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Geometric effects on blackbody radiation
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Planck’s formula for blackbody radiation was formulated subject to the assumption that the radiating body is
much larger than the emitted wavelength. We demonstrate that thermal radiation exceeding Planck’s law may
occur in a narrow spectral range when the local radius of curvature is comparable with the wavelength of the
emitted radiation. Although locally the spectral enhancement may be of several orders of magnitude, the deviation
from the Stefan-Boltzmann law is less than one order of magnitude. The fluctuation-dissipation theorem needs
to be employed for adequate assessment of the spectrum in this regime. Several simple examples are presented
as well as experimental results demonstrating the effect. For each configuration a geometric form factor needs to
be incorporated into Planck’s formula in order to properly describe the emitted radiation.
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I. INTRODUCTION

From the early days of quantum mechanics via astro-
physical measurements to today’s nanostructures, blackbody
radiation (BBR) is playing a pivotal role in physics. As
the emitting bodies were always significantly larger than
the wavelength of interest, Planck’s formula (PF) described
adequately the general trend of the emerging radiation and any
deviations were described in terms of the so-called emissivity.
Conceptually, the emissivity of a passive body was assumed
to be always smaller than unity, explicitly assuming that PF
provides the upper limit of what a body can emit [1–5]. For
quite some time, manufacturing techniques have facilitated the
implementation of minute structures of a size smaller than or
of the same order of magnitude as the radiation wavelength,
leading to a new regime of operation in which PF no longer
describes adequately the BBR. Assuming PF as an absolute
law of physics is a misconception which has been criticized
even in textbooks (e.g., Ref. [6], p. 126).

In the remainder of this Introduction, we highlight several
of the BBR investigations relevant to the ideas we intend to
convey in this study. By no means have we intended this to be
a comprehensive review of the field. First we describe in detail
Planck’s derivation of the radiation within an ideal cavity. This
we do in some detail in order to emphasize the source of its
limitations. In addition, we do not distinguish here between
BBR that is generally attributed to closed structures (cavities)
and thermal radiation (TR) that describes radiation emitted by
a body of nonzero temperature into free-space.

Planck’s [7] original argument consists of three steps. In
the first one he considered an ensemble of oscillators in
thermal equilibrium and he established, using the classical
Maxwell-Boltzmann statistics and using elementary quantum
notions, that the energy of a system consisting of Nosc

oscillators at a given frequency is E = Nosc�(T ,ω), wherein
�(T ,ω) = h̄ω[exp(h̄ω/kBT ) − 1]−1 denotes the mean energy
of a single oscillator.

The second step was to count the number of modes
(�Ncavity) within a frequency interval—that is to say, the
density of states (DOS)—in a cavity of perfectly reflecting
walls of volume Vcavity. Subject to the tacit assumption that the
wavelength is much shorter than the typical dimension of the
cavity 3

√
Vcavity, the number of modes in a range of frequencies

�ω starting at ω is

�Ncavity = Vcavity
ω2�ω

π2c3
, (1)

accounting for both possible polarizations.
His third step was to correlate the statistics of oscillators

with the DOS in a cavity, which is a delicate matter.
Essentially, there must be an equilibrium between the radiation
in vacuum and its source in matter, which comes about when
a wave impinging upon the walls is absorbed, causing another
wave to be radiated so that the walls can be conceived as
perfect reflectors; in other words, Nosc = �Ncavity. With this
assumption, the energy spectral density (u = U/�ω) is

u

Vcavity
= ω2

π2c3

h̄ω

exp (h̄ω/kBT ) − 1
. (2)

What is unique about Planck’s formula is the fact that the
right-hand side is independent of the geometry or the properties
of the body. As such, many consider it as a fundamental law
and in this regard it as an upper limit to what a body can emit.

In the framework of Planck’s formulation, there is a
distinction between the number of oscillations Nosc which
is derived from geometrical considerations, and their mean
energy � which is derived from statistical considerations and
is therefore independent of the geometry of the problem. While
� is correct because there is a large number of possible energy
states in a harmonic oscillator, andE = Nosc� is almost always
correct since the number of atoms (microscopic emitters) is
very large, one can question the validity of the calculation of
the DOS. The latter is a good approximation only for a cavity
of “infinite” volume in respect to the wavelengths of interest.
A formal mathematical proof for the validity of (2) given this
assumption is given by Courant and Hilbert [8].

Planck himself, when determining the thermal energy
density within a cavity, states that “No matter how small
the frequency interval �ν may be assumed to be, we can
nevertheless choose l sufficiently great,” where l is the cavity’s
dimension [[7], p. 273]. Later, Rytov [9], Eq. (5.5) indicates
that Planck’s law is applicable only if 1 � �λ/λ � (λ/l)3,
where �λ = λ�ν/ν is the frequency interval measured in
wavelengths, “thus, the conditions for the validity of PF are
first, a not too large mono-chromaticity of the spectral interval,
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and second, sufficiently large dimensions of the volume under
study in comparison to λ.”

Moreover, it is important to realize that it is customary to
derive the Stefan-Boltzmann (SB) law from the integration of
PF, which also subjects it to the requirements mentioned above.
One may claim that the SB law actually preceded Planck’s
law and is thus a more fundamental law. Yet, it is derived
from ray optics, which assumes that the wavelengths are much
smaller than the dimensions of the bodies and from their spatial
variations [ [7], Sec. 94]. Consequently, this law too is not
immune to criticism.

As already indicated, Planck derived his formula based on
geometrical considerations and explicitly states that the typical
geometric parameters are much larger than the wavelength.
Einstein arrives at the same formula from a totally different
perspective. In his 1917 paper [10], he introduced a new con-
cept of probability rates of spontaneous emission, stimulated
absorption, and stimulated emission; then he looked for the
particular radiation density for which the exchange of energy
between radiation and molecules will not disturb the state of
equilibrium (which is quantified by the Maxwell-Boltzmann
distribution). He uses Wien’s displacement law in order to
describe the radiation density. The latter was formulated
subject to the assumption of ray bundles [ [7], Sec. 112];
therefore, Einstein’s derivation is limited to structures large
enough for ray theory to be correct.

