Arimoto-Rényi Conditional Entropy and Bayesian *M*-ary Hypothesis Testing

Igal Sason (Technion) Sergio Verdú (Princeton)

Department of Electrical Engineering Technion, Israel November 23rd, 2017

A D A D A D A

Hypothesis Testing

- Bayesian *M*-ary hypothesis testing:
 - X is a random variable taking values on \mathcal{X} with $|\mathcal{X}| = M$;
 - a prior distribution P_X on \mathcal{X} ;
 - M hypotheses for the \mathcal{Y} -valued data $\{P_{Y|X=m}, m \in \mathcal{X}\}.$

3

A D A D A D A

Hypothesis Testing

- Bayesian *M*-ary hypothesis testing:
 - X is a random variable taking values on \mathcal{X} with $|\mathcal{X}| = M$;
 - a prior distribution P_X on \mathcal{X} ;
 - M hypotheses for the \mathcal{Y} -valued data $\{P_{Y|X=m}, m \in \mathcal{X}\}$.
- $\bullet \ \varepsilon_{X|Y}$: the minimum probability of error of X given Y

achieved by the maximum-a-posteriori (MAP) decision rule. Hence,

$$\varepsilon_{X|Y} = \mathbb{E}\left[1 - \max_{x \in \mathcal{X}} P_{X|Y}(x|Y)\right]$$
(1)

$$=1-\sum_{y\in\mathcal{Y}}\max_{x\in\mathcal{X}}P_{X,Y}(x,y).$$
(2)

where (2) holds when Y is discrete.

A D A D A D A

Example

Let X and Y be random variables defined on the set $\mathcal{A}=\{1,2,3\}$, and let

$$\left[P_{XY}(x,y)\right]_{(x,y)\in\mathcal{A}^2} = \frac{1}{45} \begin{pmatrix} 8 & 1 & 6\\ 3 & 5 & 7\\ 4 & 9 & 2 \end{pmatrix}.$$
 (3)

Then,

$$\varepsilon_{X|Y} = 1 - \left(\frac{8}{45} + \frac{9}{45} + \frac{7}{45}\right) = \frac{7}{15}.$$
 (4)

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Interplay $\varepsilon_{X|Y} \longleftrightarrow$ information measures

- Bounds on $\varepsilon_{X|Y}$ involving information measures exist in the literature. Those works attest that there is a considerable motivation for studying the relationships between $\varepsilon_{X|Y}$ and information measures.
- ε_{X|Y} is rarely directly computable, and the best bounds are information theoretic.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Interplay $\varepsilon_{X|Y} \longleftrightarrow$ information measures

- Bounds on $\varepsilon_{X|Y}$ involving information measures exist in the literature. Those works attest that there is a considerable motivation for studying the relationships between $\varepsilon_{X|Y}$ and information measures.
- $\varepsilon_{X|Y}$ is rarely directly computable, and the best bounds are information theoretic.
- Useful for
 - the analysis of M-ary hypothesis testing
 - proofs of coding theorems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Interplay $\varepsilon_{X|Y} \longleftrightarrow$ information measures

- Bounds on $\varepsilon_{X|Y}$ involving information measures exist in the literature. Those works attest that there is a considerable motivation for studying the relationships between $\varepsilon_{X|Y}$ and information measures.
- $\varepsilon_{X|Y}$ is rarely directly computable, and the best bounds are information theoretic.
- Useful for
 - the analysis of M-ary hypothesis testing
 - proofs of coding theorems.
- In this talk, we introduce:

upper and lower bounds on $\varepsilon_{X|Y}$ in terms of the Arimoto-Rényi conditional entropy $H_{\alpha}(X|Y)$ of any order α , and apply them in coding.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

The Rényi Entropy

Definition

Let P_X be a probability distribution on a discrete set \mathcal{X} . The Rényi entropy of order $\alpha \in (0,1) \cup (1,\infty)$ of X is defined as

$$H_{\alpha}(X) = \frac{1}{1 - \alpha} \log \sum_{x \in \mathcal{X}} P_X^{\alpha}(x)$$
(5)

By its continuous extension,

$$H_0(X) = \log |\{x \in \mathcal{X} : P_X(x) > 0\}|,$$
 (6)

$$H_1(X) = H(X), \tag{7}$$

$$H_{\infty}(X) = \log \frac{1}{p_{\max}} \tag{8}$$

where p_{max} is the largest of the masses of X.

