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Abstract

The input-output weight enumeration (distribution) function of the ensemble of serially

concatenated turbo codes is derived, where the ensemble is generated by a uniform choice

over the interleaver and a uniform choice of the component codes from the set of time vary-

ing recursive systematic convolutional codes. The conventional union bound is employed to

obtain an upper bound on the bit error probability of the ensemble of serially concatenated

turbo codes for the binary-input additive white Gaussian noise (AWGN) channel with co-

herent detection of antipodal signals and maximum likelihood decoding. The influence of

the interleaver length N and the memory length of the component codes m on the ensem-

ble performance is investigated and compared with relevant results for parallel concatenated

multiple-turbo codes.

1



I. Introduction

The discovery of turbo codes in 1993 [3] was an exciting development in coding theory. These

codes demonstrated near Shannon-limit performance on a Gaussian channel with relatively

simple component codes and large interleavers. An extensive literature on turbo codes has

already appeared, as evidenced by [1]–[16] and references therein.

In addition to performance obtained from simulations, upper bounds on the bit-error

rates of turbo codes have been developed. Transfer function bounding techniques have been

applied to obtain union bounds on the bit-error rate for maximum-likelihood decoding of

turbo codes constructed with random interleaver permutations [6]. Because it has not been

tractable to obtain analytic results on bit error rate for a particular interleaver, the bounds

on bit-error rate have been developed as averages over certain ensembles with random coding

properties. Moreover, since most of these bounds are based on a union bounding technique

[14],[16], they give useless results for energy-per-bit to spectral-noise-density
(

Eb

N0

)
ratios for

which the code rate is above the resulting cutoff rate (R0) of the channel, which is the region

of particular interest for turbo code operation.

For component codes with a known weight distribution, the weight distribution of the

parallel concatenated turbo code with a hypothetical ‘optimal’ interleaving was calculated

in [13] and used to derive union upper bounds on the bit-error rate. Turbo codes with

random component codes have also been investigated and lower bounds on the Eb

N0
needed

to achieve essentially error free decoding have been given. For component codes that satisfy

the Gilbert-Varshamov bound, an upper bound on the ratio of the minimum distance of the

turbo code to that of the component codes has been derived [13].

Two distinct modes of concatenation have been used in conjunction with turbo coding,

namely parallel concatenation and serial concatenation. Fig. 1 illustrates these two forms of

concatenation.

An upper bound on the bit error probability of a parallel concatenated coding scheme

averaged over all interleavers of a given length was proposed in [1]. A probabilistic inter-

leaver, called the ‘uniform interleaver’, was introduced that permits an easy derivation of

the weight distribution of the parallel concatenated code from those of its component codes.

However, the analysis in [1] used an exponential extrapolation of coefficients and was thus

only approximate. Although the validity of the approximation was verified numerically, the

2



results with truncation might be misleading and might fail to give a valid upper bound on

bit-error rate for rates above the cutoff rate (R0), as was pointed out in [14],[16].

An interesting result, which was proved in [2] and mentioned also in [16], about the

so called ‘interleaver gain’ of serially concatenated codes with recursive convolutional inner

codes is that every term in the union bound on bit error probability decreases asymptotically

at least as fast as N
−
⌊(

d
(0)
f

+1

)
/2

⌋
, where N is the interleaver size, d

(0)
f is the free distance of

the outer code and �x� is the integer part of x. Therefore when a serially concatenated code

is considered and the component codes are recursive systematic convolutional (RSC) codes,

it is advisable to use the RSC code with the greater free distance as the outer code in order

to enhance the interleaver gain of the resulting serially concatenated code. A recent analysis

[10] shows that the minimum distance of a serially concatenated coding scheme converges

to N

d
(0)
f

−2

d
(0)
f . This result holds regardless of the structure of the outer codes, which need not

be recursive. For parallel concatenation with K component codes, the minimum distance

behaves as N
K−2

K , and again the result does not depend on the structure of the K component

recursive codes nor on their memory.

Union bounds for serially concatenated codes with maximum likelihood decoding for

the binary-input additive white Gaussian noise (AWGN) channel were studied in [16]. The

component codes were explicitly chosen while the interleaver was random and uniform. A set

of recursions was developed, based on the chosen component codes, to facilitate numerical

computation of the union bound. These union bounds indicate that the interleaver gain was

actually achieved above the value of Eb

N0
that corresponds to the cutoff rate. The ensemble

considered in [16] was that of all interleaver permutations rather than the ensemble of all

codes as is usually considered in random coding applications [15]. The union bound is still

the weak link, as was demonstrated in [16] by computer simulations for iterative maximum

a posteriori (MAP) soft-output decoding. These simulations also demonstrated an interleaver

gain for Eb

N0
values corresponding to code rates above the cutoff rate but below the channel

capacity.

Analytical bounds on the performance of concatenated codes on a tree structure were

obtained in [8] based on the conventional union bound. Analytical results for the binary-input

AWGN and Rayleigh fading channels were applied to examples of parallel concatenation of

two codes (turbo codes), serial concatenation of two codes, hybrid concatenation of three
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codes and self concatenated codes. This yielded design criteria for the selection of the

component codes.

