Concentration of Measure with Applications in Information Theory, Communications, and Coding

Maxim Raginsky (UIUC) and Igal Sason (Technion)

A Tutorial, Presented at 2015 IEEE International Symposium on Information Theory (ISIT)

Hong Kong, June 2015

Part 2 of 2

The Plan

1. Prelude: The Chernoff bound
2. The entropy method
3. Logarithmic Sobolev inequalities
4. Transportation cost inequalities
5. Some applications

Given:

- $X_{1}, X_{2}, \ldots, X_{n}$: independent random variables
- $Z=f\left(X^{n}\right)$, for some real-valued f

Problem: derive sharp bounds on the deviation probabilities

$$
\mathbb{P}[Z-\mathbb{E} Z \geq t], \quad \text { for } t \geq 0
$$

Benchmark:

- $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} N\left(0, \sigma^{2}\right)$
- $Z=f\left(X^{n}\right)=\frac{1}{n}\left(X_{1}+\ldots+X_{n}\right)$ - sample mean

$$
\mathbb{P}[Z \geq t] \leq \exp \left(-\frac{n t^{2}}{2 \sigma^{2}}\right)
$$

Goal:

- extend to other distributions besides Gaussians
- extend to nonlinear f

Prelude: The Chernoff Bound

Review: The Chernoff Bound

Define:

- logarithmic moment-generating function $\psi(\lambda) \triangleq \log \mathbb{E}\left[e^{\lambda(Z-\mathbb{E} Z)}\right]$
- its Legendre dual $\psi^{*}(t) \triangleq \sup _{\lambda \geq 0}\{\lambda t-\psi(\lambda)\}$

$$
\begin{aligned}
\mathbb{P}[Z-\mathbb{E} Z \geq t] & =\mathbb{P}\left[e^{\lambda(Z-\mathbb{E} Z)} \geq e^{\lambda t}\right] \\
& \leq e^{-\lambda t} \mathbb{E}\left[e^{\lambda(Z-\mathbb{E} Z)}\right] \\
& =e^{-\{\lambda t-\psi(\lambda)\}}
\end{aligned}
$$

$$
\leq e^{-\lambda t} \mathbb{E}\left[e^{\lambda(Z-\mathbb{E} Z)}\right] \quad \text { Markov's inequality }
$$

Optimize over $\lambda: \quad \mathbb{P}[Z-\mathbb{E} Z \geq t] \leq e^{-\psi^{*}(t)}$
Sanity check:

$$
\begin{aligned}
Z \sim N\left(0, \sigma^{2}\right) \quad \psi(\lambda) & =\frac{\lambda^{2} \sigma^{2}}{2} \quad \psi^{*}(t)=\frac{t^{2}}{2 \sigma^{2}} \\
\mathbb{P}[Z \geq t] & \leq e^{-t^{2} / 2 \sigma^{2}}
\end{aligned}
$$

Chernoff Bound: Subgaussian Random Variables

Definition. A real-valued r.v. Z is σ^{2}-subgaussian if

$$
\psi(\lambda) \leq \frac{\lambda^{2} \sigma^{2}}{2}
$$

Immediate: if Z is σ^{2}-subgaussian, then

$$
\begin{aligned}
\psi^{*}(t) & =\sup _{\lambda \geq 0}\{\lambda t-\psi(\lambda)\} \\
& \geq \sup _{\lambda \geq 0}\left\{\lambda t-\lambda^{2} \sigma^{2} / 2\right\} \\
& =t^{2} / 2 \sigma^{2}
\end{aligned}
$$

giving the Gaussian tail bound

$$
\mathbb{P}[Z-\mathbb{E} Z \geq t] \leq e^{-t^{2} / 2 \sigma^{2}}
$$

How do we establish subgaussianity?

Review: Hoeffding's Lemma

Any almost surely bounded r.v. is subgaussian:

If there exist $-\infty<a \leq b<\infty$ such that $Z \in[a, b]$ a.s., then

$$
\psi(\lambda) \leq \frac{\lambda^{2}(b-a)^{2}}{8}
$$

Corollary. If $Z \in[a, b]$ a.s., then

$$
\mathbb{P}[Z-\mathbb{E} Z \geq t] \leq \exp \left(-\frac{2 t^{2}}{(b-a)^{2}}\right)
$$

Wassily Hoeffding

Proof (of Corollary). By Hoeffding's lemma, Z is subgaussian with $\sigma^{2}=(b-a)^{2} / 4$.

Hoeffding's Lemma: An Alternative Proof

1. Assume without loss of generality that $\mathbb{E} Z=0$.
2. Compute the first two derivatives of ψ :

$$
\psi^{\prime}(\lambda)=\frac{\mathbb{E}\left[Z e^{\lambda Z}\right]}{\mathbb{E}\left[e^{\lambda Z}\right]} \quad \psi^{\prime \prime}(\lambda)=\frac{\mathbb{E}\left[Z^{2} e^{\lambda Z}\right]}{\mathbb{E}\left[e^{\lambda Z}\right]}-\left(\frac{\mathbb{E}\left[Z e^{\lambda Z}\right]}{\mathbb{E}\left[e^{\lambda Z}\right]}\right)^{2}
$$

3. Tilted distribution:

$$
P=\mathcal{L}(Z) \longmapsto Q \quad \frac{\mathrm{~d} Q}{\mathrm{~d} P}(Z)=\frac{e^{\lambda Z}}{\mathbb{E}_{P}\left[e^{\lambda Z}\right]}
$$

Then $\psi^{\prime}(\lambda)=\mathbb{E}_{Q}[Z], \psi^{\prime \prime}(\lambda)=\operatorname{Var}_{Q}[Z]$.
4. $Z \in[a, b] P$-a.s. $\Longrightarrow Z \in[a, b] Q$-a.s. $\Longrightarrow \operatorname{Var}_{Q}[Z] \leq \frac{(b-a)^{2}}{4}$
5. Calculus:

$$
\psi(\lambda)=\int_{0}^{\lambda} \int_{0}^{\tau} \psi^{\prime \prime}(\rho) \mathrm{d} \rho \mathrm{~d} \tau \leq \frac{\lambda^{2}(b-a)^{2}}{8}
$$

The Entropy Method

Exponential Tilting and (Relative) Entropy

Back to our setting:

- $Z=f(X), X$ an arbitrary r.v.
- Want to prove subgaussianity of Z, so need to analyze

$$
\psi(\lambda)=\log \mathbb{E}\left[e^{\lambda(Z-\mathbb{E} Z)}\right]=\log \mathbb{E}\left[e^{\lambda(f(X)-\mathbb{E} f(X))}\right]
$$

- Let $P=\mathcal{L}(X)$, introduce tilted distribution $P^{\lambda f}$:

$$
\frac{\mathrm{d} P^{\lambda f}}{\mathrm{~d} P}(X)=\frac{e^{\lambda f(X)}}{\mathbb{E}\left[e^{\lambda f(X)}\right]}
$$

- We will relate $\psi(\lambda)$ to the relative entropy $D\left(P^{\lambda f} \| P\right)$.

Exponential Tilting and (Relative) Entropy

- Tilting of $P=\mathcal{L}(X)$:

$$
\frac{\mathrm{d} P^{\lambda f}}{\mathrm{~d} P}(X)=\frac{e^{\lambda f(X)}}{\mathbb{E}\left[e^{\lambda f(X)}\right]} \equiv \frac{e^{\lambda(f(X)-\mathbb{E} f(X))}}{e^{\psi(\lambda)}}
$$

- Relative entropy:

$$
\begin{aligned}
D\left(P^{\lambda f} \| P\right) & =\int \mathrm{d} P^{\lambda f} \log \frac{\mathrm{~d} P^{\lambda f}}{\mathrm{~d} P} \\
& =\int \mathrm{d} P^{\lambda f}\left(\lambda\left(f-\mathbb{E}_{P} f\right)-\psi(\lambda)\right) \\
& =\frac{\lambda \mathbb{E}_{P}\left[\left(f-\mathbb{E}_{P} f\right) e^{\lambda\left(f-\mathbb{E}_{P} f\right)}\right]}{e^{\psi(\lambda)}}-\psi(\lambda) \\
& =\lambda \psi^{\prime}(\lambda)-\psi(\lambda)
\end{aligned}
$$

- With a bit of foresight,

$$
\lambda \psi^{\prime}(\lambda)-\psi(\lambda)=\lambda^{2}\left(\frac{\psi^{\prime}(\lambda)}{\lambda}-\frac{\psi(\lambda)}{\lambda^{2}}\right)=\lambda^{2} \frac{\mathrm{~d}}{\mathrm{~d} \lambda}\left(\frac{\psi(\lambda)}{\lambda}\right)
$$

The Herbst Argument

- Tilting of $P=\mathcal{L}(X): \frac{\mathrm{d} P^{\lambda f}}{\mathrm{~d} P}(X)=\frac{e^{\lambda f(X)}}{\mathbb{E}\left[e^{\lambda f(X)}\right]}$
- Relative entropy:

$$
D\left(P^{\lambda f} \| P\right)=\lambda^{2} \frac{\mathrm{~d}}{\mathrm{~d} \lambda}\left(\frac{\psi(\lambda)}{\lambda}\right)
$$

- Since $\lim _{\lambda \rightarrow 0} \psi(\lambda) / \lambda=0$ (by l'Hôpital), we have

$$
\psi(\lambda)=\lambda \int_{0}^{\lambda} \frac{D\left(P^{\rho f} \| P\right)}{\rho^{2}} \mathrm{~d} \rho
$$

- Suppose now that $P=\mathcal{L}(X)$ and f are such that

$$
D\left(P^{\rho f} \| P\right) \leq \frac{\rho^{2} \sigma^{2}}{2}, \quad \forall \rho \geq 0
$$

for some σ^{2}. Then

$$
\psi(\lambda) \leq \lambda \int_{0}^{\lambda} \frac{\rho^{2} \sigma^{2}}{2 \rho^{2}} \mathrm{~d} \rho=\frac{\lambda^{2} \sigma^{2}}{2}
$$

The Herbst Argument

Lemma (Herbst, 1975). Suppose that
$Z=f(X)$ is such that

$$
D\left(P^{\lambda f} \| P\right) \leq \frac{\lambda^{2} \sigma^{2}}{2}, \quad \forall \lambda \geq 0
$$

Then Z is σ^{2}-subgaussian, and so

$$
\mathbb{P}[f(X)-\mathbb{E} f(X) \geq t] \leq e^{-t^{2} / 2 \sigma^{2}}, \quad \forall t \geq 0
$$

Ira Herbst

For the sake of completeness, we ... prove a theorem which states roughly that the potential of an intrinsically hypercontractive Schrödinger operator must increase at least quadratically at infinity. ... [I]ts complete proof requires information in an unpublished letter of 1975 from I. Herbst to L. Gross. [C]ertain steps in the argument ... can be written down abstractly.

