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Abstract

The performance of maximum-likelihood (ML) decoded binarylinear block codes over the AWGN channel is
addressed via the tangential sphere bound (TSB) and two of its recent improved versions. The paper is focused on
the derivation of the error exponents of these bounds. Although it was exemplified that some recent improvements
of the TSB tighten this bound for finite-length codes, it is demonstrated in this paper that their error exponents
coincide. For an arbitrary ensemble of binary linear block codes, the common value of these error exponents is
explicitly expressed in terms of the asymptotic growth rateof the average distance spectrum.

Index Terms

Block codes, bounds, linear codes, maximum-likelihood (ML) decoding.

I. I NTRODUCTION

In recent years, much effort has been put into the derivationof tight performance bounds on the error probability
of linear block codes under soft-decision maximum-likelihood (ML) decoding. During the last decade, this research
work was stimulated by the introduction of various codes defined on graphs and iterative decoding algorithms,
achieving reliable communication at rates close to capacity with feasible complexity. The remarkable performance
of these codes at rates above the channel cut-off rate makes the union bound useless at a portion of the rate region
where their performance is most appealing. Hence, tighter performance bounds are required to gain some insight
on the performance of these efficient codes. Improved upper and lower bounds on the error probability of linear
codes under ML decoding are addressed in [12] and referencestherein, and these bounds are applied to various
codes and ensembles.

The tangential sphere bound (TSB) [9] forms one of the tightest upper bounds on the error probability for ML
decoded linear block codes whose transmission takes place over the binary-input additive white Gaussian noise
(BIAWGN) channel. The TSB was modified by Sason and Shamai [10] for the analysis of the bit error probability
of linear block codes, and was slightly refined by Zangl and Herzog [19]. This bound only depends on the distance
spectrum of the code, and hence, it can be applied to various codes and ensembles. The TSB falls within the class
of upper bounds whose derivation relies on the basic inequality

Pr(word error| c0) ≤Pr(word error, y ∈ R | c0)

+ Pr(y /∈ R | c0), (1)

wherec0 is the transmitted codeword,y denotes the received vector at the output of the channel, andR designates
an arbitrary geometrical region which can be interpreted asa subset of the observation space. The idea is to use
the union bound only for the joint event where the decoder fails to decode correctly and the received vector falls
inside the regionR (i.e., the union bound is used for upper bounding the first termon the right-hand side (RHS) of
(1)). The TSB, for example, uses a circular hyper-cone as the region R. Other upper bounds from this family are
addressed in [12, Sections 3 and 4], [18] and references therein. In [15], Yousefi and Khandani prove that among
all the volumesR which possess some symmetry properties, the circular hyper-cone yields the tightest bound. This
finding demonstrates the optimality of the TSB among a family of bounds associated with geometrical regions
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which possess some symmetry properties, and which are obtained by applying theunion bound to the first term on
the RHS of (1). In [16], Yousefi and Khandani suggest to use Hunter’s bound [8] (an upper bound which belongs to
the family of second order Bonferroni-type inequalities [5]) instead of the union bound. This modification results in
a tighter upper bound, referred to as the added hyper plane (AHP) bound. Yousefi and Mehrabian [17] also rely on
Hunter’s bound, but implement it in a quite different way in order to obtain an improved tangential sphere bound
(ITSB) which solely depends on the distance spectrum of the code. The tightness of the ITSB and the AHP bound
is exemplified in [16] and [17] for some binary linear block codes of short block lengths; these bounds slightly
outperform the TSB at low SNR values.

An issue which is not addressed analytically in [16] and [17]is whether the new upper bounds (namely, the AHP
bound and the ITSB) provide an improved lower bound on the errorexponent as compared to the error exponent
of the TSB. In this paper, we address this question, and prove that the error exponents of these improved bounds
coincide with the error exponent of the TSB. We note however that the TSB fails to reproduce the random coding
error exponent, especially for high-rate linear block codes [9].

This correspondence is organized as follows: The TSB ([9], [10]), the AHP bound [16] and the ITSB [17] are
presented as a preliminary material in Section II (some boundary effects, which are not considered in [16] and
[17], are discussed in detail in Section II). In Section III, wederive the error exponents of the ITSB and the AHP
bound, and state our main result. We conclude our discussionin Section IV. Appendices provide supplementary
details related to the proof of our main result.

II. PRELIMINARIES

We introduce in this section some preliminary material which serves as a preparatory step towards the presentation
of the material in the following section. We also present notation from [1] which is useful for our analysis. The
reader is referred to [12] and [18] which introduce materialcovered in this section. However, in the following
presentation, we consider boundary effects which were not taken into account in the original derivation of the TSB
and its recent two improved versions in [7], [9], [16]–[18].These boundary effects do not have any implication on
the asymptotic exponential behavior of these bounds where we let the block length of the codes tend to infinity.

A. Assumption

Throughout this paper, we assume a binary-input additive white Gaussian noise (AWGN) channel with double-
sided power spectral density ofN0

2 . The modulation of the transmitted signals is antipodal, andthe modulated
signals are coherently detected and ML decoded (with soft decision).

B. Tangential Sphere Bound

The TSB forms an upper bound on the error probability of linear block codes under ML decoding where the
transmission takes place over a binary-input AWGN channel (see [9]–[12]). Consider an(n, k) binary linear block
codeC of rateR , k

n
bits per channel use. Let us designate the codewords ofC by {ci} wherei = 0, 1, . . . , 2k −1.

Assume a BPSK modulation, and letsi = (si,1, . . . , si,n) ∈ {+
√

Es,−
√

Es}n designate the corresponding equi-
energy modulated vectors whereEs denotes the energy per symbol. The transmitted signal vectors {si} are obtained
from the codewords{ci} by the mappingsi,j = (−1)ci,j

√
Es wherej = 1, 2, . . . , n, so the common value of their

energy is equal tonEs. Since the BIAWGN channel is memoryless and output-symmetric, and the code is linear,
then the conditional error probability under ML decoding does not depend on the transmitted codeword. Hence,
without any loss of generality, one can assume that the all-zero codeword(c0) is transmitted; this corresponds to
the signal vectors0 = (+

√
Es, . . . ,+

√
Es). Under this assumption, the received vectory = (y1, y2, . . . , yn) is

given by
yj =

√
Es + zj , j = 1, 2, . . . , n (2)

wherez = (z1, z2, . . . , zn) designates ann-dimensional Gaussian noise vector which corresponds ton orthogonal
projections of the AWGN. Sincez is a Gaussian vector and all its components are un-correlated, then then
components ofz are statistically independent and identically distributed (i.i.d.); each component ofz has a zero
mean and varianceσ2 = N0

2 .
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Fig. 1. The geometric interpretation of the TSB.

Let E be the event of deciding erroneously (under ML decoding) on acodeword other than the transmitted one.
The TSB is based on the inequality

Pr(E | c0) ≤ Pr(E, y ∈ R | c0) + Pr(y /∈ R | c0) (3)

whereR is ann-dimensional circular cone with a half angleθ whose vertex is located at the origin and its central
line passes through the origin and the signal vectors0 (see Fig. 1). Let us designate this circular cone byCn(θ).

The optimization of the upper bound on the decoding error probability (3) with R = Cn(θ) is carried overr
(wherer andθ are related as shown in Fig. 1). Letz1 be the radial component of the noise vectorz (see Fig. 1),
so the othern − 1 components ofz are orthogonal to the radial componentz1. From Fig. 1, we obtain that

r =
√

nEs tan θ, rz1
=

(√
nEs − z1

)
tan θ

βh(z1) =
(√

nEs − z1

)
tan ζ =

√
nEs − z1√
nEs − δ2

h

4

δh

2
(4)

where δh = 2
√

hEs is the Euclidean distance between two BPSK modulated signal vectors, s0 and si, which
correspond to two codewords (c0 andci, respectively) whose Hamming distance ish. The random variable

Y ,

n∑

i=2

Z2
i

is χ2 distributed withn − 1 degrees of freedom, so itspdf is given by

fY (y) =
y

n−3

2 e−
y

2σ2 U(y)

2
n−1

2 σn−1Γ
(

n−1
2

) (5)

where the functionU designates the unit step function, and the functionΓ is the complete Gamma function

Γ(x) =

∫ ∞

0
tx−1e−tdt, Re(x) > 0. (6)
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Conditioned on the value of the radial component of the noise, z1, let E(z1) designate the decoding error event.
The conditional error probability satisfies the inequality

Pr(E(z1) | z1) ≤Pr (E(z1),y ∈ Cn(θ) | z1)

+ Pr (y /∈ Cn(θ) | z1) . (7)

The conditional error event,E(z1), can be expressed as a union of pairwise error events, so

Pr(E(z1),y ∈ Cn(θ) | z1) (8)

= Pr

(
M−1⋃

i=1

E0,i(z1),y ∈ Cn(θ) | z1

)
, M , 2k

whereE0,i(z1) designates the error event had the only codewords beenc0 andci, given the valuez1 of the radial
component noise in Fig. 1;M , 2k denotes the number of codewords of the codeC. We note that for BPSK
modulation, the Euclidean distance between the two signalssi and s0 is directly linked to the Hamming weight
of the codewordci. Let the Hamming weight ofci be h, then the Euclidean distance betweens0 and si is equal
to δh = 2

√
hEs. Let {Ah} be the distance spectrum of the linear codeC, and letEh(z1) be the event of deciding

under ML decoding in favor of other codewordci whose Hamming weight ish, given the value ofz1. By applying
the union bound on the RHS of (8), we get

Pr(E(z1),y ∈ Cn(θ) | z1) (9)

≤
n∑

h=1

Ah Pr(Eh(z1),y ∈ Cn(θ) | z1).

