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Motivation

Motivation for talking about f -divergences

Divergences measure the dissimilarity between probability measures, and
many metrics fall under the paradigm of an f -divergence (to be defined).
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Motivation for talking about f -divergences

Divergences measure the dissimilarity between probability measures, and
many metrics fall under the paradigm of an f -divergence (to be defined).

⇒ f -divergences are useful in, e.g.,

Ensuring convergence of prob. measures with various metrics

Evaluation of rates of convergence

Transportation-cost inequalities (e.g., Pinsker’s inequality)

Estimation and modeling (e.g., bounds on the minimax risk)

Connection to mutual information, capacity, and Arimoto information

Hypothesis testing in the Bayesian setup

Non-asymptotic concentration of measure inequalities

Inequalities related to strong data processing and maximal correlation

One-shot achievability results via fidelity

Numerous other applications
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f -Divergence

f -Divergence

Let f : (0,∞) → R be a convex function with f(1) = 0, and let P ≪ Q.
The f -divergence from P to Q is given by

Df (P‖Q) =

∫

f

(

dP

dQ

)

dQ. (1)

If P,Q ≪ µ, p = dP
dµ and q = dQ

dµ , then

Df (P‖Q) =

∫

q f

(

p

q

)

dµ. (2)
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f -Divergence

f -Divergence

f -divergences were suggested independently by Ali & Silvey (1966),
Csiszár (1963), and Morimoto (1963):

S. M. Ali and S. D. Silvey, “A general class of coefficients of divergence of
one distribution from another,” Journal of the Royal Statistics Society,
series B, vol. 28, no. 1, pp. 131–142, 1966.

I. Csiszár, “Eine Informationstheoretische Ungleichung und ihre Anwendung
auf den Bewis der Ergodizität von Markhoffschen Ketten,” Publ. Math.

Inst. Hungar. Acad. Sci., vol. 8, pp. 85–108, Jan. 1963.

T. Morimoto, “Markov processes and the H-theorem,” Journal of the

Physical Society of Japan, vol. 18, no. 3, pp. 328–331, March 1963.
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Examples of f -divergences

Examples of f -divergences

Relative entropy

D(P‖Q) = Df (P‖Q) (3)

where

f(t) = t log t, t > 0. (4)
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Examples of f -divergences

Examples of f -divergences

Relative entropy

D(P‖Q) = Df (P‖Q) (3)

where

f(t) = t log t, t > 0. (4)

Relative entropy

D(Q‖P ) = Df (P‖Q) (5)

where

f(t) = − log t, t > 0. (6)
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Examples of f -divergences

Examples of f -divergences (cont.)

χ2-divergence: f(t) = (t− 1)2 or f(t) = t2 − 1,

χ2(P‖Q) = Df (P‖Q) =

∫
(

dP

dQ
− 1

)2

dQ. (7)
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Examples of f -divergences

Examples of f -divergences (cont.)

χ2-divergence: f(t) = (t− 1)2 or f(t) = t2 − 1,

χ2(P‖Q) = Df (P‖Q) =

∫
(

dP

dQ
− 1

)2

dQ. (7)

Total variation (TV) distance: Setting f(t) = |t− 1| results in

|P −Q| = Df (P‖Q) (8)

=

∫
∣

∣

∣

∣

dP

dQ
− 1

∣

∣

∣

∣

dQ (9)

= 2 sup
F∈F

(

P (F)−Q(F)
)

. (10)

I. Sason & S. Verdú Seminar Talk, Technion December 22, 2016. 6 / 48



Examples of f -divergences

Examples of f -divergences (cont.)

Hellinger divergence of order α ∈ (0, 1) ∪ (1,∞):

Hα(P‖Q) = Dfα(P‖Q) (11)

with fα(t) =
tα−1
α−1 for t ≥ 0.