Shortly after Planck’s publication, Weyl published a series
of papers studying the scalar wave equation’s eigenvalue
distribution. A summary of his work is found in Ref. [11].
Although this is presented as a pure mathematical question,
it is closely related to the question of the evaluation of
high-order correction terms to Planck’s formula that should
not be neglected for large but finite-sized cavities. This topic
was further elaborated [8,12–14] and specifically treated for
the electromagnetic vector wave equations ∇2 �u + λ�u = 0 by
Baltes and Hilf, who summarized their work in a textbook [15].
The epitome of this research is that the correction to Planck’s
derivation (2) due to the finite size of the cavity (which has
perfectly reflecting walls) is given by [[15], Chap. VII, Sec.4]:

�N

�ω
= Vcavity

ω2

π2c3
− �

2πc
+ · · · , (3)

wherein the correction term is �cuboid = ax + ay + az,
�sphere = 4R/3, or �cylinder = πR + 4H/3, for the specified
simple geometries of the cavity. The Stefan-Boltzmann law of
the total energy (in Joules) is also corrected to read

E(T ) = a0VcavityT
4 + a2�T 2 + a3T + a4/�; (4)

here a0 = 4σ/c, a3 = kB/2, and a2,a4 are shape-dependent
constants. In the case of a cube these corrections (with
[15], Eq. (V.68), a2 = −πk2

B/12h̄c, a4 = −0.2751h̄c) were
numerically computed and compared to the rigorous sum
E(T ) = ∑∞

i=1 gi
h̄ωi

eh̄ωi /kT −1
and were shown to be valid (up to

1% error) for medium-sized cavities. For smaller cavities or
for lower temperatures, these expansions fail. For example, at
300 K Eq. (4) is valid for a cube down to 10 μm size. These
corrections to the classical formulas have even recently been
experimentally verified and reported [16].

From Eq. (3) we learn that different geometries have
different spectral densities of energy, which is due to the

FIG. 1. Blackbodies reach thermal equilibrium only if radiation
is allowed to pass from one body to the second.

different mode distribution. This diversity of the spectral
behavior of cavities stands in direct contradiction to the
statement of classical thermodynamics that all cavities hold
the exact same spectral density of energy—see Ref. [ [17],
p. 380].

In order to clarify where the classical logic fails, let
us first consider the case of two ideal blackbodies placed
inside an enclosure, which at a given instant are at different
temperatures. After a period of time they will be at thermal
equilibrium as in Fig. 1(a). However, if we insert filters
of incongruent frequencies, no radiation will pass from the
first body to the second, nor in the opposite direction, and
the temperatures will not vary. This situation is sketched in
Fig. 1(b). If the filters have some congruency than thermal
equilibrium will be reached, and the larger the frequency
overlap, the more quickly this will happen. Yet the conclusion
u1(ω) = u2(ω) will be true only in this interval of overlapping
frequencies, whereas the radiation may be different at other
frequencies. Now, let us take two different cavities at identical
temperature which are connected through a hole. The shape of
the cavity does not allow all modes to propagate inside. This
implies that even modes of frequencies high enough to pass
through the hole will not necessarily pass from one cavity into
the second cavity. Hence, the second cavity will not absorb
these frequencies and therefore will not radiate them. This
argument limits the validity of the condition of detailed balance
to frequencies which can be supported by both cavities.

Essentially, all the work done on geometry-dependent
corrections to Planck’s law is based on the claim that the
geometry acts as a weak filter, enabling most modes to pass,
but not all; thus loosening the condition of detailed balance
and enabling bodies of different geometries to emit a different
spectrum.

Up to this point we have discussed the evaluation of thermal
energy within an enclosure. However, from the practical
perspective, at least as important is the question of energy
radiated by a body at temperature T from its surface to the
surrounding environment. In such a case the classical equation
for the power radiated per unit area from the surface of a body
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whose absorption and emission are independent of direction
(isotropical) and of polarization is given by [17]

Pe(ω) = a(ω) c ū(ω) 1
4 . (5)

Here a(ω)is the absorbance, which is a frequency-dependent
factor varying from zero to 1, multiplied by Planck’s relation
for the spatial spectral density of energy ū(ω) = u(ω)/Vcavity,
by the energy velocity of plane waves in vacuum (c), and by
1/4, which accounts for the fact that there are standing waves
in the cavity. Here we are interested in the energy flux of
the waves propagating in one direction (both polarizations).
Consequently, it is evident that since Eq. (2) is derived for a
large cavity, the relation in Eq. (5) is valid only for bodies
that are large compared to the wavelength of interest. When
studying surfaces with local radius of curvature (or cavities) of
the same scale as the wavelength, the fluctuation-dissipation
theorem (FDT) must be employed—see Callen and Welton
[18], Landau and Lifshitz [19], and Rytov [20]. This will be
discussed in detail subsequently.

In this study we demonstrate that when the geometrical size
is not much larger than the wavelength of interest a geometric
form factor must be included in Eq. (2). Several quasianalytic
examples are presented and we show that it is possible to have
spectral enhancement in some limited interval such that the
radiation emitted exceeds the value predicted by PF at the
same temperature.

Various research has been conducted with the motivation of
controlling thermal emission. This can be roughly classified
into three categories: field coherency, thermal photovoltaic
systems (TPVs), and enhanced thermal spectrum. The first
category deals with the coherence of the electromagnetic
wave, which is the correlation between the fields in two
different locations at two different times. Assuming that the
process of fluctuation of the field is stationary, the coherence
is a function of t2 − t1 and is written as 
(�r1,�r2,t2 − t1) =
〈E(�r1,t1)E∗(�r2,t2)〉. This topic was thoroughly studied by
Mandel and Wolf [21] and Wolf and James [22]. They showed
that although classically a thermal source is assumed to be
uncorrelated, both spatially and temporally, yet a scalar field
does possess a spatial coherence length of λ/2. This was later
generalized for vector fields [23,24]. In a series of papers
[25–29] well summarized in [30], Greffet and co-workers
worked to optimize the thermal spectrum by harnessing the
contribution of evanescent waves near the surface, utilizing
knowledge of the spatial coherency of the fields together with
the FDT. Further studies using evanescent waves and gratings
can be found in Refs. [31–37].

The second category of research deals with TPVs. A
controllable spectral radiation is important in TPV systems
in order to achieve higher efficiencies from solar cells. Our
perception of a good system [38] is similar to that of Rephaeli
and Fan [39,40], that is, a system containing a medium which
is structured on one side to be an optimal absorber of the solar
spectrum and on the other side to be an optimal thermal emitter
towards a PV cell. Rephaeli and Fan structured a tungsten slab
into pyramids in order to achieve high absorptivity of the sun’s
spectrum, and devised a plain tungsten slab followed by Si and
SiO2 plates in order to suppress sub-band-gap and super-band-
gap radiation, which, over time, hinder the detector. Many
others have used photonic crystals in order to achieve a similar

goal; for an example see Refs. [41,42]. Other suggestions for
controlling the thermal spectrum include selective heating
of cells in a photonic lattice [43], metamaterials [44], or
semitransparent semiconductor plates [5,45].

