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Abstract: Planck’s famous blackbody radiation law was derived under the assumption that 
the dimensions of the radiating body are significantly larger than the radiated wavelengths. 
What is unique about Planck's formula is the fact that it is independent of the exact loss 
mechanism and the geometry. Therefore, for a long period of time, it was regarded as a 
fundamental property of all materials. Deviations from its predictions were attributed to 
imperfections and referred to as the emissivity of the specific body, a quantity which was 
always assumed to be smaller than unity. Recent studies showed that the emission spectrum is 
affected by the geometry of the body and in fact, in a limited frequency range, the emitted 
spectrum may exceed Planck's prediction provided the typical size of the body is of the same 
order of magnitude as the emitted wavelength. For the investigation of the blackbody 
radiation from an arbitrarily shaped body, we developed a code which incorporates the 
fluctuation-dissipation theorem (FDT) and the source model technique (SMT). The former 
determines the correlation between the quasi-microscopic current densities in the body and 
the latter is used to solve the electromagnetic problem numerically. In this study we present 
the essence of combining the two concepts. We verify the validity of our code by comparing 
its results obtained for the case of a sphere against analytic results and discuss how the 
accuracy of the solution is assessed in the general case. Finally, we illustrate several 
configurations in which the emitted spectrum exceeds Planck's prediction as well as cases in 
which the geometrical resonances of the body are revealed. 
© 2017 Optical Society of America 
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1. Introduction

Since the dawn of the age of quantum mechanics, Planck’s law of blackbody radiation was 
considered to be one of the cornerstones of modern physics and has usually served as the 
golden standard for solving problems of thermal radiation. Deviations from this law were 
attributed to imperfections collectively regarded as emissivity which was always considered 
to be smaller than unity. However the perception of Planck’s law as a basic law of nature has 
been repeatedly scrutinized in articles and even in textbooks [1]. One of the main limitations 
of Planck’s law stems from the explicit assumption that the radiating cavity is of cuboidal 
shape whose dimensions are significantly larger than that of the radiated wavelengths. A 
thorough review of this assumption and examples where it breaks and corrections to Planck’s 
law were presented in [2] and some explicit examples can be found in [3–8]. Furthermore, in 
[2] the main focus is on closed structure, it was emphasized that for proper evaluation of the
radiation from an open body, Fluctuation-Dissipation Theorem (FDT) [9] becomes a strict
necessity. For the sake of accuracy, we need to point out that in [9] FDT was developed for
lumped elements and the relevance to blackbody radiation was assessed based on the
electrical dipole impedance. In our study we consider the extension of FDT for distributed
systems developed by Landau and Lifshits [10] and Rytov [11-12].

Another assertion that needs to be clarified refers to near vs. far-field contribution. 
Planck's blackbody radiation formula is relevant only to the far-field contribution and makes 
no statements regarding the energy stored in near-field modes. Yet it is well known that heat 
transfer between two macroscopic bodies is dominated by near-field (evanescent) modes if 
the distance between two macroscopic bodies is of the order of the dominant wavelength of 
the blackbody radiation [13–20]. Consequently, the conclusions drawn in [1,2] regarding 
exceeding the Planck’s law limit is reasonable and not limited to a specific family of 
geometries but rather to all configurations wherein there is enhanced coupling between 
evanescent modes (near-field) and propagating modes (far-field) - see two specific examples 
reported recently [21,22]. A recent work by Greffet et al. [23] critically reviewed publications 
claiming to exceed Planck’s law. Their conclusion was that in the far field regime the widely 
used term “Super-Planckian” is a misnomer and in cases where such phenomena are reported 
are in fact cases where the absorption cross section is larger than the geometrical cross 
section. We shall use the term “Super-Planckian” nonetheless in this paper since it is a widely 
accepted term in such publications. 

In recent years, there has been an increased interest in blackbody radiation mainly due to 
the emergence of thermal photovoltaic systems (TPV) which are described in great detail in 
[24–28], where the ability to enhance and control the thermal spectrum translates into higher 
efficiency of solar cells. TPV systems may benefit immensely from the use of meta-materials 
[29–31] or structural design of the emitter’s surface [32, 33] therefore the ability to 
investigate with one tool, a large variety of configurations involving blackbody radiation and 
FDT is evident. 