The χ2-divergence is the Hellinger divergence of order 2;

Continuous extension at α = 1 yields

H1(P‖Q) log e = D(P‖Q). (12)
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Basic Properties

Basic Property 1: Reflexivity Property

If f : (0,∞) → R is convex and f(1) = 0, P ≪ Q, then

Df (P‖Q) ≥ 0. (13)

If f is strictly convex at t = 1, then Df (P‖Q) = 0 yields P = Q.
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Basic Properties

Basic Property 2: Uniqueness Theorem

Let f and g be convex functions on (0,∞) with f(1) = g(1) = 0. Then,
the following conditions are equivalent:

1

Df (P‖Q) = Dg(P‖Q), ∀P,Q; (14)

2 there exists c ∈ R such that

f(t)− g(t) = c(t− 1), ∀ t ∈ R. (15)

In other words, f and g-divergences are identical if and only if f and g

differ by a linear function that vanishes at 1.
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Basic Properties

Basic Property 3

An f -divergence satisfies the following three properties:

1 If P and Q are probability measures defined on X , then Df (P‖Q) is
invariant under permutations on X .

2 It satisfies the data processing inequality: Let A = {Ai, i ≥ 1} be
any partition of X , and let PA = {P (Ai), i ≥ 1} and
QA = {Q(Ai), i ≥ 1}. Then

Df (P‖Q) ≥ Df (PA‖QA). (16)

3 Convexity: For all P1, P2, Q1, Q2 ∈ P and λ ∈ [0, 1], λ̄ , 1− λ

Df

(

λP1 + λ̄P2‖λQ1 + λ̄Q2

)

≤ λDf (P1‖Q1) + λ̄Df (P2‖Q2). (17)
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Basic Properties

Basic Property 4: Symmetry Theorem

Let f : (0,∞) → R be a convex function with f(1) = 0, and let
f∗ : (0,∞) → R be the ∗-conjugate, given by

f∗(t) = t f
(

1
t

)

, t > 0. (18)

Then,

f∗ is also convex, and f∗(1) = 0,

if P ≪≫ Q, then

Df (P‖Q) = Df∗(Q‖P ). (19)

By definition, we take

f∗(0) = lim
t↓0

f∗(t) = lim
u→∞

f(u)

u
. (20)
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f -divergence Inequalities

f -divergence Inequalities
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f -divergence Inequalities

Theorem 1: Functional Domination

Let P ≪ Q, and assume

f and g are convex on (0,∞) with f(1) = g(1) = 0;

g(t) > 0 for all t ∈ (0, 1) ∪ (1,∞).

Denote the function κ : (0, 1) ∪ (1,∞) → R

κ(t) =
f(t)

g(t)
, t ∈ (0, 1) ∪ (1,∞) (21)

and

κ̄ = sup
t∈(0,1)∪(1,∞)

κ(t). (22)
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f -divergence Inequalities

Theorem 1 (cont.)

Then,

a)

Df (P‖Q) ≤ κ̄Dg(P‖Q). (23)

b) If, in addition, f ′(1) = g′(1) = 0, then

sup
P 6=Q

Df (P‖Q)

Dg(P‖Q)
= κ̄. (24)
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f -divergence Inequalities

Range of Values Theorem for f -Divergences

Vajda showed that the range of an f -divergence is given by

0 ≤ Df (P‖Q) ≤ f(0) + f∗(0) (25)

where every value in this range is attainable by a suitable pair of
probability measures P ≪ Q.

Basu et al. strengthened Vajda’s result, showing that

Df (P‖Q) ≤ 1
2

(

f(0) + f∗(0)
)

|P −Q|. (26)
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f -divergence Inequalities

f -Divergences (cont.)

Using the theorem on functional domination, we assert that the constant
in (26) cannot be improved.