An efficient algorithm for obtaining the distance spectrum of turbo codes was presented

in [5]. This algorithm is an important tool for calculating upper bounds on the bit error rate

that depends on the distance spectrum of the code, such as the conventional union bound

used in this paper and in [1],[2],[16],[14],[8],[5]. The focus of [5] was directed to parallel

concatenated convolutional codes (PCCC), but the results of [5] can be extended to serial

concatenation and to general coding networks. For simplification of the analysis, it was

assumed in [5] that the component codes in the PCCC are identical, but the results extend

easily to the general case. Improved bounding techniques have recently been presented in

[9],[12] and their advantages when applied to serial and parallel concatenated turbo coding

was demonstrated.

In this paper, we derive the random ensemble weight enumerator for serially concate-

nated turbo codes. The ensemble is generated by a uniform random choice of the interleaver

and a uniform random choice of the component codes from the set of time varying recursive

convolutional codes with a given memory length. As in the result on parallel concatenation

reported in [14], this reduces the performance behavior of random turbo codes to two pa-

rameters: the interleaving length N , and the memory length m of the inner and outer codes

which we assume to be the same.

Following the derivation of the ensemble weight enumerator, we use a union bound ar-

gument to obtain an upper bound on the bit error probability of the ensemble of serially

concatenated turbo codes for maximum likelihood decoding on the AWGN channel. We

focus on rate 1/2 inner and outer codes, which results in an overall code of rate 1/4. As a

direct consequence of using the standard union bound, we obtain a meaningful upper bound

only for code rates below the cutoff rate, as in [6],[8],[13],[14],[16]. This excludes the portion

of the rate region where the performance of turbo codes is most appealing. Nevertheless,

as demonstrated in [6]–[8], [14],[16], union bounds which are based on the distance spectra

of long enough codes are useful analytical tools for investigating and gaining insight into

the performance of turbo codes at rates below the channel cutoff rate. We compare the

ensemble performance of random parallel concatenated turbo codes, as presented in [14], to

the case of random serially concatenated turbo codes and conclude that serial concatenation

is superior for moderate values of Eb

N0
. We then show that increasing the memory length m of
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the component codes above �log2 N� is not advisable since it improves the union ensemble

performance of the serially concatenated turbo codes only slightly while increasing the de-

coding complexity of the codes considerably. A similar result has also been demonstrated for

parallel concatenated turbo codes [14]. The asymptotic behavior in terms of Eb

N0
is discussed

in light of recent observations in [10] about the minimum distances of parallel and serial

turbo coding constructions.

In the next section we present our underlying assumptions and explain our notation. The

analysis is given in Section III and the results are described in Section IV. A summary and

some concluding remarks are presented in Section V.

II. Preliminaries

In this section, we state the underlying assumptions on which our analysis is based, introduce

notation and basic relations from [1]–[14], which apply to parallel and serially concatenated

turbo codes, and state some further useful relations and results.

A. Assumptions:

In our analysis, the channel is assumed to be a binary-input AWGN channel with binary

antipodal signaling. The detection is coherent and the decoding is maximum likelihood (ML).

The coding structure considered is serial concatenated turbo codes: the component codes are

assumed to be time-varying RSC codes with the same memory length (see Fig. 2). A uniform

random interleaver is incorporated at the output of the outer RSC encoder (see Fig. 1b). The

random (uniform) interleaving takes into consideration all possible permutations, including

the option of no interleaving (for the identity permutation) as a particular case, with all

interleaving permutations equally likely.

B. Notation and relations:

A serially concatenated turbo code cs with components c0 and ci as the outer and inner

codes, respectively, is considered. The rate in units of bits
symbol

of the code cs is R, which is also

the product of the rates of the component codes. The uniform interleaver situated between

the component codes operates on bits and has a length of N , which is also the length of a
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codeword of c0. The number of information bits is the product of N and the rate of the

outer code R(0). The common memory length of the component codes is m.

The number of codewords of Hamming weight h of the code cs that result from infor-

mation sequences of Hamming weight w is denoted by Acs
w,h. As the component codes are

assumed to be systematic, the serial concatenated code cs is also systematic. It follows that

Acs
w,h = 0 if w > h. The quantities Ac0

w,� and Aci
�,h are similarly defined for the component

codes. Since the component codes are systematic, it follows that Ac0
w,� = 0 for w > � and

that for � > h. Aci
�,h = 0 for w > � and that for � > h. Termination of the codes has been

assumed here, but we omit the details of how to terminate both shift registers. This notation

is consistent with that used in [2],[16], which deal with serially concatenated turbo codes.

However, unlike in [1],[14] which address parallel concatenated turbo codes, the parameter

h of Acs
w,h is here the Hamming weight of the entire codeword of cs, not just that of its parity

bits.

For a serially concatenated code cs with a uniform interleaver of length N , it has been

shown [2],[16] that

Acs
w,h =

N∑
�=0

Aco
w,� Aci

�,h( N
�

) . (1)

The following notation is adopted from [14] with some modifications for dealing with

serial rather than parallel concatenated codes. Let the random variable T be the number

of steps that a time-varying recursive shift register of length m initially in a non-zero state

remains active, i.e., remains in a non-zero state, when a non-zero input bit is applied. Let

pk be the probability that the random variable T equals k, pk = Prob {T = k}. Moreover,

as long as the shift register is in a non-zero state, the “state sequence” {s1(n), n ≥ 1} (see

Fig. 2) at the output of the first modulo-two adder will be a sequence of i.i.d. random

variables, uniformly distributed on GF (2), and independent of the input process x [14].