The goal of this study is to present a numerical method designed to calculate thermal 
radiation produced by a body of arbitrary shape and electromagnetic properties. Several 
numerical methods for this purpose are described in various publications. These methods 
include the scattering formulation [34], surface current formulation [35], Finite-difference 
time-domain (FDTD) [36–38], the boundary element method [39], fluctuating volume-current 
formulation [40] and thermal discrete dipole approximation [41,42]. Our method is based on 
the FDT and the Source Model Technique (SMT) [43], which is also referred to as the 
Method of Auxiliary Sources. Section 2 briefly recapitulates the derivation of thermal 
emission based on FDT and Section 3 demonstrates how the two (blackbody radiation and 
SMT) can be harnessed together. In Section 4, we assess the numerical error and the method 
is tested against a configuration that can be solved analytically; simulation results for several 
other configurations are also presented. In all cases we focus on scenarios when Planck’s law 
is exceeded and/or the spatial resonances of the body are reflected in the thermal radiation. 
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2. Essentials of the formulation

The setup of the problem is illustrated in Fig. 1. A homogenous body of arbitrary geometry 
composed of non-magnetic material with complex permittivity of jε ε ε′ ′′= −  is situated in

free space. This body assumed to be in thermodynamic equilibrium at temperature T and 
emits radiation due to random current distributions fluctuating within the body. Steady state 

operation with ( )exp j tω  is assumed throughout this study. The ensemble average of both

the electric and magnetic currents ( ) ( ), , ,e mJ r J rα αω ω 
 densities are zero whereas the 

correlations are not zero and are given by the extension of the FDT [12] to distributed systems 
given by: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0*

* *

, , ,

, , 0, , , 0

e e

m m e m

J r J r T r r

J r J r J r J r

α β αβ

α β α β

ωε ε ω
ω ω ω δ ω ω δ δ

π
ω ω ω ω

′′
′ ′ ′ ′= Θ − −

′ ′ ′ ′= =

   

   
  

(1) 

Superscripts e and m indicate whether this is an electric or magnetic current density; 

( ) ( ) 1
, exp / 1BT k Tω ω ω −

Θ = −     and   is Planck’s constant, Bk  is Boltzmann's 

constant, δ  is the Dirac-delta function; α  and β  represent the indices of the three 

coordinates; in case of Cartesian coordinates , ,x y zα =  and , ,x y zβ = . 

Conceptually, with this information and the geometry of the body, it is possible to 
determine the electromagnetic field in terms of a dyadic Green's function which written in 
operator form reads 

E Jα αβ β
β

ε= (2)

thus, the Poynting vector associated with the far field can be easily established. Furthermore, 
since we focus on the far-field component, it is natural to employ the reciprocity theorem [2, 
12]. Specifically, rather than calculating the field due to “thermal” current densities and with 
it, the power in the body, we determine the power absorbed by the body when exposed to 
radiating dipoles located far away from it. Furthermore, we assume an enclosing sphere of 

radius R∞  which is much larger than the wavelengths of interest as well as the largest

dimensions of the body; its center coincides with that of the body. On this sphere, we place a 

set of two electric and two magnetic unit dipoles pointing in the θ̂  and φ̂  directions as 

depicted in Fig. 1. 
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Fig. 1. Thermal radiation problem setup, a radiating body of temperature T and dielectric 

coefficient jε ε ε′ ′′= −  emits radiation due to internal fluctuating electrical and magnetic

thermal currents 
th

e
J


 and 
th

m
J


. We place test magnetic and electrical dipoles

, , ,
e e m m

J J J Jθ φ θ φ   
at point R∞


 in order to sample the tangential EM field components using 

the reciprocity theorem using which the radial Poynting vector and consequently the total 
radiated power can be found. 

Using these dipoles, the tangential components of the thermal EM fields in the body can 
be determined through the reciprocity theorem in Eq. (3) where the superscript “th” denotes 
thermal fields or currents originating from the blackbody and the superscript “test” relates to 
the fields of the test dipoles or their currents. 

( )
( )

th test test th

S

th test th test test th test th
e m m e

V

E H E H ds

E J H J H J E J dV

− × − × ⋅ =

⋅ − ⋅ + ⋅ − ⋅





    

        (3)

Using expressions for the cross-correlation of the currents in the body Eq. (1) and Eq. (3), 
Rytov determined the spectral density of the radiated radial component of the Poynting vector 
which in our notation has the form 

( ) ( )

( ) ( ) ( ) ( )

2

0

*

2
,

Re , R , R , R , R
e m e m

V

dW
R T

d d

dr r r r r
θ φ φ φ

ω ω ω ω

ωε ε ω ω
ω π

ε ε ε ε

∞

∞ ∞ ∞ ∞

′′= Θ
Ω

× ⋅ − ⋅ 
 

            (4) 

