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Concentration of Measure Inequalities and Their
Communication and Information-Theoretic Applications

Maxim Raginsky Igal Sason

Abstract

During the last two decades, concentration of measure has been a subject of various exciting
developments in convex geometry, functional analysis, statistical physics, high-dimensional
statistics, probability theory, information theory, communications and coding theory, computer
science, and learning theory. One common theme which emerges in these fields is probabilis-
tic stability: complicated, nonlinear functions of a large number of independent or weakly
dependent random variables often tend to concentrate sharply around their expected values.
Information theory plays a key role in the derivation of concentration inequalities. Indeed, both
the entropy method and the approach based on transportation-cost inequalities are two major
information-theoretic paths toward proving concentration.

This brief survey is based on a recent monograph of the authors in the Foundations and
Trends in Communications and Information Theory, and a tutorial given by the authors at
ISIT 2015. It introduces information theorists to three main techniques for deriving concen-
tration inequalities: the martingale method, the entropy method, and the transportation-cost
inequalities. Some applications in information theory, communications, and coding theory are
used to illustrate the main ideas.

I. INTRODUCTION

Concentration inequalities bound from above the probability that a random variable Z deviates
from its mean, median or some other typical value by a given amount. These inequalities have
been studied for several decades, with some fundamental and substantial contributions during
the last two decades. Very roughly speaking, the concentration-of-measure phenomenon can be
stated in the following simple way: “A random variable that depends in a smooth way on many
independent random variables (but not too much on any of them) is essentially constant” [1].
Informally, this amounts to saying that such a random variable Z concentrates around its expected
value, E[Z], in such a way that the probability of the event {|Z−E[Z]| ≥ t}, for a given t > 0,
decays exponentially in some power of t. Detailed treatments of the concentration-of-measure
phenomenon, including historical accounts, can be found, e.g., in [2]–[9].

In recent years, concentration inequalities have been intensively studied and used as a powerful
tool in various areas. These include convex geometry, functional analysis, statistical physics,
probability theory, statistics, information theory, communications and coding theory, learning
theory, and computer science. Several techniques have been developed so far to prove concen-
tration inequalities. This survey paper focuses on three such techniques which are studied in our
tutorial [9] and references therein:
• The martingale method (see, e.g., [6], [10], [11], [8, Chapter 7], [12], [13]), and its

information-theoretic applications (see, e.g., [14] and references therein, [15]).
• The entropy method and logarithmic Sobolev inequalities (see, e.g., [3, Chapter 5], [4]

and references therein).
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• Transportation-cost inequalities which originated from information theory (see, e.g., [3,
Chapter 6], [16], [17] and references therein).

Our goal here is to give the reader a quick preview of the vast field of concentration inequalities
and their applications in information theory, communications and coding. Therefore, we state
most of the theorems and lemmas without proofs; occasionally, we provide sketches or brief
outlines. More details can be found in our monograph [9] and the slides of our ISIT’15 tutorial.1

II. THE BASIC TOOLBOX

Our objective is to derive tight upper bounds on the tail probabilities

P[Z ≥ E[Z] + t] and P[Z ≤ E[Z]− t], ∀t > 0

where Z = f(X1, . . . , Xn) is an arbitrary function of n independent random variables X1, . . . , Xn.
To get an idea of what we can expect, let us first recall Chebyshev’s inequality:

P[|Z − E[Z]| ≥ t] ≤ Var[Z]

t2
, ∀t > 0.

This inequality shows that the tail probability decays with t, and that the rate of decay is
proportional to the variance of Z. Thus, the variance of Z gives an idea about how tightly Z
concentrates around its mean. In fact, if Z takes values in a bounded interval, then we can
upper-bound the variance of Z only in terms of the length of this interval:

Lemma 1. Let Z be a random variable taking values in an interval [a, b]. Then

Var[Z] ≤ 1
4 (b− a)2. (1)

This bound is sharp: if Z only takes the two values a and b with equal probability, then Var[Z] =
1
4 (b− a)2.

Proof: Recall that Var[Z] ≤ E[(Z− c)2] for all c ∈ R. Letting c = a+b
2 , we obtain (1). The

case of equality is an easy calculation.
Thus, for a bounded Z in an interval [a, b], Chebyshev’s inequality gives

P[|Z − E[Z]| ≥ t] ≤ (b− a)2

4t2
.

Much stronger concentration inequalities can be derived, however, for bounded random variables.
Using Markov’s inequality, for every λ > 0 we have

P [Z − E[Z] ≥ t] = P
[
eλ(Z−E[Z]) ≥ eλt

]
≤ e−(λt−ψ(λ)),

where ψ(λ), logE[eλ(Z−E[Z])] is the logarithmic moment-generating function of Z. Optimizing
over λ, we get the Chernoff bound

P [Z ≥ E[Z] + t] ≤ e−ψ?(t),

where ψ?(t), supλ≥0 [λt− ψ(λ)] is the Legendre dual of ψ. For example, if Z ∼ N(0, σ2)
(Gaussian with mean 0 and variance σ2), we have ψ(λ) = λ2σ2/2, and ψ?(t) = t2/2σ2. With

1Part 1 (The martingale method):
http://webee.technion.ac.il/people/sason/raginsky sason ISIT 2015 tutorial part 1.pdf.

Part 2 (The entropy method and transportation-cost inequalities):
http://webee.technion.ac.il/people/sason/raginsky sason ISIT 2015 tutorial part 2.pdf.
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this in mind, we say that a random variable Z is σ2-subgaussian if ψ(λ) ≤ λ2σ2/2. For a
subgaussian random variable, we obtain ψ?(t) ≥ t2/2σ2, which gives the tail bound

P[Z ≥ E[Z] + t] ≤ e−t2/2σ2

, ∀t > 0.

Thus, the whole affair hinges on our ability to prove that the random variable Z of interest is
subgaussian.

To start with, a bounded random variable is subgaussian:

Lemma 2 (Hoeffding [11]). For a random variable Z taking values in an interval [a, b], we
have

logE[eλ(Z−E[Z])] ≤ 1
8 λ

2(b− a)2. (2)

Proof: We give a simple probabilistic proof, which has the additional benefit of highlighting
the role of the tilted distribution. Let P = L(Z),2 and introduce its exponential tilting P (t): for
an arbitrary sufficiently regular function f : R→ R,

EP (t) [f(Z)],
EP [f(Z)etZ ]

EP [etZ ]
.

