider both metallic and dielectric loss. 

 
 
 
 
 
 
 
 
 
  

2R

d

r
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3.9.5  Exciting a Cavity 
 
 

There are two main methods to excite cavities: with coaxial 
line (electric or magnetic coupling) or with a waveguide 
through an aperture.   

 
In what follows, we shall consider a simple example 

of excitation of a cavity by a waveguide through a small 
(circular) aperture of radius 0r  as illustrated in lower frame.  
Ignoring loss processes the input impedance is given by the 
parallel impedance of the aperture  

 ( )( tan )= .
tan( )

L
in

L

j X j dZ
j X j d




    (3.9.21) 

 To include propagation loss (still assuming ideal aperture) the input impedance is  

 tanh( )= .
tanh( )

L
in

L

j X d j dZ
j X d j d

 
 


 

    (3.9.22) 
 

Cavity

Waveguide Aperture

Coaxial
line

(a)

Coaxial
line

(b)

(c)

0z

1cZ LXj

y

z

b

dz 
d d

02r

 a  b
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 In case of a TE10  the normalized impedance of the aperture is 
2

0
0

8=
3

L
rX r

ab
 


 
 
 

 

revealing that this is proportional to the areas ratio. For low loss  

 ( ) tan( )
tan tanh( )

L
in

L

j X j LZ
j X j d


  

     (3.9.23) 

 and the condition for resonance  
 ( ) tan = 0LX        (3.9.24) 

implies that at resonance ( 0  ) 

 
2

0( = ) .L
in

XZ
d

 


     (3.9.25) 

 In the vicinity of the resonance  

 
2

in 0
in

0 0
= =0 0

( = )( )
( ) 1 ( )

L ZXZ
jd j
d   

 
    

  
        
 

    (3.9.26) 

 Since for an RLC circuit the impedance in the vicinity of the resonance is 
  1

in in 0 0( ) ( = ) 1 ( ) /Z Z j          we conclude by analogy that the bandwidth is 
 0/ =d       implying that the quality factor  0 0 0/ = /Q d         . 
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Comment: It is interesting to note that  0=   depends on the group velocity since 
=LX U d   

 
 

 
0

0 2
= 0

2 2

1= = [ tan( )] =
cos

= 1 tan = [ 1 ( ) ]
gr gr

U d d d U
d

d dU d U U d
V V

 

 

   
  

 


        

     



  (3.9.27) 

 where 
2

0 08=
3

r rU
ab d



 
 
 

 implying that the quality factor is inversely proportional to the 

group velocity in the waveguide consisting the cavity  0= 1/ grQ V   . 
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3.10  Wedge in a Waveguide 
  
3.10.1  Metallic Wedge 
The goal of this section is to analyze a wave guide of a circular cross-section but which 
lacks a slice as illustrated below 

 
In order to keep the problem relatively simple, we shall limit the discussion to the 
evaluation of the cut-off frequency.  For this purpose we recall that in Section 2.1 we 

 

x

y



2R
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found that  

 

z
2 2

z
2 2

2 2 2

= 1

= 1

z z z

z z z

jk jE E H
k k
jk jH H E
k k

k k





 

  
 

  
 



   

   

 




 (3.10.1) 

And both longitudinal components satisfy the wave equation. Limitint the analysis to the 
cut-off frequencies 0zk   these equations simplify 

 

1 1
1= 1

1

1 1
1= 1

1

r z

z z

z

r z

z z

z

E H
j r

E H
j E H

j r

H E
j r

H E
j H E

j r





 




 




 

 

        
 

        
 





 (3.10.2) 

and the wave equation simplifies  

 



2R
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2
2

2 2

1 1 0z

z

E
r

Hr r r r
 


    

         
                                      (3.10.3) 

 Obviously, the solution of this set of equations describe a resonator 
whereby the field does not vary in the z-direction. 
 
For the TM modes the solution is of the form  

        , cos sinzE r J qr A B       (3.10.4) 
subject to the boundary conditions  

 
 
 
 

, / 2 2 / 2 0

, / 2 0

, 2 / 2 0

z

z

z

E r R

E r

E r

   

 

  

    

 

  

 (3.10.5) 

The first condition implies that  
   0J qR   (3.10.6) 

wherein q  is yet to be determined and from the other two conditions we will specify :   

 
     
     

, / 2 0 cos / 2 sin / 2 0

, 2 / 2 0 cos 2 / 2 sin 2 / 2 0
z

z

E r A B

E r A B

   

        

    

             
(3.10.7) 

or explicitly 

 



2R
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   
   

cos / 2 sin / 2
0

cos 2 / 2 sin 2 / 2
A
B

 
     

  
             

                    (3.10.8) 

For a non-trivial solution the determinant of the matrix is zero 

 1
2 2 /

n n
   

 
 

 (3.10.9) 

wherein 1,2,3....n   .  Now that we have determined   we may proceed and establish 
the zeros of the Bessel function: 

  1
2 /

0
n

J p
 

  (3.10.10) 

As an example let us consider three Bessel 
functions in one case 1   and for 
comparison we illustrate below /5   
thus   1 5/9n     and  2 10 /9n    .  
Obviously the Bessel function of a non-
integer order has also zeros: 

,n sp 1s   2s  3s   
1  3.832 7.016 10.173

( 1) 5/9n    3.220 6.366 9.509 
( 2) 10 /9n    3.981 7.175 10.337

0 5 10
0.5

0

0.5

1

Jn 1 x( )

Jn  x( )

Jn 2  x( )

x

 


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 Explicitly  

 
 

 

, 1 ,
, 1 2 /

, 1
2 /

/ 2, sin
2

: 0

z n s n snn s

n s n

rE r U J p n
R

p J p
 

 

  
 



 



          





 (3.10.11) 
 
and the cut-off frequencies are determined by  

 co ,n s
c p
R

   (3.10.12) 
  
 
The top frame in the right reveals the contours of constant zE  for 

1and 1s n  . The central frame illustrates the case 1and 2s n   
whereas the lower frame corresponds to 2and 1s n  . 
 
 
 
 

Ez2

Ez

Ez3

 


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A similar approach may be followed for the TE modes   

        , cos sinzH r J qr A B       (3.10.13) 
subject to the boundary conditions  

 

 
 
 

, / 2 2 / 2 0

, / 2 0

, 2 / 2 0
r

r

E r R

E r

E r

    

 

  

    

 

  

 (3.10.14) 

The first condition [Eq. (3.10.2)] implies that  

   0
r R

d J qr
dr 



    
 (3.10.15) 

wherein q  is yet to be determined and from the other two conditions we specify :   

 
     
     

, / 2 0 sin / 2 cos / 2 0

, 2 / 2 0 sin 2 / 2 cos 2 / 2 0
r

r

E r A B

E r A B

   

        

     

              
(3.10.16) 

or explicitly 

 
   
   

sin / 2 cos / 2
0

sin 2 / 2 cos 2 / 2
A
B

 
     

   
              

                    (3.10.17) 

For a non-trivial solution the determinant of the matrix is zero 
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 1
2 2 /

n n
   

 
 

 (3.10.18) 

wherein 1,2,3....n   .  Now that we have determined   we may proceed and establish 
the zeros of the Bessel function: 

  1
2 /

0
n

J p
 

   (3.10.19) 

From here the approach is virtually identical   

 
 

 

, 1 ,
, 1 2 /

, 1
2 /

/ 2, cos
2

: 0

z n s n snn s

n s n

rH r U J p n
R

p J p
 

 

  
 



 



          
  


 (3.10.20) 

Exercise 3.22: Draw the contours of constant zH . Compare the field distribution of the 
TE and TM modes.   For both modes compare the magnetic and electric energy per-unit 
length. 
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3.10.2  Dielectric Wedge 
The goal of this section is to analyze a waveguide of a circular 
cross-section but which has a material  ,r r   slice as illustrated 
below 
 
As in the metallic case we keep the problem relatively simple, and 
limit the discussion to the evaluation of the cut-off frequency. As a 
result, we can separate the analysis of the TE and TM modes.  So 
let us start with the TM mode.  
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
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A differential approach (separation of variables) is not applicable since the radial 
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variation needs to be the same in both regions but if this is the case the function does not 
satisfy the wave equation.  We must seek an integral approach.  For determining the cut-
off frequencies associated with the TM-like modes we need to solve  

  
2 2 2

2 2 2 2

1 1
z zr E f E

r r r r c c
  


   

       
 (3.10.21) 

wherein  f   is a function which equals 1r r    in the region(s) with material and zero 
otherwise.  A solution which satisfies the boundary conditions  

    , ,
1

, expz n s n n s
n s

rE r J p jn
R

 
 

 

   
 

   (3.10.22) 

substituting in (3.10.21) we get 
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   
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F d f j n m










  

  

  


 

 



 
    
 

 

    

 

 



 

 (3.10.23) 
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Rewriting 
2

, , 2
, , , , , , , ,

1

s s s
m m n n m n m s n s n n n s

m
R F p

c


 


    
 

 

        
    (3.10.24) 

  
and defining the matrices  

    

,
,

, , ,, , , , 2
, ,

s
m n

n m n m sn s m s s
n n n s

C F
p






 


     (3.10.25) 

thus defining /R c  . 

      
 

     
 

2
, , , , , , , ,

, ,
n s m m n s m m

m m
C I   

 

    (3.10.26) 

implying that the (square of the ) cut-off frequencies are the inverse of the eigen-values 
of the matrix C  

 2 0 C I . (3.10.27) 
 
Exercise 3.23: Calculate the first cut-off frequency of a waveguide with dielectric slice 
identical with the metallic slice. Compare the two results.  Examine the convergence of 
the solution. 
 
Exercise 3.24: Repeat Exercise 3.23 for the TE mode including the formulation. 
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3.11  Appendix 
  
3.11.1  Solution to Exercise 3.8 

  Analyze (numerically) the dependence of the normalized reactance on three 
parameters; the angular frequency ( ) , its location ( )d  and its radius ( )R . 

 
 

 
The normalized reactance of a cylindrical post located 

in a rectangular waveguide as a function of f . The 
normalized reactance given by Eq. (3.4.20) is shown to 
increase with frequency, which implies an inductive behavior. 
[ = 2.5a  cm, = 1b  cm, = 1r , = / 2 = 1.25d a  cm, 

= / 20R a , = 2,3, 200n  ].  
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The normalized reactance of a cylindrical post 

located in a rectangular waveguide as a function of 
d . The solid line and the dotted line correspond to 

= 8f  GHz and = 10f  GHz, respectively. A 
minima in the normallized reactance is observed at 
the middle of the rectangular waveguide, whereas 
close to the edges the normalized reactance 
increases. [ = 2.5a  cm, = 1b  cm, = 1r , = / 20R a , 

= 2,3, 200n ].  
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The normalized reactance of a cylindrical post 

located in a rectangular waveguide as a function of 
R . The solid line and the dotted line correspond to 

= 8f  GHz and = 10f  GHz. In this figure the post 
is assumed to be located at the middle of the 
waveguide. [ = 2.5a  cm, = 1b  cm, = 1r , 

= / 2 =12.5d a  mm, = 2,3, 200n  ]. 
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The normalized reactance of a cylindrical 
post located in a rectangular waveguide as a 
function of R . The solid line and the dotted line 
correspond to = 8f  GHz and = 10f  GHz, In 
this figure the post is assumed to be located close 
to one of the edges of the waveguide. [ = 2.5a  
cm, = 1b  cm, = 1r , = 5d  mm, = 2,3, 200n  ].  
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Chapter 4 
Matrix Formulations 
 
4.1  Impedance Matrix 

Consider an N  port systems that is characterized at a given frequency by set of complex 
numbers ijZ   i.e. 22N  parameters  

 

11 1

1

1 1

2 =

N

NN NNN

Z Z

Z Z

V I
V

V I

 
 
 
 
 

   
   
   
   
   
    


 







    (4.1.1) 

  

or, explicitly, 
=0

= .i
ij

j
k j

VZ
I I 

 

   (4.1.2) 
  
 
 
 

1V

2V

NV

1I

2I

NI
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In a similar way we can define the admittance matrix  

 

1 111 1

21 2

1

2 2

= .