- from a 1984 paper by B. Simon and E.B. Davies

The Herbst Converse

Lemma (R. van Handel, 2014). Suppose $Z=f(X)$ is $\sigma^{2} / 4$-subgaussian. Then

$$
D\left(P^{\lambda f} \| P\right) \leq \frac{\lambda^{2} \sigma^{2}}{2}, \quad \forall \lambda \geq 0
$$

Proof. Let $\widetilde{\mathbb{E}}[\cdot] \triangleq \mathbb{E}_{P^{\lambda f}}[\cdot]$.

$$
\begin{aligned}
D\left(P^{\lambda f} \| P\right) & =\widetilde{\mathbb{E}}\left[\log \frac{\mathrm{d} P^{\lambda f}}{\mathrm{~d} P}\right] \stackrel{(\text { Jensen })}{\leq} \log \widetilde{\mathbb{E}}\left[\frac{\mathrm{d} P^{\lambda f}}{\mathrm{~d} P}\right] \\
& =\log \widetilde{\mathbb{E}}\left[\frac{e^{\lambda(f(X)-\mathbb{E} f(X))}}{\mathbb{E}\left[e^{\lambda(f(X)-\mathbb{E} f(X))}\right]}\right] \\
& =\log \mathbb{E}\left[e^{2 \lambda(f-\mathbb{E} f)}\right]-\log \{\underbrace{\mathbb{E}\left[e^{\lambda(f-\mathbb{E} f)}\right]}_{\geq 1}\}^{2} \\
& \leq \frac{(2 \lambda)^{2} \sigma^{2} / 4}{2}=\frac{\lambda^{2} \sigma^{2}}{2}
\end{aligned}
$$

The Herbst Argument: What Is It Good For?

- Subgaussianity of $Z=f(X)$ is equivalent to $D\left(P^{\lambda f} \| P\right)=O\left(\lambda^{2}\right)$, but what does that give us?
- Recall: we are interested in high-dimensional settings

$$
\begin{aligned}
& Z=f\left(X^{n}\right)=f\left(X_{1}, \ldots, X_{n}\right) \\
& X_{1}, \ldots, X_{n} \text { - independent r.v.'s }
\end{aligned}
$$

Thus, P is a product measure:

$$
P=P_{1} \otimes P_{2} \otimes \ldots \otimes P_{n}, \quad P_{i} \triangleq \mathcal{L}\left(X_{i}\right)
$$

- The relative entropy tensorizes!! - we can break the (hard) n-dimensional problem into n (hopefully) easier 1-dimensional problems.

Tensorization

$$
\begin{aligned}
& X_{1}, \ldots, X_{n} \text { - independent r.v.'s } \\
& P=\mathcal{L}\left(X^{n}\right)=P_{1} \otimes \ldots \otimes P_{n}, \quad P_{i}=\mathcal{L}\left(X_{i}\right)
\end{aligned}
$$

- Recall the Efron-Stein-Steele inequality:

$$
\operatorname{Var}_{P}\left[f\left(X^{n}\right)\right] \leq \sum_{i=1}^{n} \mathbb{E}\left[\operatorname{Var}_{P}\left[f\left(X^{n}\right) \mid \bar{X}^{i}\right]\right]
$$

- tensorization of variance
- Tensorization of relative entropy: for an arbitrary probability measure Q on X^{n},

$$
D(Q \| P) \leq \sum_{i=1}^{n} \underbrace{D\left(Q_{X_{i} \mid \bar{X}^{i}} \| P_{X_{i} \mid \bar{X}^{i}} \mid Q_{\bar{X}^{i}}\right)}_{\text {conditional divergence }}
$$

- independence of the X_{i} 's is key

Tensorization: A Quick Proof

$D(Q \| P)$
$=\sum_{i=1}^{n} D\left(Q_{X_{i} \mid X^{i-1}} \| P_{X_{i} \mid X^{i-1}} \mid Q_{X^{i-1}}\right) \quad$ (chain rule)
$=\sum_{i=1}^{n} \mathbb{E}_{Q}\left[\log \frac{\mathrm{~d} Q_{X_{i} \mid X^{i-1}}}{\mathrm{~d} P_{X_{i} \mid X^{i-1}}}\right]$
$=\sum_{i=1}^{n} \mathbb{E}_{Q}\left[\log \frac{\mathrm{~d} Q_{X_{i} \mid X^{i-1}}}{\mathrm{~d} Q_{X_{i} \mid \bar{X}^{i}}}\right]+\sum_{i=1}^{n} \mathbb{E}_{Q}\left[\log \frac{\mathrm{~d} Q_{X_{i} \mid \bar{X}^{i}}}{\mathrm{~d} P_{X_{i} \mid X^{i-1}}}\right]$
$=-\sum_{i=1}^{n} \mathbb{E}_{Q}\left[\log \frac{\mathrm{~d} Q_{X_{i} \mid \bar{X}^{i}}}{\mathrm{~d} Q_{X_{i} \mid X^{i-1}}}\right]+\sum_{i=1}^{n} \mathbb{E}_{Q}\left[\log \frac{\mathrm{~d} Q_{X_{i} \mid \bar{X}^{i}}}{\mathrm{~d} P_{X_{i} \mid \bar{X}^{i}}}\right]$
(independence)
$=-\sum_{i=1}^{n} D\left(Q_{X_{i} \mid \bar{X}^{i}} \| Q_{X_{i} \mid X^{i-1}} \mid Q_{\bar{X}^{i}}\right)+\sum_{i=1}^{n} D\left(Q_{X_{i} \mid \bar{X}^{i}} \| P_{X_{i}} \mid Q_{\bar{X}^{i}}\right)$
$\leq \sum_{i=1}^{n} D\left(Q_{X_{i} \mid \bar{X}^{i}} \| P_{X_{i}} \mid Q_{\bar{X}^{i}}\right)$
$\equiv D^{-}(Q \| P) \quad$ - erasure divergence (Verdú-Weissman, 2008)

Tensorization and Tilting

- Recall: we are interested in $D(Q \| P)$, where

$$
P=P_{1} \otimes \ldots \otimes P_{n}, \quad \mathrm{~d} Q=\frac{e^{\lambda f}}{\mathbb{E}_{P}\left[e^{\lambda f}\right]} \mathrm{d} P
$$

- Then

$$
\left.\begin{array}{rl}
\frac{\mathrm{d} Q_{\bar{X}^{i}}}{\mathrm{~d} \bar{X}^{i}} & \left(\bar{x}^{i}\right)
\end{array}\right)=\int_{\mathrm{X}} P_{i}\left(\mathrm{~d} x_{i}\right) \frac{e^{\lambda f\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)}}{\mathbb{E}_{P}\left[e^{\lambda f\left(X^{n}\right)}\right]}
$$

therefore

$$
\frac{\mathrm{d} Q_{X_{i} \mid \bar{X}^{i}=\bar{x}^{i}}}{\mathrm{~d} P_{X_{i}}}\left(x_{i}\right)=\frac{e^{\lambda f\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)}}{\mathbb{E}_{P}\left[e^{\lambda f\left(x_{1}, \ldots, x_{i-1}, X_{i}, x_{i+1}, \ldots, x_{n}\right)}\right]}
$$

- remember, \bar{x}^{i} is fixed.

Tensorization and Tilting

$$
\frac{\mathrm{d} P_{X_{i} \mid \bar{X}^{i}=\bar{x}^{i}}^{\lambda f}}{\mathrm{~d} P_{X_{i}}}\left(x_{i}\right)=\frac{e^{\lambda f\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)}}{\mathbb{E}_{P_{i}}\left[e^{\lambda f\left(x_{1}, \ldots, x_{i-1}, X_{i}, x_{i+1}, \ldots, x_{n}\right)}\right]}
$$

- For a fixed \bar{x}^{i}, define the function

$$
\begin{aligned}
& f_{i}\left(\cdot \mid \bar{x}^{i}\right): \mathbf{X} \rightarrow \mathbb{R} \\
& f_{i}\left(x_{i} \mid \bar{x}^{i}\right)=f\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right) \\
& \left.=f_{i}\left(x_{i}\right) \quad \quad \text { (just shorthand, always remember } \bar{x}^{i}\right)
\end{aligned}
$$

- Now observe that $Q_{X_{i} \mid \bar{X}^{i}=\bar{x}^{i}}$ is the tilting of $P_{i} \equiv P_{X_{i}}$:

$$
\mathrm{d} Q_{X_{i} \mid \bar{X}^{i}=\bar{x}^{i}}=\frac{e^{\lambda f_{i}}}{\mathbb{E}_{P_{i}}\left[e^{\lambda f_{i}}\right]} \mathrm{d} P_{i}
$$

Tensorization and Tilting

Lemma. If X_{1}, \ldots, X_{n} are independent r.v.'s with joint law $P=P_{1} \otimes \ldots \otimes P_{n}$, where $P_{i}=\mathcal{L}\left(X_{i}\right)$, then for any $f: \mathrm{X}^{n} \rightarrow \mathbb{R}$

$$
D\left(P^{\lambda f} \| P\right) \leq \sum_{i=1}^{n} \widetilde{\mathbb{E}}\left[D\left(P_{i}^{\lambda f_{i}} \| P_{i}\right)\right]
$$

where $\widetilde{\mathbb{E}}[\cdot] \triangleq \mathbb{E}_{P^{\lambda f}}[\cdot]$ and $f_{i}(\cdot)=f_{i}\left(\cdot \mid \bar{X}^{i}\right)$ for each i.
Proof.

$$
\begin{aligned}
D\left(P^{\lambda f} \| P\right) & \leq \sum_{i=1}^{n} D\left(P_{X_{i} \mid \bar{X}^{i}}^{\lambda f} \| P_{X_{i}} \mid P_{\bar{X}^{i}}^{\lambda f}\right) \\
& =\sum_{i=1}^{n} \widetilde{\mathbb{E}}\left[\log \frac{\mathrm{~d} P_{X_{i} \mid \bar{X}^{i}}^{\lambda f}}{\mathrm{~d} P_{X_{i}}}\right] \\
& =\sum_{i=1}^{n} \widetilde{\mathbb{E}}\left[\log \frac{\mathrm{~d} P_{i}^{\lambda f_{i}}}{\mathrm{~d} P_{i}}\right]=\sum_{i=1}^{n} \widetilde{\mathbb{E}}\left[D\left(P_{i}^{\lambda f_{i}} \| P_{i}\right)\right]
\end{aligned}
$$

The Entropy Method: Divide and Conquer

- Want to derive a subgaussian tail bound

$$
\mathbb{P}\left[f\left(X^{n}\right)-\mathbb{E} f\left(X^{n}\right) \geq t\right] \leq e^{-t^{2} / 2 \sigma^{2}}, \quad \forall t \geq 0
$$

where X_{1}, \ldots, X_{n} are independent r.v.'s.

- Suppose we can prove there exist constants c_{1}, \ldots, c_{n}, such that

$$
(\star) \quad D\left(P_{i}^{\lambda f_{i}} \| P_{i}\right) \leq \frac{\lambda^{2} c_{i}^{2}}{2}, \quad i \in\{1, \ldots, n\} .
$$

Then

$$
D\left(P^{\lambda f} \| P\right) \stackrel{\text { (tensor.) }}{\leq} \frac{\lambda^{2} \sum_{i=1}^{n} c_{i}^{2}}{2} \stackrel{\text { Herbst) }}{\Longrightarrow} \sigma^{2}=\sum_{i=1}^{n} c_{i}^{2}
$$

Now we "just" need to prove (\star)!!

Logarithmic Sobolev Inequalities

Log-Sobolev in a Nutshell

- Goal: control the relative entropy $D\left(P^{\lambda f} \| P\right)$.
- A log-Sobolev inequality ties together:
(i) the underlying probability measure P
(ii) a function class \mathcal{A} (containing f of interest)
(iii) an "energy" functional $E: \mathcal{A} \rightarrow \mathbb{R}$ such that

$$
E(\alpha f)=\alpha E(f), \quad \forall f \in \mathcal{A}, \alpha \geq 0
$$

and looks like this:

$$
D\left(P^{f} \| P\right) \leq \frac{c}{2} E^{2}(f), \quad \forall f \in \mathcal{A}
$$

- In that case, if $E(f) \leq L$, then

$$
D\left(P^{\lambda f} \| P\right) \leq \frac{c}{2} E^{2}(\lambda f)=\frac{c}{2} \lambda^{2} E^{2}(f) \leq \frac{\lambda^{2} c L^{2}}{2}
$$

- The name comes from an analogy with Sobolev inequalities in functional analysis.