Theorem 2

If f : (0,∞) → R is convex with f(1) = 0, then

sup
P 6=Q

Df (P‖Q)

|P −Q|
= 1

2

(

f(0) + f∗(0)
)

(27)

where the supremum is over all probability measures P,Q such that
P ≪ Q and P 6= Q.
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Rényi Divergence

Definition: Relative Information

If P ≪ Q, the relative information provided by a ∈ A according to (P,Q)
is given by

ıP‖Q(a) , log
dP

dQ
(a). (28)
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Rényi Divergence

Definition: Relative Information

If P ≪ Q, the relative information provided by a ∈ A according to (P,Q)
is given by

ıP‖Q(a) , log
dP

dQ
(a). (28)

Relative entropy

The relative entropy of P with respect to Q is

D(P‖Q) = E
[

ıP‖Q(X)
]

(29)

= E
[

ıP‖Q(Y ) exp
(

ıP‖Q(Y )
)]

, (30)

where X ∼ P and Y ∼ Q.
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Rényi Divergence

Rényi Divergence

Let P ≪ Q. The Rényi divergence Dα(P‖Q) is given as follows:

If α ∈ (0, 1) ∪ (1,∞), then with X ∼ P

Dα(P‖Q) =
1

α− 1
log
(

E
[

exp
(

(α − 1) ıP‖Q(X)
)]

)

. (31)

If α = 0, then

D0(P‖Q) = max
F∈F : P (F)=1

log

(

1

Q(F)

)

. (32)

If α = 1, then D1(P‖Q) = D(P‖Q).

If α = +∞ then with Y ∼ Q

D∞(P‖Q) = log

(

ess sup
dP

dQ
(Y )

)

. (33)
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Rényi Divergence

Rényi Divergence (Cont.)

Rényi divergence is a one-to-one transformation of Hellinger divergence of
the same order α ∈ (0, 1) ∪ (1,∞):

Dα(P‖Q) =
1

α− 1
log (1 + (α− 1)Hα(P‖Q)) (34)

⇒ D2(P‖Q) = log
(

1 + χ2(P‖Q)
)

. (35)
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Rényi Divergence

Rényi Divergence (Cont.)

Rényi divergence is a one-to-one transformation of Hellinger divergence of
the same order α ∈ (0, 1) ∪ (1,∞):

Dα(P‖Q) =
1

α− 1
log (1 + (α− 1)Hα(P‖Q)) (34)

⇒ D2(P‖Q) = log
(

1 + χ2(P‖Q)
)

. (35)

Connection Between Rényi and f -divergences

⇒ The Rényi divergence is not an f -divergence, but it is nevertheless a
one-to-one transformation of an f -divergence.
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Bounded Relative Information

Definition of β1 and β2.

Given a pair of probability measures (P,Q) on the same measurable space,
denote β1, β2 ∈ [0, 1] by

β1 = exp
(

−D∞(P‖Q)
)

, (36)

β2 = exp
(

−D∞(Q‖P )
)

(37)

with the convention that if D∞(P‖Q) = ∞, then β1 = 0, and if
D∞(Q‖P ) = ∞, then β2 = 0.
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Bounded Relative Information

Definition of β1 and β2.

Given a pair of probability measures (P,Q) on the same measurable space,
denote β1, β2 ∈ [0, 1] by

β1 = exp
(

−D∞(P‖Q)
)

, (36)

β2 = exp
(

−D∞(Q‖P )
)

(37)

with the convention that if D∞(P‖Q) = ∞, then β1 = 0, and if
D∞(Q‖P ) = ∞, then β2 = 0.

if β1 > 0, then P ≪ Q, while β2 > 0 implies Q ≪ P .

if P ≪≫ Q, then with Y ∼ Q,

β1 = ess inf
dQ

dP
(Y ) =

(

ess sup
dP

dQ
(Y )

)−1

, (38)

β2 = ess inf
dP

dQ
(Y ) =

(

ess sup
dQ

dP
(Y )

)−1

. (39)
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Bounded Relative Information

Since β1 = 1 ⇔ β2 = 1 ⇔ P = Q, we avoid trivialities by excluding that
case.