N

N

N NN NN

Y Y
Y Y

Y Y

I V
I V

I V

 
 
 
 
 
 
 

   
   
   
   
   
   
   

    









 
 

    (4.1.3) 

Example: For the sake of simplicity, let us determine the Z  matrix of a section of 
transmission line. 
This two port system is characterized by  

 1 11 12 1

2 21 22 2

=
V Z Z I
V Z Z I
     
     
     

    (4.1.4) 

 and for example the first term is  

 1
11

1 =02

= VZ
I I

    (4.1.5) 

 wherein 2 = ( = )I I z  . Without loss of 
generality, the voltage and current wave are 
given by  

1I 2I

1V 2V

0Z Z

0Z


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 ( ) = j z j zV z V e V e 
 
   

 1( ) =
o

j z j zI z V e V e
Z

 
 
   

    (4.1.6) 

 respectively. At the "input'', i.e. at = 0z   

 1 1
1= = ( ).

o

V V V I V V
Z         (4.1.7) 

 Based on (4.1.5) we explicitly have  

 11 =
( )=0

o
V VZ Z
V V I
 

 


 

    (4.1.8) 

 wherein the condition ( ) = 0I   implies  

 1 2( ) = = 0 =
o

j j jI V e V e V V e
Z

  
   
    

        (4.1.9) 

 hence  

 11

21 cos( )= = = ctan( )2 sin1




   o o o

jeZ Z Z jZj je

   
    (4.1.10) 

  
 11 = ctan( ). oZ jZ      (4.1.11) 
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 In a similar way we may establish the other parameters of the matrix. For example,  

 1
12 0

2 =01

= =
( )

V V VZ Z j jI V e V eI  
 

 


    

      (4.1.12) 

 and since  1
1= =

o

I V V V V
Z       we get  

 0
12 0

2= =
sin( )

jZZ Z j je e  


    
    (4.1.13) 

  
 In a similar way 21 12=Z Z  and 22 11=Z Z  implying 
  

 
ctan( )

sin= .
ctan( )

sin

  
 

 
  

o
o

o
o

jZ
jZ

Z
jZ

jZ







    (4.1.14) 
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4.2 Scattering Matrix 
 

In many cases it is more convenient to measure the 
amplitudes of the reflected and transmitted waves 

 
 

 

1 111 1

2 2

1

=

N

N NNN N

v vS S

v v

S Sv v

 

 

 

                                   



 
 



    (4.2.1) 

  

 1 1
1 1

o o

v vv v
Z Z

 
 
      (4.2.2) 

 the reason for this normalization becomes evident since  

 
*2 *1 ( ) 1= = = ( ) .

2 2 2o o

V VP V v v
Z Z

 
      (4.2.3) 


1V


1V


2V


2V


NV


NV
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 The S  matrix elements are defined by  

 
=0

= .i
ij

j k j

vS
v v







    (4.2.4) 

 In order to achieve = 0kv


 the port is loaded with a 
matched impedance, namely    

the diagonal term iiS  represents the reflection 
coefficient at the i th port when all the other ports are 
matched. 

Describing linear systems, both S  and Z  matrices 
are interrelated. Firstly it is convenient to define 

= ij
ij

o

Z
Z

Z
, =

o

vv
Z

 and = oI I Z  consequently 

=v v v
 
  and =I v v

 
 . 

Using now the definition of the Z  matrix  
 = =v v v Z v v

      
    (4.2.5) 

  

0Z 0Z

0
kv


kv
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 [ ] = [ ]I Z v I Z v
 

       (4.2.6) 
 thus since =v Sv

 
  

 1= ( ) ( ).S Z I Z I      (4.2.7) 
 
 
Properties of the S  matrix:   
 
Property #1:  If the system is reciprocal S  is symmetrical  

 = or = .tij jiS S S S     (4.2.8) 

This is true provided that at all ports the power is given by 21 | |
2

nv  i.e. characterization 

impedance at all ports is the same. In order to prove this statement we recall that based on 
Lorentz reciprocity theorem (in absence of sources)  

1 2 2 1 = 0 =i j j is i j
E H E H nds E H da E H da          
           (4.2.9) 

 and since the electric field is associated with the voltage whereas the local magnetic 
field is linked to the current 1 1 2 2,E V H I   thus  

 = .i j j jV I V I     (4.2.10) 



 218

 Bearing in mind that =i j ij jI Y v  and =j i ji iI Y v  we conclude that  
 = = =i j i jij ji ij ji ij jiv v Y v v Y Y Y Z Z      (4.2.11) 

 Namely both the admitance and impedance matrices are symmetric aobviously since 
1= ( ) ( 1)S Z I Z   if Z  is symmetrical so is S   

 = .ij jiS S     (4.2.12) 
 
Property #2. For a lossless system, S  is unitary namely  

 1 * *= ( ) ( ) = .TS S S S I      (4.2.13) 
For prooving this statement we bear in mind that power conservation implies  

   
 

* * **

* * *
**

0 0

0 0

T TT T

T T T
t t

v v v v v I v Sv Sv

v I v v S S v v I S S v

      

     

                              

                                     

  (4.2.14) 

 
Example: Consider a two ports system with a load LZ  at the output 
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1 111 12

21 222 2

=
S Sv v
S Sv v

 

 

        
       

    (4.2.15) 

 whereas the load  

 2

2

= = = .L o
L L

L o

Z Z vS
Z Z v









    (4.2.16) 

 Combining the two entails  
 1 1 2 1 211 12 11 12= = Lv S v S v S v S S v

    
   

 2 1 2 2 121 22 22 21= (1 ) =L Lv S v S S v v S S S v
    

       (4.2.17) 
Thus the reflection coefficient  

 1 12 21
11

1 22

= = = .
1

L
in in

L

v S S SS S
v S S




 


    (4.2.18) 

 
 


1v


2v


2v

LZ


1v
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4.3  Transmission Matrix 

 1 2

1 2

=
V VA B
I IC D

    
    

    
    (4.3.1) 

  
  

                          1 11 1 12 2

2 21 1 22 2

=
=

V Z I Z I
V Z I Z I




    (4.3.2) 

 Thus  

 

2
11 11 22 12

1 212 12

1 222

12 12

=
1

Z Z Z Z
V VZ Z
I IZ

Z Z

 
            
 
 

    (4.3.3) 

  
 Det{ } 1ABCD     (4.3.4) 

 
 

1v 2v

1I 2I
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4.4  Wave-Amplitude Transmission Matrix 
 
 
 

 
1 211 12

21 221 2

=
T Tv v
T Tv v

 

 

               
    (4.4.1) 

 Relation to S  matrix  

 11 22 11 22
11 12 12 21 22

21 21 21 21

1= , = , = , =S S S ST S T T T
S S S S

      (4.4.2) 

 In a reciprocal system S  is symmetrical and 12 21=S S . Therefore  

 12

21

Det( ) = = 1
S

T
S

    (4.4.3) 

 
 


1v 

2v


2v

1v
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Example: Scattering and transmission matrices of a section of transmission line 
 

 11 121 1

21 222 2

=
S Sv v
S Sv v

 

 

    
    

    
    (4.4.4) 

  
1 2 1 2

11 22 12 21
1 2 2 1=0 =0 =0 =02 1 1 2

= = 0, = = 0, = = , = =v v v vj jS S S e S e
v v v vv v v v

    

   
   

    

     (4.4.5) 
  

 
0

0
= =

0
0

je je
S T

jeje







    
        

 







     (4.4.6) 

 
 

0Z

1v


2v


1v


2v
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4.5  Loss Matrix 
 

Based on the result in Eq.(4.2.14) 
 *= ( )TQ I S S     (4.5.1) 

 and since the dissipated power  is   

  *
dis

1= ( )
2

       

T
TP v I S S v     (4.5.2) 

 the matrix defined above determines this dissipated power   

 dis
1=
2

      

T

P v Qv .    (4.5.3) 
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4.6  Directional Coupler 
 
    • 4 ports, lossless and reciprocal  
    • At least  one symmetry plane  
    • Each port is matched when all 

the  
               other are loaded with oZ   

    • The power entering (1) splits  
               equally between (3) and (4).  
               No power reaches (2).  

 
Performance parameters:  

 
 
 

1 4

4 2

Coupling : = 10log /
Directivity : = 10log /

C P P
D P P

 

S  matrix: 
12 21 34 43

11 22 33 44

13 31 23 32 14 41 24 42

Isolation condition : = = = = 0
Matching condition : = = = = 0
Symmetrical condition : = , = , = , =

S S S S
S S S S

S S S S S S S S
 

 
13 14

23 24

13 23

14 24

0 0
0 0

0 0
0 0

S S
S S

S
S S
S S

 
 
 
 
 
 

1

2

3

4

input

insulated

direct

coupled
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4.7  Coupling Concepts 
 

We shall discuss several aspects of the coupling effect. Here we shall investigate 
coupling in transmission line configuration. 

