Sequential Hypothesis Testing and Variable Length Coding
 Graduate Seminar

Shai Ginzach
Supervised by
Igal Sason and Neri Merhav

Department of Electrical Engineering
Technion - Israel Institute of Technology
Haifa, Israel

December 25th, 2014

Outline

(1) Sequential Hypothesis Testing

- Sequential Binary Hypothesis Testing
- Multi-hypothesis Testing
- Multi-hypothesis Testing with Control

Outline

(1) Sequential Hypothesis Testing

- Sequential Binary Hypothesis Testing
- Multi-hypothesis Testing
- Multi-hypothesis Testing with Control
(2) Variable-Length Coding with Feedback
- Unlimited Feedback
- ARQ Schemes
- Stop-Feedback Scheme

Outline

(1) Sequential Hypothesis Testing

- Sequential Binary Hypothesis Testing
- Multi-hypothesis Testing
- Multi-hypothesis Testing with Control
(2) Variable-Length Coding with Feedback
- Unlimited Feedback
- ARQ Schemes
- Stop-Feedback Scheme
(3) Summary and Conclusions

Sequential Binary Hypothesis Testing - Setting

- Observation sequence:

$$
Y_{1}, Y_{2}, Y_{3}, \ldots \stackrel{\text { i.i.d. }}{\sim} P
$$

Sequential Binary Hypothesis Testing - Setting

- Observation sequence:

$$
Y_{1}, Y_{2}, Y_{3}, \ldots \stackrel{\text { i.i.d. }}{\sim} P .
$$

- Two hypotheses:

$$
\begin{cases}H_{0} & : P=P_{0}, \\ H_{1} & : P=P_{1} .\end{cases}
$$

Where P_{0} and P_{1} are completely known distinct probability measures.

Sequential Binary Hypothesis Testing - Setting

- Observation sequence:

$$
Y_{1}, Y_{2}, Y_{3}, \ldots \stackrel{\text { i.i.d. }}{\sim} P
$$

- Two hypotheses:

$$
\begin{cases}H_{0} & : P=P_{0}, \\ H_{1} & : P=P_{1} .\end{cases}
$$

Where P_{0} and P_{1} are completely known distinct probability measures.

- Priors: $\mathbb{P}\left\{H_{0}\right\}=\pi_{0}$, and $\mathbb{P}\left\{H_{1}\right\}=\pi_{1}=1-\pi_{0}$.

Sequential Binary Hypothesis Testing - Basic Components

Definition - Sequential Binary Hypothesis Test

A Sequential binary hypothesis test is a pair $\Delta=(N, d)$ where:

- N is the stopping time (such that $\{N=n\},\{N>n\} \in \sigma\left(Y_{1}^{n}\right)$).
- $d: Y_{1}^{N} \rightarrow\left\{H_{0}, H_{1}\right\}$ is the terminal decision rule.

Sequential Binary Hypothesis Testing - Basic Components

Definition - Sequential Binary Hypothesis Test

A Sequential binary hypothesis test is a pair $\Delta=(N, d)$ where:

- N is the stopping time (such that $\{N=n\},\{N>n\} \in \sigma\left(Y_{1}^{n}\right)$).
- $d: Y_{1}^{N} \rightarrow\left\{H_{0}, H_{1}\right\}$ is the terminal decision rule.
- Two types of errors:
(1) Type 1 error: Reject the null hypothesis when correct

$$
\alpha \triangleq P_{0}\left(d=H_{1}\right)
$$

(2) Type 2 error: Accept the null hypothesis when incorrect

$$
\beta \triangleq P_{1}\left(d=H_{0}\right) .
$$

Sequential Probability Ratio Test (SPRT)

Sequential Probability Ratio Test (SPRT)

- Define the Log Likelihood Ratio function (LLR):

$$
L_{n}\left(y_{1}^{n}\right) \triangleq \log \left[\frac{P_{0}\left(y_{1}^{n}\right)}{P_{1}\left(y_{1}^{n}\right)}\right]=\sum_{i=1}^{n} \log \left[\frac{P_{0}\left(y_{i}\right)}{P_{1}\left(y_{i}\right)}\right]
$$