The Binary Rényi Divergence

Definition

For $\alpha \in (0,1) \cup (1,\infty)$, the binary Rényi divergence of order α is given by

$$d_{\alpha}(p\|q) = \frac{1}{\alpha - 1} \log \left(p^{\alpha} q^{1 - \alpha} + (1 - p)^{\alpha} (1 - q)^{1 - \alpha} \right).$$
(9)

3

(本語)と 本語(と) 本語(と

The Binary Rényi Divergence

Definition

For $\alpha \in (0,1) \cup (1,\infty)$, the binary Rényi divergence of order α is given by

$$d_{\alpha}(p||q) = \frac{1}{\alpha - 1} \log \left(p^{\alpha} q^{1 - \alpha} + (1 - p)^{\alpha} (1 - q)^{1 - \alpha} \right).$$
(9)

$$\lim_{\alpha \uparrow 1} d_{\alpha}(p \| q) = d(p \| q) = p \log \frac{p}{q} + (1 - p) \log \frac{1 - p}{1 - q}.$$
 (10)

- 32

- 本間 と 本語 と 本語 と

Rényi Conditional Entropy ?

 $\bullet\,$ If we mimic the definition of H(X|Y) and define conditional Rényi entropy as

$$\sum_{y \in \mathcal{Y}} P_Y(y) H_\alpha(X|Y=y),$$

we find that, for $\alpha \neq 1,$ the conditional version may be larger than $H_{\alpha}(X)$!

3

< 回 ト < 三 ト < 三 ト

Rényi Conditional Entropy ?

 $\bullet\,$ If we mimic the definition of H(X|Y) and define conditional Rényi entropy as

$$\sum_{y \in \mathcal{Y}} P_Y(y) H_\alpha(X|Y=y),$$

we find that, for $\alpha \neq 1,$ the conditional version may be larger than $H_{\alpha}(X)$!

• To remedy this situation, Arimoto introduced a notion of conditional Rényi entropy, $H_{\alpha}(X|Y)$ (named Arimoto-Rényi conditional entropy), which is upper bounded by $H_{\alpha}(X)$.

(人間) トイヨト イヨト

Definition

Let P_{XY} be defined on $\mathcal{X} \times \mathcal{Y}$, where X is a discrete random variable. • If $\alpha \in (-\infty, 0) \cup (0, 1) \cup (1, \infty)$, then $H_{\alpha}(X|Y) = \frac{\alpha}{1-\alpha} \log \mathbb{E}\left[\left(\sum_{x \in \mathcal{X}} P_{X|Y}^{\alpha}(x|Y)\right)^{\frac{1}{\alpha}}\right]$ (11)

Definition

Let P_{XY} be defined on $\mathcal{X} \times \mathcal{Y}$, where X is a discrete random variable. • If $\alpha \in (-\infty, 0) \cup (0, 1) \cup (1, \infty)$, then $H_{\alpha}(X|Y) = \frac{\alpha}{1-\alpha} \log \mathbb{E} \left[\left(\sum_{x \in \mathcal{X}} P_{X|Y}^{\alpha}(x|Y) \right)^{\frac{1}{\alpha}} \right]$ (11) $= \frac{\alpha}{1-\alpha} \log \sum_{y \in \mathcal{V}} P_Y(y) \exp\left(\frac{1-\alpha}{\alpha} H_\alpha(X|Y=y)\right),$ (12)where (12) applies if Y is a discrete random variable.

イロト 不得下 イヨト イヨト 二日

• By its continuous extension,

$$H_0(X|Y) = \operatorname{ess\,sup} H_0\left(P_{X|Y}(\cdot|Y)\right) \tag{13}$$

$$= \max_{y \in \mathcal{Y}} H_0(X \mid Y = y), \tag{14}$$

$$H_1(X|Y) = H(X|Y),$$
 (15)

$$H_{\infty}(X|Y) = \log \frac{1}{\mathbb{E}\left[\max_{x \in \mathcal{X}} P_{X|Y}(x|Y)\right]}$$
(16)

where (14) applies if Y is a discrete random variable.

