# Tightened Upper Bounds on the ML Decoding Error Probability of Binary Linear Block Codes and Applications

### Moshe Twitto

Department of Electrical Engineering Technion-Israel Institute of Technology

> An M.Sc. Thesis supervisor: Dr. Igal Sason

> > March 30, 2006

Moshe Twitto Tightened upper bounds...

イロト イポト イヨト イヨト

# Outline

- Background
- The Tangential-Sphere Bound and Improved Versions
  - Tangential-Sphere Bound (TSB)
  - Improvements on the TSB
  - Error Exponents of Improved TSB
  - Numerical Results for Error Exponents
- 3 Gallager (1965) Bound
  - DS2 Bound
  - Shulman and Feder Bound.
  - 4 Tightened Upper Bounds
    - Upper Bounds on the Block/Bit Error Probability
    - Expurgation



(雪) (ヨ) (ヨ)



 The error performance of coded communication systems rarely admits exact expressions ⇒ Tight analytical bounds emerge as a useful tool for assessing performance.

 The union bound is useless at rates above the cutoff rate of the channel ⇒ Improved upper bounds which are not subject to the cutoff rate limitations are needed.

-∃=->

## Background (Cont.)

 The discovery of turbo-like codes has increased the motivation for deriving and applying tight performance bounds.

 Turbo-like codes are usually decoded by practical, sub-optimal decoding. However, the derivation of bounds on the ML decoding is of interest, as it provides an ultimate indication on the system performance.

イロト イポト イヨト イヨト

## Background (Cont.)

The fine structure of efficient codes is usually <u>not</u> available!
 ⇒ Useful ML bounds rely only on *basic* features, such as the *distance spectrum* of the codes.

• Efficient bounding techniques desirably encompass both *specific* codes as well as *ensembles* of structured codes.

# General Concept for the Derivation of Improved Upper Bounds

• The general concept of the improved bounding technique, as introduced by Fano (1960), is based on the inequality

 $\mathsf{Pr}(\mathsf{word \ error} \mid \mathbf{c}_0) \leq \mathsf{Pr}(\mathsf{word \ error}, \ \mathbf{y} \in \mathcal{R} \mid \mathbf{c}_0) + \mathsf{Pr}(\mathbf{y} \notin \mathcal{R} \mid \mathbf{c}_0)$ 

 $c_0$ -The transmitted codeword (linear code). y-The received vector at the output of the channel.  $\mathcal{R}$ -An arbitrary geometrical region.

- The idea is to apply the union bound to the first term in the RHS of the above inequality.
- Special case: *R* is the whole *n*-dimensional space ⇒ The union bound.

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

## Outline

### Background

- 2 The Tangential-Sphere Bound and Improved Versions
  - Tangential-Sphere Bound (TSB)
  - Improvements on the TSB
  - Error Exponents of Improved TSB
  - Numerical Results for Error Exponents
- 3 Gallager (1965) Bound
  - DS2 Bound
  - Shulman and Feder Bound.
- 4 Tightened Upper Bounds
  - Upper Bounds on the Block/Bit Error Probability
  - Expurgation
- 5 Applications

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

## Tangential-Sphere Bound (TSB)

- Introduced by Poltyrev in 1994.
- Consider the transmission of a binary linear code over an AWGN channel, using an equi-energy modulation.
- For the TSB, the region *R* is a circular, *N* dimensional cone, with a half angle *θ*, and a radius *r*. Denote it by *C<sub>N</sub>(θ)*.

イロト イポト イヨト イヨト

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

### Tangential-Sphere Bound (Cont.)

 $\begin{array}{l} \mathsf{Pr}(\mathsf{word\ error} \mid \boldsymbol{c}_0) \leq \mathsf{Pr}(\mathsf{word\ error}, \ \boldsymbol{y} \in \mathcal{R} \mid \boldsymbol{c}_0) + \mathsf{Pr}(\boldsymbol{y} \notin \mathcal{R} \mid \boldsymbol{c}_0) \\ (1) \end{array}$ 

### For the TSB:

• The union bound is applied on the first term in the RHS of (1), which gives:

$$\Pr\left(E|\mathbf{c}_0\right) \leq \sum_{i=1}^{M} \Pr\left(E_{0 \to i}, \mathbf{y} \in C_N(\theta) \mid \mathbf{c}_0\right) + \Pr(\mathbf{y} \notin C_N(\theta) \mid \mathbf{c}_0)$$

 $E_{0 \rightarrow i}$ -The event of deciding on  $\mathbf{c}_i$  rather than  $\mathbf{c}_0$ .

イロン イロン イヨン イヨン

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponent



Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

イロト イポト イヨト イヨト

# Tangential-Sphere Bound (Cont.)

The optimization is carried over r (r and  $\theta$  are related).

Two special cases

1.  $r \to \infty$ : Particularizes to the union bound.

2. *r* = 0: Equals to 1.

- Shown to be the optimal volume among all the volumes R which posses some symmetry properties (Yousefi and Khandani).
- One of the tightest upper bounds on the ML-decoding error probability of block codes.

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

# Tangential-Sphere Bound (Cont.)

The optimization is carried over r (r and  $\theta$  are related).

Two special cases

1.  $r \rightarrow \infty$ : Particularizes to the union bound.

2. r = 0: Equals to 1.

- Shown to be the optimal volume among all the volumes R which posses some symmetry properties (Yousefi and Khandani).
- One of the tightest upper bounds on the ML-decoding error probability of block codes.

・ロト ・ 同ト ・ ヨト ・ ヨト

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

### Tangential-Sphere Bound (Cont.)

#### The final version of the bound is

$$P_{\mathbf{e}} \leq \int_{-\infty}^{\infty} \frac{dz_1}{\sqrt{2\pi\sigma}} e^{-\frac{z_1^2}{2\sigma^2}} \left\{ \begin{array}{c} \sum_{k:\frac{\delta_k}{2} \leq \alpha_k} & \left\{ A_k \int_{\beta_k(z_1)}^{r_{z_1}} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{z_2^2}{2\sigma^2}} \ \bar{\gamma} \left( \frac{N-2}{2}, \frac{r_{z_1}^2 - z_2^2}{2\sigma^2} \right) dz_2 \right\} \\ & +1 - \bar{\gamma} \left( \frac{N-1}{2}, \frac{r_{z_1}^2}{2\sigma^2} \right) \end{array} \right\}$$

where

$$ar{\gamma}(a,x) riangleq rac{1}{\Gamma(a)} \int_0^x t^{a-1} e^{-t} dt, \quad a,x>0$$

and  $A_k$  denotes the distance spectrum of the code.

・ロット (雪) ( ) ( ) ( ) ( )

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

## Tangential-Sphere Bound (Cont.)

The optimal radius is obtain by the following optimization equation:

$$\left(\begin{array}{c}\sum_{k:\frac{\delta_{k}}{2}<\alpha_{k}}\mathcal{A}_{k}\int_{0}^{\theta_{k}}\sin^{N-3}\phi \ d\phi=\frac{\sqrt{\pi}\ \Gamma(\frac{N-2}{2})}{\Gamma(\frac{N-1}{2})}\\\\ \theta_{k}=\cos^{-1}\left(\frac{\delta_{k}}{2r}\frac{1}{\sqrt{1-\frac{\delta_{k}^{2}}{4NE_{s}}}}\right).\end{array}\right.$$

#### Notes:

- 1. The optimal radius is independent of the SNR.
- 2. There exists a unique solution for the above equation (Sason and Shamai).