Sequential Probability Ratio Test (SPRT)

- Define the Log Likelihood Ratio function (LLR):

$$
L_{n}\left(y_{1}^{n}\right) \triangleq \log \left[\frac{P_{0}\left(y_{1}^{n}\right)}{P_{1}\left(y_{1}^{n}\right)}\right]=\sum_{i=1}^{n} \log \left[\frac{P_{0}\left(y_{i}\right)}{P_{1}\left(y_{i}\right)}\right]
$$

- Select two boundary values A and B such that $0<B<1<A$

Sequential Probability Ratio Test (SPRT)

- Define the Log Likelihood Ratio function (LLR):

$$
L_{n}\left(y_{1}^{n}\right) \triangleq \log \left[\frac{P_{0}\left(y_{1}^{n}\right)}{P_{1}\left(y_{1}^{n}\right)}\right]=\sum_{i=1}^{n} \log \left[\frac{P_{0}\left(y_{i}\right)}{P_{1}\left(y_{i}\right)}\right]
$$

- Select two boundary values A and B such that $0<B<1<A$

Definition - SPRT (Wald 1943)

The Sequential Probability Ratio Test $(\mathrm{SPRT}) \Delta_{\mathrm{SPRT}} \triangleq\left(N_{\mathrm{SPRT}}, d_{\mathrm{SPRT}}\right)$ is defined as follows:

$$
\begin{aligned}
N_{\mathrm{SPRT}} & \triangleq \min \left\{n \in \mathbb{N}: L_{n}\left(Y_{1}^{n}\right) \leq \log (B) \quad \text { or } \quad L_{n}\left(Y_{1}^{n}\right) \geq \log (A)\right\} \\
d_{\mathrm{SPRT}} \triangleq & \triangleq\left\{\begin{array}{lll}
H_{1} & \text { if } & L_{N_{\mathrm{SPRT}}}\left(Y_{1}^{N_{\mathrm{SPRT}}}\right) \leq \log (B) \\
H_{0} & \text { if } & L_{N_{\mathrm{SPRT}}}\left(Y_{1}^{N_{\mathrm{SPRT}}}\right) \geq \log (A)
\end{array}\right.
\end{aligned}
$$

Basic Properties of the SPRT

Basic Properties of the SPRT

- Define $\bar{N} \triangleq \min \left\{n \in \mathbb{N}: L_{n} \geq \log (A)\right\}$. Then,

$$
\mathbb{E}_{P_{0}}\left[N_{\text {SPRT }}\right] \leq \mathbb{E}_{P_{0}}[\bar{N}] \leq \frac{\log (A)}{D\left(P_{0} \| P_{1}\right)} \leq \frac{-\log (\alpha)}{D\left(P_{0} \| P_{1}\right)}
$$

Basic Properties of the SPRT

- Define $\bar{N} \triangleq \min \left\{n \in \mathbb{N}: L_{n} \geq \log (A)\right\}$. Then,

$$
\mathbb{E}_{P_{0}}\left[N_{\mathrm{SPRT}}\right] \leq \mathbb{E}_{P_{0}}[\bar{N}] \leq \frac{\log (A)}{D\left(P_{0} \| P_{1}\right)} \leq \frac{-\log (\alpha)}{D\left(P_{0} \| P_{1}\right)}
$$

Similarly, $\quad \mathbb{E}_{P_{1}}\left[N_{\text {SPRT }}\right] \leq \frac{-\log (B)}{D\left(P_{1} \| P_{0}\right)} \leq \frac{-\log (\beta)}{D\left(P_{1} \| P_{0}\right)}$