The Bernoulli Log-Sobolev Inequality

Theorem (Gross, 1975). Let X_{1}, \ldots, X_{n} be i.i.d. $\operatorname{Bern}(1 / 2)$ random variables. Then, for any function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$,

$$
D\left(P^{f} \| P\right) \leq \frac{1}{8} \frac{\mathbb{E}\left[\left|D f\left(X^{n}\right)\right|^{2} e^{f\left(X^{n}\right)}\right]}{\mathbb{E}\left[e^{f\left(X^{n}\right)}\right]}
$$

where

$$
D f\left(x^{n}\right) \triangleq \sqrt{\sum_{i=1}^{n}|f\left(x^{n}\right)-f(\underbrace{x^{n} \oplus e_{i}}_{\text {flip } i \mathrm{th} \text { bit }})|^{2}}
$$

Leonard Gross
and $\mathbb{E}[\cdot]$ is w.r.t. $P=(\operatorname{Bern}(1 / 2))^{\otimes n}$.
Remarks:

- This is not the original form of the inequality from Gross' 1975 paper, but they are equivalent.
- Note that $D(\lambda f)=\lambda D(f)$ for all $\lambda \geq 0$.

Bernoulli LSI: Proof Sketch

- Consider first $n=1$ and $f:\{0,1\} \rightarrow \mathbb{R}$ with $a=f(0)$ and $b=f(1)$.
- In that case, the log-Sobolev inequality reads

$$
\frac{e^{a}}{e^{a}+e^{b}} \log \frac{2 e^{a}}{e^{a}+e^{b}}+\frac{e^{b}}{e^{a}+e^{b}} \log \frac{2 e^{b}}{e^{a}+e^{b}} \leq \frac{1}{8}(b-a)^{2}
$$

Proof: Elementary (but tedious) exercise in calculus.

- Tensorization:

$$
\begin{aligned}
D\left(P^{f} \| P\right) & \leq \sum_{i=1}^{n} \widetilde{\mathbb{E}}\left[D\left(P_{i}^{f_{i}} \| P_{i}\right)\right] \quad \text { where } \tilde{\mathbb{E}}\left[h\left(X^{n}\right)\right]=\frac{\mathbb{E}\left[h\left(X^{n}\right) e^{f\left(X^{n}\right)}\right]}{\mathbb{E}\left[e^{f\left(X^{n}\right)}\right]} \\
& \leq \frac{1}{8} \sum_{i=1}^{n} \widetilde{\mathbb{E}}\left[\left|f\left(X^{i-1}, 0, X_{i+1}^{n}\right)-f\left(X^{i-1}, 1, X_{i+1}^{n}\right)\right|^{2}\right] \\
& =\frac{1}{8} \widetilde{\mathbb{E}}\left[\left|D f\left(X^{n}\right)\right|^{2}\right]=\frac{1}{8} \frac{\mathbb{E}\left[\left|D f\left(X^{n}\right)\right|^{2} e^{f\left(X^{n}\right)}\right]}{\mathbb{E}\left[e^{f\left(X^{n}\right)}\right]}
\end{aligned}
$$

The Gaussian Log-Sobolev Inequality

Theorem (Gross, 1975). Let X_{1}, \ldots, X_{n} be i.i.d. $N(0,1)$ random variables. Then, for any smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
D\left(P^{f} \| P\right) \leq \frac{1}{2} \frac{\mathbb{E}\left[\left\|\nabla f\left(X^{n}\right)\right\|_{2}^{2} e^{f\left(X^{n}\right)}\right]}{\mathbb{E}\left[e^{f\left(X^{n}\right)}\right]}
$$

where all expectations are w.r.t.
$P=\mathcal{L}\left(X^{n}\right)=N\left(0, I_{n}\right)$.

Leonard Gross

Remarks:

- This is not the original form of the inequality from Gross' 1975 paper, but they are equivalent.
- Equivalent forms of Gaussian LSI have been obtained independently by A. Stam (1959) and by P. Federbush (1969).
- The contribution of Stam (via the entropy power inequality) was first pointed out by E.A. Carlen in 1991.

Proof(s) of the Gaussian LSI

- There are many ways of proving the Gaussian log-Sobolev inequality.
- Original proof by Gross: apply the Bernoulli LSI to

$$
f\left(\frac{X_{1}+\ldots+X_{n}-n / 2}{\sqrt{n / 4}}\right), \quad X_{i} \stackrel{\text { i.i.d. }}{\sim} \operatorname{Bern}(1 / 2)
$$

then use the Central Limit Theorem:

$$
\frac{X_{1}+\ldots+X_{n}-n / 2}{\sqrt{n / 4}} \rightsquigarrow N(0,1) \quad \text { as } n \rightarrow \infty
$$

- via Markov semigroups
- via hypercontractivity (E. Nelson)
- via Stam's inequality for entropy power and Fisher info.
- via I-MMSE relation (cf. Raginsky and Sason)

Application of Gaussian LSI

Theorem (Tsirelson-Ibragimov-Sudakov, 1976). Let X_{1}, \ldots, X_{n} be independent $N(0,1)$ random variables. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function which is L-Lipschitz:

$$
\left|f\left(x^{n}\right)-f\left(y^{n}\right)\right| \leq L\left\|x^{n}-y^{n}\right\|_{2}, \quad \forall x^{n}, y^{n} \in \mathbb{R}^{n}
$$

Then $Z=f\left(X^{n}\right)$ is L^{2}-subgaussian:

$$
\log \mathbb{E}\left[e^{\lambda\left(f\left(X^{n}\right)-\mathbb{E} f\left(X^{n}\right)\right)}\right] \leq \frac{\lambda^{2} L^{2}}{2}, \quad \forall \lambda \geq 0
$$

Remarks:

- The original proof did not rely on the Gaussian LSI.
- It is a striking result: f can be an arbitrary nonlinear function, and the subgaussian constant is independent of the dimension n.

Tsirelson-Ibragimov-Sudakov: Proof via LSI

- By an approximation argument, can assume that f is differentiable. Since it is L-Lipschitz, $\|\nabla f\|_{2} \leq L$.
- By the Gaussian LSI, for any $\lambda \geq 0$,

$$
\begin{aligned}
D\left(P^{\lambda f} \| P\right) & \leq \frac{1}{2} \frac{\mathbb{E}\left[\left\|\lambda \nabla f\left(X^{n}\right)\right\|_{2}^{2} e^{\lambda f\left(X^{n}\right)}\right]}{\mathbb{E}\left[e^{\lambda f\left(X^{n}\right)}\right]} \\
& =\frac{\lambda^{2}}{2} \frac{\mathbb{E}\left[\left\|\nabla f\left(X^{n}\right)\right\|_{2}^{2} e^{\lambda f\left(X^{n}\right)}\right]}{\mathbb{E}\left[e^{\lambda f\left(X^{n}\right)}\right]} \\
& \leq \frac{\lambda^{2} L^{2}}{2} .
\end{aligned}
$$

- By the Herbst argument,

$$
\log \mathbb{E}\left[e^{\lambda\left(f\left(X^{n}\right)-\mathbb{E} f\left(X^{n}\right)\right)}\right] \leq \frac{\lambda^{2} L^{2}}{2}
$$

A Gaussian Concentration Bound

The Tsirelson-Ibragimov-Sudakov inequality gives us
Corollary. Let $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} N(0,1)$, and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an L-Lipschitz function. Then

$$
\mathbb{P}\left[f\left(X^{n}\right)-\mathbb{E} f\left(X^{n}\right) \geq t\right] \leq e^{-t^{2} / 2 L^{2}}
$$

Proof. Use the Chernoff bound.

Remarks:

- This is an example of dimension-free concentration: the tail bound does not depend on n.
- Applying the same result to $-f$ and using the union bound, we get

$$
\mathbb{P}\left[\left|f\left(X^{n}\right)-\mathbb{E} f\left(X^{n}\right)\right| \geq t\right] \leq 2 e^{-t^{2} / 2 L^{2}}
$$

Deriving Log-Sobolev (1)

- Are there systematic ways to derive log-Sobolev?
- The usual (probabilistic) approach (a subtle art):
- Construct a continuous-time Markov process $\left\{X_{t}\right\}_{t \in \geq 0}$ with stationary distribution P and Markov generator

$$
\mathbb{L} f(x) \triangleq \lim _{t \downarrow 0} \frac{\mathbb{E}\left[f\left(X_{t}\right) \mid X_{0}=x\right]-f(x)}{t}
$$

- Use the structure of \mathbb{L} to obtain an inequality of the form

$$
D\left(P^{f} \| P\right) \leq \frac{c}{2} \frac{\mathcal{E}\left(e^{f}, f\right)}{\mathbb{E}_{P}\left[e^{f}\right]}
$$

where $\mathcal{E}(g, h) \triangleq-\mathbb{E}_{P}[f(X) \mathbb{L} g(X)]$ is the Dirichlet form.

- Extract Γ by looking for a bound of the form

$$
\mathcal{E}\left(e^{f}, f\right) \leq \mathbb{E}_{P}\left[|\Gamma f(X)|^{2} e^{f(X)}\right]
$$

- Different choices of \mathbb{L} (for the same P) will yield different Γ 's, and hence different log-Sobolev inequalities.

Deriving Log-Sobolev (2)

- An alternative (information-theoretic) approach: based on a recent paper of A. Maurer (2012).
- Exploits a representation of $D\left(P^{\lambda f} \| P\right)$ in terms of the variance of $f(X)$ under the tilted distributions

$$
\mathrm{d} P^{s f}=\frac{e^{s f}}{\mathbb{E}_{P}\left[e^{s f}\right]} \mathrm{d} P
$$

- An interpretation in terms of statistical physics: think of $-f$ as energy and of $s \geq 0$ as inverse temperature. Then

$$
\operatorname{Var}^{s f}[f(X)] \triangleq \frac{\mathbb{E}_{P}\left[f^{2}(X) e^{s f(X)}\right]}{\mathbb{E}_{P}\left[e^{s f(X)}\right]}-\left(\frac{\mathbb{E}_{P}\left[f(X) e^{s f X()}\right]}{\mathbb{E}_{P}\left[e^{s f(X)}\right]}\right)^{2}
$$

gives the "thermal fluctuations" of $-f$ at temp. $T=1 / s$.

- Infinite-temperature limit $(T \rightarrow \infty):$ recover $\operatorname{Var}_{P}[f(X)]$.

Entropy via Thermal Fluctuations

Theorem (A. Maurer, 2012). Let X be a random variable with law P. Then for any real-valued function f and any $\lambda \geq 0$

$$
D\left(P^{\lambda f} \| P\right)=\int_{0}^{\lambda} \int_{t}^{\lambda} \operatorname{Var}^{s f}[f(X)] \mathrm{d} s \mathrm{~d} t
$$

where $\operatorname{Var}^{s f}[f(X)]$ is the variance of $f(X)$ under the tilted distribution $P^{s f}$.