 
4.7.1  Double Strip Line: Parameters of the Line 
 

 
 

 
 

x=0 

x=a 

z=0 

a/2 



(1) (2) 


x 

z 
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The basic configuration under consideration is illustrated above. Each one of the wires is 
charged thus the charge distribution in the system is assumed to be  

 1 1 2 2( , ) = , ( , ) =
2 2 2 2
a ax z x z x z x z                        

       
 

For the electrostatic potential we may write the following expression  

 
=1

( , ) = ( )sinn
n

nxx z z
a


    

 
  

Which satifies the boundary conditions on the two plates. This potential satisfies the 
Poisson equation i.e.,  

 

2 2

2 2

22

2

1( , ) = ( , )

1 2( ) = ( , )sin

1 2= sin
2 2

o

n
o

o

x z x z
x z

d n nxz dx x z
dz a a a

nz
a






 
 

  
 

 
 

  
     

        
     

       
  





     (4.7.1) 

 where = 1,2  and 1 2= , =    .  
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1 2
=1

1( , ) = sin sinc exp exp
2 2 2 2n

nx n n nx z z z
a a a

     
                              
  (4.7.2) 

 For a strip of width   we have  

 

2 2

1

2 2

=1 2 2

2
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 Assuming that 1( )   and 2 ( )   are uniform  
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Moreover, the potential is uniform on the strip 

 

2 2

1

2 2

2 2 2 2
1

=1
2 2 2 2

2 2 2 2
2

=1
2 2 2 2

1 ( , )
2

1= sin sinc exp
2 2 2

1sin sinc exp
2 2 2

n

n

aV dz x z

n nn dz d z
a

n nn dz d z
a





 

 

 

 




    
 

    
 


 


 

 
   



 
   

 
  



 
  

 

                

                 



  

  

     (4.7.5) 

The integrals may be evaluated analytically therefore  
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 (4.7.6) 

Similar considerations can be applied to the second strip hence 2 21 1 22 2=V U U    



 229

 and detailed calculation shows that   21 12 22 11= and =U U U U .   Note that the off 
diagonal term is proportional to  

 )exp ( nn
a

   
 

     (4.7.7) 

 which indicates that the coupling drops rapidly. Furthermore, 11U  are   independent! 
If the strips have different geometries 11 22=U U  but still 12 21=U U . In a matrix form:  

 
1 11 12 1 1 11 12 1
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    (4.7.8) 

 A similar approach can be applied for evaluation of the inductance  

 
1 11 12 1

2 12 22 2

=
L L I

L L I

    
    
            

    (4.7.9) 

Exercise 4.1: Analyze the coupling term. 
Exercise 4.2: Calculate the inductance matrix and analyze the coupling term. 
Exercise 4.3: Analyze the case when the two strips are not equally wide. 
Exercise 4.4: Analyze the case when the two strips are not equally wide and are not in 
the same plane. 
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4.7.2  Equations of the System 
 
The transmission line equations in this case read  
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    (4.7.10) 

 It is convenient in this case to investigate the waves which propagate in this system  
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2
2 = = ( ) =d dIV j L j L j CV LCV

dz dz
           (4.7.11) 

 Let us define the wavenumber matrix  
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2 2
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2 2 =
K K
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    (4.7.12) 

 Assume a solution of the form j ze    
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 Explicitly this reads  
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  (4.7.14) 

 Let us assume for simplicity sake that the two lines are identical i.e. 11 22=K K  hence  
 2 2 2

1
2 2 2 4

11 1 112 2( ) = =0K K K K         (4.7.15) 
 The eigen-vectors corresponding to 2  may be derived from one of the two equations 
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eg., 2 2 2
11 1 12 2( ) = 0K V K V   threfore choosing 1 = 1V  we get  

2 2
11

2 2
12

= = 1KV
K


  implying 

that the normalized egen-vector is 
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    (4.7.16) 

And in a similar way, the normalized eigen-vector corresponding to 2  is 
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    (4.7.17) 

 The general solution has the form  

( ) = j z j z j z j zV z V Ae Be V Ce De      
 

              
   (4.7.18) 
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4.7.3  Simple Coupling Process 
 

 
In this subsection we ignore reflections. The schematics of the system under 
consideration is illustrated in the right.  Consider a solution of the form  

 ( ) = j z j zV z V Ae V Be  
 

      (4.7.19) 
 At = 0z  only the mode in the first line exists. The question is how the power varies with 
the length L .  
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    (4.7.20) 

 In the absence of coupling 11= = K     
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    (4.7.21) 

Now since 0( = 0) =V z V  for line 1 and ( = 0) = 0V z  for line 2 we get 0=C V  and = 0D  
implying that the voltage on line 2 is always zero. 

Let us reinstate the coupling process: the voltage along the transmission lines is 
given by  
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 In order to illustrate the coupling process, we examine the voltage on each one of the 
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lines  

    1
1 1= exp cos(  ) cos
2 2o oV V j z z V z      
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   (4.7.23) 

    2
1 1= exp sin(  ) sin
2 2o oV jV j z z V z      

           
   (4.7.24) 

 
 

   Schematically these voltages are illustrated in the figure  in the right. If we 
terminate the "coupler'' at a length L  such that  

  1 =
2 2

L        (4.7.25) 

 the voltage is maximum on line 2 and zero on 
line 1. Recall 2 2

11 12= K K  . For simplicity we 
shall assume 2 2

11 12K K  hence  
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 and  
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 This clearly indicates that the coupling is directly related to the off diagonal term in the 
matrix 2K . 
Exercise 4.5: Analyze L as a function of the geometry (separation  , width   and 
planes separation a ) in the previous section.  Make sure that the result is independent of 
the number of harmonics.  
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Chapter 5:  Nonlinear Components 
  
5.1  Transmission Line with Resistive Nonlinear Load 

 
 Consider a transmission line with a non-linear load  

 0 0( ) = tanh( / ).L LV t V I I      (5.1.1) 
The voltage-wave has two components, V  propagating in the forward direction and V  
representing the reflected wave  

 ( , ) = z zV z t V t V t
v v 

        
   

    (5.1.2) 

 wherein v  is the phase-velocity. In a similar way the current  
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 At the location of the load  
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thus after substituting in the constitutive relation  

 0
0 0

1( ) ( ) = tanh [ ( ) ( )] .   

 
  

 
V t V t V V t V t

Z I
    (5.1.5) 

 It is convenient to define  

 0

0 0 0 0

= and =
 L

VV
V Z

Z I Z I
    (5.1.6) 

 hence  
 = tanh( ).    LV V Z V V     (5.1.7) 

Assuming that the incident wave is known ( )V  this 
expression determines the reflected wave. The figure 
above shows this reflected wave for several 
normalized impedance parameters. 

Several comments about the plot are evident:  
(i) at the limit LZ  for a finite 

solution, the reflected wave  equals the 
incident one.  
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(ii) At the other extreme, as 0LZ , the reflected wave is = V V  therefore 
any solution is in between these two values. 

 
Another aspect of interest is the energy balance. The incident and reflected energy may 
be evaluated by  

 2 2

0 0

1 1= ( ), = ( ).W dt V t W dt V t
Z Z
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          (5.1.8) 

 In a linear system the ratio of the two is  
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wherein 0= /L LZ Z Z .  The figure in the right hand side 
illutrates W  when the maximum value of the incident 
(Gaussian) wave is (max ) = 2,5,10V . This figure clearly 
reveals that there is full reflection when LZ  is zero or 
tends to infinity. Zero reflection occurs when  
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Chapter 6: Periodic Structures 
 
In a variety of applications it is necessary to control the phase velocity of the wave 

or the propagation time. Periodic metallic or dielectric structures play an important role in 
implementation of these devices. The periodic geometry can be conceived as a set of 
obstacles delaying the propagation of the wave due to the multi-reflection process and, as 
will be shown during our discussion on Floquet's theorem, an infinite spectrum of spatial 
harmonics develops. A few of which cases these harmonics may propagate with a phase 
velocity larger or equal to c  but the absolute majority have a smaller phase velocity. 

 
In the first section we present the basic theorem of periodic structures namely, 

Floquet's theorem. This is followed by an investigation of closed periodic structures in 
Section 6.2 and open structures in the third. Smith-Purcell effect is considered as a 
particular case of a Green's function calculation for an open structure and a simple 
scattering problem is also considered. The chapter concludes by presenting a simple 
transient solution in a periodic structure. 
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6.1  The Floquet Theorem 
 
A periodic function, ( )f z , is a function whose value at a given point z  is equal to 

its value at a point z L  i.e.,  
 ( ) = ( ),f z f z L     (6.1.1) 

 where L  is the periodicity of the function. Any periodic function can be represented as a 
series of trigonometric functions exp( 2 / ) j nz L  and since this is an orthogonal and 
complete set of functions, it implies  

 
=

2 /( ) = .




 n
n

j nz Lf z f e      (6.1.2) 

 The amplitudes nf  are determined by the value of the function ( )f z  in a  single cell. 

Specifically, we multiply (6.1.2) by 2 /j mz Le   and integrate over one cell i.e.,  

 
0 0

=

2 / 2 / 2 /( ) = .




 
L L

n
n

j mz L j mz L j nz Ldzf z e dze f e       (6.1.3) 

 Using the orthogonality of the trigonometric function we have  

 
0

1 2 /= ( ) .
L

m
j mz Lf dzf z e

L
     (6.1.4) 

 This presentation is called the Fourier series representation and it is valid for a static 
phenomenon in the sense that the value of ( )f z  at the same relative location in two 
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different cells is identical. It can not describe a propagation phenomenon, thus it can not 
represent a dynamic system. In the latter case the function ( )f z  has to satisfy  

 ( ) = ( ),f z f z L     (6.1.5) 
 which means that the value of the function is proportional to the value of the function in 
the adjacent cell up to a constant,  , whose absolute value has to be unity otherwise at 
 z  the function diverges or is zero as can be concluded from  

 ( ) = ( ),nf z f z nL     (6.1.6) 
 where n  is an arbitrary integer. Consequently, the coefficient   can be represented as a 
phase term of the form = exp( )j   hence  

 ( ) = ( );jf z e f z L     (6.1.7) 
   is also referred to as the phase advance per cell. Without loss of generality one can 
redefine this phase to read = kL . Since a-priori we do not know  , this definition does 
not change the information available. Nonetheless based on the Fourier series in (6.1.2) 
we can generalize the representation of a dynamic function in a periodic structure to  

 
=

2 /( ) = ,




  n
n

j nz L jkzf z f e e     (6.1.8) 

 and realize that it satisfies  
 ( ) = ( ),jkLf z e f z L     (6.1.9) 
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 which is identical with the expression in (6.1.7). The last two expressions are different 
representations of the so-called  Floquet's Theorem. Later we shall mainly use the form 
presented in (6.1.8), however in order to illustrate the use of Floquet's theorem in its latter 
representation, we investigate next the propagation of a TM wave in a periodically loaded 
waveguide. 

 
. 

   
Let us consider a waveguide of radius R  which is loaded with dielectric layers: a 

representative cell (0  z L) consists of a region, 0  z g , filled with a dielectric, r , 
and the remainder is vacuum -- see Figure 1. We shall determine the dispersion relation 
of this structure and for this purpose we write the solution of the magnetic vector 

r

R2

Lg
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potential and electromagnetic field (steady state) in the dielectric (0  z g ):  
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  (6.1.10) 

 where 2 2 2
, r= ( / ) ( / ) d s sp R c  . In a similar way, we have in the vacuum ( < <g z L):  
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 (6.1.11) 
  with 2 2 2= ( / ) ( / ) s sp R c . At this point we shall consider only the TM01 mode 
( = 1s ) thus the continuity of the radial electric field at =z g  implies  

  ,1 ,1
,1 1 1 1 1 1

r

1 = ,d d
d

g g
Ae B e C D


       

    (6.1.12) 

 and in a similar way the continuity of the azimuthal magnetic field reads  

 ,1 ,1
1 1 1 1= .
 

 
g gd dA e B e C D     (6.1.13) 

 Last two equations express the relation between the amplitudes of the field in the 
dielectric and vacuum. 
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In the dielectric filled region of next cell (   L z L g ) the field has a similar form 
as in (6.1.10) i.e.,  
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
 (6.1.14) 
 Accordingly, the boundary conditions at =z L  read  

 1 1
,1 1 1 1 1 1

r

1 ( ) ( )= ,' '
d

L g L gA B C e D e


            
    (6.1.15) 

 and  
 ( ) ( )1 1

1 1 1 1= .   L g L g' 'A B C e D e     (6.1.16) 
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The relation between the amplitudes of the wave in the second cell ( < < 2L z L) and 
the first cell can be represented in a matrix form  

 = ,a Ta'     (6.1.17) 
 where the components of a'  are 1

'A  and 1
'B  and similarly the components of a  are 1A  and 

1B . According to Floquet's theorem (6.1.9) the two vectors are expected to be related by  