The possibility of enhanced BBR or TR spectra in the far
field is the topic of discussion in the third category of research.
It was first raised in the framework of separate experiments
on metallic photonic crystals [46–48]. However, it was ruled
out as violating the second law of thermodynamics [49]. As a
consequence the authors of the first study acknowledged the
possibility that the measurements were not taken at thermal
equilibrium [50]. This exchange initiated a study by Luo et al.
[51] to determine the thermal emission of photonic crystals.
They demonstrated that the thermal emissivity spectrum equals
the absorption spectrum, and concluded that “the photonic
crystal is not expected to emit more than that from a
blackbody,” thus suggesting the impossibility of an enhanced
BBR spectrum. However, Bohren and Huffman [6] have
previously shown that the absorption area of a small body
is greater than its geometrical area; therefore the fact that the
emissivity equals the absorptivity actually leads to the opposite
conclusion—that we actually do expect a greater emittance
than that established by PF.

The same reasoning also holds when we examine Han’s
[3] analytical proof that Kirchhoff’s law is true for photonic
crystals; that is to say, even when the structural components
are comparable in size to the wavelength, as long as they
are periodic and the overall dimension is much larger than
the wavelength, then the emissivity equals the absorptivity.
It is important to notice that Han was careful not to claim
that Kirchhoff’s law is true for a small body, nor at a short
distance from the surface where evanescent waves may be
significant. Another study regarding the thermal emission of
photonic crystals was carried out by Chow [2] and is often
referred to as a proof that a body in thermodynamic equilibrium
cannot radiate into free space more than the value predicted
by PF. We discuss Chow’s study in Sec. IV.

The major question which we raise is that of the validity
of an enhanced spectrum. In this study we endeavor to
clarify the limits of PF: (i) How does the blackbody radiation
energy change within a cavity as the geometrical dimensions
change? (ii) How does the thermal radiation flux change as the
dimensions of an open surface change?

In Sec. II we address the question of the variation of the
blackbody radiation energy within a cavity as the geometrical
dimensions change. We study a closed cavity and give simple
examples demonstrating the possibility of violating “Planck’s
law.” We find that when the dimensions of the cavity are of
the same order of magnitude as the wavelength there is a
substantial deviation from PF. As a consequence the SB law
must be modified, and we obtain an analytical approximation
of the necessary modification.

In Sec. III we employ Callen and Welton’s fluctuation-
dissipation theorem which, in the case of a dipole oscillating in
free space, can be shown to be identical with PF. By examining
simple configurations we show that the energy density in a
narrow wavelength range may substantially exceed the value
predicted by PF.

In Sec. IV we address the question of the change in
the thermal radiation flux as the dimensions of an open
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surface vary. We introduce Rytov’s formulation for the radiated
thermal energy from the surfaces of bodies. Then we establish
the characteristics of the thermal radiation emitted when the
dimensions of the blackbody are comparable to or smaller than
the typical wavelength. We find that an enhanced spectrum can
be obtained in the far-field radiation flux.

In Sec. V we conclude with a discussion of the possibility
of controlling thermal radiation by utilizing devices with
geometrical features which will enhance the spectrum at
predetermined wavelengths. A simple experiment supporting
the theoretical predictions is presented.

II. RADIATION IN A CLOSED CAVITY

Our goal in this section is to establish the spectral density
with special emphasis on the geometry of the cavity. Planck’s
BBR spectrum, as it is reflected in (2), is linearly dependent on
the volume of the cavity; therefore we examine various cavities
all of the same volume, but of different shapes. This is done by
taking a cube and flattening it out into a thin film or thinning
it into a rod. In both cases, the base is kept square, ax = ay .
We pursue the following procedure for calculating the exact
energy in a cavity. First we scan over all relevant {nx,ny,nz}
sets and calculate the resonant frequencies f{n} according to

f{n} = c

2

√(
nx

ax

)2

+
(

ny

ay

)2

+
(

nz

az

)2

. (6)

Next we sort these frequencies in ascending order. This readily
gives the number of modes up to a frequency f :

N (f ) =
∑

nx,ny ,nz|f{n}�f

1. (7)

Assigning the mean energy of each resonant frequency
(oscillator) �{n} = hf{n}/(ehf{n}/kT − 1) we can establish the
total energy of the ensemble (in Joules) as

U (T ,f ) =
∑

nx,ny ,nz|f{n}�f

�{n}(T ,f{n}). (8)

For practical purposes we need to evaluate the spectral
energy density and compare it to PF. With this in mind,
we split the information regarding the resonant frequencies
f{n} into two: a list of different resonant frequencies and
the corresponding degeneracy of modes at each resonance.
Based on this notation we may now infer the degeneracy of
modes �N (f ) = ∑

nx,ny ,nz|f �f{n}�f +�f 1, where �f is taken
from one resonant frequency to the next, starting from the
first resonance, below which there is no radiation energy, and
continuing ad infinitum. Explicitly, the energy density (J/Hz)
is

u(T ,f ) = �(T ,f )
�N (f )

�f
. (9)

We establish the accuracy of this procedure by comparing the
integral of (9) with (8) and confirming that the error is nothing
but computational inaccuracies. According to PF, 99.99% of
the energy at 300 K is under 98.9 THz; we therefore extend our
observations up to fmax = 100 THz in order to obtain exact
results and compare them to the theoretical total energy of
our volume, which, according to the Stefan-Boltzmann law is

FIG. 2. (Color online) Energy density for a film (top), cube
(center), and rod (bottom) of equal volume (0.025 mm3); the rod
and film have a similar surface area of 18 mm2; T = 300 K. The PF
result is plotted for comparison. Each dot represents a value which is
exact for a specific frequency of oscillation.

U0 = (4σV/c)T 4 = 1.531 × 10−16 J, where SB’s constant is
σ = 5.67 × 10−8 W m−2 K−4.

For illustrating the energy density u(T ,f ) we plot points
representing the energies at specific frequencies, as illustrated
in Fig. 2. We already mentioned Rytov’s comments that PF
is applicable only if the monochromaticity is not too sharp.
Consequently, the choice of the smallest possible frequency
interval is one obvious reason for the discrepancy between
the estimate used to describe the ensemble and PF. It will be
shown subsequently that smoothing the mode counting does
not overcome the discrepancy.