Here we employed Eq. (1) and as a result, only the diagonal terms of the dyadic Green's 

function play a role and therefore we redefined .α ααε ε≡  The integration is over the volume 

of the body, ( ) ( ),R , ,R
e e

r r
θ φ

ω ωε ε∞ ∞
 
  

   
 are the “electric” fields generated by the electrical 

unit-dipole pointing in the θ̂  or φ̂  directions and located on the sphere of radius R λ∞ >> , 

at the observation point – in other words these are Green's function components where the 
source is on the sphere and the observation point is in the body. The next major step is to find 
a way to numerically determine these Green's operators. 
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3. Source model technique (SMT)

Because we are dealing with an arbitrarily-shaped body, the normalized electrical field 
components in Eq. (4) need to be evaluated numerically. We chose the SMT, which is 
described in detail in [43]. In the SMT, the fields inside each homogeneous region are 
approximated by a superposition of fields of fictitious elementary sources whose fields are 
known analytically (Hertzian dipoles in our case) located outside of this region. Hence, 
integrations over current distributions typical of other integral methods are avoided and the 
continuity of the fields across region boundaries can be imposed in the simple point-matching 
sense. The method is efficient in the sense that it affords a good trade-off between accuracy 
and computational resources, it is rigorous as it allows increasing the accuracy by gradually 
increasing computational resources, and it is flexible since it can accommodate general 
geometries and analysis scenarios. Figure 2(a) schematically illustrates the original 

configuration. By virtue of linearity of Maxwell equations, each unit dipole on R∞  may be

treated separately and the field it generates on the body may be perceived as an incident wave 

( ),E H
 

inc inc . These fields are scattered by the material body. The externally reflected and 

internally transmitted field components are denoted as ( ),E H
 

ext ext  and ( ),E H
 

int int

respectively. Together with the incident field, they must satisfy the continuity of the 
tangential components of the fields across the surface of the body Γ  with normal n̂ . We 
have 

( ) int

( ) int

ˆ ( ) ( ) ( ) 0
1, 2

ˆ ( ) ( ) ( ) 0

v inc ext

v inc ext

t E E E
v

t H H H

ρ ρ ρ

ρ ρ ρ

  ⋅ + − =   =
 ⋅ + − =  

    

      (5) 

where ( )ˆ vt  represents two orthogonal unit vectors tangential to Γ ; the vector ρ  represents

position vector to points on Γ  . As a trivial example, in the case of a spherical body a 

possible choice of tangential vectors can be (1) ˆt̂ θ=  and (2) ˆt̂ φ=  (though there are an

infinite number of ways to select two orthogonal tangential vectors). The essence of SMT is 

to place the sources that generate the external field on a mathematical surface Γint  confined

by Γ  and the internal field by a series of sources located on a mathematical surface Γext  that

confines Γ . Each group of sources radiates into its relevant region while operating in 
homogeneous unbounded space characterized by the dielectric coefficient of the region: for 
the external field the dielectric coefficient is that of the vacuum whereas for the internal field, 
the dielectric coefficient is that of the body – see Figs. 2(b)-2(c). Finally, we conveniently 
express the sources in each group in terms of Hertzian dipoles whose field components, when 
radiating in an unbounded homogenous space, are known analytically. 
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Fig. 2. (a) The conceptual setup; a distribution of current densities in a dielectric body 
generates radiation inside and outside the body. By virtue of the reciprocity theorem, the 
emitted power distribution is evaluated by calculating the absorbed power from an incident 

field generated by test dipole (red arrow) located far R∞


 away from the body. (b) For an 

assessment of Green's function components, the internal sources generating the reflected 

(external) fields are located on a surface 
int

Γ . (c) In a similar way, external sources located on

Γext
 generate the transmitted (internal) fields. 

There are 1, 2,....n N= ext  points ext
nr


 on extΓ where the current densities ( )ext ext
n nJ r
 

are defined. In addition, there are 1, 2,...,m N= int  points int
mr


 on intΓ where the current

densities ( )int int
m mJ r
 

 are defined. The unknown amplitudes of these sources together form a 

generalized current vector. ( ) ( )int, .ext ext int
n n m mJ r J r =  

 
  Now, imposing the boundary 

conditions Eq. (5) at 1, 2,...,l N= bc  test points on Γ  denoted by lρ  reduces the operator

equations into matrix form  =  in which   is a generalized voltage vector related to 
the values of the incident field at the test points and   is a generalized impedance matrix, 
which is a function of the free-space Green's functions. Once we determine  , we can 
readily determine the various operators  , which determine the emitted spectrum via Eq. (4). 
An important aspect of the SMT is its ability to control the error. It is done by searching for a 
fictitious source placement configuration which would provide an error below a user pre-
defined threshold. In the framework of this study we used an algorithm which performs such 
search whilst attempting to minimize the amount of fictitious sources to reduce simulation 
time. 