Since Z is supported on [a, b] under P , the same holds under P (t) as well. Therefore, by
Lemma 1,

VarP (t) [Z] ≤ 1
4 (b− a)2.

On the other hand,

VarP (t) [Z] =
EP [Z2etZ ]

EP [etZ ]
−
(
EP [ZetZ ]

EP [etZ ]

)2

= ψ′′(t).

Therefore,
ψ′′(t) ≤ 1

4 (b− a)2

for all t. Integrating and using the fact that

ψ(0) = ψ′(0) = 0,

we get (2).
Both the martingale method and the entropy method are just elaborations of these basic tools,

which are applicable to an arbitrary bounded real-valued random variable. However, one should
keep in mind that concentration of measure is a high-dimensional phenomenon: we are interested
in situations when Z is a function of many independent random variables X1, . . . , Xn, and we
can often quantify the “sensitivity” of f to changes in each of its arguments while the others
are kept fixed. This suggests that we may get a handle on the high-dimensional concentration
properties of Z by breaking up the problem into n one-dimensional subproblems involving only
one of the Xi’s at a time. Whenever such a divide-and-conquer approach is possible, we speak
of tensorization, by which we mean that some quantity involving the distribution of

Z = f(X1, . . . , Xn)

(e.g., variance or relative entropy) can be related to the sum of similar quantities involving the
conditional distribution of each Xi given

Xi, (X1, . . . , Xi−1, Xi+1, . . . , Xn).

2The notation L(Z) stands for the law, or probability distribution, of the random variable Z.
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III. THE MARTINGALE METHOD

The basic idea behind the martingale method is to start with the Doob martingale decompo-
sition

Z − E[Z] =

n∑
k=1

ξk, (3)

where

ξk,E[Z|Xk]− E[Z|Xk−1] (4)

with

Xk, (X1, . . . , Xk)

and then to exploit any information about the sensitivity of f to local changes in its arguments in
order to control the sizes of the increments ξk. As a warm-up, consider the following inequality,
first obtained in a restricted setting by Efron and Stein [18] and generalized by Steele [19]:

Lemma 3 (Efron–Stein–Steele). Let Z = f(Xn) where X1, . . . , Xn are independent, then

Var[Z] ≤
n∑
k=1

E
[
Var[Z|Xk]

]
. (5)

Proof: We exploit the fact that {ξk}nk=1 in (4) is a martingale difference sequence with
respect to Xn, i.e.,

E[ξk|Xk−1] = 0 (6)

for all k ∈ {1, . . . , n}. Hence, since E[ξkξl] = 0 for k 6= l,

Var[Z] =

n∑
k=1

E[ξ2
k]. (7)

The independence of X1, . . . , Xn in (4) yields

ξk = E
[
Z − E[Z|Xk] |Xk

]
and, from Jensen’s inequality,

ξ2
k ≤ E

[(
Z − E[Z|Xk]

)2 |Xk
]
.

Due to the independence of X1, . . . , Xn, this in turn yields

E[ξ2
k] ≤ E[

(
Z − E[Z|Xk]

)2]
= E[Var[Z|Xk]]. (8)

Substituting (8) into (7) yields (5).
The Efron–Stein–Steele inequality is our first example of tensorization: it upper-bounds the

variance of Z = f(X1, . . . , Xn) by the sum of the expected values of the conditional variances of
Z given all but one of the variables. In other words, we say that Var[f(X1, . . . , Xn)] tensorizes.
This fact has immediate useful consequences. For example, we can use any convenient technique
for upper-bounding variances to control each term on the right-hand side of (7), and thus obtain
many useful variants of the Efron–Stein–Steele inequality:



5

1) For every random variable U with a finite second moment,

Var[U ] = 1
2 E[(U − U ′)2]

where U ′ is an i.i.d. copy of U . Thus, if we let

Z ′k = f(X1, . . . , Xk−1, X
′
k, Xk+1, . . . , Xn),

where X ′k is an i.i.d. copy of Xk, then Z and Z ′k are i.i.d. given Xk. This implies that

Var[Z|Xk] = 1
2 E
[
(Z − Z ′k)2

∣∣∣Xk
]

for k ∈ {1, . . . , n}, yielding the following variant of the Efron–Stein–Steele inequality:

Var[Z] ≤ 1
2

n∑
i=1

E[(Z − Z ′k)2]. (9)

This inequality is sharp: if Z =
∑n

k=1Xk, then

E[(Z − Z ′k)2] = 2 Var[Xk],

and (9) holds with equality. This shows that sums of independent random variables X1, . . . , Xn

are the least concentrated among all functions of Xn.
2) For every random variable U with a finite second moment and for all c ∈ R,

Var[U ] ≤ E[(U − c)2].

Thus, by conditioning on Xk, we let Zk = fk(X
k) for arbitrary functions fk (k ∈

{1, . . . , n}) of n− 1 variables to obtain

Var[Z|Xk] ≤ E[(Z − Zk)2|Xk].

From (8), this yields another variant of the Efron–Stein–Steele inequality:

Var[Z] ≤
n∑
i=1

E[(Z − Zk)2]. (10)

3) Suppose we know that, by varying just one of the arguments of f while holding all others
fixed, we cannot change the value of f by more than some bounded amount. More precisely,
suppose that there exist finite constants c1, . . . , cn ≥ 0, such that

sup
x
f(x1, . . . , xi−1, x, xi+1, . . . , xn)

− inf
x
f(x1, . . . , xi−1, x, xi+1, . . . , xn) ≤ ci (11)

for all i and all x1, . . . , xi−1, xi+1, . . . , xn. Then, by Lemma 1,

Var[Z|Xk] ≤ 1
4 c

2
k

and therefore from (5), (8)

Var[Z] ≤ 1
4

n∑
k=1

c2
k. (12)



6

Example: Kernel Density Estimation

As an example of Efron–Stein–Steele inequalities in action, let us look at kernel density
estimation (KDE), a nonparametric procedure for estimating an unknown pdf φ of a real-valued
random variable X based on observing n i.i.d. samples X1, . . . , Xn drawn from φ [20, Chap. 9].
A kernel is a function K : R→ R+ satisfying the following conditions:

1) It is integrable and normalized:
∫∞
−∞K(u)du = 1.