For practical assessment, we are interested in forming a
curve which will convey the trend of the data points in Fig. 2
and allow us to make a quantitative comparison of different
geometries. A straightforward solution would be to average
the energy over small frequency intervals. We do this for
every M (=100) points, and use �f as a weight for each
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FIG. 3. (Color online) Comparison of energy density within
various cavities. Rectangular cavities of equal volume (0.025 mm3)
are employed for assessing the energy density spectrum at extreme
geometries: the rod (c) and film (b) have a similar surface area of
18 mm2 (bottom left inset); T = 300 K. The PF result is plotted for
comparison (dotted). For a thin rod, near cutoffs, the spectrum in a
closed cavity may be orders of magnitude greater than in the case
of a cube of the same volume (a). Top right inset: Energy levels of
the film at low frequencies, depicting the first modes of oscillation
which are distinct and do not form a continuum; thus conceptually
approximating the DOS to a continum is problematic.

point, resulting in the average and variance

〈u〉 = 1∑M
i=1 �fi

M∑
i=1

�fiui,

(10)

�u2 = 1∑M
i=1 �fi

M∑
i=1

�fi (ui − 〈u〉)2

In Fig. 3 we compare the energy density for a film, a rod,
and a cube. The various cavities store zero energy below the
first mode of oscillation, and a certain amount of radiation at
frequencies above that, when the first few modes, for which one
cannot ascribe a density of states (DOS) are ignored—see the
top-right inset of Fig. 3. As these are low frequencies, there is a
great deviation from PF, which conceptually is not valid in this
range. More interesting is the deviation at higher frequencies,
in which PF is supposedly exact. While the cube (which has
relatively large dimensions) is very close to PF, the rod and the
film are not. The smaller the base of the rod or the height of the
film, the more extreme are the deviations from PF, and local
enhancement of the energy spectrum may be greater than two
orders of magnitude. This is one of the important results of the
present study. It is interesting to compare the results of the film
to the results of the discussion on heat transfer between two in-
finite planes which are closely spaced in Ref. [52]. The latter is
a two-dimensional version of the former; hence the similarity.

Once the energy spectrum is analyzed, we can proceed
to investigate the total energy. In Fig. 4 (top) we plot the
total energy stored in two cavities of different volumes (V =
0.025 and 0.01 mm3) as a function of the geometric parameter
a2

z /axay , at a given temperature (300 K). The continuous (blue)
curve clearly reveals that for relatively modest deviations from
a cube, the SB law (horizontal dashed black line) is an excellent
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FIG. 4. (Color online) Analytical modification of the Stefan-
Boltzmann law: Top: SB law (dotted) is constant for all geometries
of equal volume. The analytic expression (2.8) (dash-dotted) is
compared with the calculated total energy for various geometries
at T = 300 K (solid), and to the expression developed by Baltes
and Hilf (4) (dotted), over the various geometries with two constant
volumes: 0.01 mm3 and 0.025 mm3. The result of the SB law is given
for reference (dashed). We see that the analytic expression has a better
fit for extreme geometries where Baltes and Hilf’s expression fails.
Bottom: Total energy as a function of the temperature; V = 0.01 mm3.
The exact calculations are plotted as solid lines and the analytic
expression (11) is plotted as dotted lines for the cube (a),(a’), film
(b), (b’), and rod (c),(c’). The surface area of the film and rod
equals 18 mm2. The result of the SB law is given for comparison
(dot-dashed).

approximation. Non-negligible deviations occur for a very
thin film (a2

z /axay 	 1) or a very long rod (a2
z /axay � 1).

However, while in the energy spectrum we calculated in a
narrow frequency range an enhancement of several orders of
magnitude above the values predicted by PF, the total energy
deviation (from the SB law) is by far more modest, reaching
values which are less than one order of magnitude different at
extreme geometries.

For the case of a long and thin rod we may readily
comprehend the behavior since as the rod gets longer, the
transverse dimension becomes shorter, and as result, the first
resonant frequency gets higher, until it exceeds fmax. At this
stage there is practically no energy in the cavity. This happens
in mode (011) or (101) when ax = ay = c/2fmax, leading
to az = Vcavity/(c/2fmax)2, which in our case corresponds to
a2

z /axay = 5.5 × 1013.
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In the thin-film case a divergence occurs as a consequence
of the “infinite” modes at low frequencies. To some extent,
this phenomenon resembles the infrared catastrophe, when
electrons are scattered by protons and photons are emitted
with an energy spectrum which diverges at low frequencies.
The problem is usually dealt with [53,54] by claiming that
since every experimental apparatus has a finite resolution
�E, one does not need to count photons that cannot be
detected, h̄ω < �E. Similarly, in our case, if we stop the
mode counting below a certain frequency, our energy will not
diverge.

A different perspective may be reached when examining the
energy as a function of temperature. In the curves illustrated
in Fig. 4 (bottom) we limit ourselves to 600 K since as
the temperature increases, one must calculate the energy up
to higher frequencies, which results in longer calculations
without any added value to the present study. Figure 4 (bottom)
shows the energy as a function of the temperature (T 4) for

three geometries, a thin film, a cube and a long rod, for
the same volume. Three trends are evident: (i) The cube at
any temperature follows the SB law. (ii) The T 4 scaling is
asymptotically approached by both the film and the rod for
high temperatures but systematically the energy in the case
of the thin film is higher than that of a cubical cavity of the
same volume. For the rod, the stored energy is lower. (iii) In
both cases the change in the stored energy compared to the SB
result is less than one order of magnitude.

Based on the results of a series of simulations similar to
these described above, we were able to construct an analytic
function that approximates reasonably well the simulation
results in a broad range of the four variables frequency,
temperature, and volume and surface of the cavity. This
function has several main features: (i) It converges to PF for a
cube (1/V )(S/6)3/2 = 1, (ii) it increases as the square root of
the temperature, and (iii) it vanishes below a cutoff frequency.
Consequently, it has the following form:

uapp (T ,f,V,S) =
{

uPlanck (T ,f,V ) + κ
√

T

[
1

V

(
S

6

)3/2

− 1

]
h exp

(
− hf

kBT

)}
s (f − fcutoff) ,

(11)

Uapp (T ,V,S) =
∫ ∞

fcutoff

df

{
uPlanck (T ,f,V ) + κ

√
T

[
1

V

(
S

6

)3/2

− 1

]
h exp

(
− hf

kBT

)}
,

wherein s(x) is the step function, the cutoff frequency is the
lower of the (011) and (110) modes, uPlanck is given by (8), the
empirical coefficient κ has units of 1/

√
K, V is the volume

of the cavity, and S is the surface of the body. A rough opti-
mization shows that κ = 7.5 provides a good approximation.