- 32

- 4 同 6 4 日 6 4 日 6

• By its continuous extension,

$$H_0(X|Y) = \operatorname{ess\,sup} H_0\left(P_{X|Y}(\cdot|Y)\right) \tag{13}$$

$$= \max_{y \in \mathcal{Y}} H_0(X \mid Y = y), \tag{14}$$

$$H_1(X|Y) = H(X|Y),$$
 (15)

$$H_{\infty}(X|Y) = \log \frac{1}{\mathbb{E}\left[\max_{x \in \mathcal{X}} P_{X|Y}(x|Y)\right]}$$
(16)

where (14) applies if Y is a discrete random variable.

Monotonicity Properties

• $H_{\alpha}(X|Y)$ is monotonically decreasing in α throughout the real line.

• $\frac{\alpha-1}{\alpha}H_{\alpha}(X|Y)$ is monotonically increasing in α on $(0,\infty)$ & $(-\infty,0)$.

Fano's Inequality

Let X take values in $|\mathcal{X}| = M$, then

$$H(X|Y) \le h(\varepsilon_{X|Y}) + \varepsilon_{X|Y}\log(M-1)$$
(17)

3

(日) (同) (日) (日) (日)

Fano's Inequality

Let X take values in $|\mathcal{X}| = M$, then

$$H(X|Y) \le h(\varepsilon_{X|Y}) + \varepsilon_{X|Y} \log(M-1)$$

$$= \log M - d(\varepsilon_{X|Y} \| 1 - \frac{1}{M})$$
(17)
(18)

3

(日) (同) (日) (日) (日)

Fano's Inequality

Let X take values in $|\mathcal{X}| = M$, then

$$H(X|Y) \le h(\varepsilon_{X|Y}) + \varepsilon_{X|Y} \log(M-1)$$

$$= \log M - d(\varepsilon_{X|Y} \| 1 - \frac{1}{M})$$
(17)
(18)

- (18) is not nearly as popular as (17);
- (18) turns out to be the version that admits an elegant (although not immediate) generalization to the Arimoto-Rényi conditional entropy.

Generalization of Fano's Inequality

• It is easy to get Fano's inequality by averaging H(X|Y = y) with respect to the observation y:

$$H(X|Y) = \sum_{y \in \mathcal{Y}} P_Y(y) H(X|Y=y).$$

3. 3

A (10) F (10)

Generalization of Fano's Inequality

• It is easy to get Fano's inequality by averaging H(X|Y = y) with respect to the observation y:

$$H(X|Y) = \sum_{y \in \mathcal{Y}} P_Y(y) H(X|Y=y).$$

 This simple route is not viable in the case of H_α(X|Y) since it is not an average of Rényi entropies of conditional distributions:

$$H_{\alpha}(X|Y) \neq \sum_{y \in \mathcal{Y}} P_Y(y) H_{\alpha}(X|Y=y), \quad \alpha \neq 1.$$
(19)

一日、

Generalization of Fano's Inequality

• It is easy to get Fano's inequality by averaging H(X|Y = y) with respect to the observation y:

$$H(X|Y) = \sum_{y \in \mathcal{Y}} P_Y(y) H(X|Y=y).$$

 This simple route is not viable in the case of H_α(X|Y) since it is not an average of Rényi entropies of conditional distributions:

$$H_{\alpha}(X|Y) \neq \sum_{y \in \mathcal{Y}} P_Y(y) H_{\alpha}(X|Y=y), \quad \alpha \neq 1.$$
(19)

 The standard proof of Fano's inequality, also fails for H_α(X|Y) of order α ≠ 1 since it does not satisfy the chain rule.

- 4 同 6 4 日 6 4 日 6

Before we generalize Fano's inequality by linking $\varepsilon_{X|Y}$ with $H_{\alpha}(X|Y)$ for $\alpha \in [0, \infty)$, note that for $\alpha = \infty$, the following equality holds:

 $\varepsilon_{X|Y} = 1 - \exp(-H_{\infty}(X|Y)).$ ⁽²⁰⁾

3

(日) (周) (三) (三)

Lemma

Let $\alpha \in (0,1) \cup (1,\infty)$ and $(\beta,\gamma) \in (0,\infty)^2$. Then,

$$f_{\alpha,\beta,\gamma}(u) = (\gamma(1-u)^{\alpha} + \beta u^{\alpha})^{\frac{1}{\alpha}}, \quad u \in [0,1]$$
(21)

is

- strictly convex for $\alpha \in (1,\infty)$;
- strictly concave for $\alpha \in (0,1)$.

$$f_{\alpha,\beta,\gamma}''(u) = (\alpha - 1)\beta\gamma \Big(\gamma(1-u)^{\alpha} + \beta u^{\alpha}\Big)^{\frac{1}{\alpha}-2} \big(u(1-u)\Big)^{\alpha-2}$$
(22)

which is strictly negative if $\alpha \in (0,1)$, and strictly positive if $\alpha \in (1,\infty)$.