2) It is even: K(u) = K(−u) for all u ∈ R.
3) limh↓0

1
hK(x−uh ) = δ(x− u), where δ is the Dirac function.

The KDE is given by

φn(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

where h > 0 is a parameter called the bandwidth. From the properties of K, for each x ∈ R
we have

E[φn(x)] =
1

h

∫ ∞
−∞

K

(
x− u
h

)
φ(u)du

h↓0−−→ φ(x).

Thus, we expect the KDE φn to concentrate around the true pdf φ; to quantify this, let us
examine the L1 error

Zn = f(X1, . . . , Xn) =

∫ ∞
−∞
|φn(x)− φ(x)|dx.

A simple calculation shows that f satisfies (11) with

c1 = . . . = cn =
2

n
,

and therefore (12) yields

Var[Zn] ≤ 1

n
.

Now, to take full advantage of the martingale method, we need to combine the martingale
decomposition (3) with the Chernoff bound. To proceed, we first note that the sequence of
random variables Zk,E[Z|Xk], for k = 0, 1, . . . , n, is a martingale with respect to X1, . . . , Xn,
i.e., E[Zk+1|Xk] = Zk for each k. Here is one frequently used concentration result:

Theorem 1 (Azuma–Hoeffding inequality [10], [11]). Let {Zk}nk=0 be a real-valued martingale
sequence. Suppose that the martingale increments ξk = Zk−Zk−1, for k = 1, . . . , n, are almost
surely bounded, i.e., |ξk| ≤ dk a.s. for some constants d1, . . . , dn ≥ 0. Then

P [|Zn − Z0| ≥ t] ≤ 2 exp

(
− t2

2
∑n

k=1 d
2
k

)
, ∀t > 0. (13)

The main idea behind the proof is to apply Hoeffding’s lemma to each term ξk in the Doob
martingale decomposition (3), conditionally on Xk−1: for all λ > 0

E[eλ(Zn−Z0)] = E

[
n∏
k=1

eλξk

]

= E

[
n−1∏
k=1

eλξkE[eλξn |Xn−1]

]
.
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Since |ξn| ≤ dn, we have lnE[eλξn |Xn−1] ≤ λ2d2n
2 , by Hoeffding’s lemma. Continuing in this

manner and peeling off the terms ξk one by one, we can apply the Chernoff bound and obtain
(13). However, the Azuma-Hoeffding inequality is not tight in general (e.g., if t >

∑n
k=1 dk,

then the probability in the left side of (13) is zero, due to the boundedness of the ξk’s, whereas
its bound in the right side of (13) is strictly positive). One way to tighten it is to make use of
additional information on the conditional variances along the martingale sequence [21]:

Theorem 2 (McDiarmid). Let {Zk}∞k=0 be a martingale satisfying the following two conditions
for some constants d, σ > 0:
• |ξk| ≤ d for all k.
• Var[Zk|Xk−1] = E[|ξk|2|Xk−1] ≤ σ2 for all k.

Then, for every α ≥ 0,

P [|Zn − Z0| ≥ αn] ≤ 2 exp

(
−nd

(δ + γ

1 + γ

∥∥∥ γ

1 + γ

))
,

where γ = σ2/d2, δ = α/d, and d(p‖q),p ln p
q + (1 − p) ln 1−p

1−q is the binary relative entropy
function.

Note that, in contrast to Theorem 1, the martingale increments {ξk} in Theorem 2 should be
bounded by a constant d which is independent of k.

A prominent application of the martingale method is a powerful inequality due to McDiarmid
[21], also known as the bounded difference inequality:

Theorem 3 (McDiarmid’s inequality). If f satisfies the bounded difference property (11), and
X1, . . . , Xn are independent random variables, then for all t > 0

P [|f(Xn)− E[f(Xn)]| ≥ t] ≤ 2 exp

(
− 2t2∑n

k=1 c
2
k

)
. (14)

The strategy of the proof is similar to the one used to derive the Azuma–Hoeffding inequality.
In fact, we could have used the Azuma–Hoeffding inequality to bound the tail probability in
(14); however, McDiarmid’s inequality provides a factor of 4 improvement in the exponent of
the bound when f is a function of n independent random variables.

Here is a nice information-theoretic application of McDiarmid’s inequality [22]. Consider
a discrete memoryless channel (DMC) with input alphabet X, output alphabet Y, and strictly
positive transition probabilities T (y|x). Fix an arbitrary distribution PXn of the input n-block
Xn, and let PY n denote the resulting output distribution. Then, for every input n-block xn ∈ Xn,

PY n|Xn=xn

[
log

PY n|Xn=xn(Y n)

PY n(Y n)
≥ D(PY n|Xn=xn‖PY n) + t

]
≤ exp

(
− 2t2

nc(T )

)
, (15)

where

c(T ),2 max
x,x′∈X

max
y∈Y

log
T (y|x)

T (y|x′)
. (16)

Proof: Let us consider the function

f(y1, . . . , yn), log
PY n|Xn=xn(yn)

PY n(yn)

(recall that the input block xn is fixed). A simple calculation shows that this f has bounded
differences with

c1 = . . . = cn = c(T ).
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Moreover, since the channel is memoryless, Y1, . . . , Yn are independent random variables under
PY n|Xn=xn (although not under PY n , unless PXn is a product distribution). Applying McDi-
armid’s inequality, we get (15).

The martingale method has also been used successfully to analyze concentration properties of
random codes around their ensemble averages. The performance analysis of a particular code is
usually difficult, especially for codes of large block lengths. Availability of a concentration result
for the performance of capacity-approaching code ensembles under low-complexity decoding
algorithms, as it is the case with low-density parity-check (LDPC) codes [14], validates the use of
the density evolution technique as an analytical tool to assess the performance of individual codes
from a code ensemble whose block length is sufficiently large, and to assess their asymptotic
gap to capacity. However, it should be borne in mind that the current concentration results for
codes defined on graphs, which mainly rely on the Azuma–Hoeffding inequality, are weak since
in practice concentration is observed at much shorter block lengths.