Defining the error as 100
√

1
N

∑N
i=1 (Ui−Uapp,i

Ui
)
2
we found 1.96%

error if the volume is 0.01 mm3 or 0.7% for a volume of
0.025 mm3. Taking κ = 7.5 one obtains an estimate of the
total energy as a function of body geometry and an estimate of
the total energy as a function of temperature. These are plotted
as the curves labeled (a) and (b) in Figs. 4. Both estimates
are close to the calculated values, and therefore Uapp may be
conceived as a good correction to the Stefan-Boltzmann law.
For large cavities the integration starts practically from zero,
and amounts to

Uapp = (4σV/c) T 4 +
{[(

S

6

)3/2 1

V
− 1

]
κkB

}
T 3/2

(12)

in which case the second element is negligible, and this expres-
sion reduces to the well-known Stefan-Boltzmann relation.

Finally, the dashed (red) line in Fig. 4 (top) reveals the
energy according to Baltes and Hilf’s correction [15]. Clearly,
for the long-rod configuration, their analytic estimate fits our
exact calculations and approximate expression well, but for
very thin films, their expression fails to describe the exact
calculation as well as our approximation.

To summarize this section, we described the method used
to count the number of oscillation modes within a cavity. We
explored the limits of accuracy of Planck’s law and of the
Stefan-Boltzmann law; explicitly, we showed that an enhanced
BBR may be achieved in some frequency intervals. While in a
narrow range the spectral enhancement can be of a few orders
of magnitude, the overall energy does not change dramatically.

III. FLUCTUATION-DISSIPATION THEOREM AND BBR

Contrary to Planck’s approach where the BBR spectrum
was considered from the perspective of the electromagnetic
field, in this section we investigate this spectrum from the
perspective of the oscillating electrons in the matter surround-
ing the cavity. Because there is thermodynamic equilibrium
between the radiation and the surrounding matter in a closed
structure, the two approaches are obviously equivalent, and
the reason we consider this approach is associated with the
generalization to open structures, which is rather natural when
considering the process from the electron’s perspective.

Essential to this approach is the fluctuation dissipation
theorem developed by Callen and Welton [18]. Originally,
the motivation was to find a relation between the micro-
scopic spontaneous motion of electrons generating heat via
scattering from atoms and the macroscopic resistance to
forced motion, which physically arises from similar collisions.
Let us highlight the basic concepts of the FDT: A system
is dissipative if it is capable of absorbing radiation when
subjected to a steady-state perturbation. We denote by V (t) the
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function of time which measures the magnitude of the external
force applied on the system, and by Q(x,p) the function of
coordinates and momenta which measures the response of the
system to the external force. We now define the generalized
impedance of a linear system to be the ratio between the applied
force and the change in time which it causes in the system:
Z = V/Q̇. The resistance of the system to the perturbation is
therefore R(ω) = Re[Z(ω)]. A system on which no external
force is imposed fluctuates nonetheless. This fluctuation is
associated with a spontaneous fluctuating force V , which has
a zero mean (〈V 〉 = 0) but a nonzero variance 〈V 2〉 �= 0. Using
fluctuations between the quantum energy levels of a system,
Callen and Welton showed that it is possible to evaluate the
mean square of the fluctuating force acting on the system
through the system’s resistance to applied external forces:

〈V 2〉 = 2

π

∫ ∞

0
dωR (ω) E (ω,T ). (13)

Here E(ω,T ) = h̄ω[ 1
2 + 1

exp(h̄ω/kBT )−1 ] is the mean energy of a
harmonic oscillator with an added ground-state energy h̄ω/2
representing the contribution of the vacuum fluctuations, and
it will be ignored in what follows.

At first sight, one may wonder what this result has to
do with BBR. To address this question one needs to bear
in mind that due to the equilibrium condition between the
radiation absorbed by the lossy material and the radiation
generated due to the thermal motion of the electrons, from the
latter’s perspective we may consider in zero order the radiation
resistance of an electric dipole in vacuum. Consider a dipole
p = ed of charge e and displacement d in free space, pointing
in the z direction; its average energy flux far away from the
source is

Sr = 1

2μ0c

(ω

c

)4
(

p

4πε0

)2 sin2 θ

r2
(14)

and the total emitted power reads

PFS = r2
∫ 2π

0
dϕ

∫ π

0
dθ sin θSr = η0

12π
(ωp)2

(ω

c

)2

= η0

12π
(Id)2

(ω

c

)2
, (15)

where we emphasized that we are dealing with a free-space
problem by adding the FS subscript, and where we denoted
the current associated with the oscillation of the dipole by
I = qω = pω/d. Thus the free-space radiation resistance is

RFS = PFS

I 2/2
= η0

6π
(d)2

(ω

c

)2
. (16)

Subject to this observation, the mean square of the fluctuating
electric field in the vicinity of the dipole is, using (13) and
writing V = Ezd,

〈
E2

z

〉 = η0
1

3π2c2

∫ ∞

0
dωω2E (ω,T ). (17)

Now, the relevance of the FDT to BBR is straightforward
since the energy density (J/m3) near three fluctuating dipoles

(px,py,pz)at each location sums up to

ε0〈E2〉 = ε0
(〈
E2

x

〉 + 〈
E2

y

〉 + 〈
E2

z

〉) = ε0
(
3
〈
E2

z

〉)
= 1

π2c3

∫ ∞

0
dωω2E(ω,T ). (18)

Ignoring the ground-state contribution (h̄ω/2), this expression
is identical to Planck’s BBR formula. However, we again wish
to emphasize that the focus of this approach is the individual
oscillating electron (dipole). Having this approach in mind, we
realize that if the individual dipoles representing the thermal
atoms experience a radiation resistance greater than that of free
space, the overall emitted energy may exceed that predicted
by PF. Explicitly, we can conceive geometries such that the
power emitted will be represented by a form factor F (ω) that
multiplies the free-space value:

P = PFSF (ω) ⇒ R = PFSF (ω)

I 2/2
= RFSF (ω)

⇒ ε0〈E2〉 = 1

π2c3

∫ ∞

0
dωω2E (ω,T ) F (ω).

(19)

Thus, the FDT enables a relatively simple estimate of the
geometric effect if the size is of the order of the wavelength.
In fact, the power emitted by the same dipole located at the
center (r = 0) of a dielectric layer medium (Rint � r � Rext)
may exceed, near resonance, the free-space value by almost
one order of magnitude—see Fig. 5, which shows the emitted
BBR spectral density for a SiC layer; the dielectric coefficient
is illustrated in the inset.