Combining (7) and (9) gives

Pr (E(z1) | z1) ≤
∑

h

{
Ah Pr (Eh(z1),y ∈ Cn(θ) | z1)

}

+ Pr (y /∈ Cn(θ) | z1) . (10)

The second term on the RHS of (10) is evaluated from (5)

Pr(y /∈ Cn(θ) | z1) = Pr
(
Y ≥ r2

z1
| z1

)

=

∫ ∞

r2
z1

fY (y)dy

=

∫ ∞

r2
z1

y
n−3

2 e−
y

2σ2

2
n−1

2 σn−1Γ
(

n−1
2

)dy. (11)

This integral can be expressed in terms of the incomplete Gamma function

γ(a, x) ,
1

Γ(a)

∫ x

0
ta−1e−tdt, a > 0, x ≥ 0 (12)

and it is given by

Pr(y /∈ Cn(θ) | z1) = 1 − γ

(
n − 1

2
,

r2
z1

2σ2

)
. (13)

Let z2 designate the tangential component of the noise vectorz, which is on the plane that contains the signalss0,
si and the origin, and orthogonal toz1 (see Fig. 1). Referring to the first term on the RHS of (10), it follows from
the geometry in Fig. 1 that ifz1 ≤

√
nEs then

Pr(Eh(z1),y ∈ Cn(θ) | z1)

= Pr(Eh(z1), Y ≤ r2
z1

| z1)

= Pr
(
βh(z1) ≤ z2 ≤ rz1

, Y ≤ r2
z1

| z1

)
. (14)
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Let V ,
∑n

i=3 Z2
i , thenV = Y − Z2

2 . If z1 ≤
√

nEs, then we obtain the equality

Pr (Eh(z1),y ∈ Cn(θ) | z1)

= Pr
(
βh(z1) ≤ Z2 ≤ rz1

, V ≤ r2
z1
− Z2

2 | z1

)
. (15)

The random variableV is χ2 distributed withn − 2 degrees of freedom, so itspdf is

fV (v) =
v

n−4

2 e−
v

2σ2 U(v)

2
n−2

2 σn−2Γ
(

n−2
2

) (16)

and since the random variablesV andZ2 are statistically independent, then ifz1 ≤
√

nEs

Pr (Eh(z1),y ∈ Cn(θ) | z1)

=

∫ rz1

βh(z1)

e−
z2
2

2σ2

√
2πσ

∫ r2
z1
−z2

2

0
fV (v) dv dz2. (17)

In order to obtain an upper bound on the decoding error probability, Pr(E), one should apply the statistical
expectation operator on the RHS of (10) w.r.t. the radial noise componentz1. Referring to the upper half azimuthal
cone depicted in Fig. 1, which corresponds to the case where the radial noise component satisfies the condition
z1 ≤

√
nEs, it follows from (4) that the inequalityβh(z1) < rz1

holds for those values ofh for which δh

2 < αh

where

αh , r

√

1 − δ2
h

4nEs
. (18)

From Fig. 1, ifz1 >
√

nEs, then the range of integration on the RHS of (17) for the noisecomponentz2 changes;
as it corresponds to the joint event(Eh(z1),y ∈ Cn(θ)), then the relevant interval of integration w.r.t.z2 is
βh(z1) ≤ z2 ≤ −rz1

. This inequality is meaningful for all values ofh (since forz1 >
√

nEs, we get from (4)
that rz1

< 0 and βh(z1) < 0, so the inequalityβh(z1) ≤ −rz1
holds in this case for all values ofh). Since

Z1 ∼ N(0, σ2) whereσ2 = N0

2 , then the probability that the Gaussian random variableZ1 exceeds
√

nEs is equal
to

Q

(√
nEs

σ

)
= Q

(√
2nREb

N0

)

whereEb is the energy per information bit, andEs = REb.
This results in the following upper bound on the decoding error probability under ML decoding

Pr(E) ≤
∫ +

√
nEs

−∞

e−
z2
1

2σ2

√
2πσ

·
{

∑

h:
δh
2

<αh

{
Ah

∫ rz1

βh(z1)

e−
z2
2

2σ2

√
2πσ

∫ r2
z1
−z2

2

0
fV (v) dv dz2

}

+ 1 − γ

(
n − 1

2
,

r2
z1

2σ2

)}
dz1 + Q

(√
2nREb

N0

)
. (19)

The upper bound on the error probability (19) is valid for all positive values ofr. Hence, in order to achieve
the tightest upper bound of the form (19), one sets to zero thepartial derivative of the integrand on the RHS of
(19) w.r.t. rz1

; note that it follows from (4) thatrz1
=

(
1 − z1√

nEs

)
r, so for any value ofz1 ≤

√
nEs, setting to

zero the partial derivative of the integrand on the RHS of (19) w.r.t. rz1
is equivalent to setting to zero its partial

derivative w.r.t.r. Straightforward algebra gives the following optimizationequation for the value ofr [9]:




∑

h:
δh
2

<αh

Ah

∫ θh

0
sinn−3 φ dφ =

√
π Γ(n−2

2 )

Γ(n−1
2 )

θh = cos−1
(

δh

2αh

)
(20)
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whereαh is given in (18). A proof for the existence and uniqueness of asolutionr to the optimization equation (20)
is provided in [11, Appendix B], together with an efficient algorithm to solve this equation numerically. In order
to derive an upper bound on the bit error probability, letAw,h designate the coefficient of the input-output weight
enumeration function (IOWEF) which corresponds to the numberof codewords that are encoded by information
bits whose number of ones is equal tow (where0 ≤ w ≤ nR) and whose Hamming weight (after encoding) is
equal toh, and let

A′
h ,

nR∑

w=1

( w

nR

)
Aw,h, h = 0, . . . , n. (21)

In [11, Appendix C], Sason and Shamai derive an upper bound on the bit error probability; the upper bound on the
bit error probability is identical to the TSB on the block errorprobability, except of the replacement of the distance
spectrum{Ah} in (19) and (20) with the sequence{A′

h}, as in (21) (whereA′
h ≤ Ah holds for all Hamming

weightsh, so the upper bound on the bit error probability is not largerthan the upper bound on the block error
probability, as expected).

C. Improved Tangential Sphere Bound

In [17], Yousefi and Mehrabian derive a new upper bound on the block error probability of binary linear block
codes whose transmission takes place over a binary-input AWGN channel, and which are coherently detected and
ML decoded. This upper bound, referred to as the improved tangential sphere bound (ITSB), originates from (3)
where the corresponding regionR on the RHS of (3) is the same as for the TSB (i.e., it is ann-dimensional
circular cone whose main axis passes through the origin and the transmitted signal vector). However, unlike the
TSB which relies on the union bound for bounding the first term on the RHS of (3), the derivation of the ITSB
relies on Hunter’s bound which is a Bonferroni-type inequality of the second order (see [5] and [8]); as compared
to the union bound, the latter inequality is used in order to get a tighter upper bound on the probability of the joint
event where there is a decoding error and the received vectorfalls within then-dimensional circular coneCn(θ)
(see Fig. 1).

