Concentration of Measure with Applications in Information Theory, Communications, and Coding

Maxim Raginsky (UIUC) and Igal Sason (Technion)

A Tutorial, Presented at 2015 IEEE International Symposium on Information Theory (ISIT) Hong Kong, June 2015

Part 2 of 2

The Plan

- 1. Prelude: The Chernoff bound
- 2. The entropy method
- 3. Logarithmic Sobolev inequalities
- 4. Transportation cost inequalities
- 5. Some applications

Given:

- X_1, X_2, \ldots, X_n : independent random variables
- $Z = f(X^n)$, for some real-valued f

Problem: derive sharp bounds on the deviation probabilities

$$\mathbb{P}[Z - \mathbb{E}Z \ge t], \qquad \text{for } t \ge 0$$

Benchmark:

$$X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} N(0, \sigma^2)$$

$$Z = f(X^n) = \frac{1}{n} (X_1 + \dots + X_n) - \text{sample mean}$$

$$\mathbb{P}[Z \ge t] \le \exp\left(-\frac{nt^2}{2\sigma^2}\right)$$

Goal:

- extend to other distributions besides Gaussians
- \blacktriangleright extend to nonlinear f

Prelude: The Chernoff Bound

Review: The Chernoff Bound

Define:

- ▶ logarithmic moment-generating function $\psi(\lambda) \triangleq \log \mathbb{E}[e^{\lambda(Z \mathbb{E}Z)}]$
- ▶ its Legendre dual $\psi^*(t) \triangleq \sup_{\lambda \ge 0} \{\lambda t \psi(\lambda)\}$

$$\mathbb{P}[Z - \mathbb{E}Z \ge t] = \mathbb{P}[e^{\lambda(Z - \mathbb{E}Z)} \ge e^{\lambda t}]$$

$$\leq e^{-\lambda t} \mathbb{E}[e^{\lambda(Z - \mathbb{E}Z)}]$$

$$= e^{-\{\lambda t - \psi(\lambda)\}}$$

Markov's inequality

Optimize over λ : $\mathbb{P}[Z - \mathbb{E}Z \ge t] \le e^{-\psi^*(t)}$

Sanity check:

$$Z \sim N(0, \sigma^2) \qquad \psi(\lambda) = \frac{\lambda^2 \sigma^2}{2} \qquad \psi^*(t) = \frac{t^2}{2\sigma^2}$$
$$\mathbb{P}[Z \ge t] \le e^{-t^2/2\sigma^2}$$

Chernoff Bound: Subgaussian Random Variables

Definition. A real-valued r.v. Z is σ^2 -subgaussian if

$$\psi(\lambda) \le \frac{\lambda^2 \sigma^2}{2}$$

Immediate: if Z is σ^2 -subgaussian, then

$$\psi^*(t) = \sup_{\lambda \ge 0} \left\{ \lambda t - \psi(\lambda) \right\}$$
$$\geq \sup_{\lambda \ge 0} \left\{ \lambda t - \lambda^2 \sigma^2 / 2 \right\}$$
$$= t^2 / 2\sigma^2$$

giving the Gaussian tail bound

$$\mathbb{P}[Z - \mathbb{E}Z \ge t] \le e^{-t^2/2\sigma^2}$$

How do we establish subgaussianity?

Review: Hoeffding's Lemma

Any almost surely bounded r.v. is subgaussian:

If there exist $-\infty < a \le b < \infty$ such that $Z \in [a, b]$ a.s., then

$$\psi(\lambda) \le \frac{\lambda^2 (b-a)^2}{8}$$

Corollary. If $Z \in [a, b]$ a.s., then

$$\mathbb{P}[Z - \mathbb{E}Z \ge t] \le \exp\left(-\frac{2t^2}{(b-a)^2}\right)$$

Wassily Hoeffding

Proof (of Corollary). By Hoeffding's lemma, Z is subgaussian with $\sigma^2 = (b-a)^2/4$.

Hoeffding's Lemma: An Alternative Proof

- 1. Assume without loss of generality that $\mathbb{E}Z = 0$.
- 2. Compute the first two derivatives of ψ :

$$\psi'(\lambda) = \frac{\mathbb{E}[Ze^{\lambda Z}]}{\mathbb{E}[e^{\lambda Z}]} \qquad \psi''(\lambda) = \frac{\mathbb{E}[Z^2e^{\lambda Z}]}{\mathbb{E}[e^{\lambda Z}]} - \left(\frac{\mathbb{E}[Ze^{\lambda Z}]}{\mathbb{E}[e^{\lambda Z}]}\right)^2$$

3. Tilted distribution:

$$P = \mathcal{L}(Z) \longmapsto Q \qquad \frac{\mathrm{d}Q}{\mathrm{d}P}(Z) = \frac{e^{\lambda Z}}{\mathbb{E}_P[e^{\lambda Z}]}.$$

Then $\psi'(\lambda) = \mathbb{E}_Q[Z], \ \psi''(\lambda) = \operatorname{Var}_Q[Z].$

4. $Z \in [a, b]$ *P*-a.s. $\Longrightarrow Z \in [a, b]$ *Q*-a.s. $\Longrightarrow \operatorname{Var}_Q[Z] \leq \frac{(b-a)^2}{4}$ 5. Calculus:

$$\psi(\lambda) = \int_0^\lambda \int_0^\tau \psi''(\rho) \,\mathrm{d}\rho \,\mathrm{d}\tau \le \frac{\lambda^2 (b-a)^2}{8}.$$

The Entropy Method

Exponential Tilting and (Relative) Entropy

Back to our setting:

- Z = f(X), X an arbitrary r.v.
- Want to prove subgaussianity of Z, so need to analyze

$$\psi(\lambda) = \log \mathbb{E}[e^{\lambda(Z - \mathbb{E}Z)}] = \log \mathbb{E}[e^{\lambda(f(X) - \mathbb{E}f(X))}].$$

• Let $P = \mathcal{L}(X)$, introduce tilted distribution $P^{\lambda f}$:

$$\frac{\mathrm{d}P^{\lambda f}}{\mathrm{d}P}(X) = \frac{e^{\lambda f(X)}}{\mathbb{E}[e^{\lambda f(X)}]}$$

• We will relate $\psi(\lambda)$ to the relative entropy $D(P^{\lambda f} || P)$.

Exponential Tilting and (Relative) Entropy

• Tilting of
$$P = \mathcal{L}(X)$$
:

$$\frac{\mathrm{d}P^{\lambda f}}{\mathrm{d}P}(X) = \frac{e^{\lambda f(X)}}{\mathbb{E}[e^{\lambda f(X)}]} \equiv \frac{e^{\lambda(f(X) - \mathbb{E}f(X))}}{e^{\psi(\lambda)}}.$$

▶ Relative entropy:

$$D(P^{\lambda f} || P) = \int dP^{\lambda f} \log \frac{dP^{\lambda f}}{dP}$$

= $\int dP^{\lambda f} \left(\lambda (f - \mathbb{E}_P f) - \psi(\lambda)\right)$
= $\frac{\lambda \mathbb{E}_P[(f - \mathbb{E}_P f)e^{\lambda (f - \mathbb{E}_P f)}]}{e^{\psi(\lambda)}} - \psi(\lambda)$
= $\lambda \psi'(\lambda) - \psi(\lambda)$

• With a bit of foresight,

$$\lambda \psi'(\lambda) - \psi(\lambda) = \lambda^2 \left(\frac{\psi'(\lambda)}{\lambda} - \frac{\psi(\lambda)}{\lambda^2} \right) = \lambda^2 \frac{\mathrm{d}}{\mathrm{d}\lambda} \left(\frac{\psi(\lambda)}{\lambda} \right)$$

The Herbst Argument

► Tilting of
$$P = \mathcal{L}(X)$$
: $\frac{\mathrm{d}P^{\lambda f}}{\mathrm{d}P}(X) = \frac{e^{\lambda f(X)}}{\mathbb{E}[e^{\lambda f(X)}]}$

▶ Relative entropy:

$$D(P^{\lambda f} \| P) = \lambda^2 \frac{\mathrm{d}}{\mathrm{d}\lambda} \left(\frac{\psi(\lambda)}{\lambda} \right)$$

► Since $\lim_{\lambda \to 0} \psi(\lambda)/\lambda = 0$ (by l'Hôpital), we have

$$\psi(\lambda) = \lambda \int_0^\lambda \frac{D(P^{\rho f} \| P)}{\rho^2} \,\mathrm{d}\rho$$

• Suppose now that $P = \mathcal{L}(X)$ and f are such that

$$D(P^{\rho f} \| P) \le \frac{\rho^2 \sigma^2}{2}, \qquad \forall \rho \ge 0$$

for some σ^2 . Then

$$\psi(\lambda) \le \lambda \int_0^\lambda \frac{\rho^2 \sigma^2}{2\rho^2} \,\mathrm{d}\rho = \frac{\lambda^2 \sigma^2}{2}.$$

The Herbst Argument

Lemma (Herbst, 1975). Suppose that Z = f(X) is such that

$$D(P^{\lambda f} \| P) \le \frac{\lambda^2 \sigma^2}{2}, \qquad \forall \lambda \ge 0.$$

Then Z is σ^2 -subgaussian, and so

$$\mathbb{P}[f(X) - \mathbb{E}f(X) \ge t] \le e^{-t^2/2\sigma^2}, \qquad \forall t \ge 0.$$

Ira Herbst

For the sake of completeness, we ... prove a theorem which states roughly that the potential of an intrinsically hypercontractive Schrödinger operator must increase at least quadratically at infinity. ... [I]ts complete proof requires information in an unpublished letter of 1975 from I. Herbst to L. Gross. [C]ertain steps in the argument ... can be written down abstractly.

— from a 1984 paper by B. Simon and E.B. Davies

The Herbst Converse

Lemma (R. van Handel, 2014). Suppose
 Z=f(X) is $\sigma^2/4\mbox{-subgaussian}.$ Then

$$D(P^{\lambda f} \| P) \le \frac{\lambda^2 \sigma^2}{2}, \qquad \forall \lambda \ge 0.$$

Proof. Let $\widetilde{\mathbb{E}}[\cdot] \triangleq \mathbb{E}_{P^{\lambda f}}[\cdot]$.