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

# Outline

2

### Background

- The Tangential-Sphere Bound and Improved Versions
  - Tangential-Sphere Bound (TSB)
  - Improvements on the TSB
  - Error Exponents of Improved TSB
  - Numerical Results for Error Exponents
- Gallager (1965) Bound
  - DS2 Bound
  - Shulman and Feder Bound.
- 4 Tightened Upper Bounds
  - Upper Bounds on the Block/Bit Error Probability
  - Expurgation
- 5 Applications

ヘロン ヘアン ヘビン ヘビン

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

### Improvements on the TSB

#### Reminder:

The TSB is based on the inequality

$$\mathsf{Pr}(\mathsf{word error} \mid \mathbf{c}) \leq \mathsf{Pr}(\mathsf{word error}, \ \mathbf{y} \in \mathcal{R} \mid \mathbf{c}) + \mathsf{Pr}(\mathbf{y} \notin \mathcal{R} \mid \mathbf{c})$$
(2)

where the union bound is applied on the first term in the RHS of (2).

#### Improvement:

Yousefi and Khandani suggest to improve the TSB by applying Hunter's bound rather than the union bound.

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

### Improvements on the TSB

#### Reminder:

The TSB is based on the inequality

$$\mathsf{Pr}(\mathsf{word error} \mid \mathbf{c}) \leq \mathsf{Pr}(\mathsf{word error}, \ \mathbf{y} \in \mathcal{R} \mid \mathbf{c}) + \mathsf{Pr}(\mathbf{y} \notin \mathcal{R} \mid \mathbf{c})$$
(2)

where the union bound is applied on the first term in the RHS of (2).

#### Improvement:

Yousefi and Khandani suggest to improve the TSB by applying Hunter's bound rather than the union bound.

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

### Improvements on the TSB

#### Hunter's Bound

Let  $\{E_i\}, i = 1, ..., M$  designate a set of M events, and  $E_i^c$  designates the complementary event of  $E_i$ . Then

$$\Pr\left(\bigcup_{i=1}^{M} E_{i}\right) = \Pr(E_{1}) + \Pr(E_{2} \cap E_{1}^{c}) + \ldots + \Pr(E_{M} \cap E_{M-1}^{c} \dots \cap E_{1}^{c})$$
$$\leq \Pr(E_{\pi_{1}}) + \sum_{i=2}^{M} \Pr(E_{\pi_{i}} \cap E_{\lambda_{i}}^{c}).$$

where  $\{\pi_1, \ldots, \pi_M\}$  is an arbitrary permutation of the set  $\{1, \ldots, M\}$ , and  $\{\lambda_2, \ldots, \lambda_M\}$  designates an arbitrary sequence of integers where  $\lambda_i \in \{\pi_1, \ldots, \pi_{i-1}\}$ .

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

### Improvements on the TSB (Cont.)

Applying Hunter's bound yields

$$\Pr\left(\bigcup_{i=1}^{M-1} E_{0 \to i}, \mathbf{y} \in C_n(\theta) \mid z_1\right) \le \min_{\Pi, \Lambda} \left\{ \Pr(E_{0 \to \pi_1}, \mathbf{y} \in C_n(\theta) \mid z_1) + \sum_{i=2}^{M-1} \Pr(E_{0 \to \pi_i}, E_{0 \to \lambda_i}^{\mathsf{c}}, \mathbf{y} \in C_n(\theta) \mid z_1) \right\}$$

where  $E_{0\rightarrow j}$  designates the pairwise error event where the decoder decides on codeword  $\mathbf{c}_j$  rather than the transmitted codeword  $\mathbf{c}_0$ .

イロト イポト イヨト イヨト

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents



ъ

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

### Improvements on the TSB (Cont.)

### Problems:

- The problem of finding the optimal ordering of the events is prohibitively complex.
- The bound depends on the global geometrical properties of the code.

### Important fact

The probabilities  $\Pr\left(E_{0\to i}, E_{0\to j}^c\right)$  are monotonic decreasing functions of the correlation coefficients between  $\mathbf{c_i}$  and  $\mathbf{c_j}$ .

ヘロト ヘワト ヘビト ヘビト

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

### Improved Versions of the TSB (Cont.)

- Yousefi et al. derived two versions of improved tangential-sphere bounds. These new bounds (ITSB and AHP bounds) were exemplified to outperform the TSB for short linear block codes.
- In the following, we compare the error exponents associated with the TSB and its improved versions.

イロト イ理ト イヨト イヨト

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

# Outline

2

### Background

- The Tangential-Sphere Bound and Improved Versions
  - Tangential-Sphere Bound (TSB)
  - Improvements on the TSB
  - Error Exponents of Improved TSB
  - Numerical Results for Error Exponents
- 3 Gallager (1965) Bound
  - DS2 Bound
  - Shulman and Feder Bound.
- 4 Tightened Upper Bounds
  - Upper Bounds on the Block/Bit Error Probability
  - Expurgation
- 5 Applications

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

э

### Error Exponents of Improved TSB

#### Theorem

The upper bounds ITSB, AHP and the TSB have the same error exponent, which is

$$E(c) = \min_{0 \le \delta \le 1} \left\{ \frac{1}{2} \ln \left( 1 - \gamma + \gamma e^{-2r(\delta)} \right) + \frac{\gamma \Delta^2 c}{1 + \gamma \Delta^2} \right\}$$

where

$$\gamma = \gamma(\delta) \triangleq rac{1-\delta}{\delta} \left[ \sqrt{rac{c}{c_0(\delta)} + (1+c)^2 - 1} - (1+c) 
ight]$$

and

$$c_0(\delta) \triangleq \left(1 - e^{-2r(\delta)}\right) \frac{1 - \delta}{2\delta}, \quad r(\delta) = \frac{\ln(A_l)}{N}, \ \Delta = \sqrt{\frac{\delta}{1 - \delta}}, \ c \triangleq \frac{E_s}{N_0}$$

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

# Error Exponents of Improved TSB (Cont.)

- Lemma: The ITSB is at least as tight as the TSB for specific codes. ⇒ It is at least as tight as the TSB for ensembles of codes.
- Lemma: *Asymptotically*, the AHP is at least as tight as the TSB.
- Lemma: Both the ITSB and the AHP are lower bounded by a certain function  $\psi(\mathcal{C})$ .
- We use the Chernoff bounding technique to show that the exponential versions of  $\psi(C)$  and the TSB are identical.
- ⇒ The error exponents of the TSB, ITSB and AHP bounds are all identical.