Theorem 3: Bounded Relative Information

Let f and g satisfy the assumptions in Theorem 1, and assume that
(β1, β2) ∈ [0, 1)2. Then,

Df (P‖Q) ≤ κ∗ Dg(P‖Q) (40)

where

κ∗ = sup
β∈(β2,1)∪(1,β

−1

1
)

κ(β) (41)

and κ(·) is defined in Theorem 1.
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Pinsker’s Inequality

Csiszár-Kemperman-Kullback-Pinsker Inequality

D(P‖Q) ≥ 1
2 |P −Q|2 log e (42)

and the constant is tight in the sense that

inf
P 6=Q

D(P‖Q)

|P −Q|2
= 1

2 log e.
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Pinsker’s Inequality

Csiszár-Kemperman-Kullback-Pinsker Inequality

D(P‖Q) ≥ 1
2 |P −Q|2 log e (42)

and the constant is tight in the sense that

inf
P 6=Q

D(P‖Q)

|P −Q|2
= 1

2 log e.

An Implication of Pinsker’s Inequality

Convergence in relative entropy =⇒ convergence in TV distance.
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Reverse Pinsker’s Inequality

Question

Is there a reverse Pinsker inequality that provides an upper bound on the

relative entropy as a function of the TV distance ?
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Reverse Pinsker’s Inequality

Question

Is there a reverse Pinsker inequality that provides an upper bound on the

relative entropy as a function of the TV distance ?

No, for every ε > 0 there exist P , Q s.t. |P −Q| ≤ ε, D(P‖Q) = ∞.
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Reverse Pinsker’s Inequality

Question

Is there a reverse Pinsker inequality that provides an upper bound on the

relative entropy as a function of the TV distance ?

No, for every ε > 0 there exist P , Q s.t. |P −Q| ≤ ε, D(P‖Q) = ∞.

However, we can obtain a reverse Pinsker inequality when the relative
information is bounded (see next theorem).
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Reverse Pinsker’s Inequality

Application – Theorem 4: A Reverse Pinsker inequality

If β1 ∈ (0, 1) and β2 ∈ [0, 1), then,

D(P‖Q) ≤ 1
2

(

ϕ(β−1
1 )− ϕ(β2)

)

|P −Q| (43)

where ϕ : [0,∞) → [0,∞) is given by

ϕ(t) =







0 t = 0
t log t
t−1 t ∈ (0, 1) ∪ (1,∞)

log e t = 1.

(44)
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Reverse Pinsker’s Inequality

Reverse Pinsker Inequality for Finite Alphabet [Csiszár & Talata, ’06]

If A is a finite set, P and Q are probability measures defined on A, and
Qmin , minx∈AQ(x) > 0, then

D(P‖Q) ≤
log e

Qmin
· |P −Q|2. (45)

Recent Applications of (45)

I. Csiszár and Z. Talata, “Context tree estimation for not necessarily finite memory

processes, via BIC and MDL,” IEEE Trans. on IT, vol. 52, no. 3, pp. 1007–1016,

Mar. 2006.

V. Kostina and S. Verdú, “Channels with cost constraints: strong converse and

dispersion,” IEEE Trans. on IT, vol. 61, no. 5, pp. 2415–2429, May 2015.

M. Tomamichel and V. Y. F. Tan, “A tight upper bound for the third-order

asymptotics for most discrete memoryless channels,” IEEE Trans. on IT, vol. 59,

no. 11, pp. 7041–7051, Nov. 2013.

I. Sason & S. Verdú Seminar Talk, Technion December 22, 2016. 25 / 48



Reverse Pinsker’s Inequality

Theorem 5: New Reverse Pinsker Inequality for Finite Alphabet

a) If P ≪ Q

D(P‖Q) ≤ log

(

1 +
|P −Q|2

2Qmin

)

. (46)

b) Furthermore, if Q ≪ P and β2 ∈ [0, 1] is given by

β2 = min
x∈A

P (x)

Q(x)

then the following tightened bound holds:

D(P‖Q) ≤ log

(

1 +
|P −Q|2

2Qmin

)