Image: A matrix of the second seco

Theorem

Let P_{XY} be a probability measure defined on $\mathcal{X} \times \mathcal{Y}$ with $|\mathcal{X}| = M < \infty$. For all $\alpha \in (0, \infty)$,

$$H_{\alpha}(X|Y) \le \log M - d_{\alpha} \left(\varepsilon_{X|Y} \| 1 - \frac{1}{M} \right).$$
(23)

Equality holds in (23) if and only if, for all y,

$$P_{X|Y}(x|y) = \begin{cases} \frac{\varepsilon_{X|Y}}{M-1}, & x \neq \mathcal{L}^*(y) \\ 1 - \varepsilon_{X|Y}, & x = \mathcal{L}^*(y) \end{cases}$$
(24)

where $\mathcal{L}^* \colon \mathcal{Y} \to \mathcal{X}$ is a deterministic MAP decision rule.

イロト 不得下 イヨト イヨト 二日

If X, Y are vectors of dimension n, then $\varepsilon_{X|Y} \to 0 \Rightarrow \frac{1}{n}H(X|Y) \to 0$. However, the picture with $H_{\alpha}(X|Y)$ is more nuanced !

(日) (周) (三) (三)

If X, Y are vectors of dimension n, then $\varepsilon_{X|Y} \to 0 \Rightarrow \frac{1}{n}H(X|Y) \to 0$. However, the picture with $H_{\alpha}(X|Y)$ is more nuanced !

Theorem

Assume

- $\{X_n\}$ is a sequence of random variables;
- X_n takes values on \mathcal{X}_n such that $|\mathcal{X}_n| \leq M^n$ for $M \geq 2$ and all n;
- $\{Y_n\}$ is a sequence of random variables, for which $\varepsilon_{X_n|Y_n} \to 0$.
- a) If $\alpha \in (1, \infty]$, then $H_{\alpha}(X_n | Y_n) \to 0$;

b) If
$$\alpha = 1$$
, then $\frac{1}{n}H(X_n|Y_n) \to 0$;

c) If $\alpha \in [0, 1)$, then $\frac{1}{n} H_{\alpha}(X_n | Y_n)$ is upper bounded by $\log M$; nevertheless, it does not necessarily tend to 0.

Lower Bound on $H_{\alpha}(X|Y)$

Theorem

If $\alpha \in (0,1) \cup (1,\infty)$, then

$$\frac{\alpha}{1-\alpha} \log g_{\alpha}(\varepsilon_{X|Y}) \le H_{\alpha}(X|Y),$$
(25)

with the piecewise linear function

$$g_{\alpha}(t) = \left(k(k+1)^{\frac{1}{\alpha}} - k^{\frac{1}{\alpha}}(k+1)\right)t + k^{\frac{1}{\alpha}+1} - (k-1)(k+1)^{\frac{1}{\alpha}}$$
(26)

on the interval $t \in \left[1 - \frac{1}{k}, 1 - \frac{1}{k+1}\right)$ for $k \in \{1, 2, \ldots\}$.

• Not restricted to finite M.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Proof Outline

Lemma

Let X be a discrete random variable attaining maximal mass $p_{\max}.$ Then, for $\alpha\in(0,1)\cup(1,\infty),$

$$H_{\alpha}(X) \ge s_{\alpha}(\varepsilon_X) \tag{27}$$

where $\varepsilon_X = 1 - p_{\max}$ is the minimum error probability of guessing X, and $s_{\alpha} \colon [0, 1) \to [0, \infty)$ is given by

$$s_{\alpha}(x) := \frac{1}{1-\alpha} \log \left(\left\lfloor \frac{1}{1-x} \right\rfloor (1-x)^{\alpha} + \left(1 - (1-x) \left\lfloor \frac{1}{1-x} \right\rfloor \right)^{\alpha} \right).$$

Equality holds in (27) if and only if P_X has $\left\lfloor \frac{1}{p_{\max}} \right\rfloor$ masses equal to p_{\max} .

The proof relies on the Schur-concavity of $H_{\alpha}(\cdot)$.