Two additional simple examples warrant consideration:
(i) a dipole at a height h above an ideally conducting plane,
and (ii) a dipole oscillating in a partially open structure

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6

E
m

itt
ed

 B
B

R
 s

p
ec

tr
um

 [J
m

-3
s]

m]

  R
int

=1.00 m

R
ext

=1.25 m

  R
int

=0.50 m

 R
ext

=1.25 m

0

2

4

6

8

10

10-5

10-4

10-3

10-2

10-1

100

101

0 1 2 3 4 5 6

R
e[

]

- Im
[

]

m]

Planck

FIG. 5. (Color online) The radiation emitted by dipoles located in
the center of a SiC dielectric layer for Rint = 0.5 μm, Rext = 1.25 μm
(solid) and for Rint = 1.0 μm, Rext = 1.25 μm (dot-dashed). At
resonance the emitted energy spectrum may exceed the Planck
prediction for a body much larger than the wavelength of interest
by almost one order of magnitude; the dashed line illustrates
Planck’s formula (T = 1200 K). In the inset we specify the dielectric
coefficient of SiC used in the simulation.
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such as a half-infinite waveguide of rectangular cross section
(ax × ay). Based on a simple image-charge argument, one
should not expect, in the first example, an enhancement of
more than a factor of 2 in the emitted power. If a larger
enhancement is required, it would be necessary to employ
an infinite series of image charges as is the case in the second
example.

The first case, of a dipole above an ideal metallic plane,
is illustrated in the inset of Fig. 6 (top). The emitted power
compared to that in free space is different for perpendicular
and parallel dipoles:

Pz = PFS

[
3
∫ π/2

0
dθ sin3 θ cos2

(ω

c
h cos θ

)]
, (20)(

Px

Py

)

= PFS
3

2π

∫ π

0
dφ

∫ π

0
dθ sin3 θ sin2

[
ω

c
h sin θ

(
cos φ

sin φ

)]
.

(21)

Obviously, the field components on the dipole are not identical;
therefore, the emitted energy is

ε0〈E2〉 = ε0
(〈
E2

x

〉 + 〈
E2

y

〉 + 〈
E2

z

〉)
= 1

π2c3

∫ ∞

0
dωω2E (ω,T )

×
[

1

2π

∫ π

0
dφ

∫ π

0
dθ sin3 θ sin2

(ω

c
h sin θ cos φ

)

+ 1

2π

∫ π

0
dφ

∫ π

0
dθ sin3 θ sin2

(ω

c
h sin θ sin φ

)

+
∫ π/2

0
dθ sin3 θ cos2

(ω

c
h cos θ

)]
. (22)

In Fig. 6 (top) we present the form factor F (ω) = Fx(ω) +
Fy(ω) + Fz(ω),

Fx(ω) ≡ 1

2π

∫ π

0
dφ

∫ π

0
dθ sin3 θ sin2

(ω

c
h sin θ cos φ

)
,

Fy(ω) ≡ 1

2π

∫ π

0
dφ

∫ π

0
dθ sin3 θ sin2

(ω

c
h sin θ sin φ

)
,

Fz(ω) ≡
∫ π/2

0
dθ sin3 θ cos2

(ω

c
h cos θ

)
.

(23)

When the height h above the plane is very small compared to
the wavelength, the parallel polarizations become zero, and
the perpendicular polarization is doubled due to an image
beneath the plane. As the height is enlarged, the dipole acts as a
free-space dipole with the form factor converging to 1 and with
all three polarities converging to a similar probability of 1/3.
However, this convergence is not monotonic and certain ratios
of height to wavelength yield a form factor which is greater
than 1.

FIG. 6. (Color online) Top: Form factor of a dipole above an ideal
plane as a function of its height normalized to the wavelength. A 20%
enhancement is observed when h/λ ∼ 0.3. Center: The radiation
form factor for a uniform distribution of dipoles confined to the
volume ax × ay × az within a half infinite rectangular waveguide, as
a function of the waveguide base normalized to the wavelength. For
large az (dashed) the graph exhibits pronounced amplification of the
thermal energy at λ ∼ ax . When az = ax (solid), there is a suppression
of the first mode at ax = λ/2. Bottom: Form factor of a tungsten
sphere, for various radii: 0.02, 0.2, and 1 μm. For wavelengths shorter
than the radius the form factor converges to unity. For wavelengths
comparable with the radius the resonant character of the form factor
is clearly revealed.

A second example is that of a blackbody confined in an ideal
semi-infinite waveguide. First we consider a single dipole, then
a gas of such dipoles (εr ∼ 1) confined to 0 � z � az. The
geometry of the problem is detailed in the inset of Fig. 6
(center). Separating the problem into the longitudinal and
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transverse directions we arrive at the form factors

Fx(ω) = 24π

axay

1

k3

k⊥<k∑
nx=0
ny=1

k2 − k2
y

kz

cos2(kxbx) sin2(kyby) sin2 (kzbz) gnx
,

Fy (ω) = 24π

axay

1

k3

k⊥<k∑
nx=1
ny=0

k2 − k2
y

kz

sin2 (kxbx) cos2(kyby) sin2(kzbz)gny
,

(24)

Fz (ω) = Pz

PFS

= 24π

axay

1

k3

k⊥<k∑
nx=1
ny=1

k2
⊥

kz

sin2(kxbx) sin2(kyby) cos2 (kzbz) ,

kx = πnx

ax

, ky = πny

ay

, k⊥ =
√

k2
x + k2

y, k = ω

c
, kz =

√
k2 − k2

⊥,

where gn=0 = 1/2 and gn�=0 = 1. Thus the radiated power is

ε0
〈
E2

(x,y,z)

〉 = 1

3π2c3

∫ ∞

0
dωω2�(ω,T )F(x,y,z)(ω). (25)

Rather than a single dipole we consider a uniform distribution of independent dipoles filling the waveguide, 0 � z � az. We
therefore average (25) over all possible locations (bx,by,bz):

ε0
〈
E2

x

〉 = 1

π2c3

∫ ∞

0
dωω2� (ω,T )

π

axay

1

k3

k⊥<k∑
nx=0
ny=1

k2 − k2
x

kz

[1 − sinc (2kzaz)],

ε0
〈
E2

y

〉 = 1

π2c3

∫ ∞

0
dωω2� (ω,T )x

π

axay

1

k3

k⊥<k∑
nx=1
ny=0

k2 − k2
y

kz

[1 − sinc (2kzaz)], (26)

ε0
〈
E2

z

〉 = 1

π2c3

∫ ∞

0
dωω2� (ω,T )

π

axay

1

k3

k⊥<k∑
nx=1
ny=1

k2
x + k2

y

kz

[1 − sinc (2kzaz)].