Ι

$$\begin{split} \mathcal{D}(P^{\lambda f} \| P) &= \widetilde{\mathbb{E}} \left[\log \frac{\mathrm{d}P^{\lambda f}}{\mathrm{d}P} \right] \stackrel{(\text{Jensen})}{\leq} \log \widetilde{\mathbb{E}} \left[\frac{\mathrm{d}P^{\lambda f}}{\mathrm{d}P} \right] \\ &= \log \widetilde{\mathbb{E}} \left[\frac{e^{\lambda (f(X) - \mathbb{E}f(X))}}{\mathbb{E}[e^{\lambda (f(X) - \mathbb{E}f(X))}]} \right] \\ &= \log \mathbb{E} \left[e^{2\lambda (f - \mathbb{E}f)} \right] - \log \left\{ \underbrace{\mathbb{E}[e^{\lambda (f - \mathbb{E}f)}]}_{\geq 1} \right\}^2 \\ &\leq \frac{(2\lambda)^2 \sigma^2 / 4}{2} = \frac{\lambda^2 \sigma^2}{2} \end{split}$$

The Herbst Argument: What Is It Good For?

- Subgaussianity of Z = f(X) is equivalent to $D(P^{\lambda f} || P) = O(\lambda^2)$, but what does that give us?
- ▶ Recall: we are interested in *high-dimensional* settings

$$Z = f(X^n) = f(X_1, \dots, X_n)$$

X₁, ..., X_n — independent r.v.'s

Thus, P is a product measure:

$$P = P_1 \otimes P_2 \otimes \ldots \otimes P_n, \qquad P_i \triangleq \mathcal{L}(X_i)$$

▶ The relative entropy *tensorizes*!! — we can break the (hard) *n*-dimensional problem into *n* (hopefully) easier 1-dimensional problems.

Tensorization

$$X_1, \ldots, X_n$$
 — independent r.v.'s
 $P = \mathcal{L}(X^n) = P_1 \otimes \ldots \otimes P_n, \qquad P_i = \mathcal{L}(X_i)$

▶ Recall the Efron–Stein–Steele inequality:

$$\operatorname{Var}_{P}[f(X^{n})] \leq \sum_{i=1}^{n} \mathbb{E}\left[\operatorname{Var}_{P}[f(X^{n})|\bar{X}^{i}]\right]$$

— tensorization of variance

J

• Tensorization of relative entropy: for an *arbitrary* probability measure Q on X^n ,

$$D(Q||P) \le \sum_{i=1}^{n} \underbrace{D(Q_{X_i|\bar{X}^i}||P_{X_i|\bar{X}^i}|Q_{\bar{X}^i})}_{\text{conditional divergence}}$$

— independence of the X_i 's is key

Tensorization: A Quick Proof D(Q||P) $= \sum D(Q_{X_i|X^{i-1}} \| P_{X_i|X^{i-1}} | Q_{X^{i-1}})$ (chain rule) $=\sum_{i=1}^{n} \mathbb{E}_{Q} \left[\log \frac{\mathrm{d}Q_{X_{i}|X^{i-1}}}{\mathrm{d}P_{X_{i}|X^{i-1}}} \right]$ $=\sum_{i=1}^{n} \mathbb{E}_Q \left[\log \frac{\mathrm{d}Q_{X_i|X^{i-1}}}{\mathrm{d}Q_{X_i|\bar{X}^i}} \right] + \sum_{i=1}^{n} \mathbb{E}_Q \left[\log \frac{\mathrm{d}Q_{X_i|\bar{X}^i}}{\mathrm{d}P_{X_i|X^{i-1}}} \right]$ $= -\sum_{i=1}^{n} \mathbb{E}_{Q} \left[\log \frac{\mathrm{d}Q_{X_{i}|\bar{X}^{i}}}{\mathrm{d}Q_{X_{i}|X^{i-1}}} \right] + \sum_{i=1}^{n} \mathbb{E}_{Q} \left[\log \frac{\mathrm{d}Q_{X_{i}|\bar{X}^{i}}}{\mathrm{d}P_{X_{i}+\bar{Y}^{i}}} \right] \quad (\mathrm{independence})$ $= -\sum_{i=1}^{n} D(Q_{X_{i}|\bar{X}^{i}} \| Q_{X_{i}|X^{i-1}} | Q_{\bar{X}^{i}}) + \sum_{i=1}^{n} D(Q_{X_{i}|\bar{X}^{i}} \| P_{X_{i}} | Q_{\bar{X}^{i}})$ $\leq \sum_{i=1}^{n} D(Q_{X_i|\bar{X}^i} \| P_{X_i}| Q_{\bar{X}^i})$

 $\equiv D^{-}(Q||P) \qquad -\text{erasure divergence (Verdú-Weissman, 2008)}$

Tensorization and Tilting

▶ Recall: we are interested in D(Q||P), where

$$P = P_1 \otimes \ldots \otimes P_n, \qquad \mathrm{d}Q = \frac{e^{\lambda f}}{\mathbb{E}_P[e^{\lambda f}]} \,\mathrm{d}P$$

► Then

$$\frac{\mathrm{d}Q_{\bar{X}^{i}}}{\mathrm{d}P_{\bar{X}^{i}}}(\bar{x}^{i}) = \int_{\mathsf{X}} P_{i}(\mathrm{d}\boldsymbol{x}_{i}) \frac{e^{\lambda f(x_{1},\dots,x_{i-1},\boldsymbol{x}_{i},x_{i+1},\dots,x_{n})}}{\mathbb{E}_{P}[e^{\lambda f(X^{n})}]}$$
$$= \frac{\mathbb{E}_{P}[e^{\lambda f(X^{n})}|\bar{X}^{i}=\bar{x}^{i}]}{\mathbb{E}_{P}[e^{\lambda f(X^{n})}]}$$

therefore

$$\frac{\mathrm{d}Q_{X_i|\bar{X}^i=\bar{x}^i}}{\mathrm{d}P_{X_i}}(\boldsymbol{x_i}) = \frac{e^{\lambda f(x_1,\dots,x_{i-1},\boldsymbol{x_i},x_{i+1},\dots,x_n)}}{\mathbb{E}_P[e^{\lambda f(x_1,\dots,x_{i-1},X_i,x_{i+1},\dots,x_n)}]}$$

— remember, \bar{x}^i is fixed.

Tensorization and Tilting

$$\frac{\mathrm{d}P_{X_i|\bar{X}^i=\bar{x}^i}^{\lambda f}}{\mathrm{d}P_{X_i}}(x_i) = \frac{e^{\lambda f(x_1,\dots,x_{i-1},x_i,x_{i+1},\dots,x_n)}}{\mathbb{E}_{P_i}[e^{\lambda f(x_1,\dots,x_{i-1},X_i,x_{i+1},\dots,x_n)}]}$$

• For a fixed \bar{x}^i , define the function

$$\begin{aligned} f_i(\cdot|\bar{x}^i) &: \mathsf{X} \to \mathbb{R} \\ f_i(\boldsymbol{x_i}|\bar{x}^i) &= f(x_1, \dots, x_{i-1}, \boldsymbol{x_i}, x_{i+1}, \dots, x_n) \\ &= f_i(\boldsymbol{x_i}) \end{aligned}$$
(just shorthand, always remember \bar{x}^i)

▶ Now observe that $Q_{X_i|\bar{X}^i=\bar{x}^i}$ is the tilting of $P_i \equiv P_{X_i}$:

$$\mathrm{d}Q_{X_i|\bar{X}^i=\bar{x}^i} = \frac{e^{\lambda f_i}}{\mathbb{E}_{P_i}[e^{\lambda f_i}]} \,\mathrm{d}P_i$$

Tensorization and Tilting

Lemma. If X_1, \ldots, X_n are independent r.v.'s with joint law $P = P_1 \otimes \ldots \otimes P_n$, where $P_i = \mathcal{L}(X_i)$, then for any $f : \mathsf{X}^n \to \mathbb{R}$

$$D(P^{\lambda f} \| P) \le \sum_{i=1}^{n} \widetilde{\mathbb{E}} \left[D(P_i^{\lambda f_i} \| P_i) \right],$$

where $\widetilde{\mathbb{E}}[\cdot] \triangleq \mathbb{E}_{P^{\lambda f}}[\cdot]$ and $f_i(\cdot) = f_i(\cdot|\bar{X}^i)$ for each *i*.

Proof.

$$D(P^{\lambda f} \| P) \leq \sum_{i=1}^{n} D(P_{X_i|\bar{X}^i}^{\lambda f} \| P_{X_i}| P_{\bar{X}^i}^{\lambda f})$$

$$= \sum_{i=1}^{n} \widetilde{\mathbb{E}} \left[\log \frac{\mathrm{d}P_{X_i|\bar{X}^i}^{\lambda f}}{\mathrm{d}P_{X_i}} \right]$$

$$= \sum_{i=1}^{n} \widetilde{\mathbb{E}} \left[\log \frac{\mathrm{d}P_i^{\lambda f_i}}{\mathrm{d}P_i} \right] = \sum_{i=1}^{n} \widetilde{\mathbb{E}} \left[D(P_i^{\lambda f_i} \| P_i) \right] \quad \blacksquare$$

The Entropy Method: Divide and Conquer

▶ Want to derive a subgaussian tail bound

$$\mathbb{P}[f(X^n) - \mathbb{E}f(X^n) \ge t] \le e^{-t^2/2\sigma^2}, \qquad \forall t \ge 0$$

where X_1, \ldots, X_n are independent r.v.'s.