Proof Outline (cont.)

For every $y \in \mathcal{Y}$, the lemma yields $H_{\alpha}(X | Y = y) \ge s_{\alpha}(\varepsilon_{X|Y}(y))$.

イロン 不聞と 不同と 不同と

Proof Outline (cont.)

For every $y \in \mathcal{Y}$, the lemma yields $H_{\alpha}(X \mid Y = y) \ge s_{\alpha}(\varepsilon_{X \mid Y}(y))$. For $\alpha \in (0, 1)$, let $f_{\alpha} : [0, 1) \to [1, \infty)$ be defined as

$$f_{\alpha}(x) = \exp\left(\frac{1-\alpha}{\alpha} s_{\alpha}(x)\right)$$

- g_{α} is the piecewise linear function which coincides with f_{α} at all points $1 \frac{1}{k}$ for $k \in \mathbb{N}$;
- g_{α} is the lower convex envelope of f_{α} ;

$$\begin{aligned} H_{\alpha}(X|Y) &\geq \frac{\alpha}{1-\alpha} \log \mathbb{E}\left[f_{\alpha}\big(\varepsilon_{X|Y}(Y)\big)\right] \text{ (Lemma; } f_{\alpha} \text{ increasing)} \\ &\geq \frac{\alpha}{1-\alpha} \log \mathbb{E}\left[g_{\alpha}\big(\varepsilon_{X|Y}(Y)\big)\right] \ \left(g_{\alpha} \leq f_{\alpha}\right) \\ &\geq \frac{\alpha}{1-\alpha} \log g_{\alpha}(\varepsilon_{X|Y}) \text{ (Jensen)} \end{aligned}$$

- 4 同 6 4 日 6 4 日 6

Proof Outline (cont.)

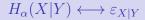
For every $y \in \mathcal{Y}$, the lemma yields $H_{\alpha}(X | Y = y) \ge s_{\alpha}(\varepsilon_{X|Y}(y))$. For $\alpha \in (0, 1)$, let $f_{\alpha} : [0, 1) \to [1, \infty)$ be defined as

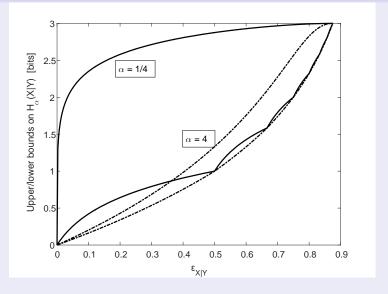
$$f_{\alpha}(x) = \exp\left(\frac{1-\alpha}{\alpha} s_{\alpha}(x)\right)$$

- g_{α} is the piecewise linear function which coincides with f_{α} at all points $1 \frac{1}{k}$ for $k \in \mathbb{N}$;
- g_{α} is the lower convex envelope of f_{α} ;

$$\begin{aligned} H_{\alpha}(X|Y) &\geq \frac{\alpha}{1-\alpha} \log \mathbb{E}\left[f_{\alpha}\big(\varepsilon_{X|Y}(Y)\big)\right] \text{ (Lemma; } f_{\alpha} \text{ increasing)} \\ &\geq \frac{\alpha}{1-\alpha} \log \mathbb{E}\left[g_{\alpha}\big(\varepsilon_{X|Y}(Y)\big)\right] \text{ (} g_{\alpha} \leq f_{\alpha} \text{)} \\ &\geq \frac{\alpha}{1-\alpha} \log g_{\alpha}(\varepsilon_{X|Y}) \text{ (Jensen)} \end{aligned}$$

For $\alpha \in (1,\infty)$, $-g_{\alpha}$ is the lower convex envelope of $-f_{\alpha}$, and f_{α} is monotonically decreasing. Proof is similar.





Asymptotic Tightness

Both upper and lower bounds on $\varepsilon_{X|Y}$ are asymptotically tight as $\alpha \to \infty$.

3

くほと くほと くほと

Asymptotic Tightness

Both upper and lower bounds on $\varepsilon_{X|Y}$ are asymptotically tight as $\alpha \to \infty$.

Special cases

As $\alpha \rightarrow 1$, we get existing bounds as special cases:

- Fano's inequality,
- Its counterpart by Kovalevsky ('68), and Tebbe and Dwyer ('68).

通 ト イヨ ト イヨト

Asymptotic Tightness

Both upper and lower bounds on $\varepsilon_{X|Y}$ are asymptotically tight as $\alpha \to \infty$.

