TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY FACULTY OF MATHEMATICS

Handout 1	Spring 2022
General Information	106929

106929 - Selected Topics in Analysis 2

Instructor: Igal Sason (office: Meyer building 652, e-mail: sason@ee.technion.ac.il). Time and place: Ulman 601 - Monday 10:30-12:30; Ulman 607 - Tuesday 14:30-15:30. Course outline (tentative):

- 1. Elementary inequalities with applications:
 - Cauchy-Schwarz, Jensen's and arithmetic-geometric-mean inequalities;
 - Probability theory: inequalities related to the characteristic function;
 - Discrete geometry: finite sets in the 3-dimensional Euclidean space & projections;
 - Extremal graph problems:
 - Definitions, extremal graph problems with forbidden subgraphs: C_4, C_3 (K_3);
 - Turan's theorem (forbidden subgraph is K_p , with an integer $p \ge 2$);
 - Construction of a graph on n vertices without C_4 subgraphs;
 - The friendship theorem (on friends and politicians);
 - Probabilistic approach for graphs with large girth and chromatic number.
 - Discrete geometry: incidences, the Szemerédi-Trotter theorem, and a derivation of a weaker version via the Cauchy-Schwarz inequality.
- 2. The arithmetic mean geometric mean (AM-GM) of Gauss, and applications.
- 3. Permanent of matrices: Definitions, applications, and two theorems; an asymptotically tight result for the number of Latin squares of order n.
- 4. Three theorems in extremal set theory: Sperner's theorem; Erdos-Ko-Rado theorem, and Kneser Graphs; sunflower lemma and applications.
- 5. On polynomials with only real roots.
- 6. Elements of majorization theory and Schur convexity with applications.
- 7. Topics in analytical number theory: the infinitude of primes; Bertrand's postulate; binomial coefficients are almost never powers; harmonic and prime-harmonic sums.

References

- [1] M. Aigner and G. M. Ziegler, *Proofs from the Book*, Springer, 6th edition, 2018.
- [2] M. Steele, The Cauchy-Schwarz Master Class, Cambridge University Press, 2004.