Andreas Maurer

Recall:

$$
\operatorname{Var}^{s f}[f(X)]=\frac{\mathbb{E}\left[f^{2}(X) e^{s f(X)}\right]}{\mathbb{E}\left[e^{s f(X)}\right]}-\left(\frac{\mathbb{E}\left[f(X) e^{s f(X)}\right]}{\mathbb{E}\left[e^{s f(X)}\right]}\right)^{2} \equiv \psi^{\prime \prime}(s)
$$

where $\psi(s)=\log \mathbb{E}\left[e^{s(f(X)-\mathbb{E} f(X))}\right]$

- Recall

$$
D\left(P^{\lambda f} \| P\right)=\lambda \psi^{\prime}(\lambda)-\psi(\lambda), \quad \text { where } \psi(\lambda)=\log \mathbb{E}\left[e^{\lambda(f-\mathbb{E} f)}\right]
$$

- Since $\psi(0)=\psi^{\prime}(0)=0$, we have

$$
\begin{aligned}
\lambda \psi^{\prime}(\lambda) & =\int_{0}^{\lambda} \psi^{\prime}(\lambda) \mathrm{d} t \\
\psi(\lambda) & =\int_{0}^{\lambda} \psi^{\prime}(t) \mathrm{d} t .
\end{aligned}
$$

- Substitute:

$$
\begin{aligned}
D\left(P^{\lambda f} \| P\right) & =\int_{0}^{\lambda}\left(\psi^{\prime}(\lambda)-\psi^{\prime}(t)\right) \mathrm{d} t \\
& =\int_{0}^{\lambda} \int_{t}^{\lambda} \psi^{\prime \prime}(s) \mathrm{d} s \mathrm{~d} t \\
& =\int_{0}^{\lambda} \int_{t}^{\lambda} \operatorname{Var}^{s f}[f(X)] \mathrm{d} s \mathrm{~d} t
\end{aligned}
$$

From Thermal Fluctuations to Log-Sobolev

Theorem. Let \mathcal{A} be a class of functions of X, and suppose that there is a mapping $\Gamma: \mathcal{A} \rightarrow \mathbb{R}$, such that:

1. For all $f \in \mathcal{A}$ and $\alpha \geq 0, \Gamma(\alpha f)=\alpha \Gamma(f)$.
2. There exists a constant $c>0$, such that

$$
\operatorname{Var}^{\lambda f}[f(X)] \leq c|\Gamma(f)|^{2}, \quad \forall f \in \mathcal{A}, \lambda \geq 0
$$

Then

$$
D\left(P^{\lambda f} \| P\right) \leq \frac{\lambda^{2} c|\Gamma(f)|^{2}}{2}, \quad \forall f \in \mathcal{A}, \lambda \geq 0
$$

Proof.

$$
D\left(P^{\lambda f} \| P\right) \leq c|\Gamma(f)|^{2} \int_{0}^{\lambda} \int_{t}^{\lambda} \mathrm{d} s \mathrm{~d} t=\frac{c|\Gamma(f)|^{2} \lambda^{2}}{2}
$$

From Thermal Fluctuations to Log-Sobolev: Example 1

Let's use Maurer's method to derive the Bernoulli LSI.

- For any $f:\{0,1\} \rightarrow \mathbb{R}$, define

$$
\Gamma(f) \triangleq|f(0)-f(1)| .
$$

- Since f is obviously bounded, for every $s \geq 0$ we have

$$
\operatorname{Var}^{s f}[f(X)] \leq \frac{(f(0)-f(1))^{2}}{4} \equiv \frac{|\Gamma f|^{2}}{4} .
$$

- Finally,

$$
\begin{aligned}
D\left(P^{f} \| P\right) & =\int_{0}^{1} \int_{t}^{1} \operatorname{Var}^{s f}[f(X)] \mathrm{d} s \mathrm{~d} t \\
& \leq \frac{\mid \Gamma(f)^{2}}{4} \int_{0}^{1} \int_{t}^{1} \mathrm{~d} s \mathrm{~d} t \\
& =\frac{1}{8}|\Gamma f|^{2} .
\end{aligned}
$$

- For $n>1$, use tensorization.

From Thermal Fluctuations to Log-Sobolev: Example 2

Let's use Maurer's method to derive McDiarmid's inequality.

- We will use tensorization, so let's first consider $n=1$.
- We are interested in all functions $f: \mathrm{X} \rightarrow \mathbb{R}$, such that

$$
\sup _{x \in \mathrm{X}} f(x)-\inf _{x \in \mathrm{X}} f(x) \leq c
$$

for some $c<\infty$.

- Define $\Gamma(f) \triangleq \sup _{x \in \mathrm{X}} f(x)-\inf _{x \in \mathrm{X}} f(x)$.
- Any f satisfies $f(X) \in[\inf f, \sup f]$. If $\Gamma(f)<\infty$, then $[\inf f, \sup f]$ is a bounded interval.
- In that case, for any P,

$$
\operatorname{Var}^{s f}[f(X)] \leq \frac{(\sup f-\inf f)^{2}}{4}=\frac{|\Gamma(f)|^{2}}{4}
$$

Using the integral representation of the divergence, we get

$$
D\left(P^{\lambda f} \| P\right) \leq \frac{\lambda^{2} c^{2}}{8}, \quad \text { if } \sup f-\inf f \leq c
$$

Proof of McDiarmid (cont.)

- So far, we have obtained

$$
(\star) \quad D\left(P^{\lambda f} \| P\right) \leq \frac{\lambda^{2} c^{2}}{8}, \quad \text { if } \sup f-\inf f \leq c
$$

- Let $X_{i} \sim P_{i}, 1 \leq i \leq n$, be independent r.v.'s.
- Consider $f: \mathrm{X}^{n} \rightarrow \mathbb{R}$ that has bounded differences:

$$
\sup _{\bar{x}^{i}}\left(\sup _{x_{i}} f\left(x^{i-1}, x_{i}, x_{i+1}^{n}\right)-\inf _{x_{i}} f\left(x^{i-1}, x_{i}, x_{i+1}^{n}\right)\right) \leq c_{i}
$$

for all i, for some constants $0 \leq c_{1}, \ldots, c_{n}<\infty$.

- For each i, apply (\star) to $f_{i}(\cdot) \equiv f\left(x^{i-1}, \cdot, x_{i+1}^{n}\right)$:

$$
D\left(P_{i}^{\lambda f_{i}} \| P_{i}\right) \leq \frac{1}{8}\left(\sup _{x_{i}} f\left(x^{i-1}, x_{i}, x_{i+1}^{n}\right)-\inf _{x_{i}} f\left(x^{i-1}, x_{i}, x_{i+1}^{n}\right)\right)^{2}
$$

$\left[\right.$ recall, $f_{i}(\cdot)$ depends on $\left.\bar{x}^{i}\right]$.

Proof of McDiarmid (cont.)

- Now we tensorize: for $P=P_{1} \otimes \ldots \otimes P_{n}$,

$$
\begin{aligned}
& D\left(P^{\lambda f} \| P\right) \\
& \leq \sum_{i=1}^{n} \widetilde{\mathbb{E}}\left[D\left(P_{i}^{\lambda f_{i}} \| P_{i}\right)\right] \\
& \leq \frac{\lambda^{2}}{8} \widetilde{\mathbb{E}}[\underbrace{\left.\sum_{i=1}^{n}\left(\sup _{x_{i}} f\left(X^{i-1}, x_{i}, X_{i+1}^{n}\right)-\inf _{x_{i}} f\left(X^{i-1}, x_{i}, X_{i+1}^{n}\right)\right)^{2}\right]}_{=\left|\Gamma(f)\left(X^{n}\right)\right|^{2}}
\end{aligned}
$$

Theorem. Let $X_{1}, \ldots, X_{n} \in \mathrm{X}$ be independent r.v.'s with joint law $P=P_{1} \otimes \ldots \otimes P_{n}$. Then, for any function $f: \mathrm{X}^{n} \rightarrow \mathbb{R}$,

$$
D\left(P^{f} \| P\right) \leq \frac{1}{8}\left\||\Gamma f|^{2}\right\|_{\infty}
$$

where

$$
\Gamma f\left(x^{n}\right)=\{\sum_{i=1}^{n}(\underbrace{\sup _{x_{i}} f\left(x^{i-1}, x_{i}, x_{i+1}^{n}\right)-\inf _{x_{i}} f\left(x^{i-1}, x_{i}, x_{i+1}^{n}\right)}_{=\Gamma_{i} f\left(\bar{x}^{i}\right)})^{2}\}^{1 / 2}
$$

Remarks:

- McDiarmid: if f has bounded differences with c_{1}, \ldots, c_{n}, then

$$
f\left(X^{n}\right) \text { is } \frac{\sum_{i=1}^{n} c_{i}^{2}}{4} \text {-subgaussian }
$$

- Since $\left\||\Gamma f|^{2}\right\|_{\infty} \leq \sum_{i=1}^{n}\left\|\left|\Gamma_{i} f\right|^{2}\right\|_{\infty}$, the above theorem is stronger than McDiarmid.

Transportation-Cost Inequalities

Concentration and the Lipschitz Property

A common theme:

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be 1-Lipschitz w.r.t. the Euclidean norm:

$$
\left|f\left(x^{n}\right)-f\left(y^{n}\right)\right| \leq\left\|x^{n}-y^{n}\right\|_{2}
$$

Let X_{1}, \ldots, X_{n} be i.i.d. $N(0,1)$ r.v.'s. Then

$$
\mathbb{P}\left[\left|f\left(X^{n}\right)-\mathbb{E} f\left(X^{n}\right)\right| \geq t\right] \leq 2 e^{-t^{2} / 2}
$$

- Let $f: \mathrm{X}^{n} \rightarrow \mathbb{R}$ be 1-Lipschitz w.r.t. a weighted Hamming metric:

$$
\left|f\left(x^{n}\right)-f\left(y^{n}\right)\right| \leq d_{\mathbf{c}}\left(x^{n}, y^{n}\right), \quad d_{\mathbf{c}}\left(x^{n}, y^{n}\right) \triangleq \sum_{i=1}^{n} c_{i} \mathbf{1}\left\{x_{i} \neq y_{i}\right\}
$$

(this is equivalent to bounded differences). Let X_{1}, \ldots, X_{n} be independent r.v.'s. Then

$$
\mathbb{P}\left[\left|f\left(X^{n}\right)-\mathbb{E} f\left(X^{n}\right)\right| \geq t\right] \leq 2 \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

The Setting: Probability in Metric Spaces

- Let (X, d) be a metric space.
- A function $f: \mathrm{X} \rightarrow \mathbb{R}$ is L-Lipschitz (w.r.t. d) if

$$
|f(x)-f(y)| \leq L d(x, y), \quad \forall x, y \in \mathrm{X}
$$

- Notation: $\operatorname{Lip}_{L}(\mathrm{X}, d)$ - the class of all L-Lipschitz functions.

Question: What conditions does a probability measure P on X have to satisfy, so that $f(X), X \sim P$, is σ^{2}-subgaussian for every $f \in \operatorname{Lip}_{1}(\mathrm{X}, d)$?

Some Definitions

- A coupling of two probability measures P and Q on X is any probability measure π on $\mathrm{X} \times \mathrm{X}$, such that

$$
(X, Y) \sim \pi \quad \Longrightarrow \quad X \sim P, Y \sim Q
$$

- $\Pi(P, Q)$: family of all couplings of P and Q.