Suppose we can prove there exist constants c_1, \ldots, c_n , such that

$$(\star) \qquad D(P_i^{\lambda f_i} || P_i) \le \frac{\lambda^2 c_i^2}{2}, \qquad i \in \{1, \dots, n\}.$$

Then

$$D(P^{\lambda f} \| P) \stackrel{\text{(tensor.)}}{\leq} \frac{\lambda^2 \sum_{i=1}^n c_i^2}{2} \quad \stackrel{\text{(Herbst)}}{\Longrightarrow} \quad \sigma^2 = \sum_{i=1}^n c_i^2$$

Now we "just" need to prove $(\star)!!$

Logarithmic Sobolev Inequalities

Log-Sobolev in a Nutshell

- Goal: control the relative entropy $D(P^{\lambda f} || P)$.
- ► A *log-Sobolev inequality* ties together:
 - (i) the underlying probability measure ${\cal P}$
 - (ii) a function class \mathcal{A} (containing f of interest)
 - (iii) an "energy" functional $E: \mathcal{A} \to \mathbb{R}$ such that

$$E(\alpha f) = \alpha E(f), \qquad \forall f \in \mathcal{A}, \, \alpha \ge 0$$

and looks like this:

$$D(P^f || P) \le \frac{c}{2} E^2(f), \quad \forall f \in \mathcal{A}.$$

• In that case, if $E(f) \leq L$, then

$$D(P^{\lambda f} \| P) \le \frac{c}{2} E^2(\lambda f) = \frac{c}{2} \lambda^2 E^2(f) \le \frac{\lambda^2 c L^2}{2}$$

• The name comes from an analogy with *Sobolev inequalities* in functional analysis.

The Bernoulli Log-Sobolev Inequality

Theorem (Gross, 1975). Let X_1, \ldots, X_n be i.i.d. Bern(1/2) random variables. Then, for any function $f : \{0, 1\}^n \to \mathbb{R}$,

$$D(P^{f} || P) \le \frac{1}{8} \frac{\mathbb{E}[|Df(X^{n})|^{2} e^{f(X^{n})}]}{\mathbb{E}[e^{f(X^{n})}]},$$

where

$$Df(x^n) \triangleq \sqrt{\sum_{i=1}^n |f(x^n) - f(\underbrace{x^n \oplus e_i}_{\text{flip ith bit}})|^2}$$

Leonard Gross

and $\mathbb{E}[\cdot]$ is w.r.t. $P = (\text{Bern}(1/2))^{\otimes n}$.

Remarks:

- This is not the original form of the inequality from Gross' 1975 paper, but they are equivalent.
- Note that $D(\lambda f) = \lambda D(f)$ for all $\lambda \ge 0$.

Bernoulli LSI: Proof Sketch

- Consider first n = 1 and $f : \{0, 1\} \to \mathbb{R}$ with a = f(0) and b = f(1).
- ▶ In that case, the log-Sobolev inequality reads

$$\frac{e^a}{e^a + e^b} \log \frac{2e^a}{e^a + e^b} + \frac{e^b}{e^a + e^b} \log \frac{2e^b}{e^a + e^b} \le \frac{1}{8}(b-a)^2.$$

Proof: Elementary (but tedious) exercise in calculus.

Tensorization:

$$\begin{split} D(P^{f} \| P) &\leq \sum_{i=1}^{n} \widetilde{\mathbb{E}}[D(P_{i}^{f_{i}} \| P_{i})] \quad \text{where } \widetilde{\mathbb{E}}[h(X^{n})] = \frac{\mathbb{E}[h(X^{n})e^{f(X^{n})}]}{\mathbb{E}[e^{f(X^{n})}]} \\ &\leq \frac{1}{8} \sum_{i=1}^{n} \widetilde{\mathbb{E}}\left[\left| f(X^{i-1}, 0, X_{i+1}^{n}) - f(X^{i-1}, 1, X_{i+1}^{n}) \right|^{2} \right] \\ &= \frac{1}{8} \widetilde{\mathbb{E}}\left[|Df(X^{n})|^{2} \right] = \frac{1}{8} \frac{\mathbb{E}[|Df(X^{n})|^{2}e^{f(X^{n})}]}{\mathbb{E}[e^{f(X^{n})}]} \quad \blacksquare$$

The Gaussian Log-Sobolev Inequality

Theorem (Gross, 1975). Let X_1, \ldots, X_n be i.i.d. N(0, 1) random variables. Then, for any smooth function $f : \mathbb{R}^n \to \mathbb{R}$,

$$D(P^f \| P) \le \frac{1}{2} \frac{\mathbb{E}\left[\| \nabla f(X^n) \|_2^2 e^{f(X^n)} \right]}{\mathbb{E}[e^{f(X^n)}]}$$

where all expectations are w.r.t. $P = \mathcal{L}(X^n) = N(0, I_n).$

Leonard Gross

Remarks:

- This is not the original form of the inequality from Gross' 1975 paper, but they are equivalent.
- ▶ Equivalent forms of Gaussian LSI have been obtained independently by A. Stam (1959) and by P. Federbush (1969).
- ▶ The contribution of Stam (via the entropy power inequality) was first pointed out by E.A. Carlen in 1991.

Proof(s) of the Gaussian LSI

- ▶ There are *many* ways of proving the Gaussian log-Sobolev inequality.
- ▶ Original proof by Gross: apply the Bernoulli LSI to

$$f\left(\frac{X_1 + \ldots + X_n - n/2}{\sqrt{n/4}}\right), \qquad X_i \stackrel{\text{i.i.d.}}{\sim} \text{Bern}(1/2)$$

then use the Central Limit Theorem:

$$\frac{X_1 + \ldots + X_n - n/2}{\sqrt{n/4}} \rightsquigarrow N(0, 1) \qquad \text{as } n \to \infty$$

- via Markov semigroups
- ▶ via hypercontractivity (E. Nelson)
- ▶ via Stam's inequality for entropy power and Fisher info.
- ▶ via I-MMSE relation (cf. Raginsky and Sason)

▶ ...

Application of Gaussian LSI

Theorem (Tsirelson–Ibragimov–Sudakov, 1976). Let X_1, \ldots, X_n be independent N(0, 1) random variables. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function which is *L*-Lipschitz:

$$|f(x^n) - f(y^n)| \le L ||x^n - y^n||_2, \qquad \forall x^n, y^n \in \mathbb{R}^n.$$

Then $Z = f(X^n)$ is L^2 -subgaussian:

$$\log \mathbb{E}[e^{\lambda(f(X^n) - \mathbb{E}f(X^n))}] \le \frac{\lambda^2 L^2}{2}, \qquad \forall \lambda \ge 0.$$

Remarks:

- ▶ The original proof did not rely on the Gaussian LSI.
- It is a striking result: f can be an arbitrary nonlinear function, and the subgaussian constant is *independent* of the dimension n.

Tsirelson–Ibragimov–Sudakov: Proof via LSI

- ▶ By an approximation argument, can assume that f is differentiable. Since it is *L*-Lipschitz, $\|\nabla f\|_2 \leq L$.
- By the Gaussian LSI, for any $\lambda \ge 0$,

$$D(P^{\lambda f} \| P) \leq \frac{1}{2} \frac{\mathbb{E}\left[\|\lambda \nabla f(X^n)\|_2^2 e^{\lambda f(X^n)} \right]}{\mathbb{E}\left[e^{\lambda f(X^n)} \right]}$$
$$= \frac{\lambda^2}{2} \frac{\mathbb{E}\left[\|\nabla f(X^n)\|_2^2 e^{\lambda f(X^n)} \right]}{\mathbb{E}\left[e^{\lambda f(X^n)} \right]}$$
$$\leq \frac{\lambda^2 L^2}{2}.$$

▶ By the Herbst argument,

$$\log \mathbb{E}\left[e^{\lambda(f(X^n) - \mathbb{E}f(X^n))}\right] \le \frac{\lambda^2 L^2}{2}$$

A Gaussian Concentration Bound

The Tsirelson–Ibragimov–Sudakov inequality gives us

Corollary. Let $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} N(0,1)$, and let $f : \mathbb{R}^n \to \mathbb{R}$ be an *L*-Lipschitz function. Then

$$\mathbb{P}\left[f(X^n) - \mathbb{E}f(X^n) \ge t\right] \le e^{-t^2/2L^2}$$

Proof. Use the Chernoff bound.

Remarks:

- This is an example of *dimension-free concentration*: the tail bound does not depend on n.
- ▶ Applying the same result to -f and using the union bound, we get

$$\mathbb{P}\left[\left|f(X^{n}) - \mathbb{E}f(X^{n})\right| \ge t\right] \le 2e^{-t^{2}/2L^{2}}$$

Deriving Log-Sobolev (1)

- ▶ Are there *systematic ways* to derive log-Sobolev?
- ▶ The usual (probabilistic) approach (a subtle art):
 - ▶ Construct a continuous-time Markov process $\{X_t\}_{t \in \geq 0}$ with stationary distribution P and Markov generator

$$\mathbb{L}f(x) \triangleq \lim_{t \downarrow 0} \frac{\mathbb{E}[f(X_t)|X_0 = x] - f(x)}{t}$$

 \blacktriangleright Use the structure of \mathbbm{L} to obtain an inequality of the form

$$D(P^f \| P) \le \frac{c}{2} \frac{\mathcal{E}(e^f, f)}{\mathbb{E}_P[e^f]},$$

where $\mathcal{E}(g,h) \triangleq -\mathbb{E}_P[f(X)\mathbb{L}g(X)]$ is the Dirichlet form. • Extract Γ by looking for a bound of the form

$$\mathcal{E}(e^f, f) \le \mathbb{E}_P[|\Gamma f(X)|^2 e^{f(X)}]$$

 Different choices of L (for the same P) will yield different Γ's, and hence different log-Sobolev inequalities.

Deriving Log-Sobolev (2)

- ▶ An alternative (information-theoretic) approach: based on a recent paper of A. Maurer (2012).
- Exploits a representation of $D(P^{\lambda f} || P)$ in terms of the variance of f(X) under the tilted distributions

$$\mathrm{d}P^{sf} = \frac{e^{sf}}{\mathbb{E}_P[e^{sf}]} \,\mathrm{d}P.$$

▶ An interpretation in terms of statistical physics: think of -f as energy and of $s \ge 0$ as inverse temperature. Then

$$\operatorname{Var}^{sf}[f(X)] \triangleq \frac{\mathbb{E}_P[f^2(X)e^{sf(X)}]}{\mathbb{E}_P[e^{sf(X)}]} - \left(\frac{\mathbb{E}_P[f(X)e^{sfX()}]}{\mathbb{E}_P[e^{sf(X)}]}\right)^2$$

gives the "thermal fluctuations" of -f at temp. T = 1/s. • Infinite-temperature limit $(T \to \infty)$: recover $\operatorname{Var}_P[f(X)]$.