4. Results and discussion

To test the validity of SMT for solving blackbody radiation problems we ran a set of 
simulations for a radiating sphere of radius R  and compared it to an analytical solution 
developed in [44]. The method was found to be suitable for relatively small bodies 

( )5 .R λ<  For larger dimensions it requires a very large number of fictitious sources to

maintain a sufficiently low error. Thus the calculation task becomes more computationally

demanding both in terms of memory and runtime (roughly of the order of ( )2O n ). Figure 3

illustrates the error as a function of a sphere’s radius to wavelength ratio. It is apparent that 
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even for spheres whose radius to wavelength ratio is ~2 we need a fairly large amount 
(~1600) of sources if we are to maintain an error below 1%. 

Fig. 3. (a) Average boundary conditions error vs radius to wavelength ratio for 80,400,800 and 
1600 fictitious sources measured at 40000 validation points (b) same as (a) zoomed for 0-1% 
error range. 

In all the simulations that follow, the far-field power was computed and maximal error 
threshold was set to be 0.5%. Figure 4(a) shows 3 simulations of highly conducting 

[ ]( )510 1 / mσ ≈ Ω  spheres at 1000T K=  and radii 0.1, 0.8 and 5 mμ  (dots) and

compares to the analytic results (solid lines) and Planck’s law (black line). There is almost a 
perfect match up between the numerical and theoretical calculations–the total error does not 
exceed 0.5%. From the physics perspective, it is evident that for large spheres the location of 
the thermal wavelength (peak of the distribution) and the general shape of the spectrum are 
becoming similar to Planck’s law while for smaller dimensions, we observe greater deviations 
from it and for certain configurations the Planckian spectrum is exceeded. Moreover, the 
body behaves as if its temperature is higher as revealed by the curve which represents the 
0.1 mμ  radius sphere. Figure 4(b) presents the spectral power densities of a sphere with 

0.8R m= μ  at 3000T K=  for several values of the conductivity and they are compared 

to Planck’s law. It is noted that the emitted power strongly depends on the conductivity and 
for specific values it may exceed Planck’s law. It is also interesting to realize that for poorly 
conducting bodies the spectrum contains peaks which coincide well with the resonant 
frequencies in a spherical cavity [45] (see also inset). For super-Planckian conditions where 
the conductivity is high, these resonances are not observed such as in the case 

of ( ) 2.ε =rRe  Fig. 4(c) shows the dependence the spectrum on the real part of the dielectric

coefficients. As the dielectric coefficient is elevated, the resonant character of the emission is 
more pronounced and the excess of power (above Planck’s law) is also highly increased. In 
addition to the dielectric coefficient, we specify the total emitted power normalized to 

Planck's values: ( )[ ]32 / 0.937P ε = =r PlanckRe P  , ( )[ ]16 / 1.183P ε = =r PlanckRe P , 

( )[ ]8 / 1.283P ε = =r PlanckRe P and ( )[ ]2 / 1.291P ε = =r PlanckRe P . It is interesting to 

note that even when the resonance is very pronounced, ( ) 32ε =rRe , the total emitted power 

is below Planck's prediction. For lower values, both the spectrum and the power may exceed 
the corresponding Planck law’s prediction. Figure 4(d) presents the total emitted power 
normalized by the Planckian power (Stefan-Boltzman (SF)) as a function of the conductivity 

for spheres with different radii for the case where ( ) 2ε =rRe . It is evident that for each

radius there is an optimal conductivity for which the total radiated power is maximal. It is 
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also evident for a certain range of radii Planck’s law can be exceeded and that for very small 
bodies and very large bodies it serves at an upper limit. 

Fig. 4. Simulation results radiating sphere [ ] 1510 mσ −= Ω  at 1000T K= , compared to 

analytic calculation and Planck’s Law (a) Spectral power density of a sphere compared to 
Planck’s Law and to the analytic result at [44] (solid lines). (b) Spectral power of a sphere of 

0.8 mμ  at 3000T K=  with [ ] 12 3 4 510 ,10 ,10 ,10 mσ −= Ω . (c) Spectral power 

density of spheres with 0.8 mμ  at 1000T K=  with 2,8,16, 32
r

ε = demonstrating the

resonant behavior of the spectrum; adjacent to the dielectric, the corresponding total power 
emitted is marked. (d) Total emitted power to total power predicted by Planck’s Law for a 
sphere of 0.1, 0.8,10,50,100R m= μ  as a function of the conductivity. 