Definition. For $p \geq 1$, the L^{p} Wasserstein distance between P and Q is given by

$$
W_{p}(P, Q) \triangleq \inf _{\pi \in \Pi(P, Q)}\left(\mathbb{E}_{\pi}\left[d^{p}(X, Y)\right]\right)^{1 / p}
$$

Kantorovich-Rubinstein formula. For any two P, Q,

$$
W_{1}(P, Q)=\sup _{f \in \operatorname{Lip}_{1}(\mathrm{X}, d)}\left|\mathbb{E}_{P}[f]-\mathbb{E}_{Q}[f]\right|
$$

Optimal Transportation

Monge-Kantorovich Optimal Transportation Problem. Given two probability measures P, Q on a common space X and a cost function $c: \mathrm{X} \times \mathrm{X} \rightarrow \mathbb{R}_{+}$,

$$
\text { minimize } \quad \mathbb{E}_{\pi}[c(X, Y)]
$$

over all couplings $\pi \in \Pi(P, Q)$.
Interpretation:

- P and Q : initial and final distributions of some material (say, sand) in space
- $c(x, y)$: cost of transporting a grain of sand from location x to location y
- $\pi(\mathrm{d} y \mid x)$: randomized strategy for transporting from location x
- Wasserstein distances: transportation cost is some power of a metric

Gaspard Monge

Leonid Kantorovich

Transportation Cost Inequalities

Definition. A probability measure P on a metric space (X, d) satisfies an L^{p} transportation cost inequality with constant c, or $T_{p}(c)$ for short, if

$$
W_{p}(P, Q) \leq \sqrt{2 c D(Q \| P)}, \quad \forall Q
$$

Preview:

- We will be primarily concerned with $T_{1}(c)$ and $T_{2}(c)$ inequalities.
- $T_{1}(c)$ is easier to work with, while $T_{2}(c)$ has strong properties (dimension-free concentration).

Examples of TC Inequalities: 1

- X: arbitrary space with trivial metric $d(x, y)=\mathbf{1}\{x \neq y\}$
- Then

$$
\begin{aligned}
W_{1}(P, Q) & =\inf _{\pi \in \Pi(P, Q)} \mathbb{E}_{\pi}[\mathbf{1}\{X \neq Y\}] \\
& \equiv \inf _{\pi \in \Pi(P, Q)} \mathbb{P}_{\pi}[X \neq Y] \\
& =\|P-Q\|_{\mathrm{TV}} \quad \text { - total variation distance }
\end{aligned}
$$

(proof by explicit construction of optimal coupling)

- Any P satisfies $T_{1}(1 / 4)$:

$$
\|P-Q\|_{\mathrm{TV}} \leq \sqrt{\frac{1}{2} D(Q \| P)}
$$

(Csiszár-Kemperman-Kullback-Pinsker)

Examples of TC Inequalities: 2

- $\mathrm{X}=\{0,1\}$ with trivial metric $d(x, y)=\mathbf{1}\{x \neq y\}$
- $P=\operatorname{Bern}(p)$
- Distribution-dependent refinement of Pinsker:

$$
\|P-Q\|_{\mathrm{TV}} \leq \sqrt{2 c(p) D(Q \| P)}
$$

where

$$
c(p)=\frac{p-\bar{p}}{2(\log p-\log \bar{p})}, \quad \bar{p} \triangleq 1-p
$$

(Ordentlich-Weinberger, 2005)

- Thus, $P=\operatorname{Bern}(p)$ satisfies $T_{1}(c(p))$, and the constant is optimal:

$$
\inf _{Q} \frac{D(Q \| P)}{\|Q-P\|_{\mathrm{TV}}^{2}}=\frac{1}{2 c(p)}
$$

Examples of TC Inequalities: 3

- $\mathrm{X}=\mathbb{R}^{n}$ with $d(x, y)=\|x-y\|_{2}$
- The Gaussian measure $P=N\left(0, I_{n}\right)$ satisfies $T_{2}(1)$:

$$
W_{2}(P, Q) \leq \sqrt{2 D(Q \| P)}
$$

(Talagrand, 1996)

- Note: the constant is independent of n !!

Michel Talagrand

Transportation and Concentration

Theorem (Bobkov-Götze, 1999). Let P be a probability measure on a metric space (X, d). Then the following two statements are equivalent:

1. $f(X), X \sim P$, is σ^{2}-subgaussian for every $f \in \operatorname{Lip}_{1}(\mathrm{X}, d)$.
2. P satisfies $T_{1}(c)$ on (X, d) :

$$
W_{1}(P, Q) \leq \sqrt{2 \sigma^{2} D(Q \| P)}, \quad \forall Q \ll P
$$

Sergey Bobkov

Friedrich Götze

Remarks:

- Connection between concentration and transportation inequalities was first pointed out by Marton (1986).
- Remarkable result: concentration phenomenon for Lipschitz functions can be expressed purely in terms of probabilistic and metric structures.

Proof of Bobkov-Götze

(Ultra-light version, due to R. van Handel)

- Statement 1 of the theorem is equivalent to

$$
(\star) \quad \sup _{\lambda \geq 0} \sup _{f \in \operatorname{Lip}_{1}(\mathrm{X}, d)}\left\{\log \mathbb{E}_{P}\left[e^{\lambda\left(f-\mathbb{E}_{P} f\right)}\right]-\frac{\lambda^{2} \sigma^{2}}{2}\right\} \leq 0 .
$$

- Use Gibbs variational principle:

$$
\log \mathbb{E}_{P}\left[e^{h}\right]=\sup _{Q}\left\{\mathbb{E}_{Q}[h]-D(Q \| P)\right\}, \quad \forall h \text { s.t. } e^{h} \in L_{1}(P)
$$

(supremum achieved by the tilted distribution $Q=P^{h}$).

- Then (\star) is equivalent to

$$
(\star \star) \sup _{\lambda \geq 0} \sup _{f \in \operatorname{Lip}_{1}(\mathrm{X}, d)} \sup _{Q}\left\{\lambda\left(\mathbb{E}_{Q}[f]-\mathbb{E}_{P}[f]\right)-D(Q \| P)-\frac{\lambda^{2} \sigma^{2}}{2}\right\} \leq 0
$$

Proof of Bobkov-Götze (cont.)

(*夫) $\sup _{\lambda \geq 0} \sup _{f \in \operatorname{Lip}_{1}(\mathrm{X}, d)} \sup _{Q}\left\{\lambda\left(\mathbb{E}_{Q}[f]-\mathbb{E}_{P}[f]\right)-D(Q \| P)-\frac{\lambda^{2} \sigma^{2}}{2}\right\} \leq 0$

- Interchange the order of suprema:

$$
\sup _{\lambda \geq 0} \sup _{f \in \operatorname{Lip}_{1}(\mathrm{X}, d)} \sup _{Q}[\ldots]=\sup _{Q} \sup _{\lambda \geq 0} \sup _{f \in \operatorname{Lip}_{1}(\mathrm{X}, d)}[\ldots]
$$

- Then

$$
\begin{aligned}
&(\star \star) \Longleftrightarrow \sup _{Q} \sup _{\lambda \geq 0}\left\{\lambda W_{1}(P, Q)-D(Q \| P)-\frac{\lambda^{2} \sigma^{2}}{2}\right\} \leq 0 \\
&(\text { by Kantorovich-Rubinstein) } \\
& \Longleftrightarrow \sup _{Q}\left\{\frac{W_{1}(P, Q)}{2 \sigma^{2}}-D(Q \| P)\right\} \leq 0 \\
&(\text { optimize over } \lambda)
\end{aligned}
$$

Tensorization of Transportation Inequalities

- At first sight, all we have is another equivalent characterization of concentration of Lipschitz functions.
- However, transportation inequalities tensorize!!
- Proof of tensorization is through a beautiful result on couplings by Katalin Marton.

The Marton Coupling

Theorem (Marton, 1986). Let (X_{i}, P_{i}), $1 \leq i \leq n$, be probability spaces. Let
$w_{i}: \mathrm{X}_{i} \times \mathrm{X}_{i} \rightarrow \mathbb{R}_{+}, 1 \leq i \leq n$, be positive weight functions, and let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a convex function. Suppose that, for each i,

$$
\inf _{\pi \in \Pi\left(P_{i}, Q\right)} \varphi\left(\mathbb{E}_{\pi}\left[w_{i}(X, Y)\right]\right) \leq 2 \sigma^{2} D\left(Q \| P_{i}\right), \forall Q
$$

Then the following holds for the product measure $P=P_{1} \otimes \ldots \otimes P_{n}$ on the product space $\mathrm{X}=\mathrm{X}_{1} \otimes \ldots \otimes \mathrm{X}_{n}$:

$$
\inf _{\pi \in \Pi(P, Q)} \sum_{i=1}^{n} \varphi\left(\mathbb{E}_{\pi}\left[w_{i}\left(X_{i}, Y_{i}\right)\right]\right) \leq 2 \sigma^{2} D(Q \| P)
$$

Katalin Marton
for every Q on X .
Proof idea: Chain rule for relative entropy + conditional coupling + induction.

Tensorization of Transportation Cost Inequalities

Theorem. Let $\left(\mathrm{X}_{i}, P_{i}, d_{i}\right), 1 \leq i \leq n$, be probability metric spaces. If for some $1 \leq p \leq 2$ each P_{i} satisfies $T_{p}(c)$ on $\left(\mathrm{X}_{i}, d_{i}\right)$, then the product measure $P=P_{1} \otimes \ldots \otimes P_{n}$ on $\mathrm{X}=\mathrm{X}_{1} \times \ldots \times \mathrm{X}_{n}$ satisfies $T_{p}\left(c n^{2 / p-1}\right)$ w.r.t. the metric

$$
d_{p}\left(x^{n}, y^{n}\right) \triangleq\left(\sum_{i=1}^{n} d_{i}^{p}\left(x_{i}, y_{i}\right)\right)^{1 / p}
$$

Remarks:

- If each P_{i} satisfies $T_{1}(c)$, then $P=P_{1} \otimes \ldots \otimes P_{n}$ satisfies $T_{1}(c n)$ with respect to the metric $\sum_{i} d_{i}$. Note: constant deteriorates with n.
- If each P_{i} satisfies $T_{2}(c)$, then P satisfies $T_{2}(c)$ with respect to $\sqrt{\sum_{i} d_{i}^{2}}$. Note: constant is independent of n.

Proof of Tensorization

- By hypothesis, for each i,

$$
\underbrace{\inf _{\pi \in \Pi\left(P_{i}, Q\right)}\left(\mathbb{E}_{\pi}\left[d_{i}^{p}(X, Y)\right]\right)^{2 / p}}_{W_{p, d_{i}}^{2}\left(P_{i}, Q\right)} \leq 2 c D\left(Q \| P_{i}\right), \quad \forall Q
$$

- $1 \leq p \leq 2 \Longrightarrow \varphi(u)=u^{2 / p}$ is convex. Take $w_{i}=d_{i}^{p}$. Then

$$
\inf _{\pi \in \Pi\left(P_{i}, Q\right)} \varphi\left(\mathbb{E}_{\pi}\left[w_{i}(X, Y)\right]\right) \leq 2 c D\left(Q \| P_{i}\right), \quad \forall Q
$$

- By Marton's coupling,

$$
(\star) \quad \inf _{\pi \in \Pi(P, Q)} \sum_{i=1}^{n}\left(\mathbb{E}_{\pi}\left[d_{i}^{p}\left(X_{i}, Y_{i}\right)\right]\right)^{2 / p} \leq 2 c D(Q \| P), \quad \forall Q .
$$

Proof of Tensorization (cont.)