Basic Properties of the SPRT

- Define $\bar{N} \triangleq \min \left\{n \in \mathbb{N}: L_{n} \geq \log (A)\right\}$. Then,

$$
\mathbb{E}_{P_{0}}\left[N_{\mathrm{SPRT}}\right] \leq \mathbb{E}_{P_{0}}[\bar{N}] \leq \frac{\log (A)}{D\left(P_{0} \| P_{1}\right)} \leq \frac{-\log (\alpha)}{D\left(P_{0} \| P_{1}\right)}
$$

Similarly, $\quad \mathbb{E}_{P_{1}}\left[N_{\text {SPRT }}\right] \leq \frac{-\log (B)}{D\left(P_{1} \| P_{0}\right)} \leq \frac{-\log (\beta)}{D\left(P_{1} \| P_{0}\right)}$

Theorem - Optimality of the SPRT (Wald \& Wolfowitz 1953)

Let $\Delta_{\text {SPRT }}=\left(N_{\text {SPRT }}, d_{\text {SPRT }}\right)$ be Wald's SPRT with error probabilities $\alpha_{\text {SPRT }}$ and $\beta_{\text {SPRT }}$, and let $\Delta^{\prime}=\left(N^{\prime}, d^{\prime}\right)$ be any other sequential decision rule with finite $\mathbb{E}_{P_{1}}\left[N^{\prime}\right], \mathbb{E}_{P_{0}}\left[N^{\prime}\right]$ and error probabilities α^{\prime} and β^{\prime} satisfying

$$
\alpha^{\prime}<\alpha_{\mathrm{SPRT}} \quad \text { and } \quad \beta^{\prime}<\beta_{\mathrm{SPRT}} .
$$

Then

$$
\mathbb{E}_{P_{1}}\left[N^{\prime}\right] \geq \mathbb{E}_{P_{1}}\left[N_{\mathrm{SPRT}}\right], \quad \mathbb{E}_{P_{0}}\left[N^{\prime}\right] \geq \mathbb{E}_{P_{0}}\left[N_{\mathrm{SPRT}}\right]
$$

Sequential Multi-hypothesis Testing - Setting

- Observation sequence:

$$
\mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Y}_{3}, \ldots \stackrel{\text { i.i.d. }}{\sim} P .
$$

where \mathbf{Y}_{i} is an l-valued random vector $\left(\mathbf{Y}_{\mathbf{i}}=\left(Y_{i, 1} \ldots, Y_{i, l}\right)\right.$).

- Define $M(>2)$ hypotheses:

$$
H_{i}: P=P_{i}, \quad i \in\{0, \ldots, M-1\}
$$

where P_{i} are completely known distinct probability measures.

- Priors: $\pi=\left\{\pi_{0} \ldots, \pi_{M-1}\right\}$ where $\pi_{i}=\mathbb{P}\left\{H_{i}\right\}$

Sequential Multi-hypothesis Testing - Setting

- Observation sequence:

$$
\mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Y}_{3}, \ldots \stackrel{\text { i.i.d. }}{\sim} P .
$$

where \mathbf{Y}_{i} is an l-valued random vector $\left(\mathbf{Y}_{\mathbf{i}}=\left(Y_{i, 1} \ldots, Y_{i, l}\right)\right.$).

- Define $M(>2)$ hypotheses:

$$
H_{i}: P=P_{i}, \quad i \in\{0, \ldots, M-1\} .
$$

where P_{i} are completely known distinct probability measures.

- Priors: $\pi=\left\{\pi_{0} \ldots, \pi_{M-1}\right\}$ where $\pi_{i}=\mathbb{P}\left\{H_{i}\right\}$
- A Multi-hypothesis test Δ is a pair (N, d) where N is the stopping time and d is the decision rule.

Sequential Multi-hypothesis Testing - Risk and Error Probabilities

- Let $\alpha_{j i}(\Delta)=P_{j}(d=i)$ be the probability of accepting the hypothesis H_{i} when H_{j} is true (defined for $j \neq i$).