In Fig. 6 (center) we plot the total form factor obtained from
F (ω) = Fx(ω) + Fy(ω) + Fz(ω). When az is large compared
to the wavelength, the graph exhibits pronounced enhancement
of the thermal energy at λ ∼ ax . With a smaller az, not
only are the parallel polarizations suppressed, but also the
perpendicular polarization of long wavelengths, resulting in
thermal radiation limited to wavelengths which are much
shorter than az.

To conclude this section, we presented the FDT and its
relevance to Planck’s BBR formula. We have shown that the
radiation resistance of a dipole in various configurations may
exceed that of a dipole in free space and, consequently, an
enhancement of the radiated energy is possible also in open
structures.

IV. RADIATION FROM SURFACES

Originally the FDT was developed for discrete components.
In Ref. [20] Rytov (see also Landau and Lifshitz [19])
generalized the approach to distributed systems. Before we
discuss the relevance to our goals, it is warranted to review
the essentials of his theory: Given a force fieldf (t,�r), it is

assumed that it creates a reaction field ξ (t,�r)within a volume V .
Assuming a linear system this reaction is related to the force via
a linear operator ξ (ω,�r) = Âf (ω,�r). When no force is applied,
a reaction field exists due to thermal fluctuations; hence the
associated force is f (ω,�r) = Â−1ξ (ω,�r). Along similar lines
to Callen and Welton’s FDT, the spectral-spectral density of
the correlation between the forces is shown to be

〈f (j )(ω,�r)f (k)∗(ω′,�r ′)〉ω
= jE(ω,T )

2πω

(
Â−1

jk − Â−1∗
kj

)
δ(�r − �r ′)δ(ω − ω′), (27)

where j and k are any two components of the field. This
formulation, relevant for a general field, may be applied to an
electromagnetic field consisting of a six-component “displace-
ment” (ξ = { �E, �H }) due to a six-component associated force
f = { �D, �B} of electric and magnetic induction. Obviously,
Maxwell’s equations form the linear operator which relates
these two quantities. The correlation of these forces is given
by (27).

The major contribution of Rytov lies in replacing the exter-
nal forces with currents and applying the reciprocity theorem,
thus arriving at an expression of the radiated electromagnetic
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fields. Essentially the reciprocity theorem enables us to study
the impact of Callen and Welton’s dipoles oscillating within
the material on the surrounding environment. Explicitly, we
may denote the currents associated with the external electric
displacement and magnetic induction as �je = jω �D and �jm =
jω �B. We further denote the field components associated
with the thermal fluctuation field within the body with the
superscript “(th)”, the location of the electric (magnetic) dipole
by �re (�rm); the direction of the electric (magnetic) dipole is
along a constant unit vector n̂e (n̂m) and thus

〈
E(th)

ne
(�re)H (th)∗

nm
(�rm)

〉
ω

= 1

(jωp) (jωm)

ω

π
E (ω,T )

×
∑

α

∫
V

d3r
{
ε′′E(e)

α (�r,�re)E(m)∗
α (�r,�rm)

+μ′′H (e)
α (�r,�re)H (m)∗

α (�r,�rm)
}
δω. (28)

The right-hand side determines the normalized mixed losses.
“Mixed” in this context refers to the fact that (28) includes the
vector product of two fields generated by two distinct sources
and it is “normalized” since (28) includes the external source
in the denominator, or explicitly

Qem (ω,�re,�rm) = 2ω

(jωp) (jωm)

×
∫

V

[
ε′′

4
�E(e) (ω,�r,�re) · �E(m)∗ (ω,�r,�rm)

+ μ′′

4
�H (e) (ω,�r,�re) · �H (m)∗ (ω,�r,�rm)

]
d3r.

(29)

Here the mixed losses are annotated with an index referring
to the source dipoles. Thus the variance of the thermal
spontaneous electromagnetic fields in (28) is a function of the
induced losses of forced dipoles. Similarly, the covariances of
the E and H spectral-spectral densities are

〈
E(th)

ne
(ω,�re)H (th)∗

nm
(ω,�rm)

〉
ω

= − 2

π
E (ω,T ) Qem(ω,�re,�rm),

〈
E(th)

ne
(ω,�re)E(th)∗

nm
(ω,�rm)

〉
ω

= 2

π
E (ω,T ) Qee(ω,�re,�rm),

(30)〈
H (th)

ne
(ω,�re)H (th)∗

nm
(ω,�rm)

〉
ω

= 2

π
E (ω,T ) Qmm(ω,�re,�rm),

〈∣∣E(th)
ne

(ω,�r)
∣∣2〉

ω
= 2

π
E (ω,T ) Qee(ω,�r),

〈∣∣H (th)
nm

(ω,�r)
∣∣2〉

ω
= 2

π
E (ω,T ) Qmm(ω,�r).

One must notice the difference in the roles of the dipole
in Callen and Welton’s and Rytov’s formulations. In Callen
and Welton’s formulation, the dipole is the actual source of
radiation within the body, for which one must find the radiation
impedance of the surroundings. In Rytov’s case, the dipole is
located outside the BB, at the measurement location, and it
generates a test signal, from which one may assess the radiation
absorption. Once the various field components due to the unit
dipole are established, one may determine the losses (Q) and

through them the radial Poynting vector,

S(th)
r (ω,�r) = 1

2

〈
E

(th)
θ (ω,�r)H (th)∗

φ (ω,�r)

−E
(th)
φ (ω,�r)H (th)∗

θ (ω,�r)
〉
ω

= 1

π
E (ω,T ) [Qem(ω,�r,n̂e = θ,n̂m = φ)

−Qem(ω,�r,n̂e = φ,n̂m = θ )]. (31)

It is most important to realize based on the definition of the
normalized mixed loss that a body will radiate only if it has
losses.

As an example of emission from surfaces, let us consider
a sphere of radius a made of tungsten. Our purpose will be
to examine how the radiation spectrum of a classical (large)
sphere changes as we reduce the sphere’s radius. Due to
symmetry, the fluctuations of the fields in both vertical and
horizontal polarizations will be equal; thus (31) reduces to

Sr (ω,�r) = 2

π
E (ω,T ) Qem(ω,�r,n̂e = θ,n̂m = φ). (32)

Consequently, the form factor we are looking for is

F (ω,a) = Sr (ω,�r,a)

Sr (ω,�r,a∞)
= Qem(ω,�r,n̂e = θ,n̂m = φ,a)

Qem(ω,�r,n̂e = θ,n̂m = φ,a∞)
,

(33)

where a is the variable radius of the sphere, and the radiation
is normalized by a sphere of radius a∞ � a. For simplicity’s
sake, we consider only dielectric loss (μ′′ = 0) and we assume
that the dielectric properties of the material do not change,
even when the radius of the sphere is taken to be very small.