- We have shown that if P_{i} satisfies $T_{p}(c)$ w.r.t. d_{i}, for each i, then

$$
(\star) \quad \inf _{\pi \in \Pi(P, Q)} \sum_{i=1}^{n}\left(\mathbb{E}_{\pi}\left[d_{i}^{p}\left(X_{i}, Y_{i}\right)\right]\right)^{2 / p} \leq 2 c D(Q \| P), \quad \forall Q .
$$

- We will now prove $\operatorname{LHS}(\star) \geq n^{1-2 / p} W_{p, d_{p}}^{2}(P, Q)$.
- For any $\pi \in \Pi(P, Q)$,

$$
\begin{aligned}
\left(\mathbb{E}_{\pi}\right. & {\left.\left[\sum_{i=1}^{n} d_{i}^{p}\left(X_{i}, Y_{i}\right)\right]\right)^{2 / p} } \\
& \leq\left(\sum_{i=1}^{n} \mathbb{E}_{\pi}\left[d_{i}^{p}\left(X_{i}, Y_{i}\right)\right]\right)^{2 / p} \quad\left(\text { concavity of } t \mapsto t^{1 / p}\right) \\
& \leq n^{2 / p-1} \sum_{i=1}^{n}\left(\mathbb{E}_{\pi}\left[d_{i}^{p}\left(X_{i}, Y_{i}\right)\right]\right)^{2 / p} \quad\left(\text { convexity of } t \mapsto t^{2 / p}\right)
\end{aligned}
$$

Take infimum over all $\pi \in \Pi(P, Q)$, and we are done.

(Yet Another) Proof of McDiarmid's Inequality

- Product probability space: $\left(\mathrm{X}_{1} \times \ldots \times \mathrm{X}_{n}, P_{1} \otimes \ldots \otimes P_{n}\right)$
- Given $c_{1}, \ldots, c_{n} \geq 0$, equip X_{i} with $d_{c_{i}}\left(x_{i}, y_{i}\right) \triangleq c_{i} \mathbf{1}\left\{x_{i} \neq y_{i}\right\}$.
- Then any P_{i} on X_{i} satisfies $T_{1}\left(c_{i}^{2} / 4\right)$:

$$
W_{1, d_{c_{i}}}\left(P_{i}, Q\right) \equiv c_{i}\left\|P_{i}-Q\right\|_{\mathrm{TV}} \leq \sqrt{\frac{c_{i}^{2}}{2} D\left(Q \| P_{i}\right)}
$$

(by rescaling Pinsker).

- By Marton coupling, $P=P_{1} \otimes \ldots \otimes P_{n}$ satisfies T_{1} with constant $(1 / 4) \sum_{i=1}^{n} c_{i}^{2}$ with respect to the metric

$$
d_{\mathbf{c}}\left(x^{n}, y^{n}\right) \triangleq \sum_{i=1}^{n} d_{c_{i}}\left(x_{i}, y_{i}\right)=\sum_{i=1}^{n} c_{i} \mathbf{1}\left\{x_{i} \neq y_{i}\right\} .
$$

- By Bobkov-Götze, this is equivalent to subgaussian property of all $f \in \operatorname{Lip}_{1}\left(\mathrm{X}_{1} \times \ldots \times \mathrm{X}_{n}, d_{\mathbf{c}}\right)$:

$$
\underbrace{\mathbb{P}\left[\left|f\left(X^{n}\right)-\mathbb{E} f\left(X^{n}\right)\right| \geq t\right] \leq 2 \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)}_{\text {McDiarmid }}, \quad \forall \underbrace{f \in \operatorname{Lip}_{1}\left(d_{\mathbf{c}}\right)}_{\text {bdd. diff. }}
$$

Some Applications

The Blowing-Up Lemma

- Consider a product space Y^{n} equipped with Hamming metric $d\left(y^{n}, z^{n}\right)=\sum_{i=1}^{n} \mathbf{1}\left\{y_{i} \neq z_{i}\right\}$
- For a set $A \subseteq \mathrm{Y}^{n}$ and for $r \in\{0,1, \ldots, n\}$, define its r-blowup

$$
[A]_{r} \triangleq\left\{z^{n} \in \mathrm{Y}^{n}: \min _{y^{n} \in A} d\left(z^{n}, y^{n}\right) \leq r\right\}
$$

The following result, in a different (asymptotic) form was first proved by Ahlswede-Gács-Körner (1976); a simple proof was given by Marton (1986):

Let Y_{1}, \ldots, Y_{n} be independent r.v.'s taking values in Y . Then for every set $A \subseteq \mathrm{Y}^{n}$ with $P_{Y^{n}}(A)>0$

$$
P_{Y^{n}}\left\{[A]_{r}\right\} \geq 1-\exp \left[-\frac{2}{n}\left(r-\sqrt{\frac{n}{2} \log \frac{1}{P_{Y^{n}}(A)}}\right)_{+}^{2}\right]
$$

Informally, any set in a product space can be "blown up" to engulf most of the probability mass.

Marton's Proof

- Let $P_{i}=\mathcal{L}\left(Y_{i}\right), 1 \leq i \leq n ; P=P_{1} \otimes \ldots \otimes P_{n} \equiv \mathcal{L}\left(Y^{n}\right)$.
- By tensorization, P satisfies the TC inequality

$$
(\star) \quad W_{1}(P, Q) \leq \sqrt{\frac{n}{2} D(Q \| P)}, \quad \forall Q \in \mathcal{P}\left(\mathrm{Y}^{n}\right)
$$

where

$$
W_{1}(P, Q)=\inf _{\pi \in \Pi(P, Q)} \mathbb{E}_{\pi}\left[\sum_{i=1}^{n} \mathbf{1}\left\{Y_{i} \neq Z_{i}\right\}\right], \quad Y^{n} \sim P, Z^{n} \sim Q
$$

- For any $B \subseteq \mathrm{Y}^{n}$ with $P(B)>0$, consider conditional distribution

$$
P_{B}(\cdot) \triangleq \frac{P(\cdot \cap B)}{P(B)} .
$$

Then $D\left(P_{B} \| P\right)=\log \frac{1}{P(B)}$, and therefore

$$
(\star \star) \quad W_{1}\left(P, P_{B}\right) \leq \sqrt{\frac{n}{2} \log \frac{1}{P(B)}}
$$

Marton's Proof

- $(\star \star) W_{1}\left(P, P_{B}\right) \leq \sqrt{\frac{n}{2} \log \frac{1}{P(B)}}$
- Apply (**) to $B=A$ and $B=[A]_{r}^{c}$:

$$
W_{1}\left(P, P_{A}\right) \leq \sqrt{\frac{n}{2} \log \frac{1}{P(A)}}, \quad W_{1}\left(P, P_{[A]_{r}^{c}}\right) \leq \sqrt{\frac{n}{2} \log \frac{1}{1-P\left([A]_{r}\right)}}
$$

- Then

$$
\begin{aligned}
\sqrt{\frac{n}{2} \log \frac{1}{P(A)}}+\sqrt{\frac{n}{2} \log \frac{1}{1-P\left([A]_{r}\right)}} & \geq W_{1}\left(P_{A}, P\right)+W_{1}\left(P, P_{[A]_{r}^{c}}\right) \\
& \geq W_{1}\left(P_{A}, P_{[A]_{r}^{c}}\right) \quad \text { (triangle ineq.) } \\
& \geq \min _{y^{n} \in A, z^{n} \in[A]_{r}^{c}} d\left(y^{n}, z^{n}\right) \\
& \geq r . \quad\left(\text { def. of }[\cdot]_{r}\right)
\end{aligned}
$$

- Rearrange to finish the proof.

The Blowing-Up Lemma: Consequences

- Consider a DMC (X, Y, T) with input alphabet X , output alphabet Y , transition probabilities $T(y \mid x),(x, y) \in \mathrm{X} \times \mathrm{Y}$
- (n, M, ε)-code \mathcal{C} : encoder $f:\{1, \ldots, M\} \rightarrow \mathrm{X}^{n}$, decoder $g: \mathrm{Y}^{n} \rightarrow\{1, \ldots, M\}$ with

$$
\max _{1 \leq j \leq M} \mathbb{P}\left[g\left(Y^{n}\right) \neq j \mid X^{n}=f(j)\right] \leq \varepsilon
$$

Equivalently, $\mathcal{C}=\left\{\left(u_{j}, D_{j}\right)\right\}_{j=1}^{M}$, where

- $u_{j}=f(j) \in \mathrm{X}^{n}$ - codewords
- $D_{j}=g^{-1}(j)=\left\{y^{n} \in \mathrm{Y}^{n}: g\left(y^{n}\right)=j\right\}$ - decoding sets

$$
T^{n}\left(D_{j} \mid u_{j}\right) \geq 1-\varepsilon, \quad j=1, \ldots, M .
$$

Lemma. There exists $\delta_{n}>0$, such that

$$
T^{n}\left(\left[D_{j}\right]_{n \delta_{n}} \mid X^{n}=u_{j}\right) \geq 1-\frac{1}{n}, \quad j=1, \ldots, M
$$

Proof

- Choose

$$
\delta_{n}=\frac{1}{n}\left\lceil n\left(\sqrt{\frac{\log n}{2 n}}+\sqrt{\frac{1}{2 n} \log \frac{1}{1-\varepsilon}}\right)\right\rceil
$$

- For each j, apply Blowing-Up Lemma to the product measure

$$
P_{j}\left(y^{n}\right)=\prod_{i=1}^{n} T\left(y_{i} \mid u_{j}(i)\right), \quad \text { where } \underbrace{u_{j}=\left(u_{j}(1), \ldots, u_{j}(n)\right)=f(j)}_{j \text { th codeword }} .
$$

With $r=n \delta_{n}$, this gives

$$
\begin{aligned}
T^{n}\left(\left[D_{j}\right]_{n \delta_{n}} \mid X^{n}=u_{j}\right) & \geq 1-\exp \left[-\frac{2}{n}\left(n \delta_{n}-\sqrt{\frac{n}{2} \log \frac{1}{1-\varepsilon}}\right)_{+}^{2}\right] \\
& \geq 1-\frac{1}{n} .
\end{aligned}
$$

From Blowing-Up Lemma to Strong Converses

- Informally, the Blowing-Up Lemma shows that "any bad code contains a good subcode" (Ahlswede and Dueck, 1976).
- Consider an (n, M, ε)-code $\mathcal{C}=\left\{\left(u_{j}, D_{j}\right)\right\}_{j=1}^{M}$.
- Each decoding set D_{j} can be "blown up" to a set $\tilde{D}_{j} \subseteq \mathrm{Y}^{n}$ with

$$
T^{n}\left(\tilde{D}_{j} \mid u_{j}\right) \geq 1-\frac{1}{n}
$$

- The object $\tilde{\mathcal{C}}=\left\{\left(u_{j}, \tilde{D}_{j}\right)\right\}_{j=1}^{M}$ is not a code (since the sets \tilde{D}_{j} are no longer disjoint), but a random coding argument can be used to extract an ($n, M^{\prime}, \varepsilon^{\prime}$) "subcode" with M^{\prime} slightly smaller than M and $\varepsilon^{\prime}<\varepsilon$. Then one can apply the usual (weak) converse to the subcode.
- Similar ideas can be used in multiterminal settings (starting with Ahlswede-Gács-Körner).