−
β2 log e

2
· |P −Q|2. (47)
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Reverse Pinsker’s Inequality

Note on Theorem 5a)

This already improves the Csiszár-Talata inequality since

log

(

1 +
|P −Q|2

2Qmin

)

≤
log e

2Qmin
· |P −Q|2.
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Reverse Pinsker’s Inequality

Proof of Theorem 5a)

The idea is to obtain upper and lower bounds on the χ2-divergence

χ2(P,Q) ,
∑

x∈A

(P (x) −Q(x))2

Q(x)
.
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Reverse Pinsker’s Inequality

Proof of Theorem 5a)

The idea is to obtain upper and lower bounds on the χ2-divergence

χ2(P,Q) ,
∑

x∈A

(P (x) −Q(x))2

Q(x)
.

Bounds on the χ2-divergence

χ2(P‖Q) ≥ eD(P‖Q) − 1 (via Jensen’s inequality)

χ2(P‖Q) ≤

∑

x∈A

(

P (x)−Q(x)
)2

Qmin
≤

|P −Q|2

2Qmin
.

Combining the bounds yields Theorem 5a).
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Reverse Pinsker’s Inequality

Definition: Relative Information Spectrum

The relative information spectrum is the cumulative distribution function

FP‖Q(x) = P
[

ıP‖Q(X) ≤ x
]

, (48)

with X ∼ P .
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Reverse Pinsker’s Inequality

New Integral Representations with the Relative Information Spectrum

Dα(P‖Q) =
1

α− 1
log

(

(1− α)

∫ ∞

0
βα−2

FP‖Q(log β) dβ

)

, α ∈ (0, 1),

Dα(P‖Q) =
1

α− 1
log

(

(α− 1)

∫ ∞

0
βα−2

(

1− FP‖Q(log β)
)

dβ

)

, α > 1

D(P‖Q) =

∫ ∞

1

1− FP‖Q(log β)

β
dβ −

∫ 1

0

FP‖Q(log β)

β
dβ,

χ2(P‖Q) =

∫ ∞

0

(

1− FP‖Q(log β)
)

dβ − 1

|P −Q| = 2

∫ ∞

1

1− FP‖Q(log β)

β2
dβ
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Rényi Divergence and Coding Theory

Information-Theoretic Applications of the Rényi divergence

Channel coding error exponents.

Generalized cutoff rates for hypothesis testing.

Multiple source adaptation.

Generalized guessing moments.

Two-sensor composite hypothesis testing.

Bounds for joint source-channel coding.

Strong data processing theorems for DMCs.

Strong converse theorems for networks.

IT applications of the logarithmic probability comparison bound.
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Rényi Divergence and Coding Theory

A Coding Theorem with the Rényi Divergence
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New Bound on the ML Decoding Error Probability

Motivation for Part II of the Talk

Performance analysis of linear codes under ML decoding is of interest
for the study of the potential performance of these codes under
optimal decoding.

It is also of interest for the evaluation of the degradation in
performance that is incurred by the use of sub-optimal and practical
decoding algorithms.

Similarly to the Shulman-Feder bound and related studies, the upper
bound in the following theorem quantifies the degradation in the
performance of block codes under ML decoding in terms of the
deviation of their distance spectra from the binomial distribution.

The latter distribution characterizes the average distance spectrum of
the ensemble of fully random binary block codes, achieving the
capacity of any memoryless binary-input output-symmetric channel.
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New Bound on the ML Decoding Error Probability

Theorem: A New Upper Bound on the ML Decoding Error Probability

Consider a binary linear block code of length N and rate R = log(M)
N

where M designates the number of codewords.
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New Bound on the ML Decoding Error Probability

Theorem: A New Upper Bound on the ML Decoding Error Probability

Consider a binary linear block code of length N and rate R = log(M)
N

where M designates the number of codewords.

Let S0 = 0 and, for l ∈ {1, . . . , N}, let Sl be the number of non-zero
codewords of Hamming weight l.
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Theorem: A New Upper Bound on the ML Decoding Error Probability

Consider a binary linear block code of length N and rate R = log(M)
N

where M designates the number of codewords.