Sequential Multi-hypothesis Testing - Risk and Error Probabilities

- Let $\alpha_{j i}(\Delta)=P_{j}(d=i)$ be the probability of accepting the hypothesis H_{i} when H_{j} is true (defined for $j \neq i$).
- For a multiple hypothesis test Δ, the risk associated with making the decision $d=i$ is defined to be

$$
R_{i}(\Delta)=\sum_{j \neq i} \pi_{j} \alpha_{j i}(\Delta)
$$

Sequential Multi-hypothesis Testing - Risk and Error Probabilities

- Let $\alpha_{j i}(\Delta)=P_{j}(d=i)$ be the probability of accepting the hypothesis H_{i} when H_{j} is true (defined for $j \neq i$).
- For a multiple hypothesis test Δ, the risk associated with making the decision $d=i$ is defined to be

$$
R_{i}(\Delta)=\sum_{j \neq i} \pi_{j} \alpha_{j i}(\Delta)
$$

- Let $\overline{\mathbf{R}} \triangleq\left(\bar{R}_{0}, \bar{R}_{1}, \ldots, \bar{R}_{M-1}\right)$ be a vector of positive finite numbers and define:

$$
\boldsymbol{\Delta}(\overline{\mathbf{R}}) \triangleq\left\{\Delta: R_{i}(\Delta) \leq \bar{R}_{i}, i \in\{0, \ldots, M-1\}\right\} .
$$

Sequential Multi-hypothesis Testing - Risk and Error Probabilities

- Let $\alpha_{j i}(\Delta)=P_{j}(d=i)$ be the probability of accepting the hypothesis H_{i} when H_{j} is true (defined for $j \neq i$).
- For a multiple hypothesis test Δ, the risk associated with making the decision $d=i$ is defined to be

$$
R_{i}(\Delta)=\sum_{j \neq i} \pi_{j} \alpha_{j i}(\Delta)
$$

- Let $\overline{\mathbf{R}} \triangleq\left(\bar{R}_{0}, \bar{R}_{1}, \ldots, \bar{R}_{M-1}\right)$ be a vector of positive finite numbers and define:

$$
\boldsymbol{\Delta}(\overline{\mathbf{R}}) \triangleq\left\{\Delta: R_{i}(\Delta) \leq \bar{R}_{i}, i \in\{0, \ldots, M-1\}\right\} .
$$

- Our focus: $\Delta \in \boldsymbol{\Delta}(\overline{\mathbf{R}})$ as $R_{\max } \triangleq \max _{i} \bar{R}_{i} \rightarrow 0$ and M fixed.

Multi-hypothesis SPRT (MSPRT)

- Define the $L L R$ of P_{i} w.r.t. to a (dominating) measure Q by:

$$
L_{i}(n)=\log \left[\frac{P_{i}\left(\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}\right)}{Q\left(\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}\right)}\right], \quad i \in\{0, \ldots, M-1\}
$$

Multi-hypothesis SPRT (MSPRT)

- Define the $L L R$ of P_{i} w.r.t. to a (dominating) measure Q by:

$$
L_{i}(n)=\log \left[\frac{P_{i}\left(\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}\right)}{Q\left(\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}\right)}\right], \quad i \in\{0, \ldots, M-1\} .
$$

- Let $a_{i},(i \in\{0, \ldots, M-1\})$ be positive threshold values.

Multi-hypothesis SPRT (MSPRT)

- Define the $L L R$ of P_{i} w.r.t. to a (dominating) measure Q by:

$$
L_{i}(n)=\log \left[\frac{P_{i}\left(\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}\right)}{Q\left(\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}\right)}\right], \quad i \in\{0, \ldots, M-1\}
$$

- Let $a_{i},(i \in\{0, \ldots, M-1\})$ be positive threshold values.
- Define the stopping times

$$
N_{i}=\min _{n \geq 0}\left\{L_{i}(n) \geq a_{i}+\log \left(\sum_{j \neq i} \exp \left(L_{j}(n)\right)\right)\right\}
$$