Special cases

As $\alpha \rightarrow 1$, we get existing bounds as special cases:

- Fano's inequality,
- Its counterpart by Kovalevsky ('68), and Tebbe and Dwyer ('68).

Upper bound on $\varepsilon_{X|Y}$

The most useful domain of applicability of the counterpart to the generalization of Fano's inequality is $\varepsilon_{X|Y} \in [0, \frac{1}{2}]$, in which case the lower bound specializes to (k = 1)

$$\frac{\alpha}{1-\alpha}\log\left(1+\left(2^{\frac{1}{\alpha}}-2\right)\varepsilon_{X|Y}\right) \le H_{\alpha}(X|Y).$$
(28)

- 3

(日) (同) (日) (日) (日)

List Decoding

- Decision rule outputs a list of choices.
- The extension of Fano's inequality to list decoding, expressed in terms of the conditional Shannon entropy, was initiated by Ahlswede, Gacs and Körner ('66).
- Useful for proving converse results.

Generalization of Fano's Inequality for List Decoding

• A generalization of Fano's inequality for list decoding of size L is

$$H(X|Y) \le \log M - d\left(P_{\mathcal{L}}\|1 - \frac{L}{M}\right),\tag{29}$$

where $P_{\mathcal{L}}$ denotes the probability of X not being in the list.

• Averaging a conditional version of $H_{\alpha}(X|Y = y)$ with respect to the observation is not viable in the case of $H_{\alpha}(X|Y)$ with $\alpha \neq 1$.

Generalization of Fano's Inequality for List Decoding (cont.)

Theorem (Fixed List Size)

Let P_{XY} be a probability measure defined on $\mathcal{X} \times \mathcal{Y}$ where $|\mathcal{X}| = M$. Consider a decision rule^a $\mathcal{L} : \mathcal{Y} \to {\mathcal{X} \choose L}$, and denote the decoding error probability by $P_{\mathcal{L}} = \mathbb{P}[X \notin \mathcal{L}(Y)]$. Then, for all $\alpha \in (0,1) \cup (1,\infty)$,

$$H_{\alpha}(X|Y) \le \log M - d_{\alpha} \left(P_{\mathcal{L}} \| 1 - \frac{L}{M} \right)$$
(30)

with equality in (30) if and only if

$$P_{X|Y}(x|y) = \begin{cases} \frac{P_{\mathcal{L}}}{M-L}, & x \notin \mathcal{L}(y) \\ \frac{1-P_{\mathcal{L}}}{L}, & x \in \mathcal{L}(y). \end{cases}$$
(31)

 ${}^{a}\binom{\mathcal{X}}{L}$ stands for the set of all subsets of \mathcal{X} with cardinality L, with $L \leq |\mathcal{X}|$.

Arimoto-Rényi Conditional Entropy Averaged over Codebook Ensembles

- Consider the channel coding setup with a code ensemble C, over which we are interested in averaging the Arimoto-Rényi conditional entropy of the channel input given the channel output.
- Denote such averaged quantity by

 $\mathbb{E}_{\mathcal{C}}\left[H_{\alpha}(X^{n}|Y^{n})\right]$

where $X^n = (X_1, ..., X_n)$ and $Y^n = (Y_1, ..., Y_n)$.

• Some motivation for this study:

The normalized equivocation $\frac{1}{n}H(X^n|Y^n)$ was used by Shannon to prove that reliable communication is impossible at rates above capacity; The asymptotic convergence to zero of the equivocation $H(X^n|Y^n)$ at rates below capacity was studied by Feinstein.

イロト 不得下 イヨト イヨト 二日

Coding Theorem 1 (Feder and Merhav, 1994)

For a DMC with transition probability matrix $P_{Y|X}$, the conditional entropy of the transmitted codeword given the channel output, averaged over a random coding selection with per-letter distribution P_X such that $I(P_X, P_{Y|X}) > 0$, is bounded (in nats) by

$$\mathbb{E}_{\mathcal{C}}\left[H(X^{n}|Y^{n})\right] \leq \left(1 + \frac{1}{\rho^{*}(R, P_{X})}\right) \exp\left(-nE_{\mathrm{r}}(R, P_{X})\right)$$

with

• $R = \frac{\log M}{n} \le I(P_X, P_{Y|X});$

 $\bullet~E_{\rm r}$ is the random-coding error exponent, given by

$$E_{\rm r}(R, P_X) = \max_{\rho \in [0,1]} \rho \left(I_{\frac{1}{1+\rho}}(P_X, P_{Y|X}) - R \right);$$
(32)

• the argument that maximizes (32) is denoted by $\rho^*(R, P_X)$.