We first consider the expected number of steps, E[T ], for which the shift register remains

active after an initial non-zero input. This problem was already solved in a more general

context by Nielsen [11] who determined the expectation, E[x], of the position x of the first

digit in the first occurrence of an arbitrary pattern within an i.i.d. sequence of equiprobable

letters over an arbitrary alphabet. For a binary pattern of m consecutive 0’s, the Corollary

in [11] gives E[x] = 2m+1 −m− 1. But T is just the position in which this pattern ends, i.e.,
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T = x + m − 1, so that

E[T ] = 2m+1 − 2 . (2)

Note that this result implies that if m = �log2 N�, then the average activity time of a

time-varinging recursive shift register with memory length m is at least N .

Let pk be the probability that the random variable T is equal to k, The probabilities

pk = Prob{T = k} are easily computed recursively as we now show. Trivially

pk = 0 for k < m and pm = 2−m , (3)

since the shift register remains active until m consecutive 0’s appear in the state sequence.

For k > m, the event that T = k coincides with the event that the first k digits of the state

sequence are

b1, b2, . . . , bk−m−1, 1, 0, 0, . . . , 0 , (4)

where b1, b2, . . . , bk−m−1 is a binary sequence containing no run of m consecutive 0’s. But

the event that the first k − m − 1 digits of the state sequence are equal to such a sequence

b1, b2, . . . , bk−m−1 is just the event that T ≥ k −m. By the independence of the digits in the

state sequence, it follows that

pk = Prob {T = k} = Prob {T ≥ k − m}1

2
2−m, all k > m . (5)

But Prob {T ≥ k − m} = 1 for k ≤ 2m and hence

pk = 2−m−1 for m < k ≤ 2m. (6)

Upon setting k = 2m + i and noting that

Prob {T ≥ m + i} = 1 −
i−1∑
j=0

Prob {T = m + j}, all i > 0 , (7)

we can rewrite the above equation (based in Eq. (5)) as

p2m+i = [1 −
i−1∑
j=0

pm+j]2
−m−1, all i > 0 , (8)

which is our desired recursion. We see that the calculation of each probability p2m+i by this

recursion requires one subtraction and one multiplication by 2−m−1, which is just a shift in

binary arithmetic.
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Since we are interested in the output of the shift register over a finite interval, we define

pk,� as in [14] to be

pk,� =




pk if k < �

1 −
�−1∑
j=0

pj if k = �

0 if k > �

. (9)

Given a linear systematic block code c of dimension N , let Ac(W, Z) =
N∑

w=0

Ac
w(Z) Ww be

its input-output weight enumeration (distribution) function, where Ac
w(Z), the conditional

weight enumeration function, is the polynomial Ac
w(Z) =

∑
�

Ac
w,� Z�.

A serially concatenated turbo code can be regarded as a linear systematic block code of

dimension equal to the product of the interleaver length (N) and the rate of the outer code

(R(0)). As the outer code is assumed to be RSC code of rate 1
2

, the serially concatenated

code has dimension N
2
, which is the total number of information bits encoded. For a linear

systematic block code C of dimension N , Sw is the set of binary N -tuples of Hamming weight

w.

The dimensions of the component codes of a parallel concatenation are the same and

equal to (N). However, related to the outer code of a serially concatenated code, S(0)
w is

defined as the set of binary NR(0)-tuples of Hamming weight w (R(0) = 1
2

in our analysis).

Related to the inner code of the serial concatenation, S(i)
w is defined similar to Sw for parallel

concatenation (these sets are the same, since the input to the inner code is of length N).

As in paper [14], for x ∈ Sw, we let i1, i2 . . . iw (0 ≤ i1 < i2 < · · · < iw ≤ N − 1) be the

positions of the non-zero inputs. After the first non-zero input enters the shift register at

time i1, the register stays active for a time T . If there exists an index j, 1 < j ≤ w, such that

i1+T < ij, then the non-zero input at time ij will activate the shift register again. As before,

the shift register will stay active for a time T which is independent of the first activity time.

The time span that the output is active is relevant (being the time span in which either the

input is non-zero or the shift register is active) over the observation span of N (the length

of binary tuples in Sw). Let Ew be the random variable describing this time span, averaged

over a uniform choice over Sw, and let Prob {Ew = k} = qw
k . In a similar manner, based

on the definitions of S(i)
w and S(0)

w for the component codes of a serially concatenated turbo
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code, the random variables E(i)
w and E(0)

w and the corresponding probabilities qw
k (ci) and

qw
k (c0) are defined (related to the inner and outer codes of the serially concatenated code cs,

respectively). The probabilities {qw
k (c0)} and {qw

k (ci)} related to the outer and inner codes

respectively, were calculated with the aid of the statistical algorithm described in [14].

C. Comments:

For a serially concatenated code of rate R
bits

symbol
, the value of energy per bit to spectral

noise density
Eb

N0

that corresponds to the cutoff rate is

Eb

N0

= − ln
(
21−R − 1

)
R

=




1.85 dB @ R =
1

4

bit

symbol

2.03 dB @ R =
1

3

bit

symbol

. (10)

The conventional union bound is expected to be useless for values of Eb

N0
smaller than this

cutoff-rate value. The value of Eb

N0
that corresponds to the channel capacity of the binary-

input AWGN channel is

Eb

N0

=




−0.79 dB @ R =
1

4
bit/symbol

−0.50 dB @ R =
1

3
bit/symbol .

(11)

The union bound derived next is a tightened version of the conventional union bound that

was used in [2],[9],[14],[15],[16].