 = ,a a' jkLe     (6.1.18) 

 thus  jkLe  represents the eigen-values of the single cell transmission matrix T :  
 | |= 0.T IjkLe     (6.1.19) 

 Explicitly this reads  
 11 22 11 22 12 21

2 ( ) = 0.    jkL jkLe e T T T T T T     (6.1.20) 
 For a passive system the determinant of the matrix T  is unity (prove this statement!!), 
thus  

 11 22
2 ( ) 1 = 0.   jkL jkLe e T T     (6.1.21) 

 The fact that the last term in this equation is unity indicates that if k  is a solution of 
(6.1.21) k  is also a solution. Consequently, we can write  

 11 22
1cos( ) = ( ).
2

kL T T     (6.1.22) 
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 Note that this is an explicit expression for k  as a function of the frequency and the other 
geometric parameters. In principle there are ranges of parameters where the right-hand 
side is larger than unity and there is no real k  which satisfies this relation. If only the 
frequency is varied then this result indicates that there are frequencies for which the 
solution of the dispersion relation is real thus a wave can propagate, or the solution is 
imaginary and the amplitude of the wave is zero. The frequency range for which the wave 
is allowed to propagate is called the passband. Explicitly, the right-hand side of (6.1.22) 
reads  

2 2
1 2 1 2

11 22
1 2 1 2

( ) ( )1 ( ) = cosh( ) cosh( ),
2 4 4

 
   

Z Z Z Z
T T

Z Z Z Z
     

  (6.1.23) 
 where 1= ( ) L g , ,1= d g , the characteristic impedances are  

0 ,1 0 1
1 2

r

= , = ,
 dc c

Z Z
j j

 
 

  (6.1.24) 

 and 0 = 377  is the impedance of the vacuum. 
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Figure 2 illustrates the right-hand side of (6.1.22) 

as a function of the frequency ( r = 10, = 2R  cm, = 1L  
cm and = / 2g L ). The blocks at the bottom, illustrate 
the forbidden frequencies, namely at these frequencies 
TM waves can not propagate. In Figure 3 the 
dispersion relation of the first three passbands is 
presented; these branches correspond only to the TM01 
mode. Higher symmetric or asymmetric modes have 
additional contributions in this range of frequencies. 

Comment 1. The expression in (6.1.22) is the 
dispersion relation of a TM01 mode in the periodic 
structure illustrated in Figure 1. From this simple 
example however we observe that  the dispersion relation of a periodic structure is itself 
periodic in k  with a periodicity 2 / L . This is a general feature which can be deduced 
from (6.1.9). If the latter is satisfied for 0=k k  then (6.1.9) is satisfied also for 

0= 2 /k k L  as shown next  
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0 0

0

( 2 / ) 2( ) = ( ) ,

= ( ) = ( ).

j k L L jk L jf z L e f z L e e
jk Lf z L e f z

  

    (6.1.25) 
 Consequently, since the dispersion relation is periodic in k , it is sufficient to represent 
its variation with k  in the range / /  L k L  ; this k  domain is also called the first 
Brillouin zone. 

Comment 2. Bearing in mind the last comment, we can re-examine the expression in 
(6.1.8) and realize that ( )f z  is represented by a superposition of spatial harmonics 
exp( ) njk z  where  

 2= ,nk k n
L
     (6.1.26) 

 which all correspond to the solution of the dispersion relation of the system. According 
to this definition the phase velocity of each harmonic is  

 p , = ,h n
n

v
ck
     (6.1.27) 

 and for a high harmonic index, n , this velocity decreases as 1n . Furthermore, all 
harmonics with negative index correspond to backward propagating waves. In addition, 
note that the zero harmonic ( = 0n ) has a positive group velocity for / > > 0L k  and 
negative in the range / < < 0 L k . This is a characteristic of  all  spatial harmonics. 
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Since the group velocity is related to the energy velocity, one can conclude that although 
the the wave number of a particular space harmonic is positive, the power it carries may 
flow in the negative direction (if the group velocity is negative). 
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6.2  Closed Periodic Structure 
 
Based on what was shown in the previous section 

one can determine the dispersion relation of a TM01 
mode which propagates in a corrugated waveguide 
[Brillouin (1948)]. Its periodicity is L , the inner 
radius is denoted by intR  and the external by extR ; the 
distance between two cavities   (the drift region) is d . Using Floquet's Theorem (6.1.8) 
we can write for the magnetic potential in the inner cylinder ( int0 < <r R ) the following 
expression  

 0
=

( , ) = I ( ),




  zn
z n n

n

jkA r z A e r     (6.2.1) 

 and accordingly, the electromagnetic field components read  

extR2 int2R
L

d
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
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
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  

 

  





     (6.2.2) 

 In these expressions,  

 
2

2 2
2= , n nk

c
     (6.2.3) 

 and 0 1I ( ), I ( )x x  are the zero and first order modified Bessel functions of the first kind 
respectively. This choice of the radial functional variation is dictated by the condition of 
convergence of the electromagnetic field on axis. 

In each individual groove (superscript  ) the electromagnetic field can be derived 
from the following magnetic vector potential:  

  ( ) ( )
0,

=0

( , ) = cos ( ) ( ),


 zA r z B q z z d t r 
   



    (6.2.4) 

 where = / ( )q L d  ,  
 0, 0 0 ext 0 0 ext( ) = I ( )K ( ) K ( )I ( ),    t r r R r R         (6.2.5) 
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 and 2 2 2= ( / ) q c   . The electromagnetic field reads  
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




   (6.2.6) 

 In these expressions 1, ( )t r  is the derivative of 0, ( )t r  defined by  
 1, 1 0 ext 1 0 ext( ) = I ( )K ( ) K ( )I ( ),    t r r R r R         (6.2.7) 

 and except at int=r R  all the boundary conditions are satisfied. 
 
6.2.1  Dispersion Relation 
 
Our next step is to impose the continuity of the boundary conditions at the interface 

( int=r R ). The continuity of the longitudinal component of the electric field 
[ int( = , < < ) zE r R z ] reads  
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 (6.2.8) 

 and the azimuthal magnetic field [ int( = , < < ) H r R z d z z L   ] reads  

( )
1 int 1, int

= =00 0

1 1I ( ) = cos[ ( )] ( ).n
n n n

n

jk zA e R B q z z d t R
    

 

 



         (6.2.9) 

 
From these boundary conditions the dispersion relation of the structure can be 

developed. For this purpose we analyze the solution in the grooves having Floquet's 
theorem in mind. The latter implies that the longitudinal electric field in the  's groove 
has to satisfy the following relation:  

2 ( ) 2 ( 1)
0, 1 0,

=0 =0
cos[ ( )] ( ) = cos[ ( )] ( ).jkLB q z z d t r B e q z L z d t r 

         
 

 


         
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    (6.2.10) 
 But by definition 1 = z z L   therefore, the last expression implies that  

 ( ) . jkzB B e 
      (6.2.11) 

 This result permits us to restrict the investigation to a single cell and without loss of 
generality we chose =0 = 0z  since if we know B  in one cell, the relation in (6.2.11) 
determines the value of this amplitude in all other cells. With this result in mind we 

multiply (6.2.8) by zmjke  and integrate over one cell; the result is  
2 2

, 0 int 0, int
= =0

I ( ) ( ) cos[ ( )],
L

m
n n n m n d

n

jk zA L R B t R dze q z d   



 



         (6.2.12) 

 here ,n m  is the Kroniker delta function which equals 1 if =n m  and zero otherwise. We 
also used the orthogonality of the Fourier spatial harmonics. We follow a similar 
procedure when imposing the continuity of the magnetic field with one difference, (6.2.9) 
is defined only in the groove aperture thus we shall utilize the orthogonality of the 
trigonometric function cos[ ( )]q z d . Accordingly, (6.2.9) is multiplied by 
cos[ ( )]q z d  and we integrate over < <d z L; the result is  

1 int 1, int ,
= =0

I ( ) cos ( ) = ( )( ) ,
L

n
n n n d

n

jk zA R dz q z d e B t R L d g      



 



          

     (6.2.13) 
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 where 0 = 1g  and 0 = 0.5g  otherwise. It is convenient to define the quantity  

  ,
1( ) cos ( ) ,

L
n

n d

jk zk dz q z d e
L d  
      (6.2.14) 

 which allows us to write (6.2.12) as  

 2
0, int ,2

=00 int

1 ( ) ( ) ,
I ( )


 
  n n

n n

L dA t R k B
LR    



     (6.2.15) 

 and (6.2.13) as  

 *
1 int ,

=1, int

1 I ( ) ( ).
( )





  
  n n n n

n

B A R k
t R g 

  

     (6.2.16) 

 
These are two equations for two unknown sets of amplitudes ( , )nA B  and the 

dispersion relation can be represented in two equivalent ways: One possibility is to 
substitute (6.2.16) in (6.2.15) and get  

0, int *1 int
, , ,2

= =0 1, int0 int

( )I ( )
0,

( )I ( )

 



  
    

 m m
n m n m m

m n n

t RRL d A
L t R gR

 
 

  

      (6.2.17) 

 whereas the other possibility is to substitute (6.2.15) in (6.2.16) and obtain  
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2
0, int *1 int

, , ,
=0 =1, int 0 int

( ) I ( ) 0.
( ) I ( )

n
n n

n n n

t R RL d B
L t R g R

 
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   


 



  
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       (6.2.18) 

 In both cases the dispersion relation is calculated from the requirement that the 
determinant of the matrix which multiplies the vector of amplitudes, is zero. 

Although the two methods are equivalent, we found that the latter expression is by 
far more efficient for practical calculation because of the number of modes required to 
represent adequately the field in the groove compared to the number of spatial harmonics 
required to represent the field in the inner section. In the case of single mode operation 
we found that 1 to 3 modes are sufficient for description of the field in the grooves and 
about 40 spatial harmonics are generally used in the inner section. As indicated by these 
numbers it will be much easier to calculate the determinant of a 3 3  matrix rather than 
40 40  one; we shall quantify this statement later. At this point we shall discuss the 
design of a disk-loaded structure assuming that the number modes in the grooves and 
harmonics in the inner space are sufficient. 

Let assume that we want to determine the geometry of a disk-loaded structure which 
enables a wave at 10 GHz to be in resonance with electrons with = 0.9  and the phase 
advance per cell is assumed to be = 2 / 3kL  . These two conditions determine the period 
of the structure. In our case = 9L  mm. There are three additional geometric parameters 
to be determined: ext int,R R  and d . The last two have  
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   a dominant effect on the width of the passband and for the 
lowest mode, the passband increases with increasing intR  and 
decreases with increasing d . The passband,  , of a mode sets 
a limit on the maximum group velocity as can be seen bearing in 
mind that the half width of the first Brillouin zone is = /k L . 
Consequently, g = / < /  rv k L   . A solution of the 
dispersion relation in (6.2.18) is illustrated  the geometry chosen 
is: 9L  mm, int = 8R mm and = 2d mm and from the condition 
of phase advance per cell of 120o  at 10 GHz, we determined, 
using the dispersion relation, the value of the external radius to 
be ext = 13.96R  mm. 