Coding Theorem 2 (ISSV, 2017)

The following results hold under the setting in the previous theorem:

• For all $\alpha > 0$, and rates R below the channel capacity C,

$$\limsup_{n \to \infty} -\frac{1}{n} \log \mathbb{E}_{\mathcal{C}} \left[H_{\alpha}(X^n | Y^n) \right] \le E_{\mathsf{sp}}(R), \tag{33}$$

where $E_{sp}(\cdot)$ denotes the sphere-packing error exponent

$$E_{\mathsf{sp}}(R) = \sup_{\rho \ge 0} \rho \left(\max_{Q_X} I_{\frac{1}{1+\rho}}(Q_X, P_{Y|X}) - R \right)$$
(34)

with the maximization in the right side of (34) over all single-letter distributions Q_X defined on the input alphabet.

イロト 不得下 イヨト イヨト 二日

Coding Theorem 2 (ISSV '17, cont.)

 $\bullet \ \, {\rm For \ all} \ \, \alpha \in (0,1),$

$$\liminf_{n \to \infty} -\frac{1}{n} \log \mathbb{E}_{\mathcal{C}} \left[H_{\alpha}(X^n | Y^n) \right] \ge \alpha E_{\mathrm{r}}(R, P_X) - (1 - \alpha)R, \quad (35)$$

provided that

$$R < R_{\alpha}(P_X, P_{Y|X}) \tag{36}$$

where $R_{\alpha}(P_X, P_{Y|X})$ is the unique solution $r \in (0, I(P_X, P_{Y|X}))$ to

$$E_{\rm r}(r, P_X) = \left(\frac{1}{\alpha} - 1\right)r.$$
(37)

イロト イ理ト イヨト イヨト 二日

Coding Theorem 2 (ISSV '17, cont.)

• The rate $R_{\alpha}(P_X,P_{Y|X})$ is monotonically increasing and continuous in $\alpha\in(0,1),$ and

$$\lim_{\alpha \downarrow 0} R_{\alpha}(P_X, P_{Y|X}) = 0, \tag{38}$$

$$\lim_{\alpha \uparrow 1} R_{\alpha}(P_X, P_{Y|X}) = I(P_X, P_{Y|X}).$$
(39)

3

Coding Theorem 3 (ISSV '17, cont.)

Let $P_{Y|X}$ be the transition probability matrix of a memoryless binary-input output-symmetric channel, and let $P_X^* = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$. Let R_c , R_0 , and C denote the critical and cutoff rates and the channel capacity, respectively, and let

$$\alpha_{\rm c} = \frac{R_{\rm c}}{R_0} \in (0, 1).$$
(40)

The rate $R_{\alpha} = R_{\alpha}(P_X^*, P_{Y|X})$, with the symmetric input distribution P_X^* , can be expressed as follows:

a) for $\alpha \in (0, \alpha_c]$, $R_{\alpha} = \alpha R_0$;

b) for $\alpha \in (\alpha_c, 1)$, $R_{\alpha} \in (R_c, C)$ is the solution to $E_{sp}(r) = (\frac{1}{\alpha} - 1)r$;

c) R_{α} is continuous, monotonically increasing in $\alpha \in [\alpha_{c}, 1)$ from R_{c} to C.

イロト 不得 トイヨト イヨト 二日

Example: $BSC(\delta)$

- Consider a BSC with crossover probability δ , and let $P_X = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$.
- the cutoff rate, critical rate and capacity (in bits) are given by

$$R_0 = 1 - \log\left(1 + \sqrt{4\delta(1-\delta)}\right),\tag{41}$$

$$R_{\rm c} = 1 - h\left(\frac{\sqrt{\delta}}{\sqrt{\delta} + \sqrt{1 - \delta}}\right),\tag{42}$$

$$C = I(P_X, P_{Y|X}) = 1 - h(\delta).$$
 (43)

• The sphere-packing error exponent is given by

$$E_{\rm sp}(R) = d\big(\delta_{\rm GV}(R) \,\|\,\delta\big) \tag{44}$$

where the normalized Gilbert-Varshamov distance is denoted by

$$\delta_{\rm GV}(R) = h^{-1}(1-R).$$
 (45)