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

# Error Exponents of Improved TSB (Cont.)

- Lemma: The ITSB is at least as tight as the TSB for specific codes. ⇒ It is at least as tight as the TSB for ensembles of codes.
- Lemma: *Asymptotically*, the AHP is at least as tight as the TSB.
- Lemma: Both the ITSB and the AHP are lower bounded by a certain function  $\psi(\mathcal{C})$ .
- We use the Chernoff bounding technique to show that the exponential versions of  $\psi(C)$  and the TSB are identical.
- ⇒ The error exponents of the TSB, ITSB and AHP bounds are all identical.

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

# Error Exponents of Improved TSB (Cont.)

- Lemma: The ITSB is at least as tight as the TSB for specific codes. ⇒ It is at least as tight as the TSB for ensembles of codes.
- Lemma: *Asymptotically*, the AHP is at least as tight as the TSB.
- Lemma: Both the ITSB and the AHP are lower bounded by a certain function ψ(C).
- We use the Chernoff bounding technique to show that the exponential versions of  $\psi(C)$  and the TSB are identical.
- ⇒ The error exponents of the TSB, ITSB and AHP bounds are all identical.

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

# Error Exponents of Improved TSB (Cont.)

- Lemma: The ITSB is at least as tight as the TSB for specific codes. ⇒ It is at least as tight as the TSB for ensembles of codes.
- Lemma: *Asymptotically*, the AHP is at least as tight as the TSB.
- Lemma: Both the ITSB and the AHP are lower bounded by a certain function ψ(C).
- We use the Chernoff bounding technique to show that the exponential versions of ψ(C) and the TSB are identical.
- ⇒ The error exponents of the TSB, ITSB and AHP bounds are all identical.

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

## Outline

2

### Background

- The Tangential-Sphere Bound and Improved Versions
  - Tangential-Sphere Bound (TSB)
  - Improvements on the TSB
  - Error Exponents of Improved TSB
  - Numerical Results for Error Exponents
- 3 Gallager (1965) Bound
  - DS2 Bound
  - Shulman and Feder Bound.
- 4 Tightened Upper Bounds
  - Upper Bounds on the Block/Bit Error Probability
  - Expurgation
- 5 Applications

・ロト ・ 理 ト ・ ヨ ト ・

ъ

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

### Error Exponents of Some Bounds



Moshe Twitto Tightened upper bounds...

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

### Error Exponents of Some Bounds



Moshe Twitto Tightened upper bounds...

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents



- The TSB and its improved versions do not achieve capacity for the ensemble of random linear block codes.
- Tight analytical bounds for structured codes are required, especially for high-rate codes where the weakness of the TSB is more pronounced.

ヘロト ヘワト ヘビト ヘビト

Tangential-Sphere Bound (TSB) Improvements on the TSB Error Exponents of Improved TSB Numerical Results for Error Exponents

## An Overview on the Continuation of this Talk

- In the continuation, we first introduce Gallager's 1965 bound which in general is impractical to evaluate for specific codes.
- The generalization of Duman and Salehi bound by Sason and Shamai is then introduced as an alternative bounding technique which is suitable for both specific codes and ensembles, based on the calculation of their distance spectra.
- Next, the Shulman and Feder bound is obtained as a special case of the DS2 bound (Sason & Shamai, IT 2002) whose alternative derivation is completely different from its original derivation (Shulman & Feder, IT 1999).
- The tightened upper bounds, introduced in this work, are derived by following the alternative derivation of the Shulman and Feder bound as a particular case of the DS2 bound.

・ロット (雪) ( ) ( ) ( ) ( )

DS2 Bound Shulman and Feder Bound.

## The Gallager (1965) Bound

Fixed Codes-Maximum Likelihood (ML) decoding:

Applications

$$egin{split} & \mathcal{P}_{\mathsf{e}|m} \leq \sum_{\mathbf{y}} \ \mathcal{P}_{\mathcal{N}}(\mathbf{y}|\mathbf{c}_{m}) \ \left(\sum_{m' 
eq m} \left(rac{\mathcal{P}_{\mathcal{N}}(\mathbf{y}|\mathbf{c}_{m'})}{\mathcal{P}_{\mathcal{N}}(\mathbf{y}|\mathbf{c}_{m})}
ight)^{\lambda}
ight)^{
ho} \ & \lambda, \ 
ho \geq \mathbf{0} \end{split}$$

- *P*<sub>e|m</sub>-block error probability conditioned on the transmitted codeword **c**<sub>m</sub> (*m* = 1, 2, ..., *M*).
- $\mathbf{c}_m$ -the transmitted length-*N* codeword.
- **y**-the observation vector (*N* components).
- *p<sub>N</sub>*(**y**|**c**)–the channel transition probability measure (for a block of length *N*).

The Tangential-Sphere Bound and Improved Versions Gallager (1965) Bound Tichtened Upper Bounds

DS2 Bound Shulman and Feder Bound.

## The Gallager (1965) Bound

Fixed Codes-Maximum Likelihood (ML) decoding:

Applications

$$egin{split} & \mathcal{P}_{\mathsf{e}|m} \leq \sum_{\mathbf{y}} \ \mathcal{P}_{\mathcal{N}}(\mathbf{y}|\mathbf{c}_{m}) \ \left(\sum_{m' 
eq m} \left(rac{\mathcal{P}_{\mathcal{N}}(\mathbf{y}|\mathbf{c}_{m'})}{\mathcal{P}_{\mathcal{N}}(\mathbf{y}|\mathbf{c}_{m})}
ight)^{\lambda}
ight)^{
ho} \ & \lambda, \ 
ho \geq \mathbf{0} \end{split}$$

### Example

- $\rho = 1$ ,  $\lambda = 1/2 \Rightarrow$  Bhattacharyya-Union bound.
- The substitution  $\lambda = \frac{1}{1+\rho}$  and optimization over  $0 \le \rho \le 1$  gives a *tight* bound for orthogonal codes.
- Usually impractical to evaluate in terms of distance spectrum of the codes.

DS2 Bound Shulman and Feder Bound.

## The Gallager (1965) Bound

Fixed Codes-Maximum Likelihood (ML) decoding:

Applications

$$egin{split} & \mathcal{P}_{\mathsf{e}|m} \leq \sum_{\mathbf{y}} \ \mathcal{P}_{\mathcal{N}}(\mathbf{y}|\mathbf{c}_{m}) \ \left(\sum_{m' 
eq m} \left(rac{\mathcal{P}_{\mathcal{N}}(\mathbf{y}|\mathbf{c}_{m'})}{\mathcal{P}_{\mathcal{N}}(\mathbf{y}|\mathbf{c}_{m})}
ight)^{\lambda}
ight)^{
ho} \ & \lambda, \ 
ho \geq \mathbf{0} \end{split}$$

#### Example

- $\rho = 1, \ \lambda = 1/2 \Rightarrow$  Bhattacharyya-Union bound.
- The substitution  $\lambda = \frac{1}{1+\rho}$  and optimization over  $0 \le \rho \le 1$  gives a *tight* bound for orthogonal codes.
- Usually impractical to evaluate in terms of distance spectrum of the codes.
The Tangential-Sphere Bound and Improved Versions Gallager (1965) Bound Tightened Upper Bounds

DS2 Bound Shulman and Feder Bound.