When the test dipoles are placed as in the inset of
Fig. 6 (bottom), the form factor reduces to the normalized
absorption cross section σ̄abs = σabs/πa2 of Mie scattering
[ [16], Sec. 4.4]. It is well known that σ̄abs can be greater than
unity; therefore it is straightforward that the thermal radiation
should be greater than the value obtained by the classical
derivation, which accounts only for the geometrical area. In
our simulations we used (spherical) functions from Ref. [55]
and refractive index data for tungsten from Ref. [56]. We take
a series of spheres with varying radii, starting at 10 nm and
normalized by a sphere of 1 cm radius. The smallest radius is
chosen to be two orders of magnitude larger than 1 Å so as to
ensure the validity of the use of the dielectric coefficient. In
Fig. 6 (bottom) we see that the form factor converges to 1, over
all frequencies, as the radius grows. At small radii the form
factor is larger than unity, indicating geometric enhancement
when the radius is of the order of the wavelength (λ ∼ 2πa).

With this example in mind, it is appropriate now to discuss
Chow’s study [2], which essentially concludes that the energy
density in a closed cavity may exceed the value predicted by
PF, but the energy emitted by an open structure cannot exceed
the value predicted by PF. For this purpose, he considers a
resonator consisting of lossless dielectric layers. In these layers
he indeed shows that the energy may exceed the PF value. Once
these layers are coupled to an extended, but limited, void which
was chosen to represent the free-space region, he shows that the
energy coupled into this region is always lower than predicted
by PF. From the purely electromagnetic perspective, it is
crystal clear that this configuration cannot represent an open
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structure (different boundary conditions), since at thermal
equilibrium this represents a standing-wave configuration
corresponding to a large cavity. It is well known that by
incorporating in a large cavity any filter (e.g., dielectric layers),
the modes’ excitation is, at the best, reduced. Therefore, the
amount of energy is always smaller than Planck’s limit. In
other words, the simulation result is believed to be correct but
the conclusion drawn is not relevant for an open structure.

V. DISCUSSION

In this work we considered blackbody and thermal radiation
for structures of size comparable with the radiation wave-
length. Here we summarize the main conclusions of this study
but also include some points of common knowledge (nos. 1
and 2) for completeness:

(1) Planck’s formula is not valid for wavelengths larger
than the size of the blackbody since the energy is identically
zero.

(2) For frequencies slightly above the cutoff, the stored
energy is not zero but the spectrum is discrete and therefore
the PF is only a rough estimate.

(3) PF is an accurate description of the emitted or stored
electromagnetic energy provided the wavelength is much
shorter than the local radius of curvature of the BB. In other
words, the wavelength is shorter than all three dimensions of
the cavity.

(4) When in one dimension (thin film) or two dimensions
(rod) the geometry is comparable to the wavelength, we

developed an analytic expression that relates the energy
density with the temperature, volume, and surface of the cavity.

(5) In a limited spectrum the geometrical enhancement
of the emitted or stored energy may be orders of magnitude
higher than predicted by the formula. Inherently, the Stefan-
Boltzmann law is only weakly affected by the geometry—by
less than one order of magnitude.

(6) The geometric enhancement occurs both in closed and
in open structures.

(7) The fluctuation-dissipation theorem in its discrete form
(Callen and Welton) or in its distributed form (Rytov) is the
natural way to describe the thermal radiation emitted by an
open structure.

Finally, an experiment we performed supports our theoret-
ical conclusions. In the remainder of this section we describe
its essentials. Its goal was to demonstrate that in a narrow
frequency range, thermal radiation may exceed the value
predicted by PF. A set of perforated Si wafers polished with an
accuracy of 1 nm was examined. The geometry is revealed by
two scanning electron microscope (SEM) pictures in the left
frames of Fig. 7. It consists of 300-nm-diameter voids with
a similar height and a pitch of 600 nm. Due to the relatively
high loss, no electromagnetic coupling between the voids is
expected and thus no collective effects are anticipated; in other
words, each void acts as a separate resonator.

After being inserted in a furnace, the wafer was gradually
warmed up to about 900 ◦C and the thermal radiation emitted
was measured by a spectrometer (CI Systems SR-5000) lo-
cated about 3 m away. Prior to measurements the spectrometer
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FIG. 7. (Color online) Left column: SEM picture of the emitting surface. Cylindrical voids (cavities) of 300 nm diameter and a similar
height, and 600 nm pitch. Right column: Energy-flux spectrum (top) as extrapolated to the surface of the blackbody (solid) and a best fit to
Planck’s blackbody formula (dashed). Bottom: A zoom-in of the range between 0.4 and 0.7 μm. It clearly shows that there is a significant
emission enhancement. As a reference, we plot the sun’s energy flux spectrum as measured on earth.
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was calibrated with a standard blackbody. In the top right
frame of Fig. 7, the solid curve illustrates the experimental
data for the energy flux spectrum as extrapolated to the surface
of the blackbody. The dashed curve is a best fit to Planck’s
formula for the energy flux S(λ,T )dλ = cu(ω,T )dω. For the
range between 0.4 and 1.2 μm we found that the effective
temperature is Texpt = 1161 K and νexpt = 31.5 × 10−6; these
two parameters minimize the functional

∑
i [Si − νS(λi,T )]2

or explicitly νexpt = 〈S(λj ,T )Sj 〉j /〈S(λj ,T )2〉j whereas

Texpt

= min

{∑
i

[Si − 〈S(λj ,T )Sj 〉j 〈S(λj ,T )2〉−1
j S(λi,T )]2

}
.

Each data point (Si) corresponds to the maximum value
from a sample of 120 measurements at each wavelength; the
wavelength resolution is 3 nm. Except at short wavelengths,
the two curves are essentially indistinguishable.

The bottom right frame of Fig. 7 is a zoom-in of
the range between 0.4 and 0.7 μm. It clearly shows that
there is a significant emission enhancement in particular in
the range where the radiation overlaps geometric resonances.
The peak occurs at 0.536 μm and it is more than 200 times
larger than the value predicted by Planck’s formula at this
wavelength and temperature. As a reference, we plot the
sun’s energy-flux spectrum as measured on earth. Clearly, if
a similar enhancement can be achieved close to 0.7 μm then
at Texpt = 1161 K we can get at that wavelength much higher
intensity than the sun delivers at sea level.
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