 
6.2.2  Modes in the groove 
 Therefore, before we conclude this subsection, we shall quantify the effect of higher 

modes. The first mode in the groove ( = 0 ) represents a TEM mode which propagates in 
the radial direction. Other modes (TM0, >0 ) are either propagating or evanescent. The 
amplitudes of the magnetic and electric field ( zE ) of the TEM mode are constant at the 
groove aperture thus the choice of using a single mode in the groove is equivalent to the 
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average process at the boundary 
-- approach usually adopted in 
the literature. The Figure 
illustrates the dependence of 
upper and lower cut-off 
frequency on the number of 
harmonics used in the 
calculation; the number of 
modes in the grooves is a 
parameter. For the geometry 
presented above, the number of 
harmonics required is 20 or 
larger; typically about 40 
harmonics are being used. The 
effect of the = 1  mode is 
negligible in this case as seen for both upper and lower cut-off frequencies. The effect of 
the higher mode introduces a correction on the order of 1% which for most practical 
purposes is sufficient.  
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6.2.3  Spatial Harmonics Coupling 
 
Contrary to uniform dielectric structures, here each mode consists of a superposition 

of an infinite number of spatial harmonics. These harmonics are all coupled by the 
conditions imposed on the electromagnetic field by the geometry at int=r R . We shall 
limit the investigation to the accuracy associated with a single mode taken in the groove, 
therefore according to (6.2.15), we have  

 
2

0,0 int ,0 02 2
0 int

1 ( ) ( ) ,
I ( )

 
 n n

n n

A t R k B
R c


     (6.2.19) 

 and in this particular case  

 ,0
1 1( ) sinc ( ) exp ( ) .
2 2

            
n n n

L dk k L d j k L d
L

     (6.2.20) 

 Let us compare the first few spatial harmonics relative to the zero harmonic. For this 
purpose we take = 10f  GHz, 0 int= 0.9 , = 8v c R  mm, = 9L  mm and = 2d  mm. The ratio 
of the first two amplitudes is  
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 3 6 6 81 1 2 2

0 0 0 0

= 8 10 , = 3 10 , = 2 10 , = 1 10A A A A
A A A A

          (6.2.21) 

 This result indicates that on axis, the amplitude of the interacting harmonic is dominant. 
At the interface with the grooves ( int=r R ) the ratio between the contribution of the zero 
and n th harmonic is much closer to unity and it can be checked that it reads  

 , int

,0 int 0

| ( = ) | | sinc( ( ) / 2) |
,

| ( = ) | | sinc( ( ) / 2) |





z n n

z

E r R k L d
E r R k L d

    (6.2.22) 

 which is a virtually unity. 
A more instructive picture is obtained by examining the average power flowing in 

one time and spatial period of the system:  

 int *

0 0

1 1= 2 ( , ) ( , ) .
2
 
   

R L

rP drr dz E r z H r z
L      (6.2.23) 

 According to the definition in (6.2.2) we have  

 int2 2
10

=0

| | I ( );
 



  
Rnn

n
n

ck
P cA dxx x

 
    (6.2.24) 

 the integral can be calculated analytically [Abramowitz and Stegun (1968) p.484] and it 
reads  
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 2 2 2 2
1 0 1 1 00

1( ) I ( ) I ( )I ( ) [I ( ) I ( )].
2

  U dxx x


           (6.2.25) 

 Based on these definitions we can calculate the average power carried by each harmonic 
as  

 2
int

0

| | ( ), n
n n n

ck
P cA U R

 
    (6.2.26) 

 and the result is listed below  
 

 3 4 32 1 1 2
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= 3 10 , = 0.16, = 1 10 , = 3 10P P P P
P P P P

           (6.2.27) 

 Although there is a total flow of power along (the positive) direction of the z  axis, a 
substantial amount of power is actually flowing backwards. In this numerical example for 
all practical purposes we can consider only the lowest two harmonics and write the total 
power which flows, normalized to the power in the zero harmonic. Thus if the latter is 
unity, then the power in the forward is 1 0.16 = 0.84 . This result indicates that if we 
have a finite length structure with finite reflections from the input end, then in this 
periodic structure we have an inherent feedback even if the output end is perfectly 
matched. 
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6.3  Open Periodic Structure 
 
In this section an analysis similar to 

that in Section 6.2 is applied to an open 
periodic structure. As we shall see the 
number of modes which may develop in 
such a structure is small and therefore 
mode competition is minimized. 

We shall consider a system in which the wave propagates along the periodic 
structure which consists of a disk-loaded wire, as illustrated in Figure 5 whose periodicity 
is L , the inner radius is denoted by intR , the external by extR  and the distance between two 
cavities is d . Floquet's theorem as formulated in (6.1.8) allows us to write for the 
magnetic potential in the external region ( ext> r R ) the following expression  

 0
=

( , ) = K ( ),n
z n n

n

jk zA r z A e r




      (6.3.1) 

 and accordingly, the electromagnetic field components read  

extR2

d

int2R
L
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=
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=
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jk zH r z A e r








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
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
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 

 

  







    (6.3.2) 

 In these expressions 0 1K ( ),K ( )x x  are the zero and first order modified Bessel functions 
of the second kind respectively and 2 2 2= ( / ) n nk c . This choice of the radial functional 
variation is dictated by the condition of convergence of the electromagnetic field far 
away from the structure. 

In each individual groove the electromagnetic field can be derived from the 
following magnetic vector potential:  

 ( ) ( )
0,

=0

( , ) = cos[ ( )] ( ),


 zA r z B q z z d t r 
   



    (6.3.3) 

 where = / ( )q L d  ,  
 0, 0 0 int 0 0 int( ) = I ( )K ( ) K ( )I ( ),    t r r R r R         (6.3.4) 

 and 2 2 2= ( / ) q c   . The electromagnetic field reads  
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

 
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






   (6.3.5) 

 The index   labels the "cavity" and in these expressions we used  
 1, 1 0 int 1 0 int( ) = I ( )K ( ) K ( )I ( ).    t r r R r R         (6.3.6) 

 The solution above satisfies all boundary conditions with the exception of ext=r R . 
 
6.3.1  Dispersion Relation 
 
Our next step is to impose the continuity of the boundary conditions at the interface 

( ext=r R ). Continuity of the longitudinal component of the electric field implies 
ext( = , < < ) zE r R z , reads  
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(6.3.7) 

 and the azimuthal magnetic field, ext( = , < < ) H r R z d z z L   , reads  

( )
1 ext 1, ext

= =00 0

1 1K ( ) cos[ ( )] ( ).n
n n n

n

jk zA e R B q z z d t R
    

 

 



        (6.3.8) 

 
Following the same arguments as in Section 6.2.1 it can be shown that 

( ) =  jkzB B e 
   and consequently we can limit the discussion to a single cell. We 

multiply (6.3.7) by zmjke  and integrate over one cell; the result being  
2 2

, 0 ext 0, ext
= =0

K ( ) ( ) cos[ ( )].
L

m
n n n m n d

n

jk zA L R B t R dze q z d   



 



         (6.3.9) 
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 We follow a similar procedure when imposing the continuity of the magnetic field; the 
difference in this case is that (6.3.8) is defined only in the groove's aperture thus we shall 
utilize the orthogonality of the trigonometric function cos[ ( )]q z d . Accordingly, 
(6.3.8) is multiplied by cos[ ( )]q z d  and we integrate over < <d z L; the result is  

1 ext 1, ext ,
= =0

K ( ) cos[ ( )] ( )( ) .
L

n
n n n d

n

jk zA R dz q z d e B t R L d g      



 



         

     (6.3.10) 
 In this expression 0 = 1g  and 0 = 0.5ng . It is convenient to define the quantity  

 ,
1( ) cos[ ( )] ,

L
n

n d

jk zk dz q z d e
L d  
      (6.3.11) 

 by whose means, (6.3.9) reads  
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0, ext ,2

=00 ext

1 ( ) ( ) ,
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
 
  n n
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L dA t R k B
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

     (6.3.12) 

 whereas (6.3.10)  

 *
1 ext ,

=1, ext

1 K ( ) ( ).
( )





  
  n n n n

n

B A R k
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  

     (6.3.13) 

 
These are two equations for two unknown sets of amplitudes ( , )nA B . The 
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dispersion relation can be represented in two equivalent ways: One possibility is to 
substitute (6.3.13) in (6.3.12) and obtain one equation for the amplitudes of the various 
harmonics  

0, ext *1 ext
, , ,2

= =0 1, ext0 ext

( )K ( )
= 0.

( )K ( )

 



  
   

 m m
n m n m m

m n n

t RRL d A
L t R gR

 
 

  

      (6.3.14) 

 The other possibility is to substitute (6.3.12) in (6.3.13) and obtain one equation for the 
amplitudes of the various modes in the groove  

2
0, ext *1 ext

, , ,
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 
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 

   
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t R RL d B
L t R g R

 
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   

     (6.3.15) 

 In both cases the dispersion relation is calculated from the requirement that the 
determinant of the matrix which multiplies the vector of amplitudes, is zero. As in the 
closed structure the two methods are equivalent, but the last expression is by far more 
efficient for practical calculation. 

 
There is one substantial difference between open and closed periodic structures. In the 
latter case, the radiation is guided by the waveguide and there is an infinite discrete 
spectrum of frequencies which can propagate along the system. In open structures, modes 
can propagate provided that the projection of the wavenumbers of  all harmonics in the 
first Brillouin zone corresponds to waves whose phase velocity is smaller than c ; in other 
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words, no radiation propagates outwards 
(radially). The figure illustrates the two 
regions of interest: in the shadowed region no 
solutions are permissible and in the remainder 
the solution is possible with an adequate 
choice of the geometric parameters. It is 
evident from this picture that waves at 
frequencies higher than  

 1 ,
2


cf
L

   (6.3.16) 

 
 

 can not be supported by a disk-loaded wire, regardless of the 
geometrical details of the cavity. With this regard, an open 
structure forms a low pass filter. Figure 3.1 illustrates the 
dispersion relation of such a system for = 3L  mm, = 1d  mm, 

int = 15R  mm and ext = 21R  mm. For comparison, in the same 
frequency range (0--50 GHz) there are 6 symmetric TM modes 
which can propagate in a closed system of the same geometry; 
obviously there are many others at higher frequencies. 
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6.4  Transients 
 
In order to illustrate the effect of the periodicity on the propagation of a wave packet 

we shall consider at = 0t  the same wavepacket ( )a z , in vacuum and in a periodic 
structure. The propagation in vacuum will be represented by a dispersion relation 

2 2 2= /k c , therefore a scalar wave function ( , ) z t  is given by  

 1( , ) = ( ) .
2





      jkz jkct jkctz t dk k e e e     (6.4.1) 

 Since at = 0t  this function equals ( )a z , the amplitudes ( )k  can be readily determined 
using the inverse Fourier transform hence  

 1( ) = ( ) .
2




jkzk dza z e


    (6.4.2) 

 Substituting back into (4.1) we find that  

  1( , ) = ( ) ( ) ,
2

   z t a z ct a z ct     (6.4.3) 

 which basically indicates that the pulse moves at the speed of light in both directions and 
asymptotically, it preserves its shape. In a periodic structure the description of the 
wavepacket is complicated by the dispersion relation which in its lowest order 
approximation (e.g., first TM symmetric mode in a waveguide) can be expressed as  
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 ( ) = cos( ),k kL       (6.4.4) 
 where 0= ( ) / 2     is the average frequency between the low ( = 0kL ) cut-off 
denoted by 0  and the high ( =kL  ) cut-off denoted by  . The quantity 

0= ( ) / 2    is half the passband width and L  is the period of the structure. 
Contrary to the previous case k  here denotes the wavenumber in the first Brillouin zone. 
In the framework of this approximation we can use Floquet's representation to write  
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/
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L zn
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j k t jkz t dk k e




     (6.4.5) 

 where = 2 /nk k n L . The amplitudes ( )n k  are determined by the value of the 
function at = 0t  hence  

 ( ) = 12 ( ) .



zn

n
jkk dza z e      (6.4.6) 

 Substituting back into (6.4.5) we have  
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  (6.4.7) 

 At this point we can take advantage of  
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 and simplify the last equation to read  
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     (6.4.9) 
 which after the evaluation of the integrals and summation (over n ) reads  
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The figure illustrates the propagation of two 
wavepackets in vacuum (dashed line) and in a 
periodic structure. The latter is characterized by 

= 2 10   GHz, = / 30   and a spatial 
periodicity of = 1L  cm. At = 0t  the distribution is a 
Gaussian, 2( ) = exp[ ( / ) ]a z z L . In each one of the 
frames ( , ) z t  was plotted at a different time as a 
function of z . Characteristic to all the frames is the 
relatively large peak following the front of the pulse. 