Entropy via Thermal Fluctuations

Theorem (A. Maurer, 2012). Let X be a random variable with law P. Then for any real-valued function f and any $\lambda \ge 0$

$$D(P^{\lambda f} \| P) = \int_0^\lambda \int_t^\lambda \operatorname{Var}^{sf}[f(X)] \, \mathrm{d}s \, \mathrm{d}t,$$

where $\operatorname{Var}^{sf}[f(X)]$ is the variance of f(X)under the tilted distribution P^{sf} .

Andreas Maurer

Recall:

$$\operatorname{Var}^{sf}[f(X)] = \frac{\mathbb{E}[f^2(X)e^{sf(X)}]}{\mathbb{E}[e^{sf(X)}]} - \left(\frac{\mathbb{E}[f(X)e^{sf(X)}]}{\mathbb{E}[e^{sf(X)}]}\right)^2 \equiv \psi''(s)$$

where $\psi(s) = \log \mathbb{E}[e^{s(f(X) - \mathbb{E}f(X))}]$

Proof

 \blacktriangleright Recall

$$D(P^{\lambda f} \| P) = \lambda \psi'(\lambda) - \psi(\lambda), \quad \text{where } \psi(\lambda) = \log \mathbb{E}[e^{\lambda (f - \mathbb{E}f)}].$$

• Since $\psi(0) = \psi'(0) = 0$, we have

$$\lambda \psi'(\lambda) = \int_0^\lambda \psi'(\lambda) \, \mathrm{d}t$$
$$\psi(\lambda) = \int_0^\lambda \psi'(t) \, \mathrm{d}t.$$

Substitute:

$$D(P^{\lambda f} || P) = \int_0^\lambda (\psi'(\lambda) - \psi'(t)) dt$$
$$= \int_0^\lambda \int_t^\lambda \psi''(s) ds dt$$
$$= \int_0^\lambda \int_t^\lambda \operatorname{Var}^{sf}[f(X)] ds dt.$$

From Thermal Fluctuations to Log-Sobolev

Theorem. Let \mathcal{A} be a class of functions of X, and suppose that there is a mapping $\Gamma : \mathcal{A} \to \mathbb{R}$, such that:

- 1. For all $f \in \mathcal{A}$ and $\alpha \ge 0$, $\Gamma(\alpha f) = \alpha \Gamma(f)$.
- 2. There exists a constant c > 0, such that

$$\operatorname{Var}^{\lambda f}[f(X)] \le c |\Gamma(f)|^2, \quad \forall f \in \mathcal{A}, \, \lambda \ge 0.$$

Then

$$D(P^{\lambda f} \| P) \le \frac{\lambda^2 c |\Gamma(f)|^2}{2}, \qquad \forall f \in \mathcal{A}, \lambda \ge 0.$$

Proof.

$$D(P^{\lambda f} || P) \le c |\Gamma(f)|^2 \int_0^\lambda \int_t^\lambda \mathrm{d}s \,\mathrm{d}t = \frac{c |\Gamma(f)|^2 \lambda^2}{2}$$

From Thermal Fluctuations to Log-Sobolev: Example 1 Let's use Maurer's method to derive the Bernoulli LSI.

For any $f: \{0,1\} \to \mathbb{R}$, define

$$\Gamma(f) \triangleq |f(0) - f(1)|.$$

• Since f is obviously bounded, for every $s \ge 0$ we have

$$\operatorname{Var}^{sf}[f(X)] \le \frac{(f(0) - f(1))^2}{4} \equiv \frac{|\Gamma f|^2}{4}$$

► Finally,

$$D(P^f || P) = \int_0^1 \int_t^1 \operatorname{Var}^{sf}[f(X)] \, \mathrm{d}s \, \mathrm{d}t$$
$$\leq \frac{|\Gamma(f)^2}{4} \int_0^1 \int_t^1 \mathrm{d}s \, \mathrm{d}t$$
$$= \frac{1}{8} |\Gamma f|^2.$$

For
$$n > 1$$
, use tensorization.
From Thermal Fluctuations to Log-Sobolev: Example 2

Let's use Maurer's method to derive McDiarmid's inequality.

- We will use tensorization, so let's first consider n = 1.
- We are interested in all functions $f: \mathsf{X} \to \mathbb{R}$, such that

$$\sup_{x \in \mathsf{X}} f(x) - \inf_{x \in \mathsf{X}} f(x) \le c$$

for some $c < \infty$.

- ► Define $\Gamma(f) \triangleq \sup_{x \in \mathsf{X}} f(x) \inf_{x \in \mathsf{X}} f(x)$.
- ► Any f satisfies $f(X) \in [\inf f, \sup f]$. If $\Gamma(f) < \infty$, then $[\inf f, \sup f]$ is a bounded interval.
- In that case, for any P,

$$\operatorname{Var}^{sf}[f(X)] \le \frac{(\sup f - \inf f)^2}{4} = \frac{|\Gamma(f)|^2}{4}.$$

Using the integral representation of the divergence, we get

$$D(P^{\lambda f} \| P) \le \frac{\lambda^2 c^2}{8}, \quad \text{if } \sup f - \inf f \le c$$

Proof of McDiarmid (cont.)

▶ So far, we have obtained

(*)
$$D(P^{\lambda f} || P) \le \frac{\lambda^2 c^2}{8}$$
, if $\sup f - \inf f \le c$.

• Let $X_i \sim P_i, 1 \leq i \leq n$, be independent r.v.'s.

▶ Consider $f : X^n \to \mathbb{R}$ that has bounded differences:

$$\sup_{\bar{x}^{i}} \left(\sup_{x_{i}} f(x^{i-1}, x_{i}, x^{n}_{i+1}) - \inf_{x_{i}} f(x^{i-1}, x_{i}, x^{n}_{i+1}) \right) \le c_{i}$$

for all *i*, for some constants $0 \le c_1, \ldots, c_n < \infty$.

For each *i*, apply (\star) to $f_i(\cdot) \equiv f(x^{i-1}, \cdot, x_{i+1}^n)$:

$$D(P_i^{\lambda f_i} \| P_i) \le \frac{1}{8} \left(\sup_{x_i} f(x^{i-1}, x_i, x_{i+1}^n) - \inf_{x_i} f(x^{i-1}, x_i, x_{i+1}^n) \right)^2$$

[recall, $f_i(\cdot)$ depends on \bar{x}^i].

Proof of McDiarmid (cont.)

• Now we tensorize: for $P = P_1 \otimes \ldots \otimes P_n$,

$$D(P^{\lambda f} || P)$$

$$\leq \sum_{i=1}^{n} \widetilde{\mathbb{E}} \left[D(P_i^{\lambda f_i} || P_i) \right]$$

$$\leq \frac{\lambda^2}{8} \widetilde{\mathbb{E}} \left[\underbrace{\sum_{i=1}^{n} \left(\sup_{x_i} f(X^{i-1}, x_i, X_{i+1}^n) - \inf_{x_i} f(X^{i-1}, x_i, X_{i+1}^n) \right)^2}_{=|\Gamma(f)(X^n)|^2} \right]$$

Theorem. Let $X_1, \ldots, X_n \in \mathsf{X}$ be independent r.v.'s with joint law $P = P_1 \otimes \ldots \otimes P_n$. Then, for any function $f : \mathsf{X}^n \to \mathbb{R}$,

$$D(P^{f} || P) \leq \frac{1}{8} \left\| |\Gamma f|^{2} \right\|_{\infty},$$

where

$$\Gamma f(x^n) = \left\{ \sum_{i=1}^n \left(\underbrace{\sup_{x_i} f(x^{i-1}, x_i, x_{i+1}^n) - \inf_{x_i} f(x^{i-1}, x_i, x_{i+1}^n)}_{=\Gamma_i f(\bar{x}^i)} \right)^2 \right\}^{1/2}$$

Remarks:

• McDiarmid: if f has bounded differences with c_1, \ldots, c_n , then

$$f(X^n)$$
 is $\frac{\sum_{i=1}^n c_i^2}{4}$ -subgaussian

► Since $\||\Gamma f|^2\|_{\infty} \leq \sum_{i=1}^n \||\Gamma_i f|^2\|_{\infty}$, the above theorem is stronger than McDiarmid.

Transportation-Cost Inequalities

Concentration and the Lipschitz Property

A common theme:

• Let $f : \mathbb{R}^n \to \mathbb{R}$ be 1-Lipschitz w.r.t. the Euclidean norm:

$$|f(x^{n}) - f(y^{n})| \le ||x^{n} - y^{n}||_{2}.$$

Let X_1, \ldots, X_n be i.i.d. N(0, 1) r.v.'s. Then

$$\mathbb{P}\left[|f(X^n) - \mathbb{E}f(X^n)| \ge t\right] \le 2e^{-t^2/2}.$$

▶ Let $f : \mathsf{X}^n \to \mathbb{R}$ be 1-Lipschitz w.r.t. a weighted Hamming metric:

$$|f(x^n) - f(y^n)| \le d_{\mathbf{c}}(x^n, y^n), \qquad d_{\mathbf{c}}(x^n, y^n) \triangleq \sum_{i=1}^n c_i \mathbf{1}\{x_i \ne y_i\}$$

(this is equivalent to bounded differences). Let X_1, \ldots, X_n be independent r.v.'s. Then

$$\mathbb{P}\left[\left|f(X^n) - \mathbb{E}f(X^n)\right| \ge t\right] \le 2\exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right).$$

The Setting: Probability in Metric Spaces

- Let (X, d) be a metric space.
- ▶ A function $f : \mathsf{X} \to \mathbb{R}$ is *L*-Lipschitz (w.r.t. d) if

 $|f(x) - f(y)| \le Ld(x, y), \quad \forall x, y \in \mathsf{X}.$

▶ Notation: $Lip_L(X, d)$ – the class of all *L*-Lipschitz functions.

Question: What conditions does a probability measure P on X have to satisfy, so that f(X), $X \sim P$, is σ^2 -subgaussian for every $f \in \text{Lip}_1(X, d)$?