# Gallager '65 Bound: Random Codes

• Memoryless channel: 
$$p_N(\mathbf{y}|\mathbf{x}) = \prod_{l=1}^{N} p(y_l|x_l)$$
  
• Memoryless input-distribution:  $q_N(\mathbf{x}) = \prod_{l=1}^{N} q(x_l)$ 

Applications

#### The 1965 Gallager Random Coding Bound

$$P_{
m e} \leq 2^{-NE_{
m r}(R)}$$

where

$$E_{\mathrm{r}}(R) = \max_{0 \le \rho, q \le 1} (E_{0}(\rho, q) - \rho R)$$
$$E_{0}(\rho, q) \triangleq -\log_{2} \left\{ \sum_{\mathbf{y}} \left( \sum_{\mathbf{x}} q_{N}(\mathbf{x}) p_{N}(\mathbf{y} | \mathbf{x})^{\frac{1}{1+\rho}} \right)^{1+\rho} \right\}$$

The Tangential-Sphere Bound and Improved Versions Gallager (1965) Bound Tightened Upper Bounds

DS2 Bound Shulman and Feder Bound.

# Gallager '65 Bound: Random Codes

• Memoryless channel: 
$$p_N(\mathbf{y}|\mathbf{x}) = \prod_{l=1}^{N} p(y_l|x_l)$$
  
• Memoryless input-distribution:  $q_N(\mathbf{x}) = \prod_{l=1}^{N} q(x_l)$ 

Applications

## The 1965 Gallager Random Coding Bound

$$P_{e} \leq 2^{-NE_{r}(R)}$$

where

$$E_{\mathrm{r}}(R) = \max_{0 \le \rho, q \le 1} (E_{0}(\rho, q) - \rho R)$$
$$E_{0}(\rho, q) \triangleq -\log_{2} \left\{ \sum_{\mathbf{y}} \left( \sum_{\mathbf{x}} q_{N}(\mathbf{x}) p_{N}(\mathbf{y} | \mathbf{x})^{\frac{1}{1+\rho}} \right)^{1+\rho} \right\}$$

DS2 Bound Shulman and Feder Bound.

# Outline

- Background
- 2 The Tangential-Sphere Bound and Improved Versions
  - Tangential-Sphere Bound (TSB)
  - Improvements on the TSB
  - Error Exponents of Improved TSB
  - Numerical Results for Error Exponents
- 3 Gallager (1965) Bound
  - DS2 Bound
  - Shulman and Feder Bound.
- 4 Tightened Upper Bounds
  - Upper Bounds on the Block/Bit Error Probability
  - Expurgation
- 5 Applications

・ 同 ト ・ ヨ ト ・ ヨ ト …

DS2 Bound Shulman and Feder Bound

## The second version of Duman and Salehi Bound

Applications

 Suggested by Sason and Shamai as a generalization of the Duman and Salehi bound which originally derived for the AWGN channel (Duman Ph.D. dissertation 1998).

• Let  $\psi_N^m(\mathbf{y})$  be a measure (may depend on  $\mathbf{c}_m$ ).

ヘロト 人間 とくほとくほとう

Background The Tangential-Sphere Bound and Improved Versions Gallager (1965) Bound

Tightened Upper Bounds Applications DS2 Bound Shulman and Feder Bound

# The second version of Duman and Salehi Bound (Cont.)

$$\begin{split} P_{\mathbf{e}|m} &\leq \sum_{\mathbf{y}} \ \psi_{N}^{m}(\mathbf{y}) \ \psi_{N}^{m}(\mathbf{y})^{-1} \ p_{N}(\mathbf{y}|\mathbf{c}_{m}) \ \left( \sum_{m' \neq m} \left( \frac{p_{N}(\mathbf{y}|\mathbf{c}_{m'})}{p_{N}(\mathbf{y}|\mathbf{c}_{m})} \right)^{\lambda} \right)^{\rho} \\ &= \sum_{\mathbf{y}} \ \psi_{N}^{m}(\mathbf{y}) \ \left( \psi_{N}^{m}(\mathbf{y})^{-\frac{1}{\rho}} \ p_{N}(\mathbf{y}|\mathbf{c}_{m})^{\frac{1}{\rho}} \ \sum_{m' \neq m} \left( \frac{p_{N}(\mathbf{y}|\mathbf{c}_{m'})}{p_{N}(\mathbf{y}|\mathbf{c}_{m})} \right)^{\lambda} \right)^{\rho} \\ &\lambda, \rho \geq 0. \end{split}$$

$$\begin{array}{l} \leq \\ \text{Jensen} & \left( \sum_{m' \neq m} \sum_{\mathbf{y}} p_N(\mathbf{y} | \mathbf{c}_m)^{\frac{1}{\rho}} \ \psi_N^m(\mathbf{y})^{1 - \frac{1}{\rho}} \ \left( \frac{p_N(\mathbf{y} | \mathbf{c}_{m'})}{p_N(\mathbf{y} | \mathbf{c}_m)} \right)^{\lambda} \right)^{\rho} \\ & 0 \leq \rho \leq 1, \ \lambda \geq 0. \end{array}$$

・ロト ・ 理 ト ・ ヨ ト ・

∃ <2 <</p>

Background The Tangential-Sphere Bound and Improved Versions Gallager (1965) Bound

DS2 Bound Shulman and Feder Bound.

Tightened Upper Bounds Applications

# The second version of Duman and Salehi Bound (Cont.)

$$\begin{split} P_{\mathbf{e}|m} &\leq \sum_{\mathbf{y}} \ \psi_{N}^{m}(\mathbf{y}) \ \psi_{N}^{m}(\mathbf{y})^{-1} \ p_{N}(\mathbf{y}|\mathbf{c}_{m}) \ \left( \sum_{m' \neq m} \left( \frac{p_{N}(\mathbf{y}|\mathbf{c}_{m'})}{p_{N}(\mathbf{y}|\mathbf{c}_{m})} \right)^{\lambda} \right)^{\rho} \\ &= \sum_{\mathbf{y}} \ \psi_{N}^{m}(\mathbf{y}) \ \left( \psi_{N}^{m}(\mathbf{y})^{-\frac{1}{\rho}} \ p_{N}(\mathbf{y}|\mathbf{c}_{m})^{\frac{1}{\rho}} \ \sum_{m' \neq m} \left( \frac{p_{N}(\mathbf{y}|\mathbf{c}_{m'})}{p_{N}(\mathbf{y}|\mathbf{c}_{m})} \right)^{\lambda} \right)^{\rho} \\ &\lambda, \rho \geq \mathbf{0}. \end{split}$$

$$\begin{array}{l} \leq \\ \text{Jensen} & \left( \sum_{m' \neq m} \sum_{\mathbf{y}} p_N(\mathbf{y} | \mathbf{c}_m)^{\frac{1}{\rho}} \ \psi_N^m(\mathbf{y})^{1 - \frac{1}{\rho}} \ \left( \frac{p_N(\mathbf{y} | \mathbf{c}_{m'})}{p_N(\mathbf{y} | \mathbf{c}_m)} \right)^{\lambda} \right)^{\rho} \\ & 0 \leq \rho \leq 1, \ \lambda \geq 0. \end{array}$$