It is evident that although the front of the pulse 
propagates at the speed of light (as in vacuum) the 
main pulse propagates slower. In fact, a substantial 
fraction of the energy remains at the origin even a 
long time after = 0t . For the parameters used, the 
amplitude of the signal at the origin ( = 0z ) is 
dominated by the zero order Bessel function i.e., 

0J ( )t  therefore the energy is drained on a time 
scale which is determined by the asymptotic behavior 
of the Bessel function namely 1 / t . Clearly the wider the passband the faster the 
energy is drained from the origin. 
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Exercise 6.1: Based on the solution for ( , )zA r z  in Section 6.1 determine the Floquet 
representation of the magnetic vector potential (TM01). In other words write  

 0 1( , ) = J ( )  
 
 

 zn
z n

n

r jkA r z p a k e
R

 

and determine ( )na k . 
Exercise 6.2: Find all the waves which can propagate between = 0f  to 20 GHz, 
including asymmetric modes for the system described in Section 6.1. Repeat this exercise 
for the branches of the TE modes. 
Exercise 6.3: Analyze the coupling of spatial harmonics for the system in Section 6.3 in 
a similar way as in Section 6.2.2. 
Exercise 6.4: Repeat the calculation of the propagation of a transient in a periodic 
structure (Section 6.4) but this time for a TEM-like mode. [Hint: take = ( ) kh  .] 
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Chapter 7 
 
Generation of radiation 
 Throughout these notes it was always assumed that somewhere there is a radiation 

source providing us with the necessary energy. In what follows we shall skim through the 
fundamentals of generation of radiation. Our discussion will be limited to "vacuum'' 
devices, this is to say that the energy is extracted from free electrons in vacuum. 
Employed on medium (< 1kW) and high (> 1kW) power devices, the concepts to be 
discussed rely solely on energy and momentum conservation. Another very important 
family of devices relying on electrons moving in "solid state'', will not be discussed here.  
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7.1  Single-Particle Interaction 
 
On its own, an electron cannot transfer energy via a linear process to a 

monochromatic electromagnetic wave in vacuum if the interaction extends over a very 
long region. Non-linear processes may facilitate energy exchange in vacuum, but this 
kind of mechanism is rarely used since most systems require a linear response at the 
output. Therefore throughout this text we shall consider primarily linear processes and in 
this introductory chapter we shall limit the discussion to single-particle schemes.  
Collective effects, where the current is sufficiently high to affect the electromagnetic 
field, are also important but cannot be covered at this stage and they are the essence of a 
different course. 

 
7.1.1  Infinite Length of Interaction 

 
Far away from its source, in vacuum, an electromagnetic wave forms a plane wave 

which is characterized by a wavenumber whose magnitude equals the angular frequency, 
 , of the source divided by 1= 299,792,458m c s , the phase velocity of the plane wave 
in vacuum, and its direction of propagation is perpendicular to both the electric and 
magnetic field. For the sake of simplicity let us assume that such a wave propagates in 
the z  direction and the component of the electric field is parallel to the x  axis i.e.,  
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 0( , ) = cos .      
x

zE z t E t
c

      (7.1.1) 

 If a charged particle moves at v  parallel to z  axis, then the electric field this charge 
experiences (neglecting the effect of the charge on the wave) is given by  

   0
( )( ), = cos .x

z tE z t t E t
c

      
    (7.1.2) 

 A crude estimate for the particle's trajectory is  
 ( ) ,z t vt     (7.1.3) 

 therefore if the charge moves in the presence of this wave from  t  to t  then 
the average electric field it experiences is  zero,  

 vcos 1 = 0,dt t
c






      
     (7.1.4) 

 even if the particle is highly relativistic. The lack of interaction can be illustrated in a 
clearer way by superimposing the dispersion relation of the wave and the particle on the 
same diagram. Firstly, the relation between energy and momentum for an electron is 
given by  

 2 2= ( ) ,E c p mc     (7.1.5) 
 where 31= 9.1094 10m Kg is the rest mass of the electron. Secondly, the corresponding 
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relation for a photon in free space is  
 = .E cp     (7.1.6) 

For the interaction to take place the electron has to change its initial state, subscript i, 
denoted by i i( , )E p  along the dispersion relation to the final, subscript f, denoted by 

f f( , )E p  in such a way that the resulting photon in case of emission or absorbed photon 
for absorption, has exactly the same difference of energy and momentum i.e.,  

 i f ph= ,E E E     (7.1.7) 
 and  

 i f ph= .p p p     (7.1.8) 
 In vacuum this is impossible, as can be shown by 
substituting (7.1.5)--(7.1.6)in (7.1.7)--(7.1.8). We 
can also reach the same conclusion by examining 
Fig. 1.1 The expression, =E cp , which describes 
the photon's dispersion relation, is parallel to the  
asymptote of the electron's dispersion relation. Thus, 
if we start from one point on the latter, a line parallel 
to =E cp  will never intersect (7.1.5) again. In other 
words, energy and momentum can not be conserved 
simultaneously in vacuum. 
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7.1.2  Finite Length of Interaction 
 
If we go back to (7.1.4) we observe that if the electron spends only a finite time in 

the interaction region then it can experience a net electric field. Let us denote by T  the 
time the electron enters the interaction region and by T  the exit time. The average 
electric field experienced by the electron (subject to the same assumptions indicated 
above) is  

 

0

0

1 v= cos 1 ,
2

v= sinc 1 ;

T

T
E E dt t

T c

E T
c







        
      



    (7.1.9) 

 here sinc( ) = sin( ) /x x x . That is to say that if the time the electron spends in the 
interaction region, is small on the scale of the radiation period 0 = 2 /T    then the net 
electric field it experiences, is not zero. From the perspective of the conservation laws, 
the interaction is possible since although the energy conservation remains unchanged i.e.,  

 i f= , E E      (7.1.10) 
 the constraint on momentum conservation was released somewhat and it reads  
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 i f| |< ,   p p cT
c
  (7.1.11) 

which clearly is less stringent than in (7.1.8) as also illustrated 
in the figure; 34= 1.05457 10 Jsec  is the Planck constant. The 
operation of the klystron to be discussed subsequently relies on 
the interaction of an electron with a wave in a region which is 
shorter than the radiation wavelength. 

  
7.1.3  Finite Length Pulse 
Another case where energy transfer is possible in vacuum is when the pulse duration 

is short. In order to examine this case we consider, instead of a periodic wave whose 
duration is infinite, a short pulse of a typical duration  . In order to visualize the 
configuration, consider a field given by  

2 2( / ) /
0( , ) = . t z c

xE z t E e    (7.1.12) 
 A particle following the same trajectory as in (7.1.3) will clearly 
experience an average electric field which is non-zero even when 
the interaction duration is infinite. This is possible since the 
spectrum of the radiation field is broad -- in contrast to Sect. 7.1.1 
where it was peaked -- therefore again the constraint of the 
conservation laws is less stringent: 
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 i f| |< ,
E E


    (7.1.13) 

 and  

 i f| |< .
p p
c

    (7.1.14) 

 Schematics of this mechanism is illustrated in the figure. It should be also pointed out 
that in this section we consider primarily the kinematics of the interaction and we pay no 
attention to the dynamics. In other words, we examined whether the conservation laws 
can be satisfied without details regarding the field configuration. 

 
7.1.4  Cerenkov Interaction 
 
It was previously indicated that since the dispersion 

relation of the photon is parallel to the asymptote of the 
electron's dispersion relation, the interaction is not possible 
in an infinite domain. However, it is possible to change the 
"slope'' of the photon, namely to change its phase velocity -
- see Figure. The easiest way to do so is by "loading" the 
medium where the wave propagates with a material whose 
dielectric coefficient is larger than one. Denoting the 
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cpE 

fp

 pncE /
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refraction coefficient by n , the dispersion relation of the photon is given by 
  

 ph ph= ,cE p
n

    (7.1.15) 

while the dispersion relation of the electron remains unchanged. Substituting in the 
expressions for the energy and the momentum conservation laws we find that the 
condition for the interaction to occur is  

 = ,c v
n

    (7.1.16) 

 where it was assumed that the electron's recoil is relatively small i.e., 2/ 1 mc . The 
result in (7.1.16) indicates that for the interaction to occur, the phase velocity of a plane 
wave in the medium has to equal the velocity of the particle. This is the so-called 
Cerenkov condition. Although dielectric loading is conceptually simple, it is not always 
practical because of electric charges which accumulate on the surface and of a relatively 
low breakdown threshold which is critical in high-power devices. For these reasons the 
phase velocity is typically slowed down using metallic structures with periodic 
boundaries. The operation of traveling wave tubes (or backward wave oscillators) relies 
on this concept. 
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7.1.5  Compton Scattering: Static Fields 
 

 
  It is not only a structure with periodic boundaries 

which facilitates the interaction between electrons and 
electromagnetic waves but also periodic fields. For example, 
if a magneto-static field of periodicity L  is applied on the 
electron in the interaction region, then this field serves as a 
momentum "reservoir" which can supply momentum quanta of (2 / )n L  where 

= 0, 1, 2,... n  ; see Figure. The energy conservation law remains unchanged i.e.,  
 i f ph= ,E E E     (7.1.17) 

 but the momentum is balanced by the applied static field  

 i f ph
2= .  p p p n
L
     (7.1.18) 

For a relativistic particle ( 1)  and when the electron's recoil is assumed to be small, 
these two expressions determine the so-called resonance condition which reads  

 2 22 , 
 
 

 c n
L
      (7.1.19) 

 where 2 1/2[1 (v / ) ]c   . Note that the frequency of the emitted photon depends on the 
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velocity of the electron which means that by varying the velocity we can change the 
operating frequency. A radiation source which possesses this feature is a tunable source. 
Identical result is achieved if we assume a periodic electrostatic field and both field 
configurations are employed in the so-called "free electron lasers''. 