Some Definitions

• A coupling of two probability measures P and Q on X is any probability measure π on X × X, such that

$$(X,Y) \sim \pi \implies X \sim P, Y \sim Q.$$

• $\Pi(P,Q)$: family of all couplings of P and Q.

Definition. For $p \ge 1$, the L^p Wasserstein distance between P and Q is given by

$$W_p(P,Q) \triangleq \inf_{\pi \in \Pi(P,Q)} \left(\mathbb{E}_{\pi}[d^p(X,Y)] \right)^{1/p}$$

Kantorovich–Rubinstein formula. For any two P, Q,

$$W_1(P,Q) = \sup_{f \in \operatorname{Lip}_1(\mathsf{X},d)} |\mathbb{E}_P[f] - \mathbb{E}_Q[f]|.$$

Optimal Transportation

Monge-Kantorovich Optimal Transportation Problem. Given two probability measures P, Qon a common space X and a cost function $c: X \times X \to \mathbb{R}_+,$

minimize $\mathbb{E}_{\pi}[c(X,Y)]$ over all couplings $\pi \in \Pi(P,Q)$.

Interpretation:

- P and Q: initial and final distributions of some material (say, sand) in space
- c(x, y): cost of transporting a grain of sand from location x to location y
- $\pi(dy|x)$: randomized strategy for transporting from location x
- Wasserstein distances: transportation cost is some power of a metric

Gaspard Monge

Leonid Kantorovich

Transportation Cost Inequalities

Definition. A probability measure P on a metric space (X, d) satisfies an L^p transportation cost inequality with constant c, or $T_p(c)$ for short, if

$$W_p(P,Q) \le \sqrt{2cD(Q\|P)}, \qquad \forall Q.$$

Preview:

- We will be primarily concerned with $T_1(c)$ and $T_2(c)$ inequalities.
- ▶ $T_1(c)$ is easier to work with, while $T_2(c)$ has strong properties (dimension-free concentration).

Examples of TC Inequalities: 1

▶ X: arbitrary space with trivial metric d(x, y) = 1{x ≠ y}
▶ Then

$$W_1(P,Q) = \inf_{\pi \in \Pi(P,Q)} \mathbb{E}_{\pi}[\mathbf{1}\{X \neq Y\}]$$

$$\equiv \inf_{\pi \in \Pi(P,Q)} \mathbb{P}_{\pi}[X \neq Y]$$

$$= \|P - Q\|_{\mathrm{TV}} - \text{total variation distance}$$

(proof by explicit construction of optimal coupling)

• Any P satisfies $T_1(1/4)$:

$$\|P - Q\|_{\mathrm{TV}} \le \sqrt{\frac{1}{2}D(Q\|P)}$$

(Csiszár–Kemperman–Kullback–Pinsker)

Examples of TC Inequalities: 2

•
$$X = \{0, 1\}$$
 with trivial metric $d(x, y) = \mathbf{1}\{x \neq y\}$

$$\blacktriangleright P = \operatorname{Bern}(p)$$

▶ Distribution-dependent refinement of Pinsker:

$$\|P - Q\|_{\mathrm{TV}} \le \sqrt{2c(p)D(Q\|P)},$$

where

$$c(p) = \frac{p - \bar{p}}{2(\log p - \log \bar{p})}, \qquad \bar{p} \triangleq 1 - p$$

(Ordentlich-Weinberger, 2005)

▶ Thus, P = Bern(p) satisfies $T_1(c(p))$, and the constant is optimal:

$$\inf_{Q} \frac{D(Q||P)}{||Q - P||_{\text{TV}}^2} = \frac{1}{2c(p)}.$$

Examples of TC Inequalities: 3

•
$$\mathsf{X} = \mathbb{R}^n$$
 with $d(x, y) = ||x - y||_2$

• The Gaussian measure $P = N(0, I_n)$ satisfies $T_2(1)$:

 $W_2(P,Q) \le \sqrt{2D(Q\|P)}$

(Talagrand, 1996)

► Note: the constant is *independent* of *n*!!

Michel Talagrand

Transportation and Concentration

Theorem (Bobkov–Götze, 1999). Let P be a probability measure on a metric space (X, d). Then the following two statements are equivalent:

f(X), X ~ P, is σ²-subgaussian for every f ∈ Lip₁(X, d).
 P satisfies T₁(c) on (X, d):

$$W_1(P,Q) \le \sqrt{2\sigma^2 D(Q||P)}, \quad \forall Q \ll P.$$

Sergey Bobkov

Friedrich Götze

Remarks:

- Connection between concentration and transportation inequalities was first pointed out by Marton (1986).
- Remarkable result: concentration phenomenon for Lipschitz functions can be expressed purely in terms of probabilistic and metric structures.

Proof of Bobkov–Götze (Ultra-light version, due to R. van Handel)

▶ Statement 1 of the theorem is equivalent to

$$(\star) \qquad \sup_{\lambda \ge 0} \sup_{f \in \operatorname{Lip}_1(\mathsf{X},d)} \left\{ \log \mathbb{E}_P \left[e^{\lambda (f - \mathbb{E}_P f)} \right] - \frac{\lambda^2 \sigma^2}{2} \right\} \le 0.$$

▶ Use Gibbs variational principle:

$$\log \mathbb{E}_P[e^h] = \sup_Q \left\{ \mathbb{E}_Q[h] - D(Q||P) \right\}, \qquad \forall h \text{ s.t. } e^h \in L_1(P)$$

(supremum achieved by the tilted distribution $Q = P^h$).

▶ Then (\star) is equivalent to

$$(\star\star) \quad \sup_{\lambda \ge 0} \sup_{f \in \operatorname{Lip}_1(\mathsf{X},d)} \sup_{Q} \left\{ \lambda \left(\mathbb{E}_Q[f] - \mathbb{E}_P[f] \right) - D(Q \| P) - \frac{\lambda^2 \sigma^2}{2} \right\} \le 0$$

Proof of Bobkov–Götze (cont.)

$$(\star\star) \quad \sup_{\lambda \ge 0} \sup_{f \in \operatorname{Lip}_{1}(\mathsf{X},d)} \sup_{Q} \left\{ \lambda \left(\mathbb{E}_{Q}[f] - \mathbb{E}_{P}[f] \right) - D(Q \| P) - \frac{\lambda^{2} \sigma^{2}}{2} \right\} \le 0$$

▶ Interchange the order of suprema:

$$\sup_{\lambda \ge 0} \sup_{f \in \operatorname{Lip}_1(\mathsf{X},d)} \sup_Q [\ldots] = \sup_Q \sup_{\lambda \ge 0} \sup_{f \in \operatorname{Lip}_1(\mathsf{X},d)} [\ldots]$$

▶ Then

$$\begin{aligned} (\star\star) &\iff \sup_{Q} \sup_{\lambda \ge 0} \left\{ \lambda W_1(P,Q) - D(Q \| P) - \frac{\lambda^2 \sigma^2}{2} \right\} \le 0 \\ & \text{(by Kantorovich-Rubinstein)} \\ & \iff \sup_{Q} \left\{ \frac{W_1(P,Q)}{2\sigma^2} - D(Q \| P) \right\} \le 0 \\ & \text{(optimize over } \lambda) \end{aligned}$$

Tensorization of Transportation Inequalities

- At first sight, all we have is another equivalent characterization of concentration of Lipschitz functions.
- ▶ However, transportation inequalities tensorize!!
- Proof of tensorization is through a beautiful result on couplings by Katalin Marton.

The Marton Coupling

Theorem (Marton, 1986). Let (X_i, P_i) , $1 \leq i \leq n$, be probability spaces. Let $w_i : X_i \times X_i \to \mathbb{R}_+, 1 \leq i \leq n$, be positive weight functions, and let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be a convex function. Suppose that, for each i,

 $\inf_{\pi \in \Pi(P_i,Q)} \varphi \left(\mathbb{E}_{\pi}[w_i(X,Y)] \right) \le 2\sigma^2 D(Q \| P_i), \, \forall Q.$

Then the following holds for the product measure $P = P_1 \otimes \ldots \otimes P_n$ on the product space $X = X_1 \otimes \ldots \otimes X_n$:

$$\inf_{\pi \in \Pi(P,Q)} \sum_{i=1}^{n} \varphi \left(\mathbb{E}_{\pi}[w_i(X_i, Y_i)] \right) \le 2\sigma^2 D(Q \| P)$$

Katalin Marton

for every Q on X.

Proof idea: Chain rule for relative entropy + conditional coupling + induction.

Tensorization of Transportation Cost Inequalities

Theorem. Let (X_i, P_i, d_i) , $1 \le i \le n$, be probability metric spaces. If for some $1 \le p \le 2$ each P_i satisfies $T_p(c)$ on (X_i, d_i) , then the product measure $P = P_1 \otimes \ldots \otimes P_n$ on $X = X_1 \times \ldots \times X_n$ satisfies $T_p(cn^{2/p-1})$ w.r.t. the metric

$$d_p(x^n, y^n) \triangleq \left(\sum_{i=1}^n d_i^p(x_i, y_i)\right)^{1/p}$$

Remarks:

- If each P_i satisfies $T_1(c)$, then $P = P_1 \otimes \ldots \otimes P_n$ satisfies $T_1(cn)$ with respect to the metric $\sum_i d_i$. Note: constant deteriorates with n.
- If each P_i satisfies $T_2(c)$, then P satisfies $T_2(c)$ with respect to $\sqrt{\sum_i d_i^2}$. Note: constant is independent of n.

Proof of Tensorization

• By hypothesis, for each i,

$$\underbrace{\inf_{\pi \in \Pi(P_i,Q)} \left(\mathbb{E}_{\pi}[d_i^p(X,Y)] \right)^{2/p}}_{W^2_{p,d_i}(P_i,Q)} \leq 2cD(Q \| P_i), \qquad \forall Q.$$

▶
$$1 \le p \le 2 \Longrightarrow \varphi(u) = u^{2/p}$$
 is convex. Take $w_i = d_i^p$. Then

$$\inf_{\pi \in \Pi(P_i,Q)} \varphi\left(\mathbb{E}_{\pi}[w_i(X,Y)]\right) \le 2cD(Q||P_i), \quad \forall Q.$$

▶ By Marton's coupling,

$$(\star) \qquad \inf_{\pi \in \Pi(P,Q)} \sum_{i=1}^{n} \left(\mathbb{E}_{\pi}[d_i^p(X_i, Y_i)] \right)^{2/p} \le 2cD(Q \| P), \qquad \forall Q.$$

Proof of Tensorization (cont.)