The basic idea in [17] relies on Hunter’s bound which states that if {Ei}M
i=1 designates a set ofM events, and

Ec
i designates the complementary event ofEi, then

Pr

(
M⋃

i=1

Ei

)
= Pr(E1) + Pr(E2 ∩ Ec

1)

+ . . . + Pr(EM ∩ Ec
M−1 . . . ∩ Ec

1)

≤Pr(E1) +
M∑

i=2

Pr(Ei ∩ Ec
î
). (22)

where the indiceŝi ∈ {1, 2, . . . i − 1} are chosen arbitrarily fori ∈ {2, . . . , M}. Clearly, the upper bound (22) is
tighter than the union bound. The LHS of (22) is invariant to theordering of the events (since it only depends
on the union of these events) while the RHS of (22) depends on this ordering. Hence, the tightest bound of the
form (22) is obtained by choosing the optimal indices ordering i ∈ {1, 2, . . . , M} and î ∈ {1, 2, . . . , i − 1}. Let
us designate byΠ(1, 2, . . . , M) = {π1, π2, . . . , πM} an arbitrary permutation among theM ! possible permutations
of the set{1, 2, . . . , M} (i.e., a permutation of the indices of the eventsE1 to EM ), and letΛ = (λ2, λ3, . . . λM )
designate an arbitrary sequence of integers whereλi ∈ {π1, π2, . . . πi−1}. Then, the tightest form of of the bound
in (22) is given by

Pr

(
M⋃

i=1

Ei

)
≤ min

Π,Λ

{
Pr(Eπ1

) +
M∑

i=2

Pr(Eπi
∩ Ec

λi
)

}
. (23)

Similar to the TSB, the derivation of the ITSB originates from the upper bound (7) on the conditional decoding
error probability, given the radial component(z1) of the noise vector (see Fig. 1). In [17], it is proposed to apply
the upper bound (23) on the RHS of (8) which for an arbitrary permutation{π1, π2, . . . , πM} and a corresponding
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sequence of integers(λ2, λ3, . . . λM−1) as above, gives

Pr

(
M−1⋃

i=1

E0,i(z1),y ∈ Cn(θ) | z1

)

≤ min
Π,Λ

{
Pr(E0,π1

(z1),y ∈ Cn(θ) | z1)

+
M−1∑

i=2

Pr(E0,πi
(z1), E

c
0,λi

(z1),y ∈ Cn(θ) | z1)

}
(24)

whereE0,j(z1) designates the pairwise error event for which the decoder decides on codewordcj rather than the
transmitted codewordc0, given the radial component(Z1) of the noise is equal toz1. As indicated in [16] and
[17], the optimization problem of (24) is prohibitively complex. In order to simplify it, Yousefi and Mehrabian
suggest to chooseπ1 = λi = imin for all i = 2, . . . , M − 1, whereimin designates the index of a codeword which
is closest (in terms of Euclidian distance) to the transmitted signal vectors0. Since the code is linear and the
channel is memoryless and symmetric, one can assume withoutany loss of generality that the all-zero codeword is
transmitted. Moreover, since we deal with antipodal modulation, thenwH(cimin) = dmin wheredmin is the minimum
distance of the code. Hence, by this particular choice ofπ1 andΛ (which in general loosen the bound in (24)), the
ordering of the indices{π2, . . . , πM−1} is irrelevant, and one can omit the optimization overΠ andΛ. The above
simplification results in the following inequality:

Pr(E(z1)|z1) ≤Pr (E0,imin(z1),y ∈ Cn(θ) | z1)

+
M−1∑

i=2

Pr(E0,i(z1), E
c
0,imin

(z1),y ∈ Cn(θ) | z1)

+ Pr (y /∈ Cn(θ) | z1) . (25)

Based on Fig. 1, the first term on the RHS of (25) satisfy the equality

Pr (E0,imin(z1), y ∈ Cn(θ) | z1)

= Pr(βmin(z1) ≤ Z2 ≤ rz1
, V < r2

z1
− Z2

2 ) (26)

where it follows from (4)

βmin(z1) , βdmin
(z1) =

(√
nEs − z1

) √
dmin

n − dmin
. (27)

Recall thatZ2 is the tangential component of the noise vectorz which is on the plane that contains the signals
s0, simin and the origin (see Fig. 1), and the other parameters are introduced in (4). The third term on the RHS of
(25) which corresponds to the probability that the receivedvectory falls outside the circular coneCn(θ) is given
in (13).

In order to express the probabilities of the formPr(E0,i(z1), E
c
0,imin

(z1),y ∈ Cn(θ) | z1) which are encountered
on the RHS of (25), we rely on the geometry shown in the upper plot of Fig. 2. The BPSK modulated signalss0,
si andsj , wherej = imin, all lie on the surface of a hyper-sphere centered at the origin and with radius

√
nEs. The

planesP1 andP2 are constructed by the triplets of points (o, s0, si) and (o, s0, sj), respectively. In the derivation
of the ITSB, Yousefi and Mehrabian choosesj to correspond to codewordcj with Hamming weightdmin.

Let Z ′
3 be a noise component which is orthogonal toZ1 and which lies on the planeP2 (see the upper plot in

Fig. 2). Based on the geometry shown in Fig. 2, ifZ1 = z1 ≤
√

nEs, then the joint event(E0,i(z1), E
c
0,j(z1),y ∈

Cn(θ)) is equivalent to the case where the projections of the received vectory on the planesP1 and P2 fall,
respectively, inside the left and right dashed areas of thisfigure. One therefore obtains the following equality if
z1 ≤

√
nEs:

Pr(E0,i(z1), Ec
0,imin

(z1), y ∈ Cn(θ) | z1)

= Pr
(
βi(z1) ≤ Z2 ≤ rz1

,

− rz1
≤ Z ′

3 ≤ βmin(z1), Y < r2
z1

| z1

)
. (28)
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θ

P1

z2

P2

φ = arccos(ρ)

z1

r(z1)

δi

2

δj

2

z′

3

βi(z1)

sj
si

βj(z1)

s0

z2

z3

z′
3

r(z1)βi(z1)

lj(z1, z2)
φ

β
j (z

1 )

Fig. 2. Upper plot:s0 is the transmitted vector,z1 is the radial noise component,z2 and z′

3 are two (not necessarily orthogonal) noise
components, which are perpendicular toz1, and lie on planesP1 and P2, respectively. The doted and dashed areas are the regions where
the eventsE0,i andEc

0,j occur, respectively. Lower plot: A cross-section of the geometry in (a).

Furthermore, from the geometry shown in the lower plot of Fig. 2, it follows that

Z ′
3 = Z3 sinφ + Z2 cos φ (29)

where Z3 is a noise component which is orthogonal to the two noise componentsZ1 and Z2, and lies on the
n-dimensional plane which is formed by the noise componentsZ2 and Z ′

3 (see the lower plot of Fig. 2). Given
that Z1 = z1, plugging (29) into the condition−rz1

≤ Z ′
3 ≤ βmin(z1) in (28) yields that

−rz1
≤ Z3 ≤ min

{
l(z1, Z2), rz1

}

where

l(z1, z2) =
βmin(z1) − ρz2√

1 − ρ2
(30)

and ρ = cos φ is the correlation coefficient between the noise components whose sizes arez2 and z′3 (see Fig. 2
whereφ designates the angle between the planesP1 andP2).
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Let W =
n∑

i=4

Z2
i , then if z1 ≤

√
nEs, the following equality holds:

Pr(E0,i(z1), Ec
0,imin

(z1), y ∈ Cn(θ) | z1)

= Pr

(
βi(z1) ≤ Z2 ≤ rz1

, −rz1
≤ Z3 ≤ min

{
l(z1, Z2), rz1

}
,

W < r2
z1
− Z2

2 − Z2
3 | z1

)
. (31)

The random variableW is Chi-squared distributed withn − 3 degrees of freedom, so itspdf is given by

fW (w) =
w

n−5

2 e−
w

2σ2 U(w)

2
n−3

2 σn−3Γ
(

n−3
2

) . (32)

Since the probability
Pr(E0,i(z1), Ec

0,imin
(z1), y ∈ Cn(θ) | z1)

depends on the correlation coefficient between the noise componentsz2 and z′3 (see Fig. 2), then the distance
spectrum of the code does not provide sufficient information for the calculation of the bound. To circumvent this
problem and obtain an upper bound which solely depends on thedistance spectrum of the code, it is suggested
in [17] to loosen the bound as follows. It is shown in [16, Appendix B] that while referring to two codewords
of Hamming weightsdi anddj (other than the transmitted codeword), the corresponding correlation coefficient as
defined above (see Fig. 2) satisfies

−min

{√
didj

(n − di)(n − dj)
,

√
(n − di)(n − dj)

didj

}

≤ ρ ≤ min(di, dj)[n − max(di, dj)]√
didj(n − di)(n − dj)

. (33)

Moreover, the RHS of (31) is shown to be a monotonic decreasing function ofρ (see [17, Appendix 1] and a further
discussion in Appendix III here). Hence, one can omit the dependency in the geometry of the code (and loosen
the upper bound) by replacing the correlation coefficients in(31) with their lower bounds which solely depend on
the weights of the two codewords. In the derivation of the ITSB,we consider the above correlation coefficients
in Fig. 2 while referring to two codewords of Hamming weightsdi = h (h ≤ n) and dj = dmin (other than the
transmitted codeword). Let

ρh , −min

{√
hdmin

(n−h)(n−dmin)
,
√

(n−h)(n−dmin)
hdmin

}

=





−
√

hdmin
(n−h)(n−dmin)

if dmin + h ≤ n

−
√

(n−h)(n−dmin)
hdmin

if dmin + h > n

. (34)

From (25) and (26) and by averaging w.r.t.Z1, one gets the following upper bound on the decoding error probability:

Pr(E)

≤ Pr
(
Z1 ≤

√
nEs, βmin(Z1) ≤ Z2 ≤ rZ1

, V ≤ r2
Z1

− Z2
2

)

+
n∑

h=dmin

{
Ah Pr

(
Z1 ≤

√
nEs, βh(Z1) ≤ Z2 ≤ rZ1

,

−rZ1
≤ Z3 ≤ min

{
lh(Z1, Z2), rZ1

}
,
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W ≤ r2
Z1

− Z2
2 − Z2

3

)}

+ Pr
(
Z1 ≤

√
nEs, Y ≥ r2

Z1

)
+ Pr(Z1 >

√
nEs) (35)

where the parameterlh(z1, z2) is simply l(z1, z2) in (30) with the correlationρ replaced byρh in (34), i.e.,

lh(z1, z2) ,
βmin(z1) − ρhz2√

1 − ρ2
h

. (36)

Using the probability density functions of the random variables in the RHS of (35), and since the random variables
Z1, Z2, Z3 andW are statistically independent, the final form of the ITSB is given by

Pr(E) ≤
∫ √

nEs

−∞

[∫ rz1

βmin

fZ2
(z2)

∫ r2
z1
−z2

2

0
fV (v)dv · dz2 (37)

+
∑

h: βh(z1)<rz1

(
Ah

∫ rz1

βh(z1)

∫ min{lh(z1,z2),rz1
}

−rz1

fZ2,Z3
(z2, z3)

∫ r2
z1
−z2

2−z2
3

0
fW (w) dw dz2 dz3

)

+ 1 − γ

(
n − 1

2
,

r2
z1

2σ2

)]
fZ1

(z1)dz1 + Q

(√
2nREb

N0

)
.