Here are two illustrative examples of the use of martingale concentration inequalities in the
analysis of code performance. The first result, due to Sipser and Spielman [23], is useful for
assessing the performance of bit-flipping decoding algorithms for expander codes:

Theorem 4 (Sipser and Spielman). Let G be a bipartite graph that is chosen uniformly at
random from the ensemble of bipartite graphs with n vertices on the left, a left degree l, and
a right degree r. Let α ∈ (0, 1) and δ > 0 be fixed numbers. Then, with probability at least
1− exp(−δn), all sets of αn vertices on the left side of G are connected to at least

n

[
l
(
1− (1− α)r

)
r

−
√

2lα
(
h(α) + δ

) ]
vertices (neighbors) on the right side of G, where h is the binary entropy function to base e
(i.e., h(x) = −x ln(x)− (1− x) ln(1− x), x ∈ [0, 1]).

The proof revolves around the analysis of the so-called neighbor exposure martingale via the
Azuma–Hoeffding inequality to bound the probability that the number of neighbors deviates
significantly from its mean value.

Let LDPC(n, λ, ρ) denote an LDPC code ensemble of block length n, respectively, and with
left and right degree distributions λ and ρ from the edge perspective (i.e., λi designates the
fraction of edges which are connected to a variable node of degree i, and ρi designates the
fraction of edges which are connected to parity-check nodes of degree i).

The second result, due to Richardson and Urbanke [24], concerns the performance of message-
passing decoding algorithms for LDPC codes.

Theorem 5 (Richardson–Urbanke). Let C, a code chosen uniformly at random from the ensemble
LDPC(n, λ, ρ), be used for transmission over a memoryless binary-input output-symmetric
(MBIOS) channel. Assume that the decoder performs ` iterations of message-passing decoding,
and let Pb(C, `) denote the resulting bit error probability. Then, for every δ > 0, there exists
some α = α(λ, ρ, δ, `) > 0 (independent of the block length n), such that

P
[
|Pb(C, `)− ELDPC(n,λ,ρ)[Pb(C, `)]| ≥ δ

]
≤ e−αn

The proof also applies the Azuma–Hoeffding inequality to a certain martingale sequence. Some
additional references on the use of the martingale method in the context of codes include [14],
[23]–[29]. For more details, we refer the reader to our monograph [9].
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IV. THE ENTROPY METHOD AND LOGARITHMIC SOBOLEV INEQUALITIES

The entropy method, as its name suggests, relies on information-theoretic techniques to control
the logarithmic moment-generating function ψ directly in terms of certain relative entropies.
Recall our roadmap for proving a concentration inequality for Z = f(X), where X is an
arbitrary random variable:
• Derive a tight quadratic bound on ψ:

ψ(λ) = logE[eλ(Z−E[Z])] ≤ 1
2 λ

2σ2.

• Use the Chernoff bound to get

P[Z ≥ E[Z] + t] ≤ e−
t2

2σ2 , ∀ t ≥ 0.

Let P = L(X), and introduce the tilted distribution P (λf):

dP (λf) =
eλfdP

EP [eλf ]
.

The entropy method revolves around the relative entropy D(P (λf)‖P ), and has two ingredients:
(1) the Herbst argument, and (2) tensorization.

We start with the Herbst argument (the name refers to an unpublished note by I. Herbst that
proposed the use of such an argument in the context of mathematical physics of quantum fields).
Let us examine the relative entropy:

D(P (λf)‖P ) =

∫
dP (λf) log

dP (λf)

dP

= E(λf) [λf(X)− ψ(λ)]

= λψ′(λ)− ψ(λ),

where E(λf)[·] denotes expectation with respect to the tilted distribution P (λf). Now, with a bit
of foresight, we rewrite the last expression as

λψ′(λ)− ψ(λ) = λ2 d

dλ

(
ψ(λ)

λ

)
.

Thus, we end up with the identity

D(P (λf)‖P ) = λ2 d

dλ

(
ψ(λ)

λ

)
.

Integrating and using the fact that limλ→0
ψ(λ)
λ = 0 (which can be proved using l’Hopital’s rule),

we get

ψ(λ) = λ

∫ λ

0

D(P (tf)‖P )

t2
dt. (17)

Appealing to the Chernoff bound, we end up with the following:

Lemma 4 (The Herbst argument). Suppose that Z = f(X) is such that

D(P (λf)‖P ) ≤ 1
2 λ

2σ2, ∀λ ≥ 0. (18)

Then Z is σ2-subgaussian, and therefore

P [f(X) ≥ E[f(X)] + t] ≤ e−
t2

2σ2 , ∀ t ≥ 0. (19)
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In fact, it can be shown that the reverse implication holds as well, but with some loss in the
constants [30]: if Z = f(X) is σ2/4-subgaussian, then

D(P (λf)‖P ) ≤ 1
2 λ

2σ2, λ ≥ 0.

In other words, subgaussianity of Z = f(X) is equivalent to D(P (λf)‖P ) = O(λ2). It seems,
therefore, that we have not really accomplished anything, apart from arriving at an equivalent
characterization of subgaussianity. However, the relative entropy has one crucial property: it ten-
sorizes. Recall that we are interested in the high-dimensional setting, where X = (X1, . . . , Xn)
is a tuple of n independent random variables. Thus, P = L(X) is a product distribution:
PX = PX1

⊗ . . . ⊗ PXn . Using this fact together with the chain rule for relative entropy, we
arrive at the following:

Lemma 5 (Tensorization of the relative entropy). Let P and Q be two probability distributions
of a random n-tuple X = (X1, . . . , Xn), such that the coordinates of X are independent under
P . Then

D(Q‖P ) ≤
n∑
i=1

D(QXi|Xi‖PXi |QXi). (20)

The quantity on the right-hand side of (20) is the erasure divergence between Q and P [31]. We
now particularize this general bound to our problem, where Q is given by the tilted distribution
P (λf). In that case, using Bayes’ rule and the fact that the Xi’s are independent, we can express
the conditional distributions P (λf)

Xi|Xi
as follows: for each xi,

dP
(λf)

Xi|Xi=xi
=

eλf(x1,...,xi−1,·,xi+1,...,xn)

E
[
eλf(x1,...,xi−1,Xi,xi+1,...,xn)

] dPXi .