▶ We have shown that if P_i satisfies $T_p(c)$ w.r.t. d_i , for each *i*, then

(*)
$$\inf_{\pi \in \Pi(P,Q)} \sum_{i=1}^{n} \left(\mathbb{E}_{\pi}[d_{i}^{p}(X_{i}, Y_{i})] \right)^{2/p} \leq 2cD(Q \| P), \quad \forall Q.$$

► We will now prove $LHS(\star) \ge n^{1-2/p} W_{p,d_p}^2(P,Q)$.

• For any $\pi \in \Pi(P,Q)$,

$$\left(\mathbb{E}_{\pi}\left[\sum_{i=1}^{n} d_{i}^{p}(X_{i}, Y_{i})\right]\right)^{2/p} \leq \left(\sum_{i=1}^{n} \mathbb{E}_{\pi}[d_{i}^{p}(X_{i}, Y_{i})]\right)^{2/p} \quad \text{(concavity of } t \mapsto t^{1/p}) \leq n^{2/p-1} \sum_{i=1}^{n} \left(\mathbb{E}_{\pi}[d_{i}^{p}(X_{i}, Y_{i})]\right)^{2/p} \quad \text{(convexity of } t \mapsto t^{2/p})$$

Take infimum over all $\pi \in \Pi(P,Q)$, and we are done.

(Yet Another) Proof of McDiarmid's Inequality

- Product probability space: $(X_1 \times \ldots \times X_n, P_1 \otimes \ldots \otimes P_n)$
- Given $c_1, \ldots, c_n \ge 0$, equip X_i with $d_{c_i}(x_i, y_i) \triangleq c_i \mathbf{1}\{x_i \neq y_i\}$.
- Then any P_i on X_i satisfies $T_1(c_i^2/4)$:

$$W_{1,d_{c_i}}(P_i,Q) \equiv c_i \|P_i - Q\|_{\text{TV}} \le \sqrt{\frac{c_i^2}{2} D(Q\|P_i)}$$

(by rescaling Pinsker).

▶ By Marton coupling, $P = P_1 \otimes \ldots \otimes P_n$ satisfies T_1 with constant $(1/4) \sum_{i=1}^n c_i^2$ with respect to the metric

$$d_{\mathbf{c}}(x^n, y^n) \triangleq \sum_{i=1}^n d_{c_i}(x_i, y_i) = \sum_{i=1}^n c_i \mathbf{1}\{x_i \neq y_i\}.$$

▶ By Bobkov–Götze, this is equivalent to subgaussian property of all $f \in \text{Lip}_1(X_1 \times \ldots \times X_n, d_c)$:

$$\underbrace{\mathbb{P}[|f(X^n) - \mathbb{E}f(X^n)| \ge t] \le 2\exp\left(-\frac{2t^2}{\sum_{i=1}^n c_i^2}\right)}_{\text{McDiarmid}}, \quad \forall \underbrace{f \in \text{Lip}_1(d_{\mathbf{c}})}_{\text{bdd. diff.}}$$

Some Applications

The Blowing-Up Lemma

- ▶ Consider a product space \mathbf{Y}^n equipped with Hamming metric $d(y^n, z^n) = \sum_{i=1}^n \mathbf{1}\{y_i \neq z_i\}$
- ▶ For a set $A \subseteq Y^n$ and for $r \in \{0, 1, ..., n\}$, define its *r*-blowup

$$[A]_r \triangleq \left\{ z^n \in \mathsf{Y}^n : \min_{y^n \in A} d(z^n, y^n) \leq r \right\}$$

The following result, in a different (asymptotic) form was first proved by Ahlswede–Gács–Körner (1976); a simple proof was given by Marton (1986):

Let Y_1, \ldots, Y_n be independent r.v.'s taking values in Y. Then for every set $A \subseteq Y^n$ with $P_{Y^n}(A) > 0$

$$P_{Y^n}\left\{[A]_r\right\} \ge 1 - \exp\left[-\frac{2}{n}\left(r - \sqrt{\frac{n}{2}\log\frac{1}{P_{Y^n}(A)}}\right)_+^2\right]$$

Informally, any set in a product space can be "blown up" to engulf most of the probability mass.

Marton's Proof

• Let
$$P_i = \mathcal{L}(Y_i), 1 \le i \le n; P = P_1 \otimes \ldots \otimes P_n \equiv \mathcal{L}(Y^n).$$

 \blacktriangleright By tensorization, P satisfies the TC inequality

(*)
$$W_1(P,Q) \le \sqrt{\frac{n}{2}D(Q||P)}, \quad \forall Q \in \mathcal{P}(\mathsf{Y}^n),$$

where

$$W_1(P,Q) = \inf_{\pi \in \Pi(P,Q)} \mathbb{E}_{\pi} \left[\sum_{i=1}^n \mathbf{1}\{Y_i \neq Z_i\} \right], \qquad Y^n \sim P, \ Z^n \sim Q$$

▶ For any $B \subseteq Y^n$ with P(B) > 0, consider conditional distribution

$$P_B(\cdot) \triangleq \frac{P(\cdot \cap B)}{P(B)}.$$

Then $D(P_B || P) = \log \frac{1}{P(B)}$, and therefore

$$(\star\star) \quad W_1(P, P_B) \le \sqrt{\frac{n}{2}\log\frac{1}{P(B)}}.$$

Marton's Proof

$$\blacktriangleright (\star\star) W_1(P, P_B) \le \sqrt{\frac{n}{2} \log \frac{1}{P(B)}}$$

• Apply $(\star\star)$ to B = A and $B = [A]_r^c$:

$$W_1(P, P_A) \le \sqrt{\frac{n}{2}\log\frac{1}{P(A)}}, \quad W_1(P, P_{[A]_r^c}) \le \sqrt{\frac{n}{2}\log\frac{1}{1 - P([A]_r)}}$$

► Then

$$\begin{split} \sqrt{\frac{n}{2}\log\frac{1}{P(A)}} + \sqrt{\frac{n}{2}\log\frac{1}{1-P([A]_r)}} &\geq W_1(P_A,P) + W_1(P,P_{[A]_r^c}) \\ &\geq W_1(P_A,P_{[A]_r^c}) \quad \text{(triangle ineq.)} \\ &\geq \min_{\substack{y^n \in A, z^n \in [A]_r^c}} d(y^n,z^n) \\ &\geq r. \quad (\text{def. of } [\cdot]_r) \end{split}$$

• Rearrange to finish the proof.

The Blowing-Up Lemma: Consequences

▶ Consider a DMC (X, Y, T) with input alphabet X, output alphabet Y, transition probabilities $T(y|x), (x, y) \in X \times Y$

•
$$(n, M, \varepsilon)$$
-code C : encoder $f : \{1, \dots, M\} \to X^n$, decoder $g : Y^n \to \{1, \dots, M\}$ with

$$\max_{1 \le j \le M} \mathbb{P}[g(Y^n) \ne j | X^n = f(j)] \le \varepsilon.$$

Equivalently, $C = \{(u_j, D_j)\}_{j=1}^M$, where

▶
$$u_j = f(j) \in \mathsf{X}^n$$
 — codewords
▶ $D_j = g^{-1}(j) = \{y^n \in \mathsf{Y}^n : g(y^n) = j\}$ — decoding sets

$$T^n(D_j|u_j) \ge 1 - \varepsilon, \qquad j = 1, \dots, M.$$

Lemma. There exists $\delta_n > 0$, such that

$$T^{n}\left(\left[D_{j}\right]_{n\delta_{n}}\middle|X^{n}=u_{j}\right)\geq1-\frac{1}{n},\qquad j=1,\ldots,M$$

Proof

► Choose

$$\delta_n = \frac{1}{n} \left[n \left(\sqrt{\frac{\log n}{2n}} + \sqrt{\frac{1}{2n} \log \frac{1}{1 - \varepsilon}} \right) \right]$$

• For each j, apply Blowing-Up Lemma to the product measure

$$P_j(y^n) = \prod_{i=1}^n T(y_i|u_j(i)), \quad \text{where } \underbrace{u_j = (u_j(1), \dots, u_j(n)) = f(j)}_{j \text{th codeword}}.$$

With $r = n\delta_n$, this gives

$$T^{n}\left(\left[D_{j}\right]_{n\delta_{n}}\left|X^{n}=u_{j}\right)\geq1-\exp\left[-\frac{2}{n}\left(n\delta_{n}-\sqrt{\frac{n}{2}\log\frac{1}{1-\varepsilon}}\right)_{+}^{2}\right]$$
$$\geq1-\frac{1}{n}.$$

-

From Blowing-Up Lemma to Strong Converses

- ▶ Informally, the Blowing-Up Lemma shows that "any bad code contains a good subcode" (Ahlswede and Dueck, 1976).
- ► Consider an (n, M, ε) -code $\mathcal{C} = \{(u_j, D_j)\}_{j=1}^M$.
- ▶ Each decoding set D_j can be "blown up" to a set $\tilde{D}_j \subseteq \mathsf{Y}^n$ with

$$T^n(\tilde{D}_j|u_j) \ge 1 - \frac{1}{n}$$

- The object $\tilde{\mathcal{C}} = \{(u_j, \tilde{D}_j)\}_{j=1}^M$ is not a code (since the sets \tilde{D}_j are no longer disjoint), but a random coding argument can be used to extract an (n, M', ε') "subcode" with M' slightly smaller than M and $\varepsilon' < \varepsilon$. Then one can apply the usual (weak) converse to the subcode.
- Similar ideas can be used in multiterminal settings (starting with Ahlswede–Gács–Körner).