Let S0 = 0 and, for l ∈ {1, . . . , N}, let Sl be the number of non-zero
codewords of Hamming weight l.

Assume that the transmission of the code takes place over a
memoryless, binary-input and output-symmetric channel.
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New Bound on the ML Decoding Error Probability

Theorem: A New Upper Bound on the ML Decoding Error Probability

Consider a binary linear block code of length N and rate R = log(M)
N

where M designates the number of codewords.

Let S0 = 0 and, for l ∈ {1, . . . , N}, let Sl be the number of non-zero
codewords of Hamming weight l.

Assume that the transmission of the code takes place over a
memoryless, binary-input and output-symmetric channel.

Assume that the code is maximum-likelihood (ML) decoded.
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New Bound on the ML Decoding Error Probability

Theorem: A New Upper Bound (Cont.)

The block error probability satisfies

Pe = Pe|0 ≤ exp

(

−N sup
r≥1

max
0≤ρ≤ 1

r

[

E0

(

ρ, q =
(1

2
,
1

2

)

)

−ρ

(

rR+
Ds(PN‖QN )

N

)])

where

s , s(r) = r
r−1 for r ≥ 1 (with the convention that s = ∞ for r = 1),

QN is the binomial distribution with parameter 1
2 and N i.i.d. trials,

PN is the PMF defined by PN (l) = Sl

M−1 for l ∈ {0, . . . , N},

Ds(·‖·) is the Rényi divergence of order s,

E0(ρ, q) is the Gallager random coding error exponent.
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New Bound on the ML Decoding Error Probability

Special Case: The Shulman-Feder Bound

Loosening the bound by taking r = 1 ⇒ s = ∞ gives

Pe = Pe|0

≤ exp

(

−N Er

(

R+
D∞(PN‖QN )

N

))

= exp

(

−N Er

(

R+
1

N
log max

0≤l≤N

PN (l)

QN (l)

))

= exp

(

−N Er

(

R+
1

N
log max

0≤l≤N

Sl

e−N(log 2−R)
(

N
l

)

))

which coincides with the Shulman-Feder bound.
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New Bound on the ML Decoding Error Probability

Related Papers on Variations of the Gallager Bounds

1 S. Shamai and I. Sason, “Variations on the Gallager bounds,
connections, and applications,” IEEE Trans. on Information Theory,
vol. 48, no. 12, pp. 3029–3051, December 2002.

2 I. Sason and S. Shamai, Performance Analysis of Linear Codes under

Maximum-Likelihood Decoding: A Tutorial, Foundations and Trends

in Communications and Information Theory, vol. 3, no. 1–2,
pp. 1–222, NOW Publishers, Delft, the Netherlands, July 2006.
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New Bound on the ML Decoding Error Probability

Novelty of the Bound & Proof

The proof of this theorem has an overlap with Appendix A in the
paper by Shamai and Sason (2002).

The novelty here is in working with the Rényi divergence of order
s ≥ 1, instead of the relative entropy as a lower bound, reveals a need
for an optimization of the error exponent:

1 If r ≥ 1 is increased, s = r
r−1 ≥ 1 is decreased, and Ds(PN‖QN ) is

decreased (unless it is 0; note that PN , QN do not depend on r, s).
2 The maximization of the error exponent in the theorem aims to find a

proper balance between the two summands rR and Ds(PN‖QN )
N

in the
exponent of the new bound, while also optimizing ρ ∈

[

0, 1
r

]

.
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New Bound on the ML Decoding Error Probability

Applicability of the New Bound to Code Ensembles

The bound can be shown to be applicable to code ensembles of binary
linear block codes:

In the probability distribution PN , the distance spectrum is replaced
by the average distance spectrum of the ensemble.
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New Bound on the ML Decoding Error Probability

Combination of the New Bound with an Existing Approach

We borrow a concept of bounding by Miller and Burshtein, and
propose to combine it with the new bound.