Note thatV ,
∑n

i=3 z2
i andW ,

∑n
i=4 z2

i are Chi-squared distributed with(n−2) and(n−3) degrees of freedom,
respectively (see (16) and (32) for their probability density functionsfV andfW , respectively).

D. Added-Hyper-Plane (AHP) Bound

In [16], Yousefi and Khandani introduce a new upper bound on the ML decoding block error probability, referred
to as the added hyper plane (AHP) bound. Similar to the derivation of the ITSB, the AHP bound is based on
Hunter’s bound (22) which gives the inequality (24). The complicated optimization problem in (24), however, is
treated differently.

Let us denote byIw the set of the indices of the codewords ofC with Hamming weightw. For i ∈ {1, 2, . . . , M}\
Iw, let {ji} be a sequence of integers chosen from the setIw. Then, based on (8) and the concept of Hunter’s
bound in (22), the following upper bound holds

Pr (E(z1), y ∈ Cn(θ) | z1)

≤ min
w,Jw



Pr

(
⋃

j∈Iw

{
E0,j(z1)

}
, y ∈ Cn(θ) | z1


 (38)

+
∑

i∈{1,...,M−1}\Iw

Pr
(
E0,i(z1), E

c
0,ji

(z1), y ∈ Cn(θ) | z1

)
}

.

From (28) and the lower plot in Fig. 2, it is clear that the probabilities which appear in the second term of the RHS
of (38) depend on the corresponding correlation coefficientsbetween the noise componentsz2 and z′3. Hence, in
order to compute the upper bound (38), one has to know the geometrical characterization of the Voronoi regions
of the codewords. To obtain an upper bound which only requires the knowledge of the distance spectrum of the
code, Yousefi and Khandani [16] suggest to extend the codebook by adding all the remaining

(
n
w

)
− Aw n-tuples

with Hamming weightw (i.e., to generate an extended block code which contains in addition all the binary vectors
of length n and Hamming weightw). Let us designate the new code byCw and denote its codewords bycw

i

wherei ∈
{
0, 1, . . . , M +

(
n
w

)
− Aw − 1

}
. The new codebook is not necessarily linear, and all possiblecorrelation

coefficientsρ = cos φ (see Fig. 2) are available while referring to two codewords other than the transmitted
codeword where one of these codewords is of Hamming weighti, where i ∈ {dmin, . . . n}, and the other is of
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Hamming weightw. Thus, for each layer of the codebook, one can choose thelargest available correlation ρ with
respect to any possiblen-tuple binary vector of Hamming weightw; this is due to the fact that the RHS of (38)
is a monotonically decreasing function ofρ, as shown in [17], so by choosing the largest available correlation in
Fig. 2 where one of the signal points can be any binary vector ofHamming weightw tightens the upper bound
on the error probability. Now, one may find the optimum layer atwhich the codebook extension is done, i.e., find
the optimumw ∈ {1, 2, . . . n} which yields the tightest upper bound within this form. We note that the resulting
upper bound is not proved to be uniformly tighter than the TSB, due to the extension of the code. The maximal
correlation coefficientρ between the noise components whose sizes arez2 and z′3 (see Fig. 2) while referring to
two codewords of Hamming weightsdi anddj is introduced on the RHS of (33) (see [16]). Let us designate the
maximal possible correlation coefficient in Fig. 2 which referto two n-tuples with Hamming weightsw andh by
ρw,h , i.e., based on (33) we define

ρw,h ,
min(h, w)[n − max(h, w)]√

hw(n − h)(n − w)
, w 6= h. (39)

By using the same bounding technique as of the ITSB, and replacing the correlation coefficients with their respective
upper bounds,ρw,h, (38) gets the form

Pr (E(z1), y ∈ Cn(θ) | z1)

≤ min
w

{
Pr




⋃

j:wH(cw
j )=w

E0,j(z1), y ∈ Cn(θ) | z1




+
∑

h 6=w

{
Ah Pr

(
Y ≤ r2

z1
, Z2 ≥ βh(z1),

Z3 ≤ lw,h(z1, Z2)
)}

}
(40)

where based on the lower plot of Fig. 2 and the explanation above with the correlationρ replaced byρw,h, we get

lw,h(z1, z2) =
βw(z1) − ρw,hz2√

1 − ρ2
w,h

(41)

andρw,h is introduced in (39). Applying Hunter’s bound to the first term on the RHS of (40) gives

Pr




⋃

j:wH(cw
j )=w

E0,j(z1), y ∈ Cn(θ) | z1




≤ Pr(E0,l0(z1), y ∈ Cn(θ) | z1)

+

(n

w
)−1∑

i=1

Pr(E0,li(z1), Ec

0,l̂i
(z1), y ∈ Cn(θ) | z1) (42)

where{li} for i ∈
{
0, 1, . . . ,

(
n
w

)
− 1

}
is a sequence which designates the indices of all the codewords of the

extended codeCw with Hamming weightw; this sequence is expressed in an arbitrary order, andl̂i ∈ (l0, l1, . . . , li−1)
for 1 ≤ i ≤

(
n
w

)
− 1. In order to obtain the tightest upper bound on the LHS of (42) in this approach, one has

to order the error events such that the correlation coefficients which correspond to codewordscli andc
l̂i

get their
maximal available value, which is1 − n

w(n−w) (see [16, Appendix D]). Let us designate this value byρw,w , i.e.,

ρw,w = 1 − n

w(n − w)
, w /∈ {0, n}. (43)
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Hence, based on the geometry of Fig. 2, ifz1 ≤
√

nEs, we can rewrite (42) as

Pr




⋃

j: wH(cw
j )=w

E0,j(z1), y ∈ Cn(θ) | z1




≤ Pr
(
βw(z1) ≤ Z2 ≤ rz1

, V ≤ r2
z1
− Z2

2 | z1

)

+

[(
n

w

)
− 1

]
· Pr

(
βw(z1) ≤ Z2 ≤ rz1

,

− rz1
≤ Z3 ≤ min

{
lw,w(z1, Z2), rz1

}
,

W ≤ r2
z1
− Z2

2 − Z2
3 | z1

)
(44)

where

lw,w(z1, z2) =
βw(z1) − ρw,wz2√

1 − ρ2
w,w

. (45)

By replacing the first term on the RHS of (40) with the RHS of (44), plugging the result in (7) and averaging w.r.t.
Z1 finally gives the following upper bound on the block error probability:

Pr(E)

≤ min
w

{
Pr

(
Z1 ≤

√
nEs, βw(Z1) ≤ Z2 ≤ rZ1

,

V ≤ r2
Z1

− Z2
2

)

+

(
n

w

)
Pr

(
Z1 ≤

√
nEs, βw(Z1) ≤ Z2 ≤ rZ1

,

−rZ1
≤ Z3 ≤ min

{
lw,w(Z1, Z2), rz1

}
,

W ≤ r2
Z1

− Z2
2 − Z2

3

)

+
∑

h 6=w

Ah Pr

(
Z1 ≤

√
nEs, βh(Z1) ≤ Z2 ≤ rZ1

,

−rZ1
≤ Z3 ≤ min

{
lw,h(Z1, Z2), rz1

}
,

W ≤ r2
Z1

− Z2
2 − Z2

3

)}

+ Pr
(
z1 ≤

√
nEs, Y ≥ r2

Z1

)
+ Pr

(
Z1 >

√
nEs

)
. (46)

Rewriting the RHS of (46) in terms of probability density functions, the AHP bound gets the form

Pr(E) ≤ min
w

{∫ √
nEs

−∞

[∫ rz1

βw(z1)

fZ2
(z2)

∫ r2
z1

−z2
2

0

fV (v) dv · dz2

+

(
n

w

)∫ rz1

βw(z1)

∫ min{lw,w(z1,z2),rz1
}

−rz1

fZ2,Z3
(z2, z3)

∫ r2
z1

−z2
2−z2

3

0

fW (w) dw · dz2 · dz3

+
∑

h : βh(z1) < rz1

h 6= w

(
Ah

∫ rz1

βh(z1)

∫ min{lw,h(z1,z2),rz1
}

−rz1
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fZ2,Z3
(z2, z3)

∫ r2
z1

−z2
2−z2

3

0

fW (w) dw dz2 dz3

)

+1 − γ

(
n − 1

2
,

r2
z1

2σ2

)]
fZ1

(z1)dz1

}

+Q

(√
2nREb

N0

)
(47)

whereV andW are introduced at the end of Section II-C (after Eq. (37)), and the last term in (47) follows from
(13).