Example: Capacity-Achieving Channel Codes

The set-up

▶ DMC (X, Y, T) with capacity

$$C = C(T) = \max_{P_X} I(X;Y)$$

▶ (n, M)-code: C = (f, g) with encoder $f : \{1, ..., M\} \to X^n$ and decoder $g : Y^n \to \{1, ..., M\}$

Capacity-achieving codes:

A sequence $\{C_n\}_{n=1}^{\infty}$, where each C_n is an (n, M_n) -code, is capacity-achieving if

$$\lim_{n \to \infty} \frac{1}{n} \log M_n = C.$$

Capacity-Achieving Channel Codes

Capacity-achieving input and output distributions:

$$P_X^* \in \underset{P_X}{\operatorname{arg\,max}} I(X;Y) \qquad (\text{may not be unique})$$
$$P_X^* \xrightarrow{T} P_Y^* \qquad (\text{always unique})$$

Theorem (Shamai–Verdú, 1997). Let $\{C_n\}$ be any capacity-achieving code sequence with vanishing error probability. Then

$$\lim_{n \to \infty} \frac{1}{n} D\left(P_{Y^n}^{(\mathcal{C}_n)} \middle\| P_{Y^n}^* \right) = 0,$$

where $P_{Y_n}^{(\mathcal{C}_n)}$ is the output distribution induced by the code \mathcal{C}_n when the messages in $\{1, \ldots, M_n\}$ are equiprobable.

Capacity-Achieving Channel Codes

$$\lim_{n \to \infty} \frac{1}{n} D(P_{Y^n} \| P_{Y^n}^*) = 0$$

Main message: channel output sequences induced by good code "resemble" i.i.d. sequences drawn from the CAOD P_V^*

Useful implications: estimate performance characteristics of good channel codes by their expectations w.r.t. $P_{Y^n}^* = (P_Y^*)^n$

- often much easier to compute explicitly
- ▶ bound estimation accuracy using large-deviation theory (e.g., Sanov's theorem)

Question: what about good codes with nonvanishing error probability?

Codes with Nonvanishing Error Probability

Y. Polyanskiy and S. Verdú, "Empirical distribution of good channel codes with non-vanishing error probability" (2012)

1. Let $\mathcal{C} = (f,g)$ be any (n, M, ε) -code for T:

$$\max_{1 \le j \le M} \mathbb{P}\left[g(Y^n) \ne j \middle| X^n = f(j)\right] \le \varepsilon.$$

Then $D(P_{Y^n}^{(\mathcal{C})} || P_{Y^n}^*) \le nC - \log M + o(n).^*$

2. If $\{C_n\}_{n=1}^{\infty}$ is a capacity-achieving sequence, where each C_n is an (n, M_n, ε) -code for some fixed $\varepsilon > 0$, then

$$\lim_{n \to \infty} \frac{1}{n} D\left(P_{Y^n}^{(\mathcal{C}_n)} \middle\| P_{Y^n}^* \right) = 0.$$

* In some cases, the o(n) term can be improved to $O(\sqrt{n})$.

Relative Entropy at the Output of a Code Consider a DMC $T : X \to Y$ with $T(\cdot|\cdot) > 0$, and let

$$c(T) = 2 \max_{x \in \mathsf{X}} \max_{y, y' \in \mathsf{Y}} \left| \log \frac{T(y|x)}{T(y'|x)} \right|$$

Theorem (Raginsky–Sason, 2013). Any (n, M, ε) -code C for T, where $\varepsilon \in (0, 1/2)$, satisfies

$$D\left(P_{Y^n}^{(\mathcal{C})} \middle\| P_{Y^n}^*\right) \le nC - \log M + \log \frac{1}{\varepsilon} + c(T)\sqrt{\frac{n}{2}\log \frac{1}{1 - 2\varepsilon}}$$

Remark:

Polyanskiy and Verdú show that

$$D\left(P_{Y^n}^{(\mathcal{C})} \middle\| P_{Y^n}^*\right) \le nC - \log M + a\sqrt{n}$$

for some constant $a = a(\varepsilon)$.

Proof Sketch (1)

Fix $x^n \in \mathsf{X}^n$ and study concentration of the function

$$h_{x^n}(y^n) = \log \frac{\mathrm{d}P_{Y^n|X^n = x^n}}{\mathrm{d}P_{Y^n}^{(\mathcal{C})}}(y^n)$$

around its expectation w.r.t. $P_{Y^n|X^n=x^n}$:

$$\mathbb{E}[h_{x^n}(Y^n)|X^n = x^n] = D\left(P_{Y^n|X^n = x^n} \left\| P_{Y^n}^{(\mathcal{C})} \right)\right)$$

Step 1: Because $T(\cdot|\cdot) > 0$, the function $h_{x^n}(y^n)$ is 1-Lipschitz w.r.t. scaled Hamming metric

$$d(y^n, \bar{y}^n) = c(T) \sum_{i=1}^n \mathbf{1}\{y_i \neq \bar{y}_i\}$$

Proof Sketch (2)

Step 1: Because $T(\cdot|\cdot) > 0$, the function $h_{x^n}(y^n)$ is 1-Lipschitz w.r.t. scaled Hamming metric

$$d(y^n, \bar{y}^n) = c(T) \sum_{i=1}^n \mathbf{1}\{y_i \neq \bar{y}_i\}$$

Step 2: Any product probability measure μ on (Y^n, d) satisfies

$$\log \mathbb{E}_{\mu}\left[e^{tf(Y^n)}\right] \le \frac{nc(T)^2 t^2}{8}$$

for any f with $\mathbb{E}_{\mu}f = 0$ and $||F||_{\text{Lip}} \leq 1$.

Proof: Tensorization of T_1 (Pinsker), followed by appeal to Bobkov–Götze.
Proof Sketch (3)

$$h_{x^n}(y^n) = \log \frac{\mathrm{d}P_{Y^n|X^n = x^n}}{\mathrm{d}P_{Y^n}^{(\mathcal{C})}}(y^n)$$
$$\mathbb{E}[h_{x^n}(Y^n)|X^n = x^n] = D\left(P_{Y^n|X^n = x^n} \left\| P_{Y^n}^{(\mathcal{C})} \right)\right)$$

Step 3: For any x^n , $\mu = P_{Y^n|X^n = x^n}$ is a product measure, so

$$\mathbb{P}\left(h_{x^n}(Y^n) \ge D\left(P_{Y^n|X^n=x^n} \left\| P_{Y^n}^{(\mathcal{C})}\right) + r\right) \le \exp\left(-\frac{2r^2}{nc(T)^2}\right)$$

Use this with $r = c(T)\sqrt{\frac{n}{2}\log\frac{1}{1-2\varepsilon}}$:

$$\mathbb{P}\left(h_{x^n}(Y^n) \ge D\left(P_{Y^n|X^n=x^n} \left\| P_{Y^n}^{(\mathcal{C})}\right) + c(T)\sqrt{\frac{n}{2}\log\frac{1}{1-2\varepsilon}}\right) \le 1-2\varepsilon$$

Remark: Polyanskiy–Verdú show $\operatorname{Var}[h_{x^n}(Y^n)|X^n = x^n] = O(n).$

Proof Sketch (4)

Recall:

$$\mathbb{P}\left(h_{x^n}(Y^n) \ge D\left(P_{Y^n|X^n=x^n} \left\| P_{Y^n}^{(\mathcal{C})}\right) + c(T)\sqrt{\frac{n}{2}\log\frac{1}{1-2\varepsilon}}\right) \le 1-2\varepsilon$$

Step 4: Same as Polyanskiy–Verdú, appeal to Augustin's strong converse (1966) to get

$$\log M \le \log \frac{1}{\varepsilon} + D\left(P_{Y^n|X^n} \left\| P_{Y^n}^{(\mathcal{C})} \right| P_{X^n}^{(\mathcal{C})}\right) + c(T)\sqrt{\frac{n}{2}\log \frac{1}{1-2\varepsilon}}$$

$$D\left(P_{Y^n}^{(\mathcal{C})} \left\| P_{Y^n}^* \right) = D\left(P_{Y^n|X^n} \left\| P_{Y^n}^* \left| P_{X^n}^{(\mathcal{C})} \right) - D\left(P_{Y^n|X^n} \left\| P_{Y^n}^{(\mathcal{C})} \right| P_{X^n}^{(\mathcal{C})} \right) \right.$$
$$\leq nC - \log M + \log \frac{1}{\varepsilon} + c(T) \sqrt{\frac{n}{2} \log \frac{1}{1 - 2\varepsilon}} \quad \blacksquare$$

Relative Entropy at the Output of a Code

Theorem (Raginsky–Sason, 2013). Let (X, Y, T) be a DMC with C > 0. Then, for any $0 < \varepsilon < 1$, any (n, M, ε) -code C for T satisfies

$$\begin{split} D\left(P_{Y^n}^{(\mathcal{C})} \left\| P_{Y^n}^* \right) &\leq nC - \log M \\ &+ \sqrt{2n} \left(\log n\right)^{3/2} \left(1 + \sqrt{\frac{1}{\log n} \log\left(\frac{1}{1 - \varepsilon}\right)} \right) \left(1 + \frac{\log |\mathsf{Y}|}{\log n} \right) \\ &+ 3\log n + \log(2|\mathsf{X}||\mathsf{Y}|^2). \end{split}$$

Proof idea:

► Apply Blowing-Up Lemma to the code, then extract a good subcode. Remark:

Polyanskiy and Verdú show that

$$D\left(P_{Y^n}^{(\mathcal{C})} \| P_{Y^n}^*\right) \le nC - \log M + b\sqrt{n} \log^{3/2} n$$

for some constant b > 0.

Concentration of Lipschitz Functions

Theorem (Raginsky–Sason, 2013). Let (X, Y, T) be a DMC with $c(T) < \infty$. Let $d: Y^n \times Y^n \to \mathbb{R}_+$ be a metric, and suppose that $P_{Y^n|X^n=x^n}, x^n \in X^n$, as well as $P_{Y^n}^*$, satisfy $T_1(c)$ for some c > 0. Then, for any $\varepsilon \in (0, 1/2)$, any (n, M, ε) -code \mathcal{C} for T, and any function $f: Y^n \to \mathbb{R}$ we have

$$\begin{aligned} P_{Y_n}^{(\mathcal{C})} \left(\left| f(Y^n) - \mathbb{E}[f(Y^{*n})] \right| \geq r \right) \\ &\leq \frac{4}{\varepsilon} \exp\left(nC - \ln M + a\sqrt{n} - \frac{r^2}{8c \|f\|_{\text{Lip}}^2} \right), \ \forall r \geq 0 \end{aligned}$$

where $Y^{*n} \sim P_{Y^n}^*$, and $a \triangleq c(T) \sqrt{\frac{1}{2} \ln \frac{1}{1-2\varepsilon}}$.