Example: Capacity-Achieving Channel Codes

The set-up

- DMC (X, Y, T) with capacity

$$
C=C(T)=\max _{P_{X}} I(X ; Y)
$$

- (n, M)-code: $\mathcal{C}=(f, g)$ with encoder $f:\{1, \ldots, M\} \rightarrow \mathrm{X}^{n}$ and decoder $g: \mathrm{Y}^{n} \rightarrow\{1, \ldots, M\}$

Capacity-achieving codes:
A sequence $\left\{\mathcal{C}_{n}\right\}_{n=1}^{\infty}$, where each \mathcal{C}_{n} is an $\left(n, M_{n}\right)$-code, is capacity-achieving if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log M_{n}=C
$$

Capacity-Achieving Channel Codes

Capacity-achieving input and output distributions:

$$
\begin{array}{lr}
P_{X}^{*} \in \underset{P_{X}}{\arg \max } I(X ; Y) & \text { (may not be unique) } \\
P_{X}^{*} \xrightarrow[Y]{T} P_{Y}^{*} & \text { (always unique) }
\end{array}
$$

Theorem (Shamai-Verdú, 1997). Let $\left\{\mathcal{C}_{n}\right\}$ be any capacity-achieving code sequence with vanishing error probability. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} D\left(P_{Y^{n}}^{\left(\mathcal{C}_{n}\right)} \| P_{Y^{n}}^{*}\right)=0
$$

where $P_{Y^{n}}^{\left(\mathcal{C}_{n}\right)}$ is the output distribution induced by the code \mathcal{C}_{n} when the messages in $\left\{1, \ldots, M_{n}\right\}$ are equiprobable.

Capacity-Achieving Channel Codes

$$
\lim _{n \rightarrow \infty} \frac{1}{n} D\left(P_{Y^{n}} \| P_{Y^{n}}^{*}\right)=0
$$

Main message: channel output sequences induced by good code "resemble" i.i.d. sequences drawn from the CAOD P_{Y}^{*}

Useful implications: estimate performance characteristics of good channel codes by their expectations w.r.t. $P_{Y^{n}}^{*}=\left(P_{Y}^{*}\right)^{n}$

- often much easier to compute explicitly
- bound estimation accuracy using large-deviation theory (e.g., Sanov's theorem)

Question: what about good codes with nonvanishing error probability?

Codes with Nonvanishing Error Probability

Y. Polyanskiy and S. Verdú, "Empirical distribution of good channel codes with non-vanishing error probability" (2012)

1. Let $\mathcal{C}=(f, g)$ be any (n, M, ε)-code for T :

$$
\max _{1 \leq j \leq M} \mathbb{P}\left[g\left(Y^{n}\right) \neq j \mid X^{n}=f(j)\right] \leq \varepsilon
$$

Then $D\left(P_{Y^{n}}^{(\mathcal{C})} \| P_{Y^{n}}^{*}\right) \leq n C-\log M+o(n) .{ }^{*}$
2. If $\left\{\mathcal{C}_{n}\right\}_{n=1}^{\infty}$ is a capacity-achieving sequence, where each \mathcal{C}_{n} is an (n, M_{n}, ε)-code for some fixed $\varepsilon>0$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} D\left(P_{Y^{n}}^{\left(\mathcal{C}_{n}\right)} \| P_{Y^{n}}^{*}\right)=0 .
$$

* In some cases, the $o(n)$ term can be improved to $O(\sqrt{n})$.

Relative Entropy at the Output of a Code

Consider a DMC $T: \mathrm{X} \rightarrow \mathrm{Y}$ with $T(\cdot \mid \cdot)>0$, and let

$$
c(T)=2 \max _{x \in \mathrm{X}} \max _{y, y^{\prime} \in \mathrm{Y}}\left|\log \frac{T(y \mid x)}{T\left(y^{\prime} \mid x\right)}\right|
$$

Theorem (Raginsky-Sason, 2013). Any (n, M, ε)-code \mathcal{C} for T, where $\varepsilon \in(0,1 / 2)$, satisfies

$$
D\left(P_{Y^{n}}^{(\mathcal{C})} \| P_{Y^{n}}^{*}\right) \leq n C-\log M+\log \frac{1}{\varepsilon}+c(T) \sqrt{\frac{n}{2} \log \frac{1}{1-2 \varepsilon}}
$$

Remark:

- Polyanskiy and Verdú show that

$$
D\left(P_{Y^{n}}^{(\mathcal{C})} \| P_{Y^{n}}^{*}\right) \leq n C-\log M+a \sqrt{n}
$$

for some constant $a=a(\varepsilon)$.

Proof Sketch (1)

Fix $x^{n} \in \mathrm{X}^{n}$ and study concentration of the function

$$
h_{x^{n}}\left(y^{n}\right)=\log \frac{\mathrm{d} P_{Y^{n} \mid X^{n}=x^{n}}}{\mathrm{~d} P_{Y^{n}}^{(\mathcal{C})}}\left(y^{n}\right)
$$

around its expectation w.r.t. $P_{Y^{n} \mid X^{n}=x^{n}}$:

$$
\mathbb{E}\left[h_{x^{n}}\left(Y^{n}\right) \mid X^{n}=x^{n}\right]=D\left(P_{Y^{n} \mid X^{n}=x^{n}} \| P_{Y^{n}}^{(\mathcal{C})}\right)
$$

Step 1: Because $T(\cdot \mid \cdot)>0$, the function $h_{x^{n}}\left(y^{n}\right)$ is 1-Lipschitz w.r.t. scaled Hamming metric

$$
d\left(y^{n}, \bar{y}^{n}\right)=c(T) \sum_{i=1}^{n} \mathbf{1}\left\{y_{i} \neq \bar{y}_{i}\right\}
$$

Proof Sketch (2)

Step 1: Because $T(\cdot \mid \cdot)>0$, the function $h_{x^{n}}\left(y^{n}\right)$ is 1-Lipschitz w.r.t. scaled Hamming metric

$$
d\left(y^{n}, \bar{y}^{n}\right)=c(T) \sum_{i=1}^{n} \mathbf{1}\left\{y_{i} \neq \bar{y}_{i}\right\}
$$

Step 2: Any product probability measure μ on $\left(Y^{n}, d\right)$ satisfies

$$
\log \mathbb{E}_{\mu}\left[e^{t f\left(Y^{n}\right)}\right] \leq \frac{n c(T)^{2} t^{2}}{8}
$$

for any f with $\mathbb{E}_{\mu} f=0$ and $\|F\|_{\text {Lip }} \leq 1$.
Proof: Tensorization of T_{1} (Pinsker), followed by appeal to Bobkov-Götze.

Proof Sketch (3)

$$
\begin{aligned}
& h_{x^{n}}\left(y^{n}\right)=\log \frac{\mathrm{d} P_{Y^{n} \mid X^{n}=x^{n}}}{\mathrm{~d} P_{Y^{n}}^{(\mathcal{C})}}\left(y^{n}\right) \\
& \mathbb{E}\left[h_{x^{n}}\left(Y^{n}\right) \mid X^{n}=x^{n}\right]=D\left(P_{Y^{n} \mid X^{n}=x^{n}} \| P_{Y^{n}}^{(\mathcal{C})}\right)
\end{aligned}
$$

Step 3: For any $x^{n}, \mu=P_{Y^{n} \mid X^{n}=x^{n}}$ is a product measure, so

$$
\mathbb{P}\left(h_{x^{n}}\left(Y^{n}\right) \geq D\left(P_{Y^{n} \mid X^{n}=x^{n}} \| P_{Y^{n}}^{(\mathcal{C})}\right)+r\right) \leq \exp \left(-\frac{2 r^{2}}{n c(T)^{2}}\right)
$$

Use this with $r=c(T) \sqrt{\frac{n}{2} \log \frac{1}{1-2 \varepsilon}}$:
$\mathbb{P}\left(h_{x^{n}}\left(Y^{n}\right) \geq D\left(P_{Y^{n} \mid X^{n}=x^{n}} \| P_{Y^{n}}^{(\mathcal{C})}\right)+c(T) \sqrt{\frac{n}{2} \log \frac{1}{1-2 \varepsilon}}\right) \leq 1-2 \varepsilon$
Remark: Polyanskiy-Verdú show $\operatorname{Var}\left[h_{x^{n}}\left(Y^{n}\right) \mid X^{n}=x^{n}\right]=O(n)$.

Proof Sketch (4)

Recall:

$$
\mathbb{P}\left(h_{x^{n}}\left(Y^{n}\right) \geq D\left(P_{Y^{n} \mid X^{n}=x^{n}} \| P_{Y^{n}}^{(\mathcal{C})}\right)+c(T) \sqrt{\frac{n}{2} \log \frac{1}{1-2 \varepsilon}}\right) \leq 1-2 \varepsilon
$$

Step 4: Same as Polyanskiy-Verdú, appeal to Augustin's strong converse (1966) to get

$$
\begin{aligned}
\log M & \leq \log \frac{1}{\varepsilon}+D\left(P_{Y^{n} \mid X^{n}} \| P_{Y^{n}}^{(\mathcal{C})} \mid P_{X^{n}}^{(\mathcal{C})}\right)+c(T) \sqrt{\frac{n}{2} \log \frac{1}{1-2 \varepsilon}} \\
D & \left(P_{Y^{n}}^{(\mathcal{C})} \| P_{Y^{n}}^{*}\right) \\
& =D\left(P_{Y^{n} \mid X^{n}} \| P_{Y^{n}}^{*} \mid P_{X^{n}}^{(\mathcal{C})}\right)-D\left(P_{Y^{n} \mid X^{n}} \| P_{Y^{n}}^{(\mathcal{C})} \mid P_{X^{n}}^{(\mathcal{C})}\right) \\
& \leq n C-\log M+\log \frac{1}{\varepsilon}+c(T) \sqrt{\frac{n}{2} \log \frac{1}{1-2 \varepsilon}}
\end{aligned}
$$

Relative Entropy at the Output of a Code

Theorem (Raginsky-Sason, 2013). Let (X, Y, T) be a DMC with $C>0$. Then, for any $0<\varepsilon<1$, any (n, M, ε)-code \mathcal{C} for T satisfies

$$
\begin{aligned}
& D\left(P_{Y^{n}}^{(\mathcal{C})} \| P_{Y^{n}}^{*}\right) \leq n C-\log M \\
& +\sqrt{2 n}(\log n)^{3 / 2}\left(1+\sqrt{\frac{1}{\log n} \log \left(\frac{1}{1-\varepsilon}\right)}\right)\left(1+\frac{\log |\mathrm{Y}|}{\log n}\right) \\
& +3 \log n+\log \left(2|\mathrm{X}||\mathrm{Y}|^{2}\right) .
\end{aligned}
$$

Proof idea:

- Apply Blowing-Up Lemma to the code, then extract a good subcode.

Remark:

- Polyanskiy and Verdú show that

$$
D\left(P_{Y^{n}}^{(\mathcal{C})} \| P_{Y^{n}}^{*}\right) \leq n C-\log M+b \sqrt{n} \log ^{3 / 2} n
$$

for some constant $b>0$.

Concentration of Lipschitz Functions

Theorem (Raginsky-Sason, 2013). Let (X, Y, T) be a DMC with $c(T)<\infty$. Let $d: \mathrm{Y}^{n} \times \mathrm{Y}^{n} \rightarrow \mathbb{R}_{+}$be a metric, and suppose that $P_{Y^{n} \mid X^{n}=x^{n}}, x^{n} \in \mathrm{X}^{n}$, as well as $P_{Y^{n}}^{*}$, satisfy $\mathrm{T}_{1}(c)$ for some $c>0$.
Then, for any $\varepsilon \in(0,1 / 2)$, any (n, M, ε)-code \mathcal{C} for T, and any function $f: \mathrm{Y}^{n} \rightarrow \mathbb{R}$ we have

$$
\begin{aligned}
& P_{Y^{n}}^{(\mathcal{C})}\left(\left|f\left(Y^{n}\right)-\mathbb{E}\left[f\left(Y^{* n}\right)\right]\right| \geq r\right) \\
& \leq \frac{4}{\varepsilon} \exp \left(n C-\ln M+a \sqrt{n}-\frac{r^{2}}{8 c\|f\|_{\text {Lip }}^{2}}\right), \forall r \geq 0
\end{aligned}
$$

where $Y^{* n} \sim P_{Y^{n}}^{*}$, and $a \triangleq c(T) \sqrt{\frac{1}{2} \ln \frac{1}{1-2 \varepsilon}}$.