III. T HE ERROREXPONENTS OF THEIMPROVED VERSIONS OF THETANGENTIAL SPHEREBOUND

The ITSB and the AHP bound are derived in [16], [17] as upper bounds on the ML decoding error probability
of binary linear block codes which are transmitted over the binary-input AWGN channel. In the following, we
discuss the exponential behavior of the new upper bounds forarbitrary ensembles of binary linear block codes, and
compare it to the error exponent of the TSB. The following lemma is also noted in [17]:

Lemma 3.1: Let C be a binary linear block code, and let us denote by ITSB(C) and TSB(C) the ITSB and TSB,
respectively, on the decoding error probability ofC. Then

ITSB(C) ≤ TSB(C).
Proof: SincePr(A, B) ≤ Pr(A) for arbitrary eventsA andB, the lemma follows immediately by comparing

the bounds on the RHS of (10) and (25) which correspond to the TSBand the ITSB, respectively.
Corollary 3.1: The ITSB can not exceed the value of the TSB while referring to the average error probability

of an ensemble of binary linear block codes under ML decoding.
Lemma 3.2: The AHP bound cannot be looser than the TSB in the limit where we let the block length tend to

infinity.
Proof: To show this, we rely on (46) and extend the code by referring to the layer of Hamming weightw = n.

Hence, the extended code contains at most one additional codeword whose Hamming weight isn (as compared to
the codebook of the original code); this possible extensionof the codebook by a single codeword has no impact
on the exponential behavior of the decoding error probability for long enough codes. The resulting upper bound
is evidently not tighter than the AHP bound (which carries anoptimization overw), and on the other hand, it
is at least as tight as the TSB (since the joint probability of two events cannot exceed the probabilities of these
individual events).

The extension of Lemma 3.2 to ensembles of codes is straightforward (by calculating the statistical expectation
over the codes of an ensemble, Lemma 3.2 also holds for ensembles). Hence, it follows that the error exponents
of both the AHP bound and the ITSB are larger or equal to the errorexponent of the TSB. In the following, we
introduce a lower bound on both the ITSB and the AHP bound. It serves as an intermediate stage to get our main
result.

Lemma 3.3: Let C designate an ensemble of binary linear block codes of lengthn, whose transmission takes
place over an AWGN channel. LetAh be the number of codewords of Hamming weighth (where0 ≤ h ≤ n), and
let EC designate the statistical expectation over the codebooks of an ensembleC. Then both the ITSB and AHP
upper bounds on the average ML decoding error probability ofC are lower bounded by

ψ(C) , min
w

{
Pr

(
Z1 ≤

√
nEs, βw(Z1) ≤ Z2 ≤ rZ1

,

V ≤ r2
Z1

− Z2
2

)

+
∑

h

{
EC [Ah] Pr

(
Z1 ≤

√
nEs, βh(Z1) ≤ Z2 ≤ rZ1

,

− rZ1
≤ Z3 ≤ min

{
lw,h(Z1, Z2), rZ1

}
,

W ≤ r2
Z1

− Z2
2 − Z2

3

)}

+ Pr
(
Z1 ≤

√
nEs, Y ≥ r2

Z1

) }
(48)
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wherelw,h(z1, z2) is defined in (41).
Proof: By comparing (46) with (48), it is easily verified that the RHS of (48) is not larger than the RHS of

(46) (actually, the RHS of (48) is just the AHPwithout any extension of the code). Referring to the ITSB, we get
by calculating the statistical expectation of the RHS of (35) w.r.t. the codes of the ensembleC

ITSB(C)

(a)
= Pr

(
Z1 ≤

√
nEs, βmin(Z1) ≤ Z2 ≤ rZ1

, V ≤ r2
Z1

− Z2
2

)

+
∑

h

{
EC [Ah] Pr

(
Z1 ≤

√
nEs, βh(Z1) ≤ Z2 ≤ rZ1

,

−rZ1
≤ Z3 ≤ min

{
lh(Z1, Z2), rZ1

}
,

W ≤ r2
Z1

− Z2
2 − Z2

3

)}

+Pr
(
Z1 ≤

√
nEs, Y ≥ r2

Z1

)
+ Pr

(
Z1 >

√
nEs

)

(b)

≥ min
w

{
Pr

(
Z1 ≤

√
nEs, βw(Z1) ≤ Z2 ≤ rZ1

,

V ≤ r2
Z1

− Z2
2

)

+
∑

h

{
EC [Ah] Pr

(
Z1 ≤

√
nEs, βh(Z1) ≤ Z2 ≤ rZ1

,

−rZ1
≤ Z3 ≤ min

{
lw,h(Z1, Z2), rZ1

}
,

W ≤ r2
Z1

− Z2
2 − Z2

3

)}

+Pr
(
Z1 ≤

√
nEs, Y ≥ r2

Z1

) }
+ Pr

(
Z1 >

√
nEs

)

(c)
> ψ(C). (49)

Equality (a) in (49) follows from calculating the statistical expectation of the RHS of (35) w.r.t. the codes from
the ensembleC, and also from the linearity of this expression w.r.t. the distance spectrum. Inequality (b) follows
by replacingw = dmin with a minimization w.r.t.w, and since the ITSB is a monotonically decreasing function
w.r.t. the correlation coefficients (see Appendix III where we rely here on (33), (34), (39) and (43) to get that
ρh ≤ ρdmin,h for all values ofh). Inequality (c) follows by removing the last positive term, Pr

(
Z1 >

√
nEs

)
, which

gives (48).
In [16] and [17], the RHS of (46) and (35), respectively, wereevaluated by integrals, which results in the

upper bounds (47) and (37). In [1, Section D], Divsalar introduced an alternative way to obtain a simple, yet an
asymptotically identical version of the TSB by using the Chernoff bounding technique. Using this technique, we
obtain the exponential version ofψ(C) which happens to coincide with that one of the TSB (see AppendixI). In
the following, we state the main result of this paper.

Theorem 3.1: (The error exponents of the AHP bound and the ITSB coincide with the error exponent of the TSB)
The TSB, ITSB and the AHP bound possess the same error exponent, which is given by

E(c) = min
0<δ≤1

{
1

2
ln

(
1 − γ + γe−2r(δ)

)
+

γ∆2c

1 + γ∆2

}
(50)
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where

γ = γ(δ) ,
1 − δ

δ

[√
c

c0(δ)
+ (1 + c)2 − 1 − (1 + c)

]
(51)

c0(δ) ,

(
1 − e−2r(δ)

) 1 − δ

2δ
. (52)

Here,δ designates the normalized Hamming weight

c ,
Es

N0
, ∆ ,

√
δ

1 − δ

andr(δ) denotes the asymptotic growth rate of the (average) distance spectrum of the code (ensemble) in terms of
δ.

Proof: The exponential version ofψ(C) in (48) is identical to the exponential version of the TSB (see
Appendices I and II). Sinceψ(C) does not exceed the AHP bound and the ITSB (see Lemma 3.3), this implies
that the error exponents of the AHP and the ITSB are not larger than the error exponent of the TSB. On the other
hand, from Lemmas 3.1 and 3.2 it follows that asymptotically,both the AHP and the ITSB are at least as tight as
the TSB, so their error exponents are at least as large as the error exponent of the TSB. Combining these results
we obtain that the error exponents of the ITSB, AHP and the TSB are all identical. In [1], Divsalar shows that the
error exponent of the TSB is determined by (50)–(52), which concludes the proof of the theorem.

Remark 3.1: The upper bound on the bit error probability in [11] is exactlythe same as the TSB on the block
error probability by Poltyrev [9], except that the average distance spectrum{Ah} of the ensemble is now replaced
by the sequence{A′

h} where

A′
h =

nR∑

w=0

( w

nR

)
Aw,h , h ∈ {0, . . . , n}

andAw,h denotes the average number of codewords encoded by information bits of Hamming weightw and having
a Hamming weight (after encoding) which is equal toh. Since

Ah =
nR∑

w=0

Aw,h

then
Ah

nR
≤ A′

h ≤ Ah , h ∈ {0, . . . , n}.

The last inequality therefore implies that the replacement of the distance spectrum{Ah} by {A′
h} (for the analysis

of the bit error probability) does not affect the asymptoticgrowth rate ofr(δ) whereδ , h
n

, and hence, the error
exponents of the TSB on the block and bit error probabilities coincide.