 
7.1.6  Compton Scattering: Dynamic Fields 
 
Static electric or magnetic field can be conceived as limiting cases of a dynamic 

field of zero or vanishingly small frequency and we indicated above that they facilitate 
the interaction between an electron and a wave. Consequently we may expect that the 
interaction of an electron with a wave will occur in the presence of another wave. Indeed, 
if we have an initial wave of frequency 1  and the emitted wave is at a frequency 2  the 
conservation laws read  

 i 1 f 2= ,  E E      (7.1.20) 
 and  

 1 2
i f= .  p p

c c
 

    (7.1.21) 

 Following the same procedure as above we find that the ratio between the frequencies of 
the two waves is  
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 22

1

4 ,



 (7.1.22) 

 
which is by a factor of 2 larger than in the static case. The figure 
illustrates this process.  

  
 

 
  
7.1.7  Uniform Magnetic Field 
 
A periodic magnetic field can provide quanta of momentum necessary to satisfy the 

conservation law. It does not affect the average energy of the particle. An opposite 
situation occurs when the electron moves in a uniform magnetic field ( B ): there is no 
change in the momentum of the particle whereas its energy is given by  

 2 2= ( ) 2 ,  E c p mc n eB     (7.1.23) 
 where 19= 1.6022 10e  C is the charge of the electron and = 0, 1, 2... n . 

For most practical purposes the energy associated with the magnetic field is much 
smaller than the energy of the electron therefore we can approximate 
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2 2

i 1 f 2 ph
i f

= ,   ec B ec BE n E n E
E E

                (7.1.24) 

 and the momentum conservation remains unchanged i.e.,  
 i f ph= .p p p                                                 (7.1.25) 

 From these two equations we find that the frequency of the 
emitted photon is  

 2= 2 = 2 . 
 
 

eB eB
m m

  


                                 (7.1.26) 

 The last term is known as the relativistic cyclotron angular frequency, c, /rel eB m  . 
The figure illustrates schematically this type of interaction. It indicates that the dispersion 
line of the electron is split by the magnetic field in many lines (index n ) and the 
interaction is possible since the electron can move from one line to another. Gyrotron's 
operation relies on this mechanism and it will be discussed briefly in the next section. 

 
7.1.8  Synchronism Condition 
 
All the processes in which the interaction of an electron with a monochromatic wave 

extends to large regions, have one thing in common: the velocity of the electron has to 
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equal the  effective  phase velocity of the pondermotive wave along the electron's main 
trajectory, namely  

 ph,eff= .v v     (7.1.27) 
 Here by pondermotive wave we mean the effective wave along the longitudinal 
trajectory of the particle which accounts for transverse or longitudinal oscillation. In the 
Cerenkov case we indicated that the phase velocity is /c n  and there is no transverse 
motion therefore the condition for interaction implies = /n c v  where n  is the refraction 
coefficient of the medium. In the presence of a periodic static field the wavenumber of 
the pondermotive wave is / 2 /c L   therefore  

 ph,eff = ,
/ 2 /

v
c L


 
    (7.1.28) 

 and for a dynamic field  

 2 1
ph,eff

2 1

= ,



v
k k
 

    (7.1.29) 

 where 1,2 1,2= /k c  are the wavenumbers of the two waves involved. Finally, in a 
uniform magnetic field only the effective frequency varies  

 c,rel
ph,eff = .


v

k
 

    (7.1.30) 

 The reader can check now that within the framework of this formulation we obtain 
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(7.1.19) from (7.1.28), in the case of the dynamic field we have from (7.1.29) the 24  
term as in (7.1.22) and finally (7.1.30) leads to the gyrotron's operation frequency 
presented in (7.1.26). 
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7.2  Radiation Sources: Brief Overview 
There are numerous types of radiation sources driven by electron beams. Our 

purpose in this section is to continue the general discussion from the previous section and 
briefly describe the operation principles of one "member" of each class of what we 
consider the main classes of radiation sources. A few comments on experimental work 
will be made and for further details the reader is referred to recent review studies. The 
discussion continues with the classification of the major radiation sources according to 
several criteria which we found to be instructive. 

 
7.2.1  The Klystron 
The klystron was one of the first radiation sources to be developed. It is a device in 

which the interaction between the particle and the wave is localized to the close vicinity 
of a gap of a cavity, as illustrated in the Figure.  
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  Electrons move along a drift tube and its geometry is chosen in such a way that at 
the frequency of interest it does not allow the electromagnetic wave to propagate. The 
latter is confined to cavities attached to the drift tube. The wave which feeds the first 
cavity modulates the velocity of the otherwise uniform beam. This means that after the 
cavity, half of the electrons have a velocity larger than the average beam velocity 
whereas the second half has a smaller velocity. According to the change in the (non-
relativistic) velocity of the electrons the beam becomes bunched down the stream since 
accelerated electrons from one period of the electromagnetic wave catch up with the slow 
electrons from the previous period. When this bunch enters the gap of another cavity it 
may generate radiation very efficiently. In practice, several intermediary cavities are 
necessary to achieve good modulation. 

 
7.2.2  The Traveling Wave Tube 
 
The traveling wave tube (TWT) is a Cerenkov device, namely the phase velocity of 

the interacting wave is smaller than c  and the interaction is distributed along many 
wavelengths. Generally speaking, as the beam and the wave advance, the beam gets 
modulated by the electric field of the wave and in turn, the modulated beam increases the 
amplitude of the electric field. In this process both the beam modulation and the radiation 
field grow exponentially in space.  
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In the interaction process the electron oscillates primarily along the major axis ( z  
direction ) and the interaction is with the parallel component of the electric field. 
Correspondingly, the interaction occurs here with the transverse magnetic (TM) mode. 

 
7.2.3  The Gyrotron 
 
The gyrotron relies on the interaction between an annular beam, gyrating around the 

axis of symmetry due to an applied uniform magnetic field, and a transverse electric (TE) 
mode. The concept of generating coherent radiation from electrons gyrating in a magnetic 
field was proposed independently by three different researchers in the late fifties, and it 
has attracted substantial attention due to its potential to generate millimeter and 
submillimeter radiation. 

In this device electrons move in the azimuthal direction and they get bunched by the 
corresponding azimuthal electric field. As in the case of the TWT the bunches act back 
on the field and amplify it. In contrast to traveling wave tubes or klystrons in which the 
beam typically interacts with the lowest mode, in the gyrotron the interaction is with high 
modes therefore various suppression techniques are employed in order to obtain coherent 
operation with a single mode. 

The operation frequency is determined by the applied magnetic field, the energy of 
the electrons and, in cases of high mode operation, also by the radius of the waveguide:  
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 2 2
c c c= ,  o          (7.2.1) 

 where = /v c , = /c eB m  and co  is the cutoff frequency of the mode. The operating 
frequency in this case can reach very high values: for a magnetic field of 1T and 2.5  
the operation frequency is of the order of 150 GHz or higher according to the mode with 
which the electrons interact.  

  

 
Since the interaction of the electrons is with an azimuthal electric field, it is 

necessary to provide the electrons with maximum momentum in this direction. The 
parameter which is used as a measure of the injected momentum is the ratio of the 
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transverse to longitudinal momentum / zv v . This transverse motion is acquired by 
the electrons in the gun region as can be deduced from the schematics illustrated in the 
Figure. In relativistic devices this ratio is typically smaller than unity whereas in non-
relativistic devices it can be somewhat larger than one. 

Beam location is also very important. In the TWT case the interaction is with the 
lowest symmetric TM mode. Specifically the electrons usually form a pencil beam and 
they interact with the longitudinal electric field which has a maximum on axis. We 
indicated that gyrotrons operate with high TE modes and the higher the mode, the higher 
the number of nulls the azimuthal electric field has along the radial direction. Between 
each two nulls there is a peak value of this field. It is crucial to have the annular beam on 
one of these peaks for an efficient interaction to take place. 

 
7.2.4  The Free Electron Laser 
As the gyrotron, it is a fast-wave device in the sense that the interacting 

electromagnetic wave has a phase velocity larger or equal to c  but instead of a uniform 
magnetic field it has a periodic magnetic field. The "conventional" free electron laser 
(FEL) has a magnetic field perpendicular to the main component of the beam velocity. As 
a result, the electrons undergo a helical motion which is suitable for interaction with 
either a TE or a TEM mode. The oscillation of electrons is in the transverse direction but 
the bunching is longitudinal and in this last regard the process is similar to the one in the 
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traveling wave tube. However, its major advantage is the fact that it does not require a 
metallic (or other type of) structure for the interaction to take place. Consequently, it has 
the potential to either generate very high power at which the contact of radiation with 
metallic walls would create very serious problems, or produce radiation at UV, XUV or 
X-ray where there are no other coherent radiation sources. The Figure illustrates the basic 
configuration.  
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7.2.5  The Magnetron 
 
 
  The magnetron was invented at the beginning 

of the 20th century but because of its complexity 
there is no analytical model, as yet, which can 
describe its operation adequately as a whole. In 
recent years great progress has been made in the 
understanding of the various processes with the aid 
of particle in cell (PIC) codes. Its operation combines potential and kinetic energy 
conversion. The Figure illustrates the basic configuration. Electrons are generated on the 
cathode (inner surface) and since a perpendicular magnetic field is applied they form a 
flow which rotates azimuthally. The magnetic field and the voltage applied on the anode 
are chosen in such a way that, in equilibrium, the average velocity of the electrons equals 
the phase velocity of the wave supported by the periodic structure at the frequency of 
interest. 

A simplistic picture of the interaction can be conceived in the following way: 
electrons which lose energy to the wave via the Cerenkov type interaction, move in 
upward trajectories -- closer to the anode. Consequently, two processes occur. Firstly, the 
closer the electron is to the periodic surface the stronger the radiation field and therefore 

v

B
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the deceleration is larger, causing a further motion upwards. Secondly, as it moves 
upwards its (dc) potential energy varies. Again, this is converted into electromagnetic 
energy. 

Two major differences between the magnetron and other radiation sources 
mentioned above, are evident:  (i) in the magnetron the beam generation, acceleration and 
collection occur all in the same region where the interaction takes place.  (ii) The 
potential energy associated with the presence of the charge in the gap plays an important 
role in the interaction; the other device where this is important is the vircator which will 
be briefly discussed next. 
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7.3  Generation of radiation in a waveguide 
 
In this subsection we consider the electromagnetic field associated with the 

symmetric transverse magnetic (TM) mode in a dielectric filled waveguide. As in the 
previous subsection, the source of thiss field is a particle moving at a velocity 0v , 
however, the main difference is that the solution has a constraint since on the waveguide's 
wall ( =r R ) the tangential electric field vanishes. Therefore, we shall calculate the Green 
function in the frequency domain subject to the condition ( = , | , ) = 0' 'G r R z r z . We 
assume a solution of the form  

 0
=1

( , | , ) ( | , )J ,
    

 
' ' ' '

s s
s

rG r z r z G z r z p
R

    (7.3.1) 

 substitute in (2.4.11) and use the orthogonality of the Bessel functions we find that  

 0
2 2

1

1( | , ) J ( | ),1 J ( )
2

 
  

 

'
' ' '

s s s

s

rG z r z p g z z
R R p

    (7.3.2) 

 where ( | )'
sg z z  satisfies  

 
2

2
2

1( | ) ( ),
2

 
     

 
' '

s s
d g z z z z
dz




    (7.3.3) 

 and  
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2 2

2
r2 2 .  s

s
p
R c

     (7.3.4) 

 For > 'z z  the solution of (7.3.3) is  

 ( )( | ) , 


'z z' s
sg z z A e     (7.3.5) 

 and for < 'z z  the solution is  

 ( )( | ) . 