By definition, Q(x) =
1√
2π

∫ ∞

x
e−

t2

2 dt is the probability that a random Gaussian vari-

able with zero mean and unit variance exceeds the value x. For the exponential form of the

union bound, the inequality

Q(x) ≤ 1

2
e−

x2

2 for x ≥ 0 , is invoked . (12)

A tighter upper bound on the bit error rate of codes can be derived from the identity

Q(x) =
1

π

∫ π
2

0
e−

x2

2 sin2 θ dθ for x ≥ 0 (13)
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given in [4]. Equation (13) implies the following upper bound on bit-error probability

Pb ≤ 1

πN

∫ π
2

0
W

∂Ac(W, Z)

∂W

∣∣∣∣∣
W=Z=e

− REb
N0 sin2 θ

dθ (14)

in place of the upper bound

Pb ≤ W

2N

∂Ac(W, Z)

∂W

∣∣∣∣∣
W=Z=e

−REb
N0

,

which results from the conventional union bound and which is obviously looser. Finally, the

integration over θ in the upper bound (14) is performed numerically.

III. Analysis

In this section, we first derive the input-output weight enumeration function of the ensemble

of random serially concatenated turbo codes as described in Section II. As for the results

on parallel concatenation reported in [14], this reduces the performance analysis of random

turbo codes to a two parameter family where the parameters are the interleaver length N

and the memory length m of the component codes of the serial concatenation.

Following the derivation of the ensemble weight enumeration function, we employ the

union bound to provide an upper bound on the bit-error probability of the ensemble of ran-

dom serially concatenated turbo codes for the binary-input AWGN channel with maximum

likelihood decoding of coherently detected antipodal signals.

By linearity, a zero input sequence results in a zero output and therefore, the correspond-

ing conditional weight enumeration function of the serial concatenated code satisfies

Acs
0 (Z) = 1 . (15)

This implies also that Acs
0,0 = 1.

Following the analysis in [14] for the case when the Hamming weight of the encoded

information sequence is 1 and taking into account that the power of Z here is the Hamming

weight of the whole systematic codeword (and not only of its parity bits), the corresponding

conditional weight enumeration function A1(Z) of the considered set of convolutional codes

is obtained by multiplying the expression of B1(Z) in [14] by Z.
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Because the outer code in our analysis is assumed to be of rate 1
2
, the length of the

input sequence at the input of the outer encoder is N
2
. The interleaver length N is also the

length of the input sequence to the inner encoder of the serial concatenation. Therefore,

the corresponding weight enumeration functions Ac0
1 (Z) and Aci

1 (Z) of the rate 1
2

outer and

inner codes, respectively, are

Ac0
1 (Z) =

N
2
−1∑

i=0

N
2
−1−i∑
k=0

pk, N
2
−1−i 2

−(k+1)
k+1∑
j=0

(k + 1
j

)
Zj+1 (16)

Aci
1 (Z) =

N−1∑
i=0

N−1−i∑
k=0

pk, N−1−i 2
−(k+1)

k+1∑
j=0

(
j

k + 1)
Zj+1 . (17)

When the uncoded information supplied to the outer encoder has Hamming weight w ≥ 2,

then, following the derivation of equation (14) in paper [14], we obtain, after multiplying

Bw(Z) of paper [14] by Zw and changing N to N
2
, the corresponding conditional weight

enumeration function of the outer code as

Ac0
w (Z) =

(
N
2

w

) N
2∑

k=0

qw
k (c0) 2−k

k∑
j=0

(
k
j

)
Zj+w for 2 ≤ w ≤ N

2
. (18)

Similarly, because the uncoded input to the inner encoder is of length N , when its Hamming

weight is � ≥ 2, then the conditional weight enumeration function of the inner code is

Aci
� (Z) =

(
N
�

) N∑
k=0

q�
k(ci) 2−k

k∑
j=0

(
k
j

)
Zj+� for 2 ≤ � ≤ N . (19)

To apply equation (1), which relates the weight enumeration function of the serially con-

catenated codes to the weight enumeration functions of its component codes, we need first

to find the coefficients Aci
�,h and Aco

w,� for any combination of values of w, �, h, with the aid

of (15)–(19). However, since the component codes are systematic, the Hamming weight of

a codeword is not less than the Hamming weight of its information bits. This implies that

Aco
w,� = 0 and Aci

�,h = 0 for w > � and � > h, respectively. Also, since the length of a

codeword received at the output of the outer encoder is N and the length of the uncoded

information sequence supplied to the outer encoder is N
2
, then the systematic feature of the

outer code implies that the Hamming weight of a codeword received at the output of the

outer encoder is greater than the Hamming weight of its information bits by not more than
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N
2

(the number of parity bits). This implies that Aco
w,� = 0, if � > N

2
+ w. Because w ≤ N

2

(since the Hamming weight of the input sequence of the outer encoder is not greater than

its length), the inequality N
2

+ w ≤ N follows. Because we are considering rate 1
2

inner and

outer codes, the Hamming weight of the serially concatenated code cannot exceed 3N
2

+ w

(as 3N
2

is the number of parity bits of the serially concatenated code). Therefore, equation

(1) can be simplified, under our assumptions, to yield

Acs
w,h =

min (N
2

+w,h)∑
�=w

Ac0
w,� Aci

�,h(
N
�

) (20)

for values of w and h that satisfy 1 ≤ w ≤ N
2

and w ≤ h ≤ 3N
2

+ w. On the other hand, if

w > h or h > 3N
2

+ w, then Acs
w,h = 0 as explained above.