Remark 3.2: In [19], Zangl and Herzog suggest a modification of the TSB on the bit error probability. Their
basic idea is to tighten the upper bound on the bit error probability when the received vectory falls outside the
coneR on the RHS of (3) (see Fig. 1). In the derivation of the version of the TSB on the bit error probability,
as suggested by Sason and Shamai [11], the conditional bit error probability in this case was upper bounded by 1,
where Zangl and Herzog [19] refine the bound and provide a tighter bound on the conditional bit error probability
when the vectory falls in the bad region (i.e., when it is outside the cone in Fig. 1). Though this modification
tightens the bound on the bit error probability at low SNR (as exemplified in [19] for some short linear block
codes), it has no effect on the error exponent. The reason is simply because the conditional bit error probability
in this case cannot be below1

nR
(i.e., one over the dimension of the code), so the bound should still possess the

same error exponent. This shows that the TSB versions on the bit error probability, as suggested in [11] and [19],
have the same error exponents as of the TSB.

Corollary 3.2: The error exponents of the TSB on the bit error probability coincides with the error exponent of
the TSB on the block error probability. Moreover, the error exponents of the TSB on the bit error probability, as
suggested by Sason and Shamai [11] and refined by Zangl and Herzog [19], coincide. The common value of these
error exponents is explicitly given in Theorem 3.1.



16

IV. SUMMARY AND CONCLUSIONS

The tangential sphere bound (TSB) of Poltyrev [9] and its recent improvements by Yousefi et al. ([16], [17])
serve as useful upper bounds on the ML decoding error probability of binary linear block codes, transmitted over a
binary-input AWGN channel. However, in the random coding setting, the TSB fails to reproduce the random coding
error exponent [6]; the larger the code rate is, the more significant becomes the gap between the error exponent of
the TSB and the random coding error exponent of Gallager [6] (see Fig. 3, and the plots in [9, Figs. 2–4]). In this
respect, we note that the expression for the error exponent of the TSB, as derived by Divsalar [1], is significantly
easier for numerical calculations than the original expression of this error exponent which was provided by Poltyrev
[9, Theorem 2]. The analysis made by Divsalar is also more general in the sense that it applies to an arbitrary
ensemble, so it is not only restricted to the ensemble of fully random block codes.

The recently introduced bounds by Yousefi et al. ([16]–[18]) solely depend on the distance spectrum of the code
(or on their input-output weight enumerators for the analysis of the bit error probability). Though these new bounds
were previously exemplified (see [16]–[18]) to slightly tighten the TSB for short binary linear block codes, their
error exponents were not considered yet. The focus of this paper is on the analysis of the error exponents of these
new bounds for an arbitrary ensemble of binary linear block codes; it is given in terms of the asymptotic growth
rate of the average distance spectrum for the considered ensemble.

Putting the results reported by Divsalar [1] with the main result in this paper (see Theorem 3.1), we conclude
that the error exponents of the simple bound of Divsalar [1],the first version of Duman and Salehi bounds [2],
and the Chernoff versions of the TSB [9] and its recent improvements by Yousefi et al. [16]–[18] all coincide.
This conclusion holds for an arbitrary ensemble of binary linear block codes (e.g., turbo codes, LDPC codes etc.)
where we let the block length tend to infinity, in addition to the ensemble of fully random block codes (whose
distance spectrum is binomially distributed). Moreover, the TSB versions for the bit error probability, as provided
in [11] and [19], have error exponents which coincide; theircommon value is equal to the error exponent of the
TSB for the block error probability. Based on Theorem 3.1, it follows that for any value of SNR, the same value
of the normalized Hamming weight dominates the exponentialbehavior of the TSB and its two improved versions.
In the asymptotic case where we let the block length tend to infinity, the dominating normalized Hamming weight
can be explicitly calculated in terms of the SNR; this calculation is based on finding the value of the normalized
Hamming weightδ which achieves the minimal value of the RHS of (50), where this value clearly depends on the
asymptotic growth rate of the distance spectrum of the ensemble under consideration. A similar calculation of this
critical weight as a function of the SNR was done in [4] while referring to the ensemble of fully random block
codes and the union bound.

In a companion paper [14], new upper bounds on the block and bit error probabilities of linear block codes are
derived. These bounds improve the tightness of the Shulman andFeder bound [13] and therefore also reproduce
the random coding error exponent.
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APPENDIX I

THE EXPONENTIAL BEHAVIOR OFψ(C) IN (48)

In the following, the exponential behavior of the RHS of (48)is obtained by using the Chernoff bound forψ(C).
Note that the geometrical region of the TSB corresponds to a double sided circular cone. For the derivation of

the bound for the circular cone in Fig. 1, we refer to the event whereZ1 ≤
√

nEs; however, sinceZ1 ∼ N(0, N0

2 ),
then this boundary effect does not have any implication on the exponential behavior of the functionψ(C) for large
values ofn (as also noted in [1, p. 23]). To simplify the analysis, we therefore do not take into consideration of
this boundary effect for large values ofn. Let ψ̃(C) designate the function which is obtained by removing the event
Z1 ≤

√
nEs from the expression forψ(C) (see the RHS of (48)); then, the exponential behavior ofψ(C) and ψ̃(C)

asymptotically coincide for large values ofn.

Let us designate the normalized Gaussian noise vector byΛ = (Λ1, . . . ,Λn), i.e.,(Λ1, . . . ,Λn) =
√

2
N0

(Z1, . . . , Zn),

and defineη , tan2 θ. The Gaussian random vector hasn orthogonal components which are therefore statistically
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independent. Without abuse of notation, letλ1, . . . , λn designate in this appendix realizations of the random variables
Λ1, . . . ,Λn, respectively (note that the sequence{λi} was used in a different context for the derivation of the ITSB,

where theλi’s there are integer numbers). From (4) and (41), and by multiplying all signals by
√

2
N0

(which follows
from the scaling above), the following holds for BPSK modulated signals:

r =
√

2ncη, rλ1
=

√
η

(√
2nc − λ1

)

βh(λ1) =
(√

2nc − λ1

) √
h

n − h

lw,h(λ1, λ2) =
βw(λ1) − ρw,h λ2√

1 − ρ2
w,h

c ,
Es

N0
. (I.1)
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Fig. 3. Comparison between the error exponents for random block codes which are based on the union bound (UB), the tangential sphere
bound (TSB) of Poltyrev [9] (which according to Theorem 3.1 is identical to the error exponents of the ITSB and AHP bounds), and the
random coding bound (RCE) of Gallager [6]. The upper and lower plotsrefer to code rates of 0.5 and 0.9 bits per channel use, respectively.
The error exponents are plotted versus the reciprocal of the energy per bit to the one-sided spectral noise density.
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Hence, we obtain from (48) and the above discussion

ψ̃(C) = min
w

{
Pr

(
n∑

i=2

Λ2
i ≤ r2

Λ1
,Λ2 ≥ βw(Λ1)

)

+
n∑

h=1

Ah Pr

(
n∑

i=2

Λ2
i ≤ r2

Λ1
, Λ2 ≥ βh(Λ1), Λ3 ≥ −lw,h(Λ1,Λ2)

)

+ Pr

(
n∑

i=2

Λ2
i ≥ r2

Λ1

) }
. (I.2)

At this point, we upper bound the RHS of (I.2) by the Chernoff bounds, namely, for three random variablesV, W
andZ

Pr (V ≥ 0) ≤ E
[
epV

]
, p ≥ 0

Pr (W ≤ 0, V ≥ 0) ≤ E
[
eqW+uV

]
, q ≤ 0, u ≥ 0

Pr (W ≤ 0, V ≥ 0, Z ≥ 0) ≤ E

[
etW+sV +kZ

]
,

t ≤ 0, s ≥ 0, k ≥ 0. (I.3)

The Chernoff versions of the first and last terms on the RHS of (I.2) are introduced in [1, Eqs.(134)–(137)], and
are given by

Pr

(
n∑

i=2

Λ2
i ≥ r2

Λ1

)
≤

√
1 − 2p

1 + 2pη
e−nE1(c,p,η), p ≥ 0 (I.4)

Pr

(
n∑

i=2

Λ2
i ≤ r2

Λ1
, Λ2 ≥ βw(Λ1)

)

≤
√

1 − 2q

1 + 2qη
e−nE2(c,q, w

n
,η), − 1

2η
≤ q ≤ 0 (I.5)

where
E1(c, p, η) ,

2pηc

1 + 2pη
+

1

2
ln(1 − 2p) (I.6)

and

E2(c, q, δ, η) (I.7)

, c




2qη + (1 − 2q)
√

δ
1−δ

1 + 2qη + (1 − 2q)
√

δ
1−δ


 +

1

2
ln(1 − 2q).