This looks formidable; nevertheless, it reveals that the conditional distribution P
(λf)

Xi|Xi=xi
is

the exponential tilting of the marginal distribution PXi with respect to the random variable
fi(Xi) = f(x1, . . . , xi−1, Xi, xi+1, . . . , xn), which depends only on Xi because xi is fixed.
Thus, we arrive at the following bound:

D(P (λf)‖P ) ≤
n∑
i=1

Ẽ
[
D(P

(λfi)
Xi
‖PXi)

]
,

where the expectation on the right-hand side is with respect to the tilted distribution.
We can now distill the entropy method into a series of steps:

1) We wish to derive a subgaussian tail bound

P [f(Xn) ≥ E[f(Xn)] + t] ≤ e−
t2

2σ2 , t ≥ 0,

where X1, . . . , Xn are independent random variables.
2) Suppose that we can prove that there exist constants c1, . . . , cn ≥ 0, such that

D(P
(λfi)
Xi
‖PXi) ≤ 1

2 λ
2c2
i , ∀ i ∈ {1, . . . , n}. (21)

3) Then, by the tensorization lemma,

D(P (λf)‖P ) ≤ 1
2 λ

2
n∑
i=1

c2
i ,

and therefore, by the Herbst argument, Z = f(Xn) is σ2-subgaussian with σ2 =
∑n

i=1 c
2
i .
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The main benefit of passing to the relative-entropy characterization of subgaussianity is that now,
via tensorization, we have broken up a difficult n-dimensional problem into n presumably easier
1-dimensional problems, each of which boils down to analyzing the behavior of the function
fi(Xi) ≡ f(x1, . . . , xi−1, Xi, xi+1, . . . , xn), where only the ith input coordinate is random, and
the remaining ones are fixed at some arbitrary values.

Of course, the problem now reduces to showing that (21) holds. One route, which often yields
tight constants, is via so-called logarithmic Sobolev inequalities. In a nutshell, a logarithmic
Sobolev inequality (or LSI, for short) ties together a probability distribution P , some function
class A that contains the function f of interest, and an “energy” functional E : A → R with
the property

E(αf) = αE(f), ∀α ≥ 0, f ∈ A.

With these ingredients in place, a log-Sobolev inequality takes the form

D(P (f)‖P ) ≤ 1
2 cE

2(f), ∀f ∈ A.

Now suppose that E(f) ≤ L. Then we readily get the bound

D(P (λf)‖P ) ≤ 1
2 cE

2(λf) = 1
2 λ

2cE2(f) ≤ 1
2 λ

2cL2,

so f(X), X ∼ P , is σ2-subgaussian with σ2 = cL2.
There is a vast literature on log-Sobolev inequalities, and an interested reader may consult

our monograph for more details and additional references. Here we will give the two classic
examples: the Bernoulli LSI and the Gaussian LSI, due to Gross [32].

Theorem 6 (Bernoulli LSI). Let X1, . . . , Xn be i.i.d. Bern(1/2) random variables. Then, for
every function f : {0, 1}n → R, we have

D(P (f)‖P ) ≤ 1

8

E
[
|Df(Xn)|2ef(Xn)

]
E[ef(Xn)]

, (22)

where P = Bern(1/2)⊗n,

Df(xn),

√√√√ n∑
i=1

|f(xn)− f(xn ⊕ ei)|2,

and xn ⊕ ei is the XOR of xn with the bit string of all zeros, except for the ith bit. In other
words, xn ⊕ ei is xn with the ith bit flipped.

The proof, which we omit, is to first establish the n = 1 case via a straightforward if tedious
exercise in calculus, and then to extend to an arbitrary n by tensorization. Note that the mapping
f 7→ Df has the desired scaling property: D(αf) = αD(f) for all α ≥ 0.

Theorem 7 (Gaussian LSI). Let X1, . . . , Xn be i.i.d. N(0, 1) random variables. Then, for an
arbitrary smooth function f : Rn → R,

D(P (f)‖P ) ≤ 1

2

E
[
‖∇f(Xn)‖22ef(Xn)

]
E[ef(Xn)]

. (23)

Note that the mapping f 7→ ‖∇f‖2 has the scaling property: ‖∇(αf)‖2 = α‖∇f‖2 for all
α ≥ 0. By now, there are at least fifteen different ways in the literature for proving the Gaussian
LSI. The original proof by Gross was to apply the Bernoulli LSI to the function

f

(
X1 + . . .+Xn − n/2√

n/4

)
, Xi

i.i.d.∼ Bern(1/2),



12

and then pass to the Gaussian limit by appealing to the Central Limit Theorem.
The Gaussian LSI can be used to give a short proof of the following concentration inequality

for Lipschitz functions of Gaussians, which was originally obtained by Tsirelson, Ibragimov,
and Sudakov [33] using different methods:

Theorem 8 (Tsirelson–Ibragimov–Sudakov). Let X1, . . . , Xn be i.i.d. N(0, 1) random variables,
and let f : Rn → R be a function which is L-Lipschitz:

|f(xn)− f(yn)| ≤ L ‖xn − yn‖2 .

Then, f(Xn) is L2-subgaussian, which yields

P [f(Xn) ≥ E[f(Xn)] + t] ≤ e−
t2

2L2 (24)

for all t > 0.

Proof: By a standard approximation argument, we may assume that f is differentiable.
Since it is also L-Lipschitz, ‖∇f‖22 ≤ L2 everywhere. Substituting this bound into the Gaussian
LSI for λf , we obtain

D(P (λf)‖f) ≤ 1
2 λ

2L2.

By the Herbst argument, Z = f(Xn), Xn ∼ N(0, In), is L2-subgaussian, and we are done.
This result is remarkable in two ways: It only assumes Lipschitz continuity of f , and gives
dimension-free concentration (i.e., the exponent in (24) does not depend on n).