We proceed now to derive some expressions required in the analysis. From (16) and

(17), we obtain

Ac0
1,� =

N
2
−1∑

i=0

N
2
−1−i∑
k=0

pk, N
2
−1−i 2

−(k+1)
(

k + 1
� − 1

)
for 1 ≤ � ≤ N/2 + 1

Aci
1,h =

N−1∑
i=0

N−1−i∑
k=0

pk, N−1−i 2
−(k+1)

(
k + 1
h − 1

)
for 1 ≤ h ≤ 3N/2 + 1 .

But the binomial coefficient
(

n
m

)
is zero for n < m, so that




Ac0
1,1 =

N
2
−1∑

i=0

N
2
−1−i∑
k=0

pk, N
2
−1−i 2

−(k+1)

Aci
1,1 =

N−1∑
i=0

N−1−i∑
k=0

pk, N−1−i 2
−(k+1)

Aco
1,� =

N
2
−1∑

i=0

N
2
−1−i∑

k=�−2

pk, N
2
−1−i 2

−(k+1)
(

k + 1
� − 1

)
for 2 ≤ � ≤ N

2
+ 1

Aci
1,h =

N−1∑
i=0

N−1−i∑
k=h−2

pk, N−1−i 2
−(k+1)

(
k + 1
h − 1

)
for 2 ≤ h ≤ 3N

2
+ 1

. (21)

Obviously, according or our assumptions, if � > N
2

+ 1 or h > 3N
2

+ 1, then Ac0
1,� = 0 or
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Aci
1,h = 0, respectively. Similarly, (18) and (19) yield

Ac0
w,� =

( N
2
w

) N
2∑

k=0

qw
k (c0) 2−k

(
k

� − w

)
for 2 ≤ w ≤ N

2
and w ≤ � ≤ w +

N

2
. (22)

Aci
�,h =

(
N
�

) N∑
k=0

q�
k(ci) 2−k

(
k

h − �

)
for 2 ≤ � ≤ N and � ≤ h ≤ � + N . (23)

Because qw
k (c0) and q�

k(ci) are by definition zero for k < w or k < �, respectively, and

because the binomial coefficients
(

k
� − w

)
and

(
k

h − �

)
are zero for k < �−w or k < h− �,

respectively, it follows that

Ac0
w,� =

( N
2
w

) N
2∑

k=max(w,�−w)

qw
k (c0) 2−k

(
k

� − w

)
for 2 ≤ w ≤ N

2
and w ≤ � ≤ w +

N

2
(24)

Aci
�,h =

(
N
�

) N∑
k=max(�,h−�)

q�
k(ci) 2−k

(
k

h − �

)
for 2 ≤ � ≤ N and � ≤ h ≤ � + N . (25)

Equations (20),(24) and (25), for integer values of w, h such that 2 ≤ w ≤ N
2

and w ≤ h ≤
3N
2

+ w, yield

Acs
w,h =

( N
2
w

) min

(
N
2

+w,h

)
∑

�=max (w,h−N)




N
2∑

k1=max(w,�−w)

qw
k1

(c0) 2−k1

(
k1

� − w

)
·

N∑
k2=max(�,h−�)

q�
k2

(ci) 2−k2

(
k2

h − �

)
 .

(26)

Combining (20) and (21) gives

Acs
1,1 =

Ac0
1,1 Aci

1,1

N
=

1

4N




N
2
−1∑

i1=0

N
2
−1−i1∑
k1=0

2−k1 pk1, N
2
−1−i1





N−1∑

i2=0

N−1−i2∑
k2=0

2−k2 pk2, N−1−i2


 . (27)

Finally, from (20),(21) and (25), we conclude that, for values of h such that 2 ≤ h ≤ 3N
2

,

Acs
1,h =

min (N
2

+1,h)∑
�=1

Ac0
1,� Aci

�,h(
N
�

) =
Ac0

1,1 Aci
1,h

N
+

min (N
2

+1,h)∑
�=2

Ac0
1,� Aci

�,h(
N
�

)
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Acs
1,h =

1

N




N
2
−1∑

i1=0

N
2
−1−i1∑
k1=0

pk1, N
2
−1−i1

2−(k1+1)





N−1∑

i2=0

N−1−i2∑
k2=h−2

pk2, N−1−i2 2−(k2+1)
(

k2 + 1
h − 1

)


+

min

(
N
2

+1,h

)
∑
�=2







N
2
−1∑

i1=0

N
2
−1−i1∑

k1=�−2

pk1, N
2
−1−i1

2−(k1+1)
(

k1 + 1
� − 1

)
 N∑

k2=max(�,h−�)

2−k2 q�
k2

(ci)
(

k2
h − �

)


(28)

for integer values of h, such that 2 ≤ h ≤ 3N
2

+ 1.

Equations (26),(27) and (28) provide the foundation for the evaluation of the input-

output weight enumeration function of serially concatenated codes, when the ensemble of

rate 1
2

inner and outer time-varying RSC codes is considered with a random interleaver of

length N . From the definition of the weight enumeration function, we obtain

Acs(W, Z) =
∑
w,h

Acs
w,h Ww Zh = 1+Acs

1,1 WZ+W

3N
2

+1∑
h=2

Acs
1,h Zh+

N
2∑

w=2

3N
2

+w∑
h=w

Acs
w,h Ww Zh (29)

where the first, second, third and fourth terms above are based on equations (15),(27),(28)

and (26) respectively.