・ロト ・ 理 ト ・ ヨ ト ・

∃ <2 <</p>

Background The Tangential-Sphere Bound and Improved Versions

Gallager (1965) Bound Tightened Upper Bounds Applications DS2 Bound Shulman and Feder Bound

# The second version of Duman and Salehi Bound (Cont.)

Let

 $\psi_{N}^{m}(\mathbf{y}) = \frac{G_{N}^{m}(\mathbf{y}) \ p_{N}(\mathbf{y}|\mathbf{c}_{m})}{\sum_{\mathbf{y}} G_{N}^{m}(\mathbf{y}) \ p_{N}(\mathbf{y}|\mathbf{c}_{m})}$  $\left(\sum_{m} G_{N}^{m}(\mathbf{y}) \ p_{N}(\mathbf{y}|\mathbf{c}_{m})\right)^{1-\rho}$ 

$$\begin{split} \mathcal{F}_{\mathbf{e}|m} &\leq \left(\sum_{\mathbf{y}} G_{N}^{\mathbf{v}}(\mathbf{y}) \ p_{N}(\mathbf{y}|\mathbf{c}_{m})\right) \\ & \cdot \left(\sum_{m' \neq m} \sum_{\mathbf{y}} p_{N}(\mathbf{y}|\mathbf{c}_{m}) \ G_{N}^{m}(\mathbf{y})^{1-\frac{1}{\rho}} \ \left(\frac{p_{N}(\mathbf{y}|\mathbf{c}_{m'})}{p_{N}(\mathbf{y}|\mathbf{c}_{m})}\right)^{\lambda}\right)^{\rho}, \\ & \quad 0 \leq \rho \leq 1, \quad \lambda \geq 0. \end{split}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Background The Tangential-Sphere Bound and Improved Versions Gallager (1965) Bound

DS2 Bound Shulman and Feder Bo

Tightened Upper Bounds Applications

# The second version of Duman and Salehi Bound (Cont.)

Let

 $\Rightarrow$ 

$$\begin{split} \psi_{N}^{m}(\mathbf{y}) &= \frac{G_{N}^{m}(\mathbf{y}) \ p_{N}(\mathbf{y}|\mathbf{c}_{m})}{\sum_{\mathbf{y}} G_{N}^{m}(\mathbf{y}) \ p_{N}(\mathbf{y}|\mathbf{c}_{m})} \\ P_{\mathbf{e}|m} &\leq \left(\sum_{\mathbf{y}} G_{N}^{m}(\mathbf{y}) \ p_{N}(\mathbf{y}|\mathbf{c}_{m})\right)^{1-\rho} \\ &\cdot \left(\sum_{m' \neq m} \sum_{\mathbf{y}} p_{N}(\mathbf{y}|\mathbf{c}_{m}) \ G_{N}^{m}(\mathbf{y})^{1-\frac{1}{\rho}} \ \left(\frac{p_{N}(\mathbf{y}|\mathbf{c}_{m'})}{p_{N}(\mathbf{y}|\mathbf{c}_{m})}\right)^{\lambda}\right)^{\rho}, \\ &\quad 0 \leq \rho \leq 1, \quad \lambda \geq 0. \end{split}$$

・ロト ・ 理 ト ・ ヨ ト ・

æ

DS2 Bound Shulman and Feder Bound

### **Advantages**

- Gives results in term of basic code features (such as distance spectrum) to structured codes and ensembles.
- Achieve capacity for the ensemble of random codes.
- Many upper bounds are particular cases of this bound.

#### Drawback

Computationally Hard to compute.

ヘロン ヘアン ヘビン ヘビン

ъ

DS2 Bound Shulman and Feder Bound

### Advantages

- Gives results in term of basic code features (such as distance spectrum) to structured codes and ensembles.
- Achieve capacity for the ensemble of random codes.
- Many upper bounds are particular cases of this bound.

#### Drawback

Computationally Hard to compute.

ヘロト 人間 ト ヘヨト ヘヨト

æ

DS2 Bound Shulman and Feder Bound.

# Outline

- Background
- 2 The Tangential-Sphere Bound and Improved Versions
  - Tangential-Sphere Bound (TSB)
  - Improvements on the TSB
  - Error Exponents of Improved TSB
  - Numerical Results for Error Exponents
- 3 Gallager (1965) Bound
  - DS2 Bound
  - Shulman and Feder Bound.
- 4 Tightened Upper Bounds
  - Upper Bounds on the Block/Bit Error Probability
  - Expurgation
- 5 Applications

・ 同 ト ・ ヨ ト ・ ヨ ト

1

DS2 Bound Shulman and Feder Bound.

## The Shulman and Feder Bound (SFB)

- Adaption of the random-coding bound to structured ensembles of block codes.
- For a binary linear block code (or ensemble), *C*, with distance spectrum {*A*<sub>l</sub>} the SFB reads

$$P_{\mathsf{e}} \leq 2^{-N \mathsf{E}_{\mathsf{r}}(R + rac{\log lpha(\mathcal{C})}{N})}$$

where

$$\alpha(\mathcal{C}) \triangleq \max_{1 \leq l \leq N} \frac{A_l}{2^{-N(1-R)} \binom{N}{l}}$$

and  $E_r$  is the random coding error exponent.

くロト (過) (目) (日)

Background The Tangential-Sphere Bound and Improved Versions Gallager (1965) Bound

Tightened Upper Bounds Applications DS2 Bound Shulman and Feder Bound.

## The Shulman and Feder Bound (Cont.)

## Advantage

Clearly, the SFB reproduces the random coding bound for the ensemble of random linear block codes.

## Drawback

Depends on the *maximal* ratio between the distance spectrum of the code and the binomial distribution  $\Rightarrow$  May not be tight for some efficient codes.

The SFB can be reproduced as a particular case of the DS2 bound [Sason & Shamai].

イロト イポト イヨト イヨト

i=1

DS2 Bound Shulman and Feder Bound.

## Alternative proof for the SFB Sason&Shamai.

 Assume that the transmission takes place over an arbitrary memoryless binary-input output-symmetric (MBIOS) channel. So *p*<sub>N</sub>(**y**|**c**<sub>m</sub>) = ∏ *p*(*y<sub>i</sub>*|*c*<sub>m,i</sub>).
 Let *G*<sup>0</sup><sub>N</sub>(**y**) = ∏ *g*(*y<sub>i</sub>*).

・ 同 ト ・ ヨ ト ・ ヨ ト

Background The Tangential-Sphere Bound and Improved Versions

Gallager (1965) Bound

Tightened Upper Bounds

Applications

DS2 Bound Shulman and Feder Bound.