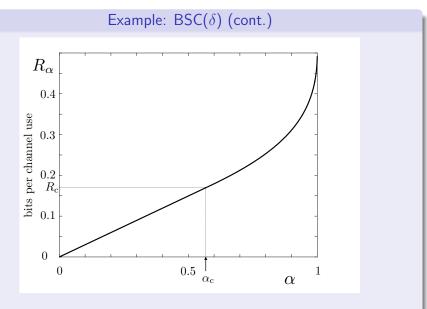


Figure: The rate R_{α} for $\alpha \in (0, 1)$ for BSC(δ) with crossover prob. $\delta = 0.110$.

I. Sason & S. Verdú

Conclusions

- We have shown new bounds on the minimum Bayesian error prob. $\varepsilon_{X|Y}$ of *M*-ary hypothesis testing.
- Our major focus has been the Arimoto-Rényi conditional entropy of the hypothesis index given the observation.

過 ト イヨ ト イヨト

Conclusions

- We have shown new bounds on the minimum Bayesian error prob. $\varepsilon_{X|Y}$ of *M*-ary hypothesis testing.
- Our major focus has been the Arimoto-Rényi conditional entropy of the hypothesis index given the observation.
- Changing the conventional form of Fano's inequality from

$$H(X|Y) \le h(\varepsilon_{X|Y}) + \varepsilon_{X|Y}\log(M-1)$$
(46)

$$= \log M - d\left(\varepsilon_{X|Y} \| 1 - \frac{1}{M}\right) \tag{47}$$

to the right side of (47), where $d(\cdot \| \cdot)$ is the binary relative entropy, allows a natural generalization where the Arimoto-Rényi conditional entropy of an arbitrary positive order α is upper bounded by

$$H_{\alpha}(X|Y) \le \log M - d_{\alpha}\left(\varepsilon_{X|Y} \| 1 - \frac{1}{M}\right) \tag{48}$$

with $d_{\alpha}(\cdot \| \cdot)$ denoting the binary Rényi divergence.

Conclusions (Cont.)

• The Schur-concavity of the Rényi entropy yields a lower bound on $H_{\alpha}(X|Y)$ in terms of $\varepsilon_{X|Y}$, which holds even if $M = \infty$. It recovers existing bounds by letting $\alpha \to 1$.

- 32

Conclusions (Cont.)

- The Schur-concavity of the Rényi entropy yields a lower bound on $H_{\alpha}(X|Y)$ in terms of $\varepsilon_{X|Y}$, which holds even if $M = \infty$. It recovers existing bounds by letting $\alpha \to 1$.
- Our techniques were extended to list decoding with a fixed list size, generalizing all the $H_{\alpha}(X|Y) \varepsilon_{X|Y}$ bounds to that setting.

Conclusions (Cont.)

- The Schur-concavity of the Rényi entropy yields a lower bound on $H_{\alpha}(X|Y)$ in terms of $\varepsilon_{X|Y}$, which holds even if $M = \infty$. It recovers existing bounds by letting $\alpha \to 1$.
- Our techniques were extended to list decoding with a fixed list size, generalizing all the $H_{\alpha}(X|Y) \varepsilon_{X|Y}$ bounds to that setting.
- Application: We analyzed the exponentially vanishing decay of the Arimoto-Rényi conditional entropy of the transmitted codeword given the channel output for DMCs and random coding ensembles.

Further Results in This Work

- Explicit lower bounds on $\varepsilon_{X|Y}$ as a function of $H_{\alpha}(X|Y)$ for an arbitrary α (also, for $\alpha < 0$).
- Explicit lower bounds on the list decoding error probability for fixed list size as a function of $H_{\alpha}(X|Y)$ for an arbitrary α (also, for $\alpha < 0$).
- We also explored some facets of the role of binary hypothesis testing in analyzing *M*-ary Bayesian hypothesis testing problems, and have shown new bounds in terms of Rényi divergence.

Journal Paper

I. Sason and S. Verdú, "Arimoto-Rényi conditional entropy and Bayesian *M*-ary hypothesis testing," to appear in the *IEEE Trans. on Information Theory*. [Online]. Available at https://arxiv.org/abs/1701.01974.

(日) (同) (日) (日) (日)