The union upper bound on the bit error probability of the ensemble of serially con-

catenated turbo codes for the AWGN channel based on maximum likelihood decoding and

coherent detection of antipodal signals may now be formulated as

Pb ≤ 2

N

N
2∑

w=1

3N
2

+w∑
h=w

w Acs
w,h Q




√
2hREb

N0


 (30)

where we have normalized by the input sequence length N
2

at the input of the outer encoder.

IV. Results

Fig. 3 compares the normalized average distance spectrum of serially concatenated codes in

Fig. 2b (with component codes that are random time-varying RSC codes of rate 1
2
, memory

length m = 5 and a uniform interleaver of length N = 200, 400 bits) with the normalized

binomial distribution of a fully random binary block code of the same length n = 2N and

rate R = 1
4
. The match of the two curves is quite good for Hamming distances larger than

twice the Gilbert-Varshamov (GV) distance, i.e. for normalized distances that are above
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2h−1(1−R) = 0.429, where R = 1
4

bit/symbol. In Fig. 4a the block length is n = 2N = 400

and, for Hamming distances larger than 0.429 · 400 = 171.6, there is a good match between

the two curves.

Fig. 4 shows that there is a good match between the normalized average distance spectrum

of serially concatenated codes and the normalized distribution of a fully random block code of

the same rate for Hamming distances that are adequately large. Yet, the normalized average

distance spectrum of the random parallel or serial concatenated codes becomes significantly

larger than the corresponding normalized binomial distribution, especially for relatively low

values of Hamming weights (see Figs. 3,4), and this relative increase may explain an inherent

degradation in performance as compared to optimal even fully random block codes.

As shown in Section IIc, the value of Eb

N0
that corresponds to the cutoff rate is 2.03 dB or

1.85 dB for an overall code rate of R = 1
3

or R = 1
4
, respectively. From these results and from

Figures 3,4,7,8,9 and 10, we see again that the union bound is useless at rates exceeding the

cutoff rate. Truncating the summation of terms associated with the union bound may lead

to somewhat misleading results at rates above the cutoff rate [2].

Fig. 5 shows the behavior of the probabilities pk versus k for various values of m. The

exponential decay of the probabilities pk with k is obvious from this figure. The smaller the

memory length m, the faster the probabilities pk decay with k. On the other hand, for large

values of memory length, the curves of pk versus k decay very slowly. It can also be seen

from the curves of Fig. 5 that pm = 2−m and pm+1 = pm

2
. Fig. 6 shows the minimal number

of steps required such that a time varying recursive shift register with memory length of m

will return to the zero state with a probability that is not less than a given threshold p for

two different values of p.

Another interesting fact, which is also derived from the properties of the probabilities

{pk}, is that increasing the memory length of the component codes above log2 N is not very

effective since it affects negligibly the union ensemble performance of concatenated turbo

codes while increasing the decoding complexity. This result has been demonstrated for

parallel concatenated turbo codes [14] without explicit analytic justification. This result was

proved analytically here by showing first that the average activity time of a time-varying

recursive convolutional code with a memory length of m is 2m+1 − 2, thus exponentially

increasing with m. Choosing m = �log2 N� yields an average activity time of at least N .

Following the explanation in [14], this result explains why, for values of m exceeding �log2 N�,
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the weight distribution is dominated by the distribution of the first non-zero input (since

with high probability, the encoder once activated will again become inactive within the

observation interval). Therefore, it follows analytically (see appendix A) that a reasonably

good choice of m is �log2 N�. The illustration of this result for serially concatenated turbo

codes is given in Fig. 7 for a uniform interleaver of length N = 200 bits. For this case,

the recommended values of m is 7. Increasing the memory length by just 1 (above the

corresponding recommended value of m) gives a slight coding gain of only 0.02 dB. It is also

clear from the curve in Fig. 7 that the coding gain achieved by increasing the memory length

from an arbitrary value of m to m + 1 decreases while m is increased.

The influence of the value of the interleaver length N on the random-ensemble perfor-

mance of serially concatenated turbo codes is illustrated by Figs. 8 and 9. In Fig. 8 the

ensemble performance (union bound) of serially concatenated codes of rate 1/4 and m = 5

is shown for N = 10, 20, 50, 100 and 200. Fig. 9 demonstrates the asymptotic performance

for these parameters. We notice, as predicted by the conventional union bound, for rates

below the cutoff rate, that the random-ensemble performance of serial concatenated turbo

codes improves with the increase of the interleaver length N . Increasing N is penalized by

increased memory demands. This improvement was predicted theoretically in [2] where it

was shown that, for serially concatenated codes with recursive convolutional inner codes, ev-

ery term of the bit error probability appearing in the union bound decreases asymptotically

at least as N
−
⌊

d
(0)
f

+1

2

⌋
where d

(0)
f is the free distance of the outer code and �x� is the integer

part of x.

Finally, the asymptotic behavior of the bit error rate is shown for random interleaver

lengths N = 10, 20, 50, 100 and 200 in Fig. 10, where m = 5, R = 1
4
. Note that the slope

of the curve steepens with the increase of Es

N0
. The fact that increasing N does not reflect

the expected minimum distance behavior of N

d
(0)
f

−2

d
(0)
f established in [10] can be attributed to

the ensemble averaging which is dominated by relatively ‘bad’ codes with a small minimum

distance, though their total probability of appearance is apparently low. Most codes (with

probability approaching 1) follow the minimum distance behavior of [10]. For the particular

case of the original turbo codes with K = 2 (see Fig. 2a), one sees from [10] that the

minimum distance depends neither on the interleaver length nor on the component codes.