# Alternative proof for the SFB (Cont.)

## The DS2 gives

$$\begin{aligned} P_{\mathsf{e}} &= P_{\mathsf{e}|0} \\ &\leq \left(\sum_{y} g(y) \, p(y|0)\right)^{N(1-\rho)} \frac{\lambda \ge 0}{0 \le \rho \le 1} \\ &\cdot \left\{\sum_{l=1}^{N} A_{l} \left(\sum_{y} g(y)^{1-\frac{1}{\rho}} p(y|0)\right)^{N-l} \left(\sum_{y} g(y)^{1-\frac{1}{\rho}} p(y|0)^{1-\lambda} p(y|1)^{\lambda}\right)^{l}\right\}^{\rho} \\ &\leq \left(\max_{0 < l \le N} \frac{A_{l}}{2^{-N(1-R)} \binom{N}{l}}\right)^{\rho} \left(\sum_{y} g(y) \, p(y|0)\right)^{N(1-\rho)} 2^{-N(1-R)\rho} \\ &\cdot \left\{\sum_{y} g(y)^{1-\frac{1}{\rho}} p(y|0) + \sum_{y} g(y)^{1-\frac{1}{\rho}} p(y|0)^{1-\lambda} p(y|1)^{\lambda}\right\}^{N\rho}. \end{aligned}$$

イロト 不得 とくほ とくほ とう

3

DS2 Bound Shulman and Feder Bound.

# Alternative proof for the SFB (Cont.)

Applications

By setting

$$g(y) = \left[\frac{1}{2}\rho(y|0)^{\frac{1}{1+\rho}} + \frac{1}{2}\rho(y|1)^{\frac{1}{1+\rho}}\right]^{\rho}\rho(y|0)^{-\frac{\rho}{1+\rho}}$$

and using the symmetry of the channel (where p(y|0) = p(-y|1)), the SFB follows readily.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Jpper Bounds on the Block/Bit Error Probability Expurgation

ヘロト ヘアト ヘビト ヘビト

## **Distance Spectra of Turbo-Like Ensembles**

- Let  $B_I \triangleq 2^{-N(1-R)} {N \choose l}$  I = 0, 1, ..., N designate the average distance spectrum of random code.
- The tightness of the SFB depends on the *maximal* ratio between the spectrum of the code (ensemble) and the average spectrum of random code of the same rate and length.

Applications

Jpper Bounds on the Block/Bit Error Probability Expurgation

(< ∃) < ∃)</p>

## Distance Spectrums of Turbo-Like Ensembles (Cont.)

#### Example: Turbo-Hamming codes.



Jpper Bounds on the Block/Bit Error Probability Expurgation

200

# Partitioning of C into two subcodes

## Observation:

For a relatively large portion of the Hamming weights, the distance spectrum of the code resembles the binomial distribution of random codes.

## Suggestion (Miller & Burshtein):

- Partition the original code into two subcodes, C' and C"; C' contains all the codewords with Hamming weight *I* ∈ U ⊆ {1, 2, ..., N}, while C" contains the other codewords. Both subcodes contain the all-zero codeword.
- The union bound provides  $P_{e} = P_{e|0} \le P_{e|0}(\mathcal{C}') + P_{e|0}(\mathcal{C}'')$ .
- Use the SFB as an upper bound on  $P_{e|0}(C')$ , and apply the UB on  $P_{e|0}(C'')$ .

Jpper Bounds on the Block/Bit Error Probability Expurgation

# Partitioning of C into two subcodes

## Observation:

For a relatively large portion of the Hamming weights, the distance spectrum of the code resembles the binomial distribution of random codes.

## Suggestion (Miller & Burshtein):

- Partition the original code into two subcodes, C' and C"; C' contains all the codewords with Hamming weight *I* ∈ U ⊆ {1,2,..., N}, while C" contains the other codewords. Both subcodes contain the all-zero codeword.
- The union bound provides  $P_e = P_{e|0} \le P_{e|0}(C') + P_{e|0}(C'')$ .
- Use the SFB as an upper bound on P<sub>e|0</sub>(C'), and apply the UB on P<sub>e|0</sub>(C").

Jpper Bounds on the Block/Bit Error Probability Expurgation

イロト イポト イヨト イヨト



The problem of finding the optimal partitioning is very complex. In our work, we suggest a certain partitioning which depends on the ratio between the distance spectrum of the code and the binomial distribution (where the latter characterizes the distance spectra of the ensemble of fully random block codes).

Upper Bounds on the Block/Bit Error Probability Expurgation

(4回) (日) (日)

1

# Outline

- Background
- 2 The Tangential-Sphere Bound and Improved Versions
  - Tangential-Sphere Bound (TSB)
  - Improvements on the TSB
  - Error Exponents of Improved TSB
  - Numerical Results for Error Exponents
- 3 Gallager (1965) Bound
  - DS2 Bound
  - Shulman and Feder Bound.
  - Tightened Upper Bounds
    - Upper Bounds on the Block/Bit Error Probability
    - Expurgation

5 Applications

Upper Bounds on the Block/Bit Error Probability Expurgation

## Upper Bound on the Block Error Probability

### Theorem (Modified Shulman and Feder Bound).

Let  $\mathcal C$  be partitioned into two subcodes  $\mathcal C'$  and  $\mathcal C'',$  as mentioned. Then, for an MBIOS channel:

$$P_{\mathsf{e}} \leq P_{\mathsf{e}|\mathsf{0}}(\mathcal{C}') + P_{\mathsf{e}|\mathsf{0}}(\mathcal{C}'')$$

where

$$\begin{split} P_{\mathsf{e}|0}(\mathcal{C}') &\leq \mathsf{SFB}(\rho) \cdot \left[ \sum_{l \in \mathcal{U}} {N \choose l} \left( \frac{A(\rho)}{A(\rho) + B(\rho)} \right)^l \left( \frac{B(\rho)}{A(\rho) + B(\rho)} \right)^{N-l} \right]^{\rho}, \ 0 \leq \rho \leq 1 \\ A(\rho) &\triangleq \sum_{y} \left\{ \left[ p(y|0)p(y|1) \right]^{\frac{1}{1+\rho}} \left[ \frac{1}{2} p(y|0)^{\frac{1}{1+\rho}} + \frac{1}{2} p(y|1)^{\frac{1}{1+\rho}} \right]^{\rho-1} \right\} \\ B(\rho) &\triangleq \sum_{y} \left\{ p(y|0)^{\frac{2}{1+\rho}} \left[ \frac{1}{2} p(y|0)^{\frac{1}{1+\rho}} + \frac{1}{2} p(y|1)^{\frac{1}{1+\rho}} \right]^{\rho-1} \right\}. \end{split}$$

Upper Bounds on the Block/Bit Error Probability Expurgation

## Upper Bound on the Block Error Probability

### The Essence of the Proof.

Instead

$$P_{\mathsf{e}|\mathsf{0}}(\mathcal{C}') \leq \left(\max_{l \in \mathcal{U}} \frac{A_l}{2^{-N(1-R)}\binom{N}{l}}\right)^{\rho} \left(\sum_{y} g(y) p(y|\mathsf{0})\right)^{N(1-\rho)} 2^{-N(1-R)\rho} \\ \cdot \left\{\sum_{l=1}^{N} \binom{N}{l} \left(\sum_{y} g(y)^{1-\frac{1}{\rho}} p(y|\mathsf{0})\right)^{N-l} \left(\sum_{y} g(y)^{1-\frac{1}{\rho}} p(y|\mathsf{0})^{1-\lambda} p(y|\mathsf{1})^{\lambda}\right)^{l}\right\}^{\rho}$$

#### Note

Since typically C'' contains only a small fraction of the codewords in C, we use the simple UB as an upper bound on  $P_{e|0}(C'')$ .

