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Geometric effects on blackbody radiation
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Planck’s formula for blackbody radiation was formulated subject to the assumption that the radiating body is
much larger than the emitted wavelength. We demonstrate that thermal radiation exceeding Planck’s law may
occur in a narrow spectral range when the local radius of curvature is comparable with the wavelength of the
emitted radiation. Although locally the spectral enhancement may be of several orders of magnitude, the deviation
from the Stefan-Boltzmann law is less than one order of magnitude. The fluctuation-dissipation theorem needs
to be employed for adequate assessment of the spectrum in this regime. Several simple examples are presented
as well as experimental results demonstrating the effect. For each configuration a geometric form factor needs to
be incorporated into Planck’s formula in order to properly describe the emitted radiation.
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I. INTRODUCTION

From the early days of quantum mechanics via astro-
physical measurements to today’s nanostructures, blackbody
radiation (BBR) is playing a pivotal role in physics. As
the emitting bodies were always significantly larger than
the wavelength of interest, Planck’s formula (PF) described
adequately the general trend of the emerging radiation and any
deviations were described in terms of the so-called emissivity.
Conceptually, the emissivity of a passive body was assumed
to be always smaller than unity, explicitly assuming that PF
provides the upper limit of what a body can emit [1–5]. For
quite some time, manufacturing techniques have facilitated the
implementation of minute structures of a size smaller than or
of the same order of magnitude as the radiation wavelength,
leading to a new regime of operation in which PF no longer
describes adequately the BBR. Assuming PF as an absolute
law of physics is a misconception which has been criticized
even in textbooks (e.g., Ref. [6], p. 126).

In the remainder of this Introduction, we highlight several
of the BBR investigations relevant to the ideas we intend to
convey in this study. By no means have we intended this to be
a comprehensive review of the field. First we describe in detail
Planck’s derivation of the radiation within an ideal cavity. This
we do in some detail in order to emphasize the source of its
limitations. In addition, we do not distinguish here between
BBR that is generally attributed to closed structures (cavities)
and thermal radiation (TR) that describes radiation emitted by
a body of nonzero temperature into free-space.

Planck’s [7] original argument consists of three steps. In
the first one he considered an ensemble of oscillators in
thermal equilibrium and he established, using the classical
Maxwell-Boltzmann statistics and using elementary quantum
notions, that the energy of a system consisting of Nosc

oscillators at a given frequency is E = Nosc�(T ,ω), wherein
�(T ,ω) = h̄ω[exp(h̄ω/kBT ) − 1]−1 denotes the mean energy
of a single oscillator.

The second step was to count the number of modes
(�Ncavity) within a frequency interval—that is to say, the
density of states (DOS)—in a cavity of perfectly reflecting
walls of volume Vcavity. Subject to the tacit assumption that the
wavelength is much shorter than the typical dimension of the
cavity 3

√
Vcavity, the number of modes in a range of frequencies

�ω starting at ω is

�Ncavity = Vcavity
ω2�ω

π2c3
, (1)

accounting for both possible polarizations.
His third step was to correlate the statistics of oscillators

with the DOS in a cavity, which is a delicate matter.
Essentially, there must be an equilibrium between the radiation
in vacuum and its source in matter, which comes about when
a wave impinging upon the walls is absorbed, causing another
wave to be radiated so that the walls can be conceived as
perfect reflectors; in other words, Nosc = �Ncavity. With this
assumption, the energy spectral density (u = U/�ω) is

u

Vcavity
= ω2

π2c3

h̄ω

exp (h̄ω/kBT ) − 1
. (2)

What is unique about Planck’s formula is the fact that the
right-hand side is independent of the geometry or the properties
of the body. As such, many consider it as a fundamental law
and in this regard it as an upper limit to what a body can emit.

In the framework of Planck’s formulation, there is a
distinction between the number of oscillations Nosc which
is derived from geometrical considerations, and their mean
energy � which is derived from statistical considerations and
is therefore independent of the geometry of the problem. While
� is correct because there is a large number of possible energy
states in a harmonic oscillator, andE = Nosc� is almost always
correct since the number of atoms (microscopic emitters) is
very large, one can question the validity of the calculation of
the DOS. The latter is a good approximation only for a cavity
of “infinite” volume in respect to the wavelengths of interest.
A formal mathematical proof for the validity of (2) given this
assumption is given by Courant and Hilbert [8].

Planck himself, when determining the thermal energy
density within a cavity, states that “No matter how small
the frequency interval �ν may be assumed to be, we can
nevertheless choose l sufficiently great,” where l is the cavity’s
dimension [[7], p. 273]. Later, Rytov [9], Eq. (5.5) indicates
that Planck’s law is applicable only if 1 � �λ/λ � (λ/l)3,
where �λ = λ�ν/ν is the frequency interval measured in
wavelengths, “thus, the conditions for the validity of PF are
first, a not too large mono-chromaticity of the spectral interval,
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