On the other hand, for serially concatenated codes, we see that we can achieve growth rate
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of the minimum distance close to linear (dmin ≈ N) if we pick an outer code with large free

distance, which is also consistent with the result derived in [2]. Therefore, for high signal-

to-noise ratios, the relatively modest minimum distance of most turbo codes with K = 2

components implies that most serially concatenated codes with RSC codes as component

codes will perform better than for parallel concatenation.

Fig. 10 depicts a comparison between the union bounds on the bit error probability of

the random serial and parallel concatenated codes. The component codes of the two random

concatenated codes are time-varying RSC codes with memory length of m = 3, 4, 5 and 7 and

of rate 1
2

(the component codes in each of the four cases have the same memory length). The

serially concatenated codes are generated by a uniform choice over all possible interleavers of

length N1 = 200 (as in Fig. 2b). The parallel concatenated codes are generated by a uniform

choice over all possible interleavers of length N2 = 100 and three (K = 3) component

codes. The two random interleavers of length N1 of the parallel concatenated turbo codes

are chosen uniformly and independently (see Fig. 2c). This comparison between serially

and parallel concatenated turbo codes is done under equal rate and interleaving delay. The

union bounds on the bit-error probability of the serially concatenated turbo codes are slightly

smaller than those for the parallel concatenation at low and moderate values of Eb

N0
(at rates

above the cut-off rate), except for m = 3. Moreover, the difference between the curves of the

parallel and serially concatenated codes for low and moderate values of Eb

N0
increases with

the memory length m of the component codes. However, since the union bound is not tight

for rates above the cutoff rate, we were motivated to investigate these concatenated codes

by improved upper bounds [12]. For rates slightly below the cutoff rate, the union bounds

indicate that the parallel concatenation is advantageous over the serial concatenation (see

Fig. 10).

V. Summary and Conclusions

The input-output weight enumeration function of the ensemble of serially concatenated RSC

codes was derived. This ensemble is generated by a uniform choice over all possible inter-

leavers of length N and a uniform choice over all the component codes taken from the set of

time-varying RSC codes of rate 1
2

and memory length m.

Similarly to the result for parallel concatenation in [14], the performance behavior of ran-
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dom serially concatenated RSC codes was reduced to a two parameter family: the interleaver

length N and the memory length m of the inner and outer codes of the serial concatenation,

assumed here to be equal.

The union bound was applied to provide an upper bound on the bit-error probability

of the ensemble of serially concatenated RSC codes for the binary-input AWGN channel

assuming maximum likelihood decoding and coherent detection of antipodal signals.

We compared the ensemble performance of random parallel concatenated multiple-turbo

codes with three RSC component codes to the case of random serially concatenated RSC

codes (under the base of the same interleaving delay and code rate). The union bounds

demonstrate analytically that serial concatenation is preferable over parallel concatenation

for moderate values of Eb

N0
. Further work based on improved tangential sphere upper bounds

shows that this result remains valid [12].

It was demonstrated that increasing the memory length m of the component codes above

�log2 N� is not effective, since it improves negligibly the ensemble performance of the con-

catenated turbo codes while increasing considerably the decoding complexity of the codes.

The influence of the interleaver length N on the ensemble performance of concatenated

turbo codes was also investigated. It was shown that at rates below the cutoff rate the

ensemble performance of the concatenated turbo codes is improved by increasing the value

of N . This conforms with the results of [2],[10] and [16].

It was demonstrated that there is a good match between the normalized average distance

spectrum of random serially concatenated codes and the normalized binomial distribution

of a fully random block code of the same length and rate for Hamming distances that are

adequately large. The two distance spectra nearly coincides for Hamming distances larger

than twice the Gilbert-Varshamov distance, i.e., for normalized Hamming distances above

2h−1(1−R) (where R is the overall code rate in bit/symbol and h−1 is the inverse of the binary

entropy function). However, the normalized average distance spectrum of random serially

concatenated codes becomes significantly larger than the corresponding normalized binomial

distribution especially for relatively low values of Hamming weights. This observation may

explain an inherent degradation in performance compared to optimal even fully random

binary block codes.
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Figure Captions

Figure 1: A time-varying recursive shift register of length m.
The state equations of the shift register at time n:


s1(n + 1) =
m∑

k=1

sk(n) ck(n) + x(n)

sk(n + 1) = sk−1(n) k = 2, 3, . . . , m
y(n) = sm(n) ,

when ck(n) (k = 1, 2 , . . . , m) are i.i.d random variables that get the values ‘0’ or

‘1’ with the same probability
(

1
2

)
, for every moment of time n.

Figure 2: Serial and parallel concatenated turbo codes.
a. Parallel concatenation of rate 1

2
time-varying RSC codes ([7]) of overall rate 1

3
.

b. Serial concatenation of rate 1
2

time-varying RSC codes of overall rate 1
4

(dis-

cussed here).

c. Parallel concatenation of these components of rate 1
2

time-varying RSC codes

of overall rate 1
4
.