Deriving log-Sobolev inequalities, especially with tight constants, is a subtle art. A commonly
used method is to realize P as an invariant distribution of some continuous-time reversible
Markov process and to extract a suitable energy functional E from the structure of the infinites-
imal generator of the process. In many cases, however, it is possible to derive a log-Sobolev
inequality via tensorization and a nice and simple variance-based representation of the relative
entropy due to A. Maurer [34]:

Theorem 9 (Maurer). Let X be a random variable with law P . Then, for every real-valued
function f and all λ ≥ 0

D(P (λf)‖P ) =

∫ λ

0

∫ λ

t
Var(sf)[f(X)]dsdt,

where Var(sf)[f(X)] is the variance of f(X) under the tilted distribution P (sf).

Proof: As before, let ψ(λ) = logE[eλ(f(X))−E[f(X)]] be the logarithmic moment-generating
function of f(X). Then

D(P (λf)‖P ) = λψ′(λ)− ψ(λ)

=

∫ λ

0

[
ψ′(λ)− ψ′(t)

]
dt

=

∫ λ

0

∫ λ

t
ψ′′(s)ds dt,

where we have used the fact that ψ(0) = ψ′(0) = 0 and the fundamental theorem of calculus.
Recalling that ψ′′(s) = Var(sf)[f(X)], we are done.

The following result is a direct consequence of Theorem 9:

Theorem 10. LetA be a class of functions of X , and suppose that there is a mapping Γ : A → R,
such that:



13

1) For all f ∈ A and α ≥ 0, Γ(αf) = αΓ(f).
2) There exists a constant c > 0, such that

Var(λf)[f(X)] ≤ c|Γ(f)|2, ∀f ∈ A, λ ≥ 0.

Then

D(P (λf)‖P ) ≤ 1
2 λ

2c |Γ(f)|2, ∀f ∈ A, λ ≥ 0.

To illustrate Maurer’s method, let’s use it to derive the Bernoulli LSI. It suffices to prove the
n = 1 case, and then to scale up to an arbitrary n by tensorization. Thus, let P = Bern(1/2),
and for every function f : {0, 1} → R define Γ(f),|f(0)− f(1)|. By Lemma 1,

Var(λf)[f(X)] ≤ 1
4 |f(0)− f(1)|2 = 1

4 |Γ(f)|2.

Thus, the conditions of Theorem 10 are satisfied with c = 1/4, and we get precisely the Bernoulli
LSI. One can also use Maurer’s method to prove McDiarmid’s inequality (see Theorem 3).

V. TRANSPORTATION-COST INEQUALITIES

At this point, we notice a common theme running through the above examples of concentration:
• Let f : Rn → R be 1-Lipschitz with respect to the Euclidean norm ‖·‖2, and let X1, . . . , Xn

be i.i.d. N(0, 1) random variables. Then, for every t ≥ 0,

P[f(Xn) ≥ E[f(Xn)] + t] ≤ e−t2/2.

• Let X be an arbitrary space, and consider a function f : Xn → R, which is 1-Lipschitz
with respect to the weighted Hamming metric

dc(xn, yn),
n∑
i=1

ci1{xi 6=yi},

where c1, . . . , cn ≥ 0 are some fixed constants. It is easy to see that such a Lipschitz prop-
erty is equivalent to the bounded difference property (11), and in that case McDiarmid’s
inequality tells us that

P[f(Xn) ≥ E[f(Xn)] + t] ≤ e−2t2/
∑n
i=1 c

2
i

for every tuple X1, . . . , Xn of independent X-valued random variables.
Thus, metric spaces and Lipschitz functions seem to be a natural setting to study concentration.
To make this statement more precise, let (X, d) be a metric space. We say that a function
f : X→ R is L-Lipschitz (with respect to d) if

|f(x)− f(y)| ≤ Ld(x, y), ∀x, y ∈ X.

Denoting by LipL(X, d) the class of all L-Lipschitz functions, we can pose the following
question: What conditions does a probability distribution P on X have to satisfy, so that f(X)
with X ∼ P is σ2-subgaussian for every f ∈ Lip1(X, d)?

Through the pioneering work of Katalin Marton [17], [35]–[39], the answer to the above
question has deep links to information theory via the notion of so-called transportation-cost
inequalities [40]. In order to introduce them, we first need some definitions. A coupling of two
probability distributions P and Q on X is a probability distribution π on the Cartesian product
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X×X, such that for (X,Y ) ∼ π we have X ∼ P and Y ∼ Q. Let Π(P,Q) denote the set of all
couplings of P and Q. For p ≥ 1, the Lp Wasserstein distance between P and Q is defined as

Wp(P,Q), inf
π∈Π(P,Q)

(Eπ[dp(X,Y )])1/p .

The name “transportation cost” comes from the following interpretation: Let P (resp., Q)
represent the initial (resp., desired) distribution of some matter (say, sand) in space, such that
the total mass in both cases is normalized to one. Thus, both P and Q correspond to sand piles
of some given shapes. The objective is to rearrange the initial sand pile with shape P into one
with shape Q with minimum cost, where the cost of transporting a grain of sand from location
x to location y is given by dp(x, y). If we allow randomized transportation policies, i.e., those
that associate with each location x in the initial sand pile a conditional probability distribution
π(dy|x) for its destination in the final sand pile, then the minimum transportation cost is given
by Wp(P,Q). We say that P satisfies an Lp transportation-cost inequality with constant c, or
Tp(c) for short, if

Wp(P,Q) ≤
√

2cD(Q‖P ), ∀Q.

The well-known Pinsker’s inequality is, in fact, a transportation-cost inequality: If we take X to
be an arbitrary space and equip it with the metric d(x, y) = 1{x6=y}, then the L1 Wasserstein
distance W1(P,Q) is simply the total variation distance

‖P −Q‖TV = sup
A
|P (A)−Q(A)|,

and Pinsker’s inequality

‖P −Q‖TV ≤
√

1
2 D(Q‖P )

(in nats) is then a T1(1
4) inequality, which is satisfied by all probability measures P,Q where

Q � P (i.e., Q is absolutely continuous with respect to P ). Various distribution-dependent
refinements of Pinsker’s inequality where the constant is optimized for a fixed P while varying
only Q [41], [42] can be interpreted in the same vein as well. Another well-known transportation-
cost (TC) inequality is due to Talagrand [43]: Let X be the Euclidean space Rn, equipped with
the Euclidean metric d(x, y) = ‖x − y‖2. Then P = N(0, In) satisfies the T2(1) inequality:
W2(P,Q) ≤

√
2D(Q‖P ). The remarkable thing here is that the constant is independent of the

dimension n.
With these preliminaries out of the way, we can now state the theorem, due to Bobkov and

Götze [44], which provides an answer to the question posed above:

Theorem 11 (Bobkov–Götze). Let X be a random variable taking values in a metric space
(X, d) according to a probability distribution P . Then, the following are equivalent:

1) f(X) is σ2-subgaussian for every f ∈ Lip1(X, d).
2) P satisfies T1(σ2), i.e.,

W1(P,Q) ≤
√

2σ2D(Q‖P )

for all Q.