Figures 5(a) and 5(b) show the contours map of the total emitted power normalized by the 
Planckian power (Stefan-Boltzman (SF)) as a function of the dielectric coefficient and 
conductivity for two radii. Clearly, in both cases there is an optimal conductivity for which 
the emitted energy is maximal but evidently more energy is emitted in the case of smaller 
radius (0.8 mμ ). 
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Fig. 5. (a) Contours of the total emitted (SB) power normalized to power predicted by Planck’s 

Law as function of σ and rε  for 0.8R m= μ , 1000T K= . (b) Same as frame (a) for

20R m= μ , 1000T K= . 

Next step is to consider the thermal radiation of a conducting sphere with a spherical 
concentric void. Figures 6(a) and 6(b) show the emitted spectrum and the power – the latter is 
normalized to a full sphere of the same external radius. The spectrum may exceed both 
Planck's value as well as that of a full sphere. Figures 6(c) and 6(d) are the same plots for 
lower conductivity and higher dielectric coefficient. The resonant character of the spectrum is 
evident in this case too. 

Lastly, to demonstrate that thermal radiation, contrary to what is commonly believed, does 
not depend on global geometrical properties such as surface area or volume but rather on the 
specific geometry of the body, we analyzed the radiation of ellipsoids of revolution. It is 
possible to find a pair of ellipsoids with identical volume and surface area but different semi-
principal axes such that one is a prolate and the other is an oblate ellipsoid as shown in Fig. 
7(c). Figure 7(a) shows the spectral power density of such two ellipsoids. It is evident that 
despite them having the same volume and surface area, their emitted power spectra differ 
greatly one from another and differ from the spectra of spheres with same surface area. It can 
also be seen that for such miniscule dimensions the calculated results are very different than 
what Planck’s law predicts. 

The SMT also allows us to compute the thermal radiation pattern of blackbodies. Figure 
7(b) shows the radiation pattern of the oblate and prolate ellipsoids. We can see that the 
specific geometry of the body affects not only the spectrum but also the directivity of the 
radiation. 

                                                                                        Vol. 25, No. 12 | 12 Jun 2017 | OPTICS EXPRESS A598 



Fig. 6. (a) Power spectrum from a hollow sphere for various internal radius . 

[ ] 152, 10
r

mε σ −= = Ω (b) Power ratio of hollow sphere to full sphere of the same

external radius [ ] 152, 10
r

mε σ −= = Ω  as a function of the radii ratio (c) Same as (a) but 

. [ ] 152, 5700
r

mε σ −= = Ω . Note the resonant character of the spectrum. (d) Same as (b)

except [ ] 152, 5700
r

mε σ −= = Ω . Note that the power ratio decreases monotonically.
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Fig. 7. (a) Spectral power density of 2 ellipsoids with the same volume and surface area 
compared to spheres of the same volume and surface area and the Planckian spectra of same 
spheres (b) Radiation pattern of the ellipsoids (c) Illustration of the ellipsoids in (a,b). 

To conclude, in this study we have shown that (i) the SMT can be used to numerically 
solve thermal radiation problems of bodies of dimensions smaller or comparable to the 
radiated wavelengths. For larger dimensions this method is becoming increasingly slower 
because a higher number of fictitious sources and test points are required in order to satisfy 
the boundary conditions. This significantly increases the computer’s runtimes and memory 
consumption. We demonstrated the fact that (ii) the power spectrum of a small body may 
contain resonant frequencies, however those are observed for poorly conducting spheres 
where the total emitted power is significantly lower than Planck’s law – for low dielectric 

coefficients. When considering high values of the dielectric coefficient ( )Re 1ε >>  the

resonant character of the thermal radiation is clearly revealed. It has been shown that (iii) 
blackbody radiation is not solely affected by global geometrical properties such as surface 
area or volume, but rather by the specific geometry of the body such as in the case of the 
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ellipsoids. Finally, we have also shown that the (iv) total radiated power can be enhanced by 
creating a hollow cavity inside the radiating body. For a sphere roughly the size of the emitted 
wavelength, we were able to enhance the radiated power by over 40% by optimizing the 
dimensions of the cavity. 
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