Upper Bounds on the Block/Bit Error Probability Expurgation

## Upper Bound on the Block Error Probability

## The Essence of the Proof.

We start the derivation of the bound by writing

$$P_{\mathsf{e}|0}(\mathcal{C}') \leq \left(\max_{l \in \mathcal{U}} \frac{A_l}{2^{-N(1-R)}\binom{N}{l}}\right)^{\rho} \left(\sum_{y} g(y) p(y|0)\right)^{N(1-\rho)} 2^{-N(1-R)\rho} \\ \cdot \left\{\sum_{l \in \mathcal{U}} \binom{N}{l} \left(\sum_{y} g(y)^{1-\frac{1}{\rho}} p(y|0)\right)^{N-l} \left(\sum_{y} g(y)^{1-\frac{1}{\rho}} p(y|0)^{1-\lambda} p(y|1)^{\lambda}\right)^{l}\right\}^{\rho}$$

and rely on the symmetry properties of the MBIOS channel.

#### Note

Since typically C'' contains only a small fraction of the codewords in C, we use the simple UB as an upper bound on  $P_{e|0}(C'')$ .

Upper Bounds on the Block/Bit Error Probability Expurgation

## Upper Bound on the Block Error Probability

### The Essence of the Proof.

We start the derivation of the bound by writing

$$P_{\mathsf{e}|0}(\mathcal{C}') \leq \left(\max_{l \in \mathcal{U}} \frac{A_l}{2^{-N(1-R)}\binom{N}{l}}\right)^{\rho} \left(\sum_{y} g(y) \, p(y|0)\right)^{N(1-\rho)} 2^{-N(1-R)\rho} \\ \cdot \left\{\sum_{l \in \mathcal{U}} \binom{N}{l} \left(\sum_{y} g(y)^{1-\frac{1}{\rho}} p(y|0)\right)^{N-l} \left(\sum_{y} g(y)^{1-\frac{1}{\rho}} p(y|0)^{1-\lambda} p(y|1)^{\lambda}\right)^{l}\right\}^{\rho}$$

and rely on the symmetry properties of the MBIOS channel.

#### Note

Since typically  $\mathcal{C}''$  contains only a small fraction of the codewords in  $\mathcal{C}$ , we use the simple UB as an upper bound on  $P_{e|0}(\mathcal{C}'')$ .

Upper Bounds on the Block/Bit Error Probability Expurgation

くロト (過) (目) (日)

## Upper Bounds on the BER

- The original SFB was derived as an upper bound on the block error probability.
- Sason and Shamai derived the bit-error version of the DS2 for fully interleaved fading channels with perfect channel state information at the receiver.
- We generalize the result of Sason and Shamai to arbitrary MBIOS channels.

Upper Bounds on the Block/Bit Error Probability Expurgation

# The SFB on the BER

## Theorem. (The SFB Version on the BER)

- Let C be an (N, K) binary linear block code.
- Assume an MBIOS channel.
- Let  $A_{w,l}$  designate the number of codewords in C which are encoded by information bits whose Hamming weight is w and their Hamming weight after encoding is l.
- The BER is upper bound by

$$P_{\mathsf{b}} \leq 2^{-\mathit{NE}_{\mathsf{r}}(R+rac{\mathsf{log}\,lpha_{\mathsf{b}}(\mathcal{C})}{N})}$$

where

$$\alpha_{\mathsf{b}}(\mathcal{C}) \triangleq \max_{0 < l \le N} \frac{A'_l}{2^{-N(1-R)}\binom{N}{l}}, \qquad A'_l \triangleq \sum_{w=1}^{K} \left(\frac{w}{K}\right) A_{w,l}.$$

Upper Bounds on the Block/Bit Error Probability Expurgation

イロト イポト イヨト イヨト



- Partitioning of the code may further improve the tightness of the SFB on the BER.
- The threshold in the partitioning algorithm suggested above is now slightly above <sup>1</sup>/<sub>2</sub> (instead of 1).
- By the union bound

$$P_{\mathsf{b}} = P_{\mathsf{b}|0} \leq P_{\mathsf{b}|0}(\mathcal{C}') + P_{\mathsf{b}|0}(\mathcal{C}'').$$

Upper Bounds on the Block/Bit Error Probability Expurgation

イロト 不得 トイヨト イヨト

3

# Partitioning (Cont.)

• The conditional SFB on the BER of  $\mathcal{C}'$  is

$$P_{\mathsf{b}|0}(\mathcal{C}') \leq 2^{-NE_{\mathsf{r}}\left(R + rac{\log lpha_{\mathsf{b}}(\mathcal{C}')}{N}
ight)}$$

where

$$\alpha_{\mathsf{b}}(\mathcal{C}') \triangleq \max_{l \in \mathcal{U}} \frac{\mathbf{A}'_l}{\mathbf{B}_l}.$$

 We use the bit-error version of the UB as an upper bound on P<sub>b|0</sub>(C").

Upper Bounds on the Block/Bit Error Probability Expurgation

## Modified SFB on the Bit Error Probability

In order to tighten the resulting bound, we obtain the bit-error version of the modified SFB.

Modified SFB on the Bit Error Probability

The bit error probability of a binary linear block code transmitted over an MBIOS channel is upper bounded by

$$P_{\mathsf{b}} \leq P_{\mathsf{b}|0}(\mathcal{C}') + P_{\mathsf{b}|0}(\mathcal{C}'')$$

where

$$P_{\mathsf{b}|0}(\mathcal{C}') \leq 2^{-N\left(E_0(\rho) - \rho(R + \frac{\log(\alpha_{\mathsf{b}}(\mathcal{C}'))}{N})\right)} \left[ \sum_{l \in \mathcal{U}} {N \choose l} \left(\frac{A(\rho)}{A(\rho) + B(\rho)}\right)^l \left(\frac{B(\rho)}{A(\rho) + B(\rho)}\right)^{N-l} \right]^{\rho} \\ 0 \leq \rho \leq 1.$$

Upper Bounds on the Block/Bit Error Probability Expurgation

## The Simplified DS2 Bound.

The terms  $\frac{A'_l}{B_l}$  changes considerably with *l*.

## Example: $\frac{A_i}{B_i}$ for some ensembles of turbo-like codes.



Moshe Twitto

Tightened upper bounds...

Upper Bounds on the Block/Bit Error Probability Expurgation

・ロト ・回 ト ・ヨト ・ヨト

# The Simplified DS2 Bound (Cont.)

- The terms  $\frac{A_l}{B_l}$  varying slowly over a large range of Hamming weights  $\Rightarrow$  Taking out the maximal value of  $\frac{A_l}{B_l}$ from the summation does not expect to lessening the bound on the *block* error probability.
- The values of  $\frac{A'_l}{B_l}$  change considerably with *l*.

 $\Rightarrow$  Taking out the maximal value of  $\frac{A_l}{B_l}$  is expected to significantly reduce the tightness of the bound on the *bit* error probability.

• A tighter upper bound on the BER is needed.