At this point, one may wonder what we have gained – verifying that a given P satisfies a TC
inequality, let alone determining tight constants, is a formidable challenge. However, once again,
tensorization comes to the rescue. Marton’s insight was that TC inequalities tensorize [40]:
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Theorem 12. Let (Xi, Pi, di), 1 ≤ i ≤ n, be probability metric spaces. If for some 1 ≤ p ≤ 2
each Pi satisfies Tp(c) on (Xi, di), then the product measure P = P1 ⊗ . . . ⊗ Pn on X =
X1 × . . .× Xn satisfies Tp(cn2/p−1) w.r.t. the metric

dp(x
n, yn),

(
n∑
i=1

dpi (xi, yi)

)1/p

.

In particular, if each Pi satisfies T1(c), then P = P1 ⊗ . . . ⊗ Pn satisfies T1(cn) with respect
to the metric

∑
i di. Note that the constant deteriorates with n. On the other hand, if each Pi

satisfies T2(c), then P satisfies T2(c) with respect to
√∑

i d
2
i . Note that the latter constant is

independent of n.
To give a simple illustration of all these concepts, let us outline yet another proof of McDi-

armid’s inequality. Consider a product probability space (X1 × . . .× Xn, P1 ⊗ . . .⊗ Pn). For a
fixed choice of constants c1, . . . , cn ≥ 0, equip Xi with the metric di(xi, yi) = ci1{xi 6=yi}. Then,
by rescaling Pinsker’s inequality, we see that Pi satisfies a T1(c2

i /4) inequality with respect to
the metric di:

W1,di(Pi, Qi) ≤
√

1
2 c

2
iD(Qi‖Pi), ∀Qi. (25)

By the tensorization theorem for TC inequalities, the product distribution P satisfies a T1(c)
inequality with c = (1/4)

∑n
i=1 c

2
i with respect to the weighted Hamming metric dc. By the

Bobkov–Götze theorem, this is equivalent to the subgaussianity of all f(X1, . . . , Xn) with f ∈
Lip1(X, d) and mutually independent Xi ∈ Xi, 1 ≤ i ≤ n. But this is precisely McDiarmid’s
inequality.

VI. SOME APPLICATIONS IN INFORMATION THEORY

We end this survey by briefly describing some information-theoretic applications of concen-
tration inequalities.

A. The Blowing-up Lemma and Information-Theoretic Consequences

The first explicit appeal to the concentration phenomenon in information theory dates back to
the 1970s work by Ahlswede and collaborators, who used the so-called blowing-up lemma for
deriving strong converses for a variety of communications and coding problems.

Consider a product space Yn equipped with the Hamming metric d(yn, zn) =
∑n

i=1 1{yi 6=zi}.
For r ∈ {0, 1, . . . , n}, define the r-blowup of a set A ⊆ Yn as

[A]r,

{
zn ∈ Yn : min

yn∈A
d(zn, yn) ≤ r

}
The following result, in a different (asymptotic) form was first proved by Ahlswede, Gács, and
Körner [45]; a simple proof, which we sketch below, was given by Marton [35]:

Lemma 6 (Blowing-up). Let Y1, . . . , Yn be independent random variables taking values in Y.
Then for every set A ⊆ Yn with PY n(A) > 0

PY n {[A]r} ≥ 1− exp

− 2

n

(
r −

√
n

2
log

1

PY n(A)

)2

+

 ,
where (u)+,max{0, u}.
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Proof: We sketch the proof in order to highlight the role of TC inequalities. For each
i ∈ {1, . . . , n}, let Pi = L(Yi). By tensorization, the product distribution P = PY n satisfies the
TC inequality

W1(P,Q) ≤
√
n

2
D(Q‖P ), ∀Q, (26)

where

W1(P,Q) = inf
π∈Π(P,Q)

Eπ

[
n∑
i=1

1{Xi 6=Yi}

]
.

Now, for an arbitrary B ⊆ Yn with P (B) > 0, consider the conditional distribution PB(·),P (·∩B)
P (B) .

Then D(PB‖P ) = log 1
P (B) , and in that case using (26) with Q = PB , we get

W1(P, PB) ≤

√
n

2
log

1

P (B)
. (27)

Applying (26) to B = A and B = [A]cr, we get

W1(P, PA) ≤

√
n

2
log

1

P (A)
,

W1(P, P[A]cr
) ≤

√
n

2
log

1

1− P ([A]r)
.

Adding up these two inequalities, we obtain√
n

2
log

1

P (A)
+

√
n

2
log

1

1− P ([A]r)

≥W1(PA, P ) +W1(P[A]cr
, P )

≥W1(PA, P[A]cr
)

≥ min
xn∈A,yn∈[A]cr

d(xn, yn)

≥ r,

where the first step holds due to (27), the second step is verified by the triangle inequality, and
the remaining steps follow from definitions. Rearranging, we obtain the lemma.

Informally, the lemma states that every set in a product space can be “blown up” to engulf
most of the probability mass. Using this fact, one can prove strong converses for channel coding
in single-terminal and multiterminal settings. Here is the simplest consequence of the blowing-up
lemma in the context of channel codes: Consider a DMC with input alphabet X, output alphabet
Y, and transition probabilities T (y|x), x ∈ X, y ∈ Y. An (n,M, ε)-code for T consists of an
encoder f : {1, . . . ,M} → Xn and a decoder g : Yn → {1, . . . ,M}, such that

max
1≤j≤M

P[g(Y n) 6= j | f(Xn) = j] ≤ ε.