Next, by invoking the Chernoff bound (I.3), we get an exponential upper bound on the second term on the RHS
of (48). Using the notation

ζw,h ,

√
w(n − h)

h(n − w)
(I.8)

we get (see Appendix II for details)

Ah Pr

(
n∑

i=2

Λ2
i ≤ r2

Λ1
, Λ2 ≥ βh(Λ1), Λ3 ≥ −lw,h(Λ1, Λ2)

)

≤
√

1 − 2t

1 + 2tη
e−g(c,t,k,s,η,h,n),

− 1

2η
≤ t ≤ 0, k ≥ 0, s ≥ 0 (I.9)
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where

g(c, t, k, s, η, h, n)

,

4tηnc + 2
√

2nc

(
s − kζw,h√

1−ρ2
w,h

)
∆h − ∆2

h

(
s − kζw,h√

1−ρ2
w,h

)2

2(1 + 2tη)

−

(
s − kρw,h√

1−ρ2
w,h

)2

+ k2

2(1 − 2t)
+

n

2
ln(1 − 2t) − n rn

(h

n

)
(I.10)

and

∆h ,

√
h

n − h
, rn

(h

n

)
,

lnAh

n
.

The next step is to find optimal values fork ands in order to maximize the functiong. If k∗ = 0 then the exponent
of ψ(C) is identical to that of the TSB. In order to find the optimalk ≥ 0 ands ≥ 0 which maximizeg, we consider
the aforementioned probabilities by discussing separately the three cases whereh < w, h > w andh = w.

Case 1: h = w. In this case, it follows from (I.8) thatζw,h = ζw,w = 1, and we get

Aw Pr

(
n∑

i=2

Λ2
i ≤ r2

Λ1
, Λ2 ≥ βw(Λ1), Λ3 ≥ −lw,w(Λ1,Λ2)

)

≤
√

1 − 2t

1 + 2tη
e−g(c,t,k,s,η,w,n), (I.11)

− 1

2η
≤ t ≤ 0, k ≥ 0, s ≥ 0

where

g(c, t, k, s, η, w, n) (I.12)

=

4tηnc + 2
√

2nc

(
s − k√

1−ρ2
w,w

)
∆w − ∆2

w

(
s − k√

1−ρ2
w,w

)2

2(1 + 2tη)

−

(
s − kρw,w√

1−ρ2
w,w

)2

2(1 − 2t)
− k2

2(1 − 2t)
+

n

2
ln(1 − 2t) − ln(Aw).

Let us introduce the parameters

ξ = s − k√
1 − ρ2

w,w

(I.13)

τ = s − kρw,w√
1 − ρ2

w,w

. (I.14)

From (I.13) and (I.14), we get
k = −(ξ − τ)α (I.15)

where

α ,

√
1 + ρw,w

1 − ρw,w
. (I.16)

Hence, the Chernoff bounding technique gives

Pr

(
n∑

i=2

Λ2
i ≤ r2

Λ1
, Λ2 ≥ βw(Λ1), Λ3 ≥ −lw,w(Λ1,Λ2)

)

≤
√

1 − 2t

1 + 2tη
e−g1(c,t,ξ,τ,η,w,n), − 1

2η
≤ t ≤ 0 (I.17)
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where

g1(c, t, ξ, τ, η, h, n) =
4tηnc + 2

√
2ncξ∆w − ∆2

wξ2

2(1 + 2tη)

− τ2

2(1 − 2t)
− (ξ − τ)2α2

2(1 − 2t)
+

n

2
ln(1 − 2t). (I.18)

Maximizing the RHS of (I.17) w.r.t.τ yields

∂g1

∂τ
= − τ

1 − 2t
+

(ξ − τ)α2

1 − 2t
= 0

⇒ τ∗ =
α2ξ∗

1 + α2
. (I.19)

Notice that ∂2g1

∂τ2 < 0, hence pluggingτ∗ in (I.18) maximizesg1. Substitutingτ∗ into (I.18) gives

g2(c, t, ξ, η, w, n) ,g1(c, t, ξ, τ
∗, η, w, n)

=
4tηnc + 2

√
2nc∆wξ − ∆2

wξ2

2(1 + 2tη)

−
α2

1+α2 ξ2

2(1 − 2t)
+

n

2
ln(1 − 2t).

A differentiation ofg2 w.r.t. ξ and an introduction of the new parameterε , α2

1+α2 gives

∂g2

∂ξ
=

√
2nc∆w − ∆2

wξ

1 + 2tη
− εξ

1 − 2t
= 0

ξ∗ =

√
2nc∆w(1 − 2t)

∆2
w(1 − 2t) + ε(1 + 2tη)

.

Again, ∂2g2

∂ξ2 < 0, so ξ = ξ∗ maximizes the functiong2. From (I.19),ξ∗ − τ∗ > 0. Sinceα is non-negative, we get
thatk∗ in (I.15) is not-positive. But since from (I.9),k ≥ 0, this yields that the optimal value ofk is equal to zero.
From the Chernoff bound in (I.3), an optimality ofk when it is set to zero implies that asymptotically, asn → ∞

Pr

(
n∑

i=2

Λ2
i ≤ r2

Λ1
, Λ2 ≥ βw(Λ1), Λ3 ≥ −lw,w(Λ1, Λ2)

)

.
= Pr

(
n∑

i=2

Λ2
i ≤ r2

Λ1
, Λ2 ≥ βw(Λ1)

)
. (I.20)

Case 2: h > w. In this case, it follows from (39) thatρw,h =
√

w(n−h)
h(n−w) . Hence, for this case, we get from (I.8)

that ρw,h = ζw,h. Replacingρw,h by ζw,h in (I.10) gives

g(c, t, k, s, η, h, n)

=

4tηnc + 2
√

2nc

(
s − kζw,h√

1−ζ2
w,h

)
∆h − ∆2

h

(
s − kζw,h√

1−ζ2
w,h

)2

2(1 + 2tη)

−

(
s − kζw,h√

1−ζ2
w,h

)2

2(1 − 2t)
− k2

2(1 − 2t)
+

n

2
ln(1 − 2t) − nrn

(h

n

)
.

In the following, we introduce the parameters:

ξ , s − kζw,h√
1 − ζ2

w,h

, τ , k.
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Optimization overτ yields τ∗ = 0, so k∗ = 0, and asymptotically (as we letn tend to infinity), one gets the
following equality in terms of the exponential behaviors:

Pr

(
n∑

i=2

Λ2
i ≤ r2

Λ1
, Λ2 ≥ βh(Λ1), Λ3 ≥ −lw,h(Λ1, Λ2)

)

.
= Pr

(
n∑

i=2

Λ2
i ≤ r2

Λ1
, Λ2 ≥ βh(Λ1)

)
. (I.21)

Case 3: h < w. From (39), it follows that for these values ofh, ρw,h =
√

h(n−w)
w(n−h) , so we get from (I.8) that

ρw,h < ζw,h. Define

ξ , s − kζw,h√
1 − ρ2

w,h

, τ , s − kρw,h√
1 − ρ2

w,h

.

This givesk = −(ξ − τ)α′ where

α′ ,

√
1 − ρ2

w,h

ζw,h − ρw,h
.

Since in this caseρw,h < ζw,h, thenα′ > 0. Similarly to the arguments in case 1, we get again that the optimal
value for k is k∗ = 0 which gives again (I.21) (i.e., in the limit where the block length tends to infinity, the
exponential behavior of the LHS and RHS of (I.21) coincide).

APPENDIX II

DERIVATION OF THE CHERNOFFBOUND IN (I.9) WITH THE FUNCTION g IN (I.10)

Using the Chernoff bound (I.3) and defining

∆w ,

√
w

n − w
(II.1)

we get

Pr

(
n∑

i=2

Λ2
i ≤ r2

Λ1
, Λ2 ≥ βh(Λ1), Λ3 ≥ −lw,h(Λ1, Λ2)

)

(a)

≤ E

[
et(

∑
n
i=2 Λ2

i−r2
Λ1

)+s(Λ2−βh(Λ1))+k(Λ3+lw,h(Λ1,Λ2))
]
,

t ≤ 0, s ≥ 0, k ≥ 0

(b)
= E

[
et(

∑
n
i=2 Λ2

i−η(
√

2nc−Λ1)2)+s(Λ2−∆h(
√

2nc−Λ1))

· e
k

(
Λ3+

∆w(
√

2nc−Λ1)−ρw,hΛ2√
1−ρ2

w,h

)
]

= E

[
et

∑
n
i=2 Λ2

i−tηΛ2
1−2tnηc+2ηt

√
2ncΛ1+sΛ2−s∆h

√
2nc+s∆hΛ1

· e
kΛ3+

k∆w
√

2nc√
1−ρ2

w,h

− k(∆wΛ1+ρw,hΛ2)√
1−ρ2

w,h

]

(c)
= E

[
et

∑
n
i=4 Λ2

i

]
E


e

−tηΛ2
1+

(
2ηt

√
2nc+s∆h− k∆w√

1−ρ2
w,h

)
Λ1
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· E


e

tΛ2
2+

(
s− kρw,h√

1−ρ2
w,h

)
Λ2


 · E

[
etΛ2

3+kΛ3

]

· e
−2tnηc−s∆h

√
2nc+ k∆w

√

2nc√
1−ρ2

w,h . (II.2)

where inequality (a) follows from the Chernoff bound (I.3),equality (b) follows from (I.1), and equality (c) follows
from the statistical independence of the components of the normalized noise vectorΛ. For a zero-mean and unit-
variance Gaussian random variableX, the following equality holds:

E

[
eaX2+bX

]
=

e
b2

2(1−2a)

√
1 − 2a

, a ≤ 1

2
, b ∈ R. (II.3)

Evaluating each term in (II.2) by the equality in (II.3), and substitutingζw,h = ∆w

∆h
which follows from (I.8) and

(II.1), gives

E

[
et

∑
n
i=4 Λ2

i

]
=

(
1√

1 − 2t

)n−3

, t ≤ 0 (II.4)

E


e

−tηΛ2
1+

(
2ηt

√
2nc+s∆h− k∆w√

1−ρ2
w,h

)
Λ1




=
1√

1 + 2tη
e


2ηt

√

2nc+∆h

(
s−

kζw,h√
1−ρ2

w,h

)


2

2(1+2tη) (II.5)

E


e

tΛ2
2+

(
s− kρw,h√

1−ρ2
w,h

)
Λ2


 =

1√
1 − 2t

· e


s−

kρw,h√
1−ρ2

w,h




2

2(1−2t) ,

k ≥ 0, s ≥ 0 (II.6)

E

[
etΛ2

3+kΛ3

]
=

1√
1 − 2t

e
k2

2(1−2t) , t ≤ 0, k ≥ 0. (II.7)

From (II.5), straightforward algebra gives

E


e

−tηΛ2
1+

(
2ηt

√
2nc+s∆h− k∆w√

1−ρ2
w,h

)
Λ1




· e
−2tnηc−s∆h

√
2nc+ k∆w

√

2nc√
1−ρ2

w,h

=
1√

1 + 2tη
· exp





−4tηnc − 2
√

2nc

(
s − kζw,h√

1−ρ2
w,h

)
∆h

2(1 + 2tη)





· exp





∆2
h

(
s − kζw,h√

1−ρ2
w,h

)2

2(1 + 2tη)





. (II.8)
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Plugging (II.4) and (II.6)–(II.8) into (II.2) finally gives

Ah Pr

(
n∑

i=2

Λ2
i ≤ r2

Λ1
, Λ2 ≥ βh(Λ1), Λ3 ≥ −lw,h(Λ1,Λ2)

)

≤ Ah√
1 + 2tη

(
1√

1 − 2t

)n−1

exp





∆2
h

(
s − kζw,h√

1−ρ2
w,h

)2

2(1 + 2tη)





· exp





−4tηnc − 2
√

2nc

(
s − kζw,h√

1−ρ2
w,h

)
∆h

2(1 + 2tη)





· exp





(
s − kρw,h√

1−ρ2
w,h

)2

2(1 − 2t)
+

k2

2(1 − 2t)





=

√
1 − 2t

1 + 2tη
e−g(c,t,k,s,η,h,n), − 1

2η
< t ≤ 0, k ≥ 0, s ≥ 0

which proves the Chernoff bound in (I.9) with the functiong introduced in (I.10).

APPENDIX III

MONOTONICITY W.R.T. THE CORRELATION COEFFICIENT

Consider the probabilities
Pr(E0,i(z1), Ec

0,j(z1), y ∈ Cn(θ) | z1)

and denote the Hamming weights ofci andcj by di anddj , respectively. In [17], it is shown that as long asdi > dj ,
the probabilities above are monotonically decreasing functions of the correlation coefficientsρ = cos φ between
the noise components whose sizes arez2 andz′3 (see the upper plot of Fig. 2). Hence, the optimization problem in
(24) is simplified by choosing the first error event as well as thecomplementary error events on the RHS of (24) to
correspond to a codeword with Hamming weightdmin, and (25) is obtained. Here we prove that the aforementioned
probabilities are monotonically decreasing functions of the correlation coefficients forany choice of i, j. As a
consequence, one can obtain a version of the ITSB by setting in (24) π1 = λi = w wherew ∈ {dmin, . . . , n}, and
then choose the optimalw which minimizes the resulting upper bound. In order to provethis, we follow the steps
in [17, Appendix I] where it is shown that the above probabilities are monotonically decreasing functions ofρ if

Z2

βj(z1)
> ρ. (III.1)

Note that the joint event(E0,i(z1), y ∈ Cn(θ)) implies that the noise componentZ2 is in the range betweenβi(z1)
andrz1

(see Fig. 1), so the minimal value of the RHS of (III.1) is

βi(z1)

βj(z1)
=

√
di(n − dj)

dj(n − di)

where the last equality follows from (4) and sinceδh = 2
√

hEs for BPSK modulated signals. Clearly,
√

di(n − dj)

dj(n − di)
>

min(di, dj)[n − max(di, dj)]√
didj(n − di)(n − dj)

(III.2)

and from (33), it is evident that the RHS of (III.2) is the maximal value ofρ, so condition (III.1) is always satisfied
while referring to the joint event(E0,i(z1), y ∈ Cn(θ)) given thatZ1 = z1.



24

REFERENCES

[1] D. Divsalar, “A simple tight bound on error probability of block codes with application to Turbo codes,”TMO progress Report 42-139
NASA, JPL, Pasadena, CA, USA, 1999.

[2] T. M. Duman and M. Salehi, “New performance bounds for turbo codes,”IEEE Trans. on Communications, vol. 46, pp. 717–723, June
1998.

[3] T. M. Duman, Turbo Codes and Turbo Coded Modulation Systems: Analysis and Performance Bounds, Ph.D. dissertation, Elect.
Comput. Eng. Dep., Northeastern University, Boston, MA, USA, May 1998.

[4] M. Fossorier, “Critical point for maximum-likelihood decoding of linear block codes,”IEEE Communications Letters, vol. 9, no. 9,
pp. 817–819, September 2005.

[5] J. Galambos and I. Simonelli,Bonferroni-type inequalities with applications, Springer Series in Statistics, Probability and its
Applications, Springer-Verlag, New-York, 1996.

[6] R. G. Gallager, “A simple derivation of the coding theorem and some applications,” IEEE Trans. on Information Theory, vol. 11,
pp. 3–18, January 1965.

[7] H. Herzberg and G. Poltyrev, “Techniques of bounding the probability of decoding error for block modulation structures,”IEEE trans.
on Information Theory, vol. 40, no. 3, pp. 903–911, May 1994.

[8] D. Hunter, “An upper bound for the probability of a union,“Journal of Applied Probability, vol. 13, pp. 597–603, 1976.
[9] G. Poltyrev, “Bounds on the decoding error probability of binary linear codes via their spectra,”IEEE Trans. on Information Theory,

vol. 40, no. 4, pp. 1284–1292, July 1994.
[10] I. Sason and S. Shamai, “Bounds on the error probability of ML decoding for block and turbo-block codes,”Annals of Telecommuni-

cation, vol. 54, no. 3–4, pp. 183–200, March–April 1999.
[11] I. Sason and S. Shamai, “Improved upper bounds on the ML decoding error probability of parallel and serial concatenated turbo codes

via their ensemble distance spectrum,”IEEE Trans. on Information Theory, vol. 46, no. 1, pp. 24–47, January 2000.
[12] I. Sason and S. Shamai, “Performance analysis of linear codesunder maximum-likelihood decoding: a tutorial,”Foundations and Trends

in Communications and Information Theory, vol. 3, no. 1–2, pp. 1–222, NOW Publishers, Delft, the Netherlands, July 2006.
[13] N. Shulman and M. Feder, “Random coding techniques for nonrandom codes,”IEEE Trans. on Information Theory, vol. 45, no. 6,

pp. 2101–2104, September 1999.
[14] M. Twitto, I. Sason and S. Shamai, “Tightened upper bounds on theML decoding error probability of binary linear block codes,” to

appear in theIEEE Trans. on Information Theory, 2007.
[15] S. Yousefi and A. Khandani, “Generelized tangential sphere bound on the ML decoding error probability of linear binary block codes

in AWGN interference,”IEEE Trans. on Information Theory, vol. 50, no. 11, pp. 2810–2815, November 2004.
[16] S. Yousefi and A. K. Khandani, “A new upper bound on the ML decoding error probability of linear binary block codes in AWGN

interference,”IEEE Trans. on Information Theory, vol. 50, no. 12, pp. 3026–3036, December 2004.
[17] S. Yousefi and A. Mehrabian, “Improved tangential sphere bound on the ML decoding error probability of linear binary block codes in

AWGN interference,”Proceedings 37th Annual Conference on Information Science and Systems (CISS 2005), John Hopkins University,
Baltimor, MD, USA, March 16–18, 2005.

[18] S. Yousefi, “Gallager first bounding technique for the performance evaluation of maximum-likelihood decoded linear binary block
codes,”IEE Proceedings on Communications, vol. 153, no. 3, pp. 317–332, June 2006.

[19] J. Zangl and R. Herzog, “Improved tangential sphere bound on the bit error probability of concatenated codes,”IEEE Journal on
Selected Areas in Communications, vol. 19, no. 5, pp. 825–837, May 2001.