Upper Bounds on the Block/Bit Error Probability Expurgation

## Theorem. Simplified DS2 Bound

• Let C be a binary linear block code of length N and rate R, and assume the communication takes place over an MBIOS channel.

$$A_{I}'(\mathcal{C}') \triangleq \begin{cases} \sum_{w=1}^{NR} \left(\frac{w}{NR}\right) A_{w,I} & \text{if } I \in \mathcal{U} \\ 0 & \text{otherwise} \end{cases}$$

The bit error probability is upper bounded by

$$P_{\mathsf{b}} \leq P_{\mathsf{b}|\mathsf{0}}(\mathcal{C}') + P_{\mathsf{b}|\mathsf{0}}(\mathcal{C}'')$$

where

$$P_{\mathsf{b}|0}(\mathcal{C}') \leq 2^{-N\left(E_0(
ho) - 
ho\left(R + rac{\log ilde{lpha}_
ho(\mathcal{C}')}{N}
ight)
ight)}, \quad 0 \leq 
ho \leq 1$$

$$\bar{\alpha}_{\rho}(\mathcal{C}') \triangleq \sum_{l=0}^{N} \left\{ \frac{A_{l}'(\mathcal{C}')}{2^{-N(1-R)} {N \choose l}} \cdot {N \choose l} \left( \frac{A(\rho)}{A(\rho) + B(\rho)} \right)^{l} \left( \frac{B(\rho)}{A(\rho) + B(\rho)} \right)^{N-l} \right\}.$$

Applications

Upper Bounds on the Block/Bit Error Probability Expurgation

イロン イロン イヨン イヨン

# The Simplified DS2 Bound (Cont.)

#### Notes:

- The same bound can be applied to *block* error probability, with the replacement of A'<sub>l</sub>(C') with A'<sub>l</sub>(C').
- Depends on the *average* ratio of  $\frac{A'_l}{B_l}$  (instead of the *maximal* ratio)  $\Rightarrow$  yields a tighter bounding technique than the SFB.

Upper Bounds on the Block/Bit Error Probability Expurgation

・ 同 ト ・ ヨ ト ・ ヨ ト …

# Outline

- Background
- 2 The Tangential-Sphere Bound and Improved Versions
  - Tangential-Sphere Bound (TSB)
  - Improvements on the TSB
  - Error Exponents of Improved TSB
  - Numerical Results for Error Exponents
- 3 Gallager (1965) Bound
  - DS2 Bound
  - Shulman and Feder Bound.
- 4 Tightened Upper Bounds
  - Upper Bounds on the Block/Bit Error Probability
  - Expurgation
Upper Bounds on the Block/Bit Error Probability Expurgation

イロト イポト イヨト イヨト

## Expurgation

#### Definition (Voronoi region).

Let C be a code which is transmitted over an AWGN channel, and let  $\mathbf{c}_0$  be a codeword of C. The Voronoi region of  $\mathbf{c}_0$  is the set of vectors in  $\mathbb{R}^N$  that are closest to  $\mathbf{c}_0$ .

#### Definition (Voronoi neighbor).

The minimal set of codewords that determine the Voronoi region of  $\mathbf{c}_0$  forms the set of Voronoi neighbors of  $\mathbf{c}_0$ .

Upper Bounds on the Block/Bit Error Probability Expurgation

イロト 不得 とくほ とくほとう

ъ

## Expurgation-example.

•

Upper Bounds on the Block/Bit Error Probability Expurgation

イロト 不得 とくほ とくほとう

ъ

## Expurgation-example.

Upper Bounds on the Block/Bit Error Probability Expurgation

イロト 不得 とくほ とくほとう

ъ

## Expurgation-example.

•

Upper Bounds on the Block/Bit Error Probability Expurgation

ヘロト 人間 とくほとくほとう

ъ

## Expurgation-example.



Upper Bounds on the Block/Bit Error Probability Expurgation

ヘロト 人間 とくほとくほとう

ъ

## Expurgation-example.



Upper Bounds on the Block/Bit Error Probability Expurgation

イロト 不得 とくほ とくほとう

ъ

## Expurgation-example.



Upper Bounds on the Block/Bit Error Probability Expurgation

ヘロン ヘアン ヘビン ヘビン

ъ

## Expurgation-example.



Transmitted vector.

0

- Voronoi neighbor.
- Non-neighbor.

Upper Bounds on the Block/Bit Error Probability Expurgation

ヘロト 人間 ト ヘヨト ヘヨト

# Expurgation (Cont.)

- Let C be a linear block code.
- Let C<sup>ex</sup> denote the *expurgated code* which contains all the Voronoi neighbors of c<sub>0</sub>.
- Then

$$P_{e}(\mathcal{C}) = P_{e|0}(\mathcal{C}) = P_{e|0}(\mathcal{C}^{ex}).$$

 Any upper bound which solely depends on the distance spectrum of the code can be tightened by replacing the distance spectrum with the expurgated spectrum (the weight spectrum of C<sup>ex</sup>).

Upper Bounds on the Block/Bit Error Probability Expurgation

ヘロト 人間 ト ヘヨト ヘヨト

э

# Expurgation (Cont.)

#### Theorem (Agrell)

For any binary linear block code with rate R and length N

- All the codeword with Hamming weight less than 2*d*<sub>min</sub> are Voronoi neighbors of the all-zero codeword.
- All the codewords with Hamming weight larger than N(1 - R) + 1 are not Voronoi neighbors of the all-zero codeword.

#### Corollary

A trivial expurgation can be achieved by expurgating all the codeword with Hamming weight larger than N(1 - R) + 1.

## Applications: Serially Concatenated Codes



イロト 不得 とくほ とくほとう

ъ

## **Applications: Serially Concatenated Codes**



#### Applications: Random Turbo-Block Codes



## Applications: Random Turbo-Block Codes





- The TSB and its improved versions do not achieve capacity, and possess the same error exponent.
- Tightened versions of the Shulman and Feder bound were derived based on the general concept of the DS2 bounding technique, and by revisiting the alternative proof for reproducing the Shulman and Feder bound as a particular case of the DS2 bound.
- An expurgation of the distance spectrum of the code further tightens the resulting upper bounds.
- The tightened upper bounds derived in this work were demonstrated to outperform the TSB in some cases, especially for ensembles of turbo-like codes of high rate.

A E > A E >

< 🗆 > < 🗇 >

# **Further Reading**

- M. Twitto, I. Sason and S. Shamai, "Tightened upper bounds on the ML decoding error probability of binary linear codes," submitted to the *IEEE Trans. on Information Theory*, February 2006.
- M. Twitto and I. Sason, "On the Error Exponents of Some Improved Tangential-Sphere Bounds," submitted to the *IEEE Trans. on Information Theory*, March 2006.
- I. Sason and S. Shamai, "Performance analysis of linear codes under maximum-likelihood decoding: a tutorial," an *invited monograph* (247 pages), accepted to *Foundations and Trends in Communications and Information Theory*, NOW Publishers, Delft, the Netherlands, March 2006.
- Papers can be found at http://www.ee.technion.ac.il/people/sason/

# Thank you!

Moshe Twitto Tightened upper bounds...

ヘロト 人間 とくほとくほとう