Lemma 7. Let uj = f(j), 1 ≤ j ≤M , denote the M codewords of the code, and let Dj,g−1(j)
be the corresponding decoding regions in Yn. There exists some δn > 0, such that

Tn
(

[Dj ]nδn
∣∣Xn = uj

)
≥ 1− 1

n
, ∀ j ∈ {1, . . . ,M}.
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Informally, this corollary of the blowing-up lemma says that “any bad code contains a good
subcode.” Using this result, Ahlswede and Dueck [46] established a strong converse for channel
coding as follows: Consider an (n,M, ε)-code C = {(uj , Dj)}Mj=1. Each decoding set Dj can
be “blown up” to a set D̃j ⊆ Yn with

Tn(D̃j |uj) ≥ 1− 1

n
.

The object C̃ = {(uj , D̃j)}Mj=1 is not a code (since the sets D̃j are no longer disjoint), but a
random coding argument can be used to extract an (n,M ′, ε′) “subcode” with M ′ slightly smaller
than M and ε′ < ε. Then one can apply the usual (weak) converse to the subcode. Similar ideas
have found use in multiterminal settings, starting with the work of Ahlswede–Gács–Körner [45].

B. Empirical distribution of good channel codes with non-vanishing error probability

Another recent application of concentration inequalities to information theory has to do with
characterizing stochastic behavior of output sequences of good channel codes. On a conceptual
level, the random coding argument originally used by Shannon (and many times since) to show
the existence of good channel codes suggests that the input/output sequence of such a code should
resemble, as much as possible, a typical realization of a sequence of i.i.d. random variables
sampled from a capacity-achieving input/output distribution. For capacity-achieving sequences
of codes with asymptotically vanishing probability of error, this intuition has been analyzed
rigorously by Shamai and Verdú [47], who have proved the following remarkable statement
[47, Theorem 2]: given a DMC T , any capacity-achieving sequence of channel codes with
asymptotically vanishing probability of error (maximal or average) has the property that

lim
n→∞

1

n
D(PY n‖P ∗Y n) = 0, (28)

where, for each n, PY n denotes the output distribution on Yn induced by the code (assuming
that the messages are equiprobable), while P ∗Y n is the product of n copies of the single-letter
capacity-achieving output distribution. In a recent paper [48], Polyanskiy and Verdú extended
the results of [47] for codes with nonvanishing probability of error.

To keep things simple, we will only focus on channels with finite input and output alphabets.
Thus, let X and Y be finite sets, and consider a DMC T with capacity C. Let P ∗X ∈ P(X) be a
capacity-achieving input distribution (which may be nonunique). It can be shown [49] that the
corresponding output distribution P ∗Y ∈ P(Y) is unique. Consider any (n,M)-code C = (f, g),
let P (C)

Xn denote the distribution of Xn = f(J), where J is uniformly distributed in {1, . . . ,M},
and let P (C)

Y n denote the corresponding output distribution. The central result of [48] is that the
output distribution P (C)

Y n of any (n,M, ε)-code satisfies

D
(
P

(C)
Y n

∥∥P ∗Y n) ≤ nC − logM + o(n); (29)

moreover, the o(n) term was refined in [48, Theorem 5] to O(
√
n) for any DMC, except those

that have zeroes in their transition matrix. Using McDiarmid’s inequality, this result is sharpened
as follows [22]:

Theorem 13. Consider a DMC T with positive transition probabilities. Then any (n,M, ε)-code
C for T , with ε ∈ (0, 1/2), satisfies

D
(
P

(C)
Y n

∥∥∥P ∗Y n) ≤ nC − logM + log
1

ε
+ c(T )

√
n

2
log

1

1− 2ε
,
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where c(T ) is defined in (16).

Proof (Sketch): Using the inequality (15) with PY n = P
(C)
Y n and t = c(T )

√
n
2 log 1

1−2ε , we
get

PY n|Xn=xn

[
log

PY n|Xn=xn(Y n)

P
(C)
Y n (Y n)

≥ D
(
PY n|Xn=xn

∥∥∥P (C)
Y n

)
+ c(T )

√
n

2
log

1

1− 2ε

]
≤ 1− 2ε

Now, just like Polyanskiy and Verdú, we can appeal to a strong converse result due to Augustin
[50] to get

logM ≤ log
1

ε
+D

(
PY n|Xn

∥∥∥P (C)
Y n

∣∣∣P (C)
Xn

)
+ c(T )

√
n

2
log

1

1− 2ε
. (30)

Therefore,

D
(
P

(C)
Y n

∥∥∥P ∗Y n) = D
(
PY n|Xn

∥∥∥P ∗Y n∣∣∣P (C)
Xn

)
−D

(
PY n|Xn

∥∥∥P (C)
Y n

∣∣∣P (C)
Xn

)
≤ nC − logM + log

1

ε
+ c(T )

√
n

2
log

1

1− 2ε
,

where the first step is by the chain rule, the second follows from the properties of the capacity-
achieving output distribution, and the last step uses (30).

A useful consequence of this result is that a broad class of functions evaluated on the output of
a good code concentrate sharply around their expectations with respect to the capacity-achieving
output distribution:

Theorem 14. Consider a DMC T with c(T ) <∞. Let d be a metric on Yn, and suppose that
PY n|Xn=xn , xn ∈ Xn, as well as P ∗Y n , satisfy T1(c) for some c > 0. Then, for every ε ∈ (0, 1/2),
every (n,M, ε)-code C for T , and every function f : Yn → R which is L-Lipschitz on (Yn, d),
we have

P
(C)
Y n

(
|f(Y n)− E[f(Y ∗n)]| ≥ t

)
≤ 4

ε
exp

(
nC − lnM + a

√
n− t2

8cL2

)
, ∀ r ≥ 0 (31)

where Y ∗n ∼ P ∗Y n , and a,c(T )
√

1
2 ln 1

1−2ε .

As pointed out in [48], concentration inequalities like (31) can be very useful for gaining
insight into the performance characteristics of good channel codes without having to explicitly
construct such codes: all one needs to do is to find the capacity-achieving output distribution P ∗Y
and evaluate E[f(Y ∗n)] for an arbitrary f of interest. Consequently, the above theorem guarantees
that f(Y n) concentrates tightly around E[f(Y ∗n)], which is relatively easy to compute since
P ∗Y n is a product measure.
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