In order to utilize the Shulman-Feder bound for binary linear block
codes in a clever way, they partitioned the binary linear block code C
into two subcodes C1 and C2 where

C1 ∪ C2 = C, C1 ∩ C2 = {0}.

The subcode C1 contains the all-zero codeword and all the codewords
of C whose Hamming weights l belong to a subset L ⊆ {1, 2, ..., N}.

The subcode C2 contains the other codewords of C (with Hamming
weights of l ∈ Lc , {1, 2, ..., N} \ L), and the all-zero codeword.
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New Bound on the ML Decoding Error Probability

Idea in Selecting C1
Select C1 such that it includes the codewords whose hamming weights
correspond to the portion of the distance spectrum which is close to the
binomial distribution:

PN (l) ≈ QN (l), ∀ l ∈ L.

This selection implies that the normalized Rényi divergence Ds(PN‖QN )
N

in
the exponent of the new bound has a marginal effect on the conditional
ML decoding error probability of the subcode C1.
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New Bound on the ML Decoding Error Probability

Combination of the New Bound with an Existing Approach (Cont.)

From the symmetry of the channel,

Pe = Pe|0 ≤ Pe|0(C1) + Pe|0(C2)

where Pe|0(C1) and Pe|0(C2) are the conditional ML decoding error
probabilities of C1 and C2 given that the zero codeword is transmitted.

One can rely on different upper bounds on the conditional error
probabilities Pe|0(C1) and Pe|0(C2):

1 Bound Pe|0(C1) by invoking the new bound, due to the closeness of its
distance spectrum to the binomial distribution.

2 Rely on an alternative approach for bounding Pe|0(C2) (e.g., using the
union bound w.r.t. the fixed composition codes of the subcode C2).

I. Sason & S. Verdú Seminar Talk, Technion December 22, 2016. 42 / 48



Performance bounds for a Turbo-Block Ensemble

Example: Performance Bounds for an Ensemble of Turbo-Block Bodes

Consider

An ensemble of uniformly interleaved turbo codes whose two
component codes are chosen uniformly at random from the ensemble
of (1072, 1000) binary systematic linear block codes.

The overall code rate is 0.8741 bits per channel use.

The transmission of these codes takes place over an additive white
Gaussian noise (AWGN) channel.

The codes are BPSK modulated and coherently detected.
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Performance bounds for a Turbo-Block Ensemble

Example: Turbo-block codes (Cont.)

The following upper bounds under ML decoding are compared:

The tangential-sphere bound (TSB) of Herzberg and Poltyrev.

The suggested combination of the union bound (UB) and the new
bound (NB). An optimal partitioning is performed to obtain the
tightest bound within this form.
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Performance bounds for a Turbo-Block Ensemble

Example: Turbo-block codes (Cont.)
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Figure: Comparison between upper bounds on the block error probability.
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Summary

Summary (Part I)

f -divergences have been presented.

Some approaches to derive f -divergence inequalities have been
introduced.

Reverse Pinsker inequalities have been introduced.

Expressions of f -divergence in terms of the relative information
spectrum have been presented.
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Summary

Summary (Part II)

A new bound on the ML decoding error probability has been derived,
involving the Rényi divergence.

It reproduces the random coding bound (Gallager, 1965), and the
Shulman-Feder bound for binary linear block codes (or ensembles).

This bound has in general an additional parameter that is subject to
optimization (the order of the Rényi divergence).

Applicable to code ensembles, and its superiority has been exemplified
for an ensemble of turbo-block codes.
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Journal Papers

I. Sason and S. Verdú, “f -divergence inequalities,” IEEE Trans. on

Information Theory, vol. 62, no. 11, pp. 5973–6006, November 2016.

I. Sason, “On the Rényi divergence, joint range of relative entropies, and a
channel coding theorem,” IEEE Trans. on Information Theory, vol. 62,
no. 1, pp. 23–34, January 2016.
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