Proof Sketch

Step 1: For each $x^{n} \in \mathrm{X}^{n}$, let $\phi\left(x^{n}\right) \triangleq \mathbb{E}\left[f\left(Y^{n}\right) \mid X^{n}=x^{n}\right]$. Then, by Bobkov-Götze,

$$
\mathbb{P}\left(\left|f\left(Y^{n}\right)-\phi\left(x^{n}\right)\right| \geq r \mid X^{n}=x^{n}\right) \leq 2 \exp \left(-\frac{r^{2}}{2 c\|f\|_{\text {Lip }}^{2}}\right)
$$

Step 2: By restricting to a subcode \mathcal{C}^{\prime} with codewords $x^{n} \in \mathrm{X}^{n}$ satisfying $\phi\left(x^{n}\right) \geq \mathbb{E}\left[f\left(Y^{* n}\right)\right]+r$, we can show that

$$
r \leq\|f\|_{\operatorname{Lip}} \sqrt{2 c\left(n C-\log M^{\prime}+a \sqrt{n}+\log \frac{1}{\varepsilon}\right)}
$$

with $M^{\prime}=M P_{X^{n}}^{(\mathcal{C})}\left(\phi\left(X^{n}\right) \geq \mathbb{E}\left[f\left(Y^{* n}\right)\right]+r\right)$. Solve to get

$$
P_{X^{n}}^{(\mathcal{C})}\left(\left|\phi\left(X^{n}\right)-\mathbb{E}\left[f\left(Y^{* n}\right)\right]\right| \geq r\right) \leq 2 e^{n C-\log M+a \sqrt{n}+\log \frac{1}{\varepsilon}-\frac{r^{2}}{2 c\|f\|_{\text {Lip }}^{2}}}
$$

Step 3: Apply union bound.

Empirical Averages at the Code Output

- Equip Y^{n} with the Hamming metric

$$
d\left(y^{n}, \bar{y}^{n}\right)=\sum_{i=1}^{n} \mathbf{1}\left\{y_{i} \neq \bar{y}_{i}\right\}
$$

- Consider functions of the form

$$
f\left(y^{n}\right)=\frac{1}{n} \sum_{i=1}^{n} f_{i}\left(y_{i}\right)
$$

where $\left|f_{i}\left(y_{i}\right)-f_{i}\left(\bar{y}_{i}\right)\right| \leq L \mathbf{1}\left\{y_{i} \neq \bar{y}_{i}\right\}$ for all i, y_{i}, \bar{y}_{i}. Then $\|f\|_{\text {Lip }} \leq L / n$.

- Since $P_{Y^{n} \mid X^{n}=x^{n}}$ for all x^{n} and $P_{Y^{n}}^{*}$ are product measures on Y^{n}, they all satisfy $\mathrm{T}_{1}(n / 4)$ (by tensorization)
- Therefore, for any (n, M, ε)-code and any such f we have

$$
\begin{aligned}
& P_{Y^{n}}^{(\mathcal{C})}\left(\left|f\left(Y^{n}\right)-\mathbb{E}\left[f\left(Y^{* n}\right)\right]\right| \geq r\right) \\
& \quad \leq \frac{4}{\varepsilon} \exp \left(n C-\log M+a \sqrt{n}-\frac{n r^{2}}{2 L^{2}}\right)
\end{aligned}
$$

Concentration of Measure

Information-Theoretic Converse

- Concentration phenomenon in a nutshell: if a subset of a metric probability space does not have too small of a probability mass, then its blowups will eventually take up most of the probability mass.
- Question: given a set whose blowups eventually take up most of the probability mass, how small can this set be?

This question was answered by Kontoyiannis (1999) as a consequence of a general information-theoretic converse.

Converse Concentration of Measure: The Set-Up

- Let X be a finite set, together with a distortion function $d: \mathrm{X} \times \mathrm{X} \rightarrow \mathbb{R}_{+}$and a mass function $M: \mathrm{X} \rightarrow(0, \infty)$.
- Extend to product space X^{n} :

$$
\begin{aligned}
d_{n}\left(x^{n}, y^{n}\right) & \triangleq \sum_{i=1}^{n} d\left(x_{i}, y_{i}\right) \\
M_{n}\left(x^{n}\right) & \triangleq \prod_{i=1}^{n} M\left(x_{i}\right) \\
M_{n}(A) & \triangleq \sum_{x^{n} \in A} M_{n}\left(x^{n}\right), \quad \forall A \subseteq \mathrm{X}^{n}
\end{aligned}
$$

- Blowups:
$A \subseteq \mathrm{X}^{n} \quad \longrightarrow \quad[A]_{r} \triangleq\left\{x^{n} \in \mathrm{X}^{n}: \min _{y^{n} \in A} d_{n}\left(x^{n}, y^{n}\right) \leq r\right\}$

Converse Concentration of Measure

- Let P be a probability measure on X . Define

$$
\begin{aligned}
R_{n}(\delta) \triangleq \min _{P_{X^{n} Y^{n}}}\left\{I\left(X^{n} ; Y^{n}\right)+\mathbb{E} \log M_{n}\left(Y^{n}\right):\right. \\
\left.P_{X^{n}}=P^{\otimes n}, \mathbb{E}\left[d_{n}\left(X^{n}, Y^{n}\right)\right] \leq n \delta\right\}
\end{aligned}
$$

Theorem (Kontoyiannis). Let $A_{n} \subseteq \mathrm{X}^{n}$ be an arbitrary set. Then

$$
\frac{1}{n} \log M_{n}\left(A_{n}\right) \geq R(\delta)
$$

where

$$
\delta \triangleq \frac{1}{n} \mathbb{E}\left[\min _{y^{n} \in A_{n}} d_{n}\left(X^{n}, y^{n}\right)\right] \quad \text { and } \quad R(\delta) \triangleq \lim _{n \rightarrow \infty} \frac{R_{n}(\delta)}{n} \equiv R_{1}(\delta) .
$$

Remark:

- It can be shown that $R_{1}(\delta)=\inf _{n \geq 1} \frac{R_{n}(\delta)}{n}$.

Proof

- Define the mapping $\varphi_{n}: \mathrm{X}^{n} \rightarrow \mathrm{X}^{n}$ via

$$
\varphi_{n}\left(x^{n}\right) \triangleq \underset{y^{n} \in A_{n}}{\arg \min } d_{n}\left(x^{n}, y^{n}\right)
$$

and let $Y^{n}=\varphi_{n}\left(X^{n}\right), Q_{n}=\mathcal{L}\left(Y^{n}\right)$.

- Then

$$
\begin{aligned}
\log M_{n}\left(A_{n}\right) & =\log \sum_{y^{n} \in A_{n}} M_{n}\left(y^{n}\right) \\
& \geq \log \sum_{y^{n} \in A_{n}: Q_{n}>0} Q_{n}\left(y^{n}\right) \frac{M_{n}\left(y^{n}\right)}{Q_{n}\left(y^{n}\right)} \\
& \geq \sum_{y^{n} \in A_{n}} Q_{n}\left(y^{n}\right) \log \frac{M_{n}\left(y^{n}\right)}{Q_{n}\left(y^{n}\right)} \\
& =-\sum_{y^{n} \in A_{n}} Q_{n}\left(y^{n}\right) \log Q_{n}\left(y^{n}\right)+\sum_{y^{n} \in A_{n}} Q\left(y^{n}\right) \log M_{n}\left(y^{n}\right) \\
& =H\left(Y^{n}\right)+\mathbb{E} \log M\left(Y^{n}\right) \\
& =I\left(X^{n} ; Y^{n}\right)+\mathbb{E} \log M\left(Y^{n}\right) \\
& \geq R_{n}(\delta) .
\end{aligned}
$$

Converse Concentration of Measure

- Consider a sequence of sets $\left\{A_{n}\right\}_{n=1}^{\infty}$ with

$$
(\star) \quad P^{\otimes n}\left(\left[A_{n}\right]_{n \delta}\right) \xrightarrow{n \rightarrow \infty} 1 .
$$

- Apply Kontoyiannis' converse to the mass function $M=P$, to get the following:

Corollary. If the sequence $\left\{A_{n}\right\}$ satisfies (\star), then

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log P^{\otimes n}\left(A_{n}\right) \geq R(\delta)
$$

where the "concentration exponent" is

$$
\begin{aligned}
R(\delta) & =\min _{P_{X Y}}\left\{I(X ; Y)+\mathbb{E} \log P(Y): P_{X}=P, \mathbb{E}[d(X, Y)] \leq \delta\right\} \\
& \equiv-\max _{P_{X Y}}\left\{H(Y \mid X)+D\left(P_{Y} \| P\right): P_{X}=P, \mathbb{E}[d(X, Y)] \leq \delta\right\} .
\end{aligned}
$$

Example of The Concentration Exponent

Theorem (Raginsky-Sason, 2013). Let $P=\operatorname{Bern}(p)$. Then

$$
R(\delta) \begin{cases}\leq-\varphi(p) \delta^{2}-(1-p) h\left(\frac{\delta}{1-p}\right), & \text { if } \delta \in[0,1-p] \\ =\log p, & \text { if } \delta \in[1-p, 1]\end{cases}
$$

where

$$
\varphi(p)=\frac{1}{1-2 p} \log \frac{1-p}{p}
$$

and $h(\cdot)$ is the binary entropy function.

Remarks:

- The upper bound is not tight, but in this case $R(\delta)$ can be evaluated numerically (cf. Kontoyiannis, 2001).
- The proof is by a coupling argument.

Summary

- Three related methods for obtaining sharp concentration inequalities in high dimension:

1. The entropy method
2. Log-Sobolev inequalities
3. Transportation-cost inequalities

- All three methods crucially rely on tensorization:
- Breaking the original high-dimensional problem into low-dimensional pieces, exploiting low-dimensional structure to control entropy locally, assembling local information into a global bound.
- Tensorization is a consequence of independence.
- Applications to information theory:
- Exploit the problem structure to isolate independence (e.g., output distribution of a DMC for any fixed input block).

What We Had to Skip

- Log-Sobolev inequalities and hypercontractivity
- Log-Sobolev inequalities when Herbst fails (e.g., Poisson measures)
- Connections to isoperimetric inequalities
- HWI inequalities: tying together relative entropy, Wasserstein distance, Fisher information
- Concentration inequalities for functions of dependent random variables

For this and more, consult our monograph: M. Raginsky and I. Sason, Concentration of Measure Inequalities in Info.

Theory, Comm. and Coding, FnT, 2nd edition, 2014.

Recent Books and Surveys - Concentration Inequalities

1. N. Alon and J. H. Spencer, The Probabilistic Method, Wiley, 3rd edition, 2008.
2. S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence, Oxford Press, 2013.
3. F. Chung and L. Lu, Complex Graphs and Networks, vol. 106, Regional Conference Series in Mathematics, Wiley, 2006.
4. D. P. Dubhashi and A. Panconesi, Concentration of Measure for the Analysis of Randomized Algorithms, Cambridge Press, 2009.
5. M. Ledoux, The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, vol. 89, AMS, 2001.
6. C. McDiarmid, "Concentration," Probabilistic Methods for Algorithmic Discrete Mathematics, pp. 195-248, Springer, 1998.
7. M. Raginsky and I. Sason, Concentration of Measure Inequalities in Info. Theory, Comm. and Coding, FnT, 2nd edition, 2014.
8. R. van Handel, Probability in High Dimension, lecture notes, 2014.