Figure 3: a. A comparison between the normalized average distance spectrum of random
parallel concatenated code (memory length of its components: m = 5, overall

rate: R = 1
3

and a random interleaver of length N = 200) and the normalized

binomial distribution of a fully random block code of the same code length n =
600 bits and of the same rate.
b. A comparison between the normalized average distance spectrum of random
parallel concatenated code (memory length of its components: m = 5, overall

rate: R = 1
3

and a random interleaver of length N = 400) and the normalized

binomial distribution of a fully random block code of the same code length n =
1200 bits and of the same rate.

Figure 4: The normalized average distance spectrum of random serially concatenated codes
with inner and outer codes that are time varying recursive systematic convo-
lutional codes of rate 1

2
and of memory length m = 5. The overall rate is

R = 1
4

and a random interleaver between the component codes is of length

N = 50, 100, 200, 400 bits.

Figure 5: The minimal number of cycles required such that a time varying recursive shift-
register with memory length of m will return to the zero state (after being acti-
vated), with a probability that is not less than a given threshold.

Figure 6: The ensemble performance of serially concatenated turbo codes with an overall
rate of 1

4
, as a function of m = 3, 4, 5, 6, 7, 8 - the memory length of its components.

The length of the random uniform interleaver is N = 200.

Figure 7: Comparison of the ensemble performance of serially concatenated turbo codes
with overall rate of 1

4
, fixed memory length of component codes (m = 5) and

different values of an interleaver length (N = 10, 20, 50, 100, 200).

Figure 8: The asymptotic (union bound) behavior of the bit error probability for the en-

semble of serially concatenated turbo codes with overall rate of 1
4
, fixed mem-

ory length of component codes m = 5 and different interleaver lengths, N =
10, 20, 50, 100, 200.



Figure 9: A comparison between the union bounds on the bit error probabilities of serially
concatenated random codes with inner and outer codes of rate 1

2
(an overall

rate of 1
4
) and a random uniform interleaver of length N = 200 and of parallel

concatenated random (turbo) codes with three component codes of rate 1
2

(the

same overall rate R = 1
4
) and two random uniform interleavers of length N =

100 (the same interleaving delay), as a function of the memory length of its
components m = 3, 4, 5, 7.
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Figure 1: Serial and parallel concatenated turbo codes.

a. Parallel concatenation of unpunctured rate 1
2 time-varying RSC codes ([7]), with an overall code

rate of 1
3 .
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Serial and parallel concatenated turbo codes.
b. Serial concatenation of overall rate 1

4 of rate 1
2 time-varying RSC codes (discussed here).

c. Parallel concatenation of overall rate 1
4 of these components of rate 1

2 time-varying RSC codes.



input output

x(n) 1 2 3 m y(n)

c c cm (n)c  (n)321
(n) (n)

(n) (n) (n) (n)sss s

(a)

Figure 2: a time-varying recursive shift register of length m.
The state equations of the shift register at time n:

s1(n + 1) =
m∑

k=1

sk(n) ck(n) + x(n)

sk(n + 1) = sk−1(n) k = 2, 3, . . . , m

y(n) = sm(n)

where ck(n) (k = 1, 2 , . . . , m) are i.i.d random variables that take on the values ‘0’ or ‘1’ with the

same probability
(

1
2

)
at every time instant n.



0 100 200 300 400 500 600 700 800
10

-200

10
-150

10
-100

10
-50

10
0

10
50

10
100

The Hamming weight of the codewords

T
h
e
 d

is
ta

n
c
e
 s

p
e
c
tr

u
m

Serially
concatenated
codes.

A binomial
distribution

N=400

(a)

0 50 100 150 200 250 300 350 400
10

-100

10
-80

10
-60

10
-40

10
-20

10
0

10
20

10
40

The Hamming weight of the codewords

T
h
e
 d

is
ta

n
c
e
 s

p
e
c
tr

u
m

Serially
concatenated
codes.

A binomial
distribution

N=200

(b)

Figure 3: a. A comparison between the normalized average distance spectrum of random parallel
concatenated code (memory length of its components: m = 5, overall rate: R = 1

3 and a random
interleaver of length N = 200) and the normalized binomial distribution of a fully random block
code of the same code length n = 600 bits and of the same rate.
b. A comparison between the normalized average distance spectrum of random parallel concatenated
code (memory length of its components: m = 5, overall rate: R = 1

3 and a random interleaver of
length N = 400) and the normalized binomial distribution of a fully random block code of the same
code length n = 1200 bits and of the same rate.
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4 , fixed memory length of component codes (m = 5) and different values of an
interleaver length (N = 10, 20, 50, 100, 200).
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Figure 9: The asymptotic (union bound) behavior of the bit error probability for the ensemble of
serially concatenated turbo codes with overall rate of 1

4 , fixed memory length of component codes
m = 5 and different interleaver lengths, N = 10, 20, 50, 100, 200.
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Overall code rate: R = 1/4 bit/ symbol.
Parallel concatenated turbo codes: K=3, N=100.
Serial concatenated turbo codes: K=2, N=200.

Figure 10: A comparison between the union bounds on the bit error probabilities of serially
concatenated random codes with inner and outer codes of rate 1

2 (an overall rate of 1
4) and a

random uniform interleaver of length N = 200 and of parallel concatenated random (turbo) codes
with three component codes of rate 1

2 (the same overall rate R = 1
4) and two random uniform

interleavers of length N = 100 (the same interleaving delay), as a function of the memory length
of its components m = 3, 4, 5, 7.