Proof Sketch

Step 1: For each $x^n \in X^n$, let $\phi(x^n) \triangleq \mathbb{E}[f(Y^n)|X^n = x^n]$. Then, by Bobkov–Götze,

$$\mathbb{P}\Big(\left|f(Y^n) - \phi(x^n)\right| \ge r \Big| X^n = x^n\Big) \le 2\exp\left(-\frac{r^2}{2c\|f\|_{\text{Lip}}^2}\right)$$

Step 2: By restricting to a subcode C' with codewords $x^n \in \mathsf{X}^n$ satisfying $\phi(x^n) \geq \mathbb{E}[f(Y^{*n})] + r$, we can show that

$$r \leq \|f\|_{\operatorname{Lip}} \sqrt{2c\left(nC - \log M' + a\sqrt{n} + \log \frac{1}{\varepsilon}\right)},$$

with $M' = MP_{X^n}^{(\mathcal{C})} \Big(\phi(X^n) \ge \mathbb{E}[f(Y^{*n})] + r \Big)$. Solve to get

$$P_{X^n}^{(\mathcal{C})}\Big(\left|\phi(X^n) - \mathbb{E}[f(Y^{*n})]\right| \ge r\Big) \le 2e^{nC - \log M + a\sqrt{n} + \log \frac{1}{\varepsilon} - \frac{r^2}{2c \|f\|_{\mathrm{Lip}}^2}}$$

Step 3: Apply union bound.

Empirical Averages at the Code Output

• Equip Y^n with the Hamming metric

$$d(y^n, \bar{y}^n) = \sum_{i=1}^n \mathbf{1}\{y_i \neq \bar{y}_i\}$$

Consider functions of the form

$$f(y^n) = \frac{1}{n} \sum_{i=1}^n f_i(y_i),$$

where $|f_i(y_i) - f_i(\bar{y}_i)| \le L\mathbf{1}\{y_i \ne \bar{y}_i\}$ for all i, y_i, \bar{y}_i . Then $||f||_{\text{Lip}} \le L/n$.

- ▶ Since $P_{Y^n|X^n=x^n}$ for all x^n and $P_{Y^n}^*$ are product measures on Y^n , they all satisfy $T_1(n/4)$ (by tensorization)
- ► Therefore, for any (n, M, ε) -code and any such f we have $P_{Y^n}^{(\mathcal{C})} \left(|f(Y^n) - \mathbb{E}[f(Y^{*n})]| \ge r \right)$ $\le \frac{4}{\varepsilon} \exp\left(nC - \log M + a\sqrt{n} - \frac{nr^2}{2L^2}\right)$

Concentration of Measure

Information-Theoretic Converse

- Concentration phenomenon in a nutshell: if a subset of a metric probability space does not have too small of a probability mass, then its blowups will eventually take up most of the probability mass.
- Question: given a set whose blowups eventually take up most of the probability mass, how small can this set be?

This question was answered by Kontoyiannis (1999) as a consequence of a general information-theoretic converse.

Converse Concentration of Measure: The Set-Up

- Let X be a finite set, together with a distortion function $d: X \times X \to \mathbb{R}_+$ and a mass function $M: X \to (0, \infty)$.
- Extend to product space X^n :

$$\begin{split} d_n(x^n, y^n) &\triangleq \sum_{i=1}^n d(x_i, y_i) \\ M_n(x^n) &\triangleq \prod_{i=1}^n M(x_i) \\ M_n(A) &\triangleq \sum_{x^n \in A} M_n(x^n), \qquad \forall A \subseteq \mathsf{X}^n \end{split}$$

► Blowups:

$$A \subseteq \mathsf{X}^n \qquad \longrightarrow \qquad [A]_r \triangleq \left\{ x^n \in \mathsf{X}^n : \min_{y^n \in A} d_n(x^n, y^n) \le r \right\}$$

Converse Concentration of Measure

• Let P be a probability measure on X. Define

$$R_n(\delta) \triangleq \min_{P_{X^n Y^n}} \left\{ I(X^n; Y^n) + \mathbb{E} \log M_n(Y^n) : \\ P_{X^n} = P^{\otimes n}, \ \mathbb{E}[d_n(X^n, Y^n)] \le n\delta \right\}$$

Theorem (Kontoyiannis). Let $A_n \subseteq X^n$ be an arbitrary set. Then

$$\frac{1}{n}\log M_n(A_n) \ge R(\delta),$$

where

$$\delta \triangleq \frac{1}{n} \mathbb{E} \left[\min_{y^n \in A_n} d_n(X^n, y^n) \right] \text{ and } R(\delta) \triangleq \lim_{n \to \infty} \frac{R_n(\delta)}{n} \equiv R_1(\delta).$$

Remark:

• It can be shown that $R_1(\delta) = \inf_{n \ge 1} \frac{R_n(\delta)}{n}$.

Proof

▶ Define the mapping $\varphi_n : \mathsf{X}^n \to \mathsf{X}^n$ via

$$\varphi_n(x^n) \triangleq \operatorname*{arg\,min}_{y^n \in A_n} d_n(x^n, y^n)$$

and let $Y^n = \varphi_n(X^n), Q_n = \mathcal{L}(Y^n).$

▶ Then

$$\log M_n(A_n) = \log \sum_{y^n \in A_n} M_n(y^n)$$

$$\geq \log \sum_{y^n \in A_n: Q_n > 0} Q_n(y^n) \frac{M_n(y^n)}{Q_n(y^n)}$$

$$\geq \sum_{y^n \in A_n} Q_n(y^n) \log \frac{M_n(y^n)}{Q_n(y^n)}$$

$$= -\sum_{y^n \in A_n} Q_n(y^n) \log Q_n(y^n) + \sum_{y^n \in A_n} Q(y^n) \log M_n(y^n)$$

$$= H(Y^n) + \mathbb{E} \log M(Y^n)$$

$$= I(X^n; Y^n) + \mathbb{E} \log M(Y^n)$$

$$\geq R_n(\delta).$$

Converse Concentration of Measure

• Consider a sequence of sets $\{A_n\}_{n=1}^{\infty}$ with

$$(\star) \qquad P^{\otimes n} \left([A_n]_{n\delta} \right) \xrightarrow{n \to \infty} 1.$$

• Apply Kontoyiannis' converse to the mass function M = P, to get the following:

Corollary. If the sequence $\{A_n\}$ satisfies (\star) , then

$$\liminf_{n \to \infty} \frac{1}{n} \log P^{\otimes n}(A_n) \ge R(\delta),$$

where the "concentration exponent" is

$$R(\delta) = \min_{P_{XY}} \left\{ I(X;Y) + \mathbb{E}\log P(Y) : P_X = P, \mathbb{E}[d(X,Y)] \le \delta \right\}$$
$$\equiv -\max_{P_{XY}} \left\{ H(Y|X) + D(P_Y||P) : P_X = P, \mathbb{E}[d(X,Y)] \le \delta \right\}.$$

Example of The Concentration Exponent

Theorem (Raginsky–Sason, 2013). Let P = Bern(p). Then

$$R(\delta) \begin{cases} \leq -\varphi(p)\delta^2 - (1-p)h\left(\frac{\delta}{1-p}\right), & \text{if } \delta \in [0, 1-p] \\ = \log p, & \text{if } \delta \in [1-p, 1] \end{cases}$$

where

$$\varphi(p) = \frac{1}{1 - 2p} \log \frac{1 - p}{p}$$

and $h(\cdot)$ is the binary entropy function.

Remarks:

- The upper bound is not tight, but in this case $R(\delta)$ can be evaluated numerically (cf. Kontoyiannis, 2001).
- The proof is by a coupling argument.

Summary

- ► Three related methods for obtaining sharp concentration inequalities in high dimension:
 - 1. The entropy method
 - 2. Log-Sobolev inequalities
 - 3. Transportation-cost inequalities
- ▶ All three methods crucially rely on *tensorization*:
 - Breaking the original high-dimensional problem into low-dimensional pieces, exploiting low-dimensional structure to control entropy locally, assembling local information into a global bound.
- ► Tensorization is a consequence of *independence*.
- Applications to information theory:
 - Exploit the problem structure to isolate independence (e.g., output distribution of a DMC for any fixed input block).

What We Had to Skip

- ▶ Log-Sobolev inequalities and hypercontractivity
- Log-Sobolev inequalities when Herbst fails (e.g., Poisson measures)
- Connections to isoperimetric inequalities
- ► HWI inequalities: tying together relative entropy, Wasserstein distance, Fisher information
- Concentration inequalities for functions of dependent random variables

For this and more, consult our monograph: M. Raginsky and I. Sason, *Concentration of Measure Inequalities in Info. Theory, Comm. and Coding*, FnT, 2nd edition, 2014.

Recent Books and Surveys - Concentration Inequalities

- N. Alon and J. H. Spencer, *The Probabilistic Method*, Wiley, 3rd edition, 2008.
- S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence, Oxford Press, 2013.
- F. Chung and L. Lu, Complex Graphs and Networks, vol. 106, Regional Conference Series in Mathematics, Wiley, 2006.
- 4. D. P. Dubhashi and A. Panconesi, *Concentration of Measure for* the Analysis of Randomized Algorithms, Cambridge Press, 2009.
- M. Ledoux, The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, vol. 89, AMS, 2001.
- C. McDiarmid, "Concentration," Probabilistic Methods for Algorithmic Discrete Mathematics, pp. 195–248, Springer, 1998.
- M. Raginsky and I. Sason, Concentration of Measure Inequalities in Info. Theory, Comm. and Coding, FnT, 2nd edition, 2014.
- 8. R. van Handel, *Probability in High Dimension*, lecture notes, 2014.