'z z' s
sg z z A e     (7.3.6) 

 Green's function is continuous at = 'z z  i.e.,  
 , A A     (7.3.7) 

 and its first derivative is discontinuous. The discontinuity is determined by integrating 
(7.3.3)from = 0'z z  to = 0'z z  i.e.,  

 
= 0 = 0

1( | ) ( | ) .
2 

           
' '

s s
' 'z z z z

d dg z z g z z
dz dz 

    (7.3.8) 

 Substituting the two solutions introduced above, and using (7.3.7)we obtain  

 | |1( | ) .
4

 


'z z' s
s

s

g z z e


    (7.3.9) 

 Finally, the explicit expression for the Green's function corresponding to azimuthally 
symmetric TM modes in a circular waveguide is given by  
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    (7.3.10) 

 In this expression it was tacitly assumed that > 0  and s  [defined in (7.3.4)] is non-
zero. 

With Green's function established, we can calculate the magnetic vector potential as 
generated by the current distribution described in (2.4.10); the result is  
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    (7.3.11) 

 It will be instructive to examine this expression in the time domain; the Fourier 
transform is  
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    (7.3.12) 
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 where  

 
2 2

2
2 2 .

1
      

s
s

p c
R n




    (7.3.13) 

 The problem has been now simplified to the evaluation of the integral  

 0 2 2( = / ) ,



 


j

s
s

eF t z v d


 


    (7.3.14) 

 which in turn is equivalent to the solution of the following differential equation  

 
2

2
2 ( ) 2 ( ).

 
   

 
s s

d F
d
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

    (2.4.39) 

If the particle's velocity is smaller than the phase velocity of a plane wave in the medium 
( < 1n ) then 2 > 0 s  and the solution for > 0  is  

 ( > 0) ,
 s

sF A e      (7.3.15) 
or  

 ( < 0) .
 s

sF A e      (7.3.16) 
 

As previously, in the case of Green's function, ( )sF   has to be continuous at = 0  
and its derivative is discontinuous:  



 303

 
=0 =0

( ) ( ) 2 .
 

        
   

s s
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  
 

    (7.3.17) 

 When the velocity of the particle is smaller than /c n  (i.e., < 1n ) the characteristic 
frequency  s  is real, therefore  

 | |( ) ,


s
s

s

F e      (7.3.18) 

 and  
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
 

    (7.3.19) 

 This expression represents a superposition of evanescent modes attached to the particle. 
It is important to emphasize that since the phase velocity of a plane wave in the medium 
is larger than the velocity of the particle there is an electromagnetic field in front ( < 0 ) 
of the particle. The situation is different in the opposite case, > 1 / n , since 2 < 0 s . In 
this case the waves are slower than the particle and there is no electromagnetic field in 
front of the particle i.e.,  

 ( < 0) 0.sF      (7.3.20) 
 By virtue of the continuity at = 0  we have for > 0   

  ( > 0) sin | | . s sF A      (7.3.21) 
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 Substituting these two expressions in (2.4.42) we obtain  

  2( ) sin | | ( ),
| |

  
s s

s

F h       (7.3.22) 

 and the magnetic vector potential reads  
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0
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s
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s s s

eA r z t
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p r R z zt h t
v vp


 

   (7.3.23) 

 where ( )h   is the Heaviside step function. This expression indicates that when the 
velocity of the particle is larger than /c n , there is an entire superposition of propagating  
waves traveling behind the particle. Furthermore, all the waves have the same phase 
velocity which is identical with the velocity of the particle, 0v . It is important to bear in 
mind that this result was obtained after tacitly assuming that r  is frequency independent 
which generally is not the case, therefore the summation is limited to a finite number of 
modes. The modes which contribute are determined by the Cerenkov condition 

( = ) > 1 sn   . 
After we established the magnetic vector potential, let us now calculate the average 

power which trails behind the particle. Firstly, the azimuthal magnetic field is given by  
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    (7.3.24) 

 where  
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    (7.3.25) 

 Secondly, the radial electric field is determined by the electric scalar potential which in 
turn is calculated using the Lorentz gauge and it reads  
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   (7.3.26) 

 With these expressions we can calculate the average electromagnetic power trailing the 
particle. It is given by  
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    (7.3.27) 

 Note that for ultra relativistic particle ( 1 ) the power is independent of the particle's 
energy. In order to have a measure of the radiation emitted consider a very narrow bunch 
of 1110N  electrons injected in a waveguide whose radius is 9.2 mm. The waveguide is 
filled with a material whose dielectric coefficient is r 2.6  and all electrons have the same 
energy 450 keV. If we were able to keep their velocity constant, then 23 MW of power at 
11.4 GHz (first mode, = 1s ) will trail the bunch. Further examining this expression we 
note that the average power is quadratic with the frequency i.e.,  
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    (7.3.28) 

 In addition, based on the definition of the Fourier transform of the current density in 
(2.4.10), we conclude that the current which this macro-particle excites in the s th mode 
is / 2s sI eN  . With this expression, the radiation impedance of the first mode ( = 1s ) is  
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    (7.3.29) 

 For a relativistic particle, 1 , a dielectric medium r = 2.6  the radiation impedance 
corresponding to the first mode is   1200  which is one order of magnitude larger than 
that of a dipole in free space or between two plates. Note that this impedance is 
independent of the geometry of the waveguide and for an ultra-relativistic particle it is 
independent of the particle's energy. 
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7.4  Generation of radiation in a cavity 
 
In order to examine transient phenomena associated with reflected waves we shall 

calculate the electromagnetic energy in a cavity as a single (point) charge traverses the 
structure. Consider a lossless cylindrical cavity of radius R  and length d . A charged 
particle ( )e  moves along the axis at a constant velocity 0v . Consequently, the 
longitudinal component of the current density is the only non-zero term, thus  

 0 0
1( , ) v ( ) ( ).

2zJ t e r z v t
r
 


  r     (7.4.1) 

 It excites the longitudinal magnetic vector potential ( , )rzA t  which for an azimuthally 
symmetric system satisfies  

 
2 2

02 2 2

1 1 1 ( , , ) ( , , ).
   

        
z zr A r z t J r z t

r r r z c t
     (7.4.2) 

 In this section we shall consider only the internal problem, ignoring the electromagnetic 
phenomena outside the cavity. The boundary conditions on the internal walls of the 
cavity impose that ( = , , ) = 0zE r R z t , ( , = 0, ) = 0rE r z t  and ( , = , ) = 0rE r z d t  therefore 
the magnetic vector potential reads  

 , 0
=1, =0

( , , ) ( )J cos .
        

   
z s n s

s n

r nA r z t A t p z
R d

     (7.4.3) 
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 Using the orthogonality of the trigonometric and Bessel functions we find that the 
amplitude , ( )s nA t  satisfies  
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   (7.4.4) 

 where  

 
1 for = 0,

0.5 otherwise,




n

n
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 and  
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     (7.4.6) 

 are the eigen-frequencies of the cavity. Before the particle enters the cavity ( < 0t ), no 
field exists, therefore  

 , ( < 0) = 0.s nA t     (7.4.7) 
 For the time the particle is in the cavity namely, 00 < < / vt d , the solution of (7.4.4) 
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consists of the homogeneous and the excitation term:  
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,
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    (7.4.9) 

 and  

 0v .n
n

d
      (7.4.10) 

 Since both the magnetic and the electric field are zero at = 0t , the function , ( )s nA t  and 
its first derivative are zero at = 0t  hence  

 1 , 0,s nB     (7.4.11) 
 and  

 2 0.B     (7.4.12) 
 Consequently, the amplitude of the magnetic vector potential [ , ( )s nA t ] reads  

 , , ,( ) cos( ) cos( ) .    s n s n n s nA t t t      (7.4.13) 



 311

 Beyond 0= /t d v , the particle is out of the structure thus the source term in (7.4.4) is 
zero and the solution reads  

 

, 1 ,
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2 ,
0

> cos
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s n s n
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    (7.4.14) 

 As in the previous case, at 0= /t d v  both , 0( > / )s nA t d v  and its derivative, have to be 
continuous:  

 , , 1
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( 1) cos ,
v

n
s n s n

d C
  
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 , , , 2 ,
0

sin .
vs n s n s n s n
d C

 
    

 
    (7.4.16) 

 For this time period, the explicit expression for the magnetic vector potential is 
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  (7.4.17) 

 The expressions in (7.4.7), (7.4.13), (7.4.17) describe the magnetic vector potential in the 
cavity at all times. The Figure  illustrates schematically this solution. 

   
During the period the electron spends in the 

cavity, there are two frequencies which are 
excited: the eigen-frequency of the cavity , s n  and 
the "resonances" associated with the motion of the 
particle, n . The latter set corresponds to the case 
when the phase velocity, phv / k , equals the 
velocity 0v . Since the boundary conditions impose 

/k n d  and the resonance implies  
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 thus we can immediately deduce the resonance frequencies n  as given in (7.4.10). 
Now that the magnetic vector potential has been determined, we consider the effect 

of the field generated in the cavity on the moving particle. The relevant component is  

 , 0 ,
=1, =00

, ,0 < < J cos cos cos( ) .
vz s n s n s n

s n

d rA r z t p z t t
R nd
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                     

 (7.4.19) 

 Note that the upper limit in the double summation was omitted since in practice this limit 
is determined by the actual dimensions of the particle, which so far was considered 
infinitesimally small. In order to quantify this statement we realize that the summation is 
over all eigenmodes which have a wavenumber much longer than the particle's dimension 
i.e., , b / < 1 s n R c . 

According to Maxwell's equations, the longitudinal electric field is  

 0
1( , ) ( , ) ( , ). 

  
 

r r rz zE t J t rH t
t r r      (7.4.20) 

 Furthermore, the field which acts on the particle does not include the self field, therefore 
we omit the current density term. Using the expression for the magnetic vector potential 
[(2.1.36)], we have  

 2 1( , ) ( , ), 
 

 r rz zE t c dt r A t
r r r

    (7.4.21) 

 or explicitly,  
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     (7.4.22) 
 In a lossless and closed cavity the total power flow is zero, therefore Poynting's theorem 
in its integral form reads  
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 Thus substituting the current density [(7.4.1)] we obtain  
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 which has the following explicit form  
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 The time integral in this expression can be evaluated analytically. As can be readily 
deduced, the first term represents the non-homogeneous part of the solution and its 
contribution is identically zero whereas the second's reads  
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 Substituting the explicit expression for ,s n  we have  
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    In the Figure we illustrate two typical terms from the expression above as a function of 
the particle's momentum. The (normalized) energy stored at 10.7 GHz (corresponding to 

= 1, = 1s n ) is shown in the left frame and we observe that for = 2.5  the energy 
reaches its asymptotic value 
[ ( = 1, = 1) 4W s n ]. This is in 
contrast to the energy stored in the 
35.5 GHz ( = 3, = 3s n ) wave which at 
the same momentum reaches virtually 
zero level; the asymptotic value 
[ ( = 3, = 3) 0.5]W s n  is reached for 
a much higher momentum ( = 15 ).  
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