Multi-hypothesis SPRT (MSPRT)

- Define the $L L R$ of P_{i} w.r.t. to a (dominating) measure Q by:

$$
L_{i}(n)=\log \left[\frac{P_{i}\left(\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}\right)}{Q\left(\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{n}\right)}\right], \quad i \in\{0, \ldots, M-1\} .
$$

- Let $a_{i},(i \in\{0, \ldots, M-1\})$ be positive threshold values.
- Define the stopping times

$$
N_{i}=\min _{n \geq 0}\left\{L_{i}(n) \geq a_{i}+\log \left(\sum_{j \neq i} \exp \left(L_{j}(n)\right)\right)\right\}
$$

Definition - Δ_{a} (Baum \& Veeravalli 1994, Fishman 1987)

Let $\Delta_{a}=\left(N_{a}, d_{a}\right)$ be a sequential test defined by:

$$
N_{a}=\min _{0 \leq i \leq M-1} N_{i}, \quad d_{a}=i^{\star} \text { if } N_{a}=N_{i^{\star}} .
$$

Optimality of Δ_{a}

- Define $D_{i} \triangleq \min _{j \neq i} D\left(P_{i} \| P_{j}\right)$.

Optimality of Δ_{a}

- Define $D_{i} \triangleq \min _{j \neq i} D\left(P_{i} \| P_{j}\right)$.

Theorem - Optimality of Δ_{a} (Dragalin et al. 2000)

(1) For all $i \in\{0,1, \ldots M-1\}$

$$
\inf _{\Delta \in \Delta(\overline{\mathbf{R}})} \mathbb{E}_{i}[N] \geq\left[\frac{-\log \left(\overline{R_{i}}\right)}{D_{i}}\right](1+o(1))
$$

(2) If $a_{i}=\log \left[\frac{\pi_{i}}{R_{i}}\right]$ then

$$
\mathbb{E}_{i}\left[N_{a}\right] \sim \frac{-\log \left(\overline{R_{i}}\right)}{D_{i}}
$$

as $\bar{R}_{\max } \rightarrow 0$ for all $m \geq 1$.

Sequential Multi-hypothesis Testing w/ Control - Setting

- Observation sequence: $Y_{1}, Y_{2}, Y_{3}, \ldots \in \mathcal{Y}^{\infty}$.
- Hypotheses: $\left\{H_{i}, i=0, \ldots, M-1\right\}$.
- Priors: $\mathbb{P}\left\{H_{i}\right\}=\pi_{i}, \quad i \in\{0, \ldots, M-1\}$.

Sequential Multi-hypothesis Testing w/ Control - Setting

- Observation sequence: $Y_{1}, Y_{2}, Y_{3}, \ldots \in \mathcal{Y}^{\infty}$.
- Hypotheses: $\left\{H_{i}, i=0, \ldots, M-1\right\}$.
- Priors: $\mathbb{P}\left\{H_{i}\right\}=\pi_{i}, \quad i \in\{0, \ldots, M-1\}$.
- Control sequence: $U_{1}, U_{2}, U_{3}, \ldots \in \mathcal{U}^{\infty}, \quad|\mathcal{U}|<\infty$.

Sequential Multi-hypothesis Testing w/ Control - Setting

- Observation sequence: $Y_{1}, Y_{2}, Y_{3}, \ldots \in \mathcal{Y}^{\infty}$.
- Hypotheses: $\left\{H_{i}, i=0, \ldots, M-1\right\}$.
- Priors: $\mathbb{P}\left\{H_{i}\right\}=\pi_{i}, \quad i \in\{0, \ldots, M-1\}$.
- Control sequence: $U_{1}, U_{2}, U_{3}, \ldots \in \mathcal{U}^{\infty}, \quad|\mathcal{U}|<\infty$.
- $U_{n}=q\left(Y_{1}, \ldots, Y_{n-1}, U_{1}, \ldots, U_{n-1}\right) \quad$ [Causality Constraint]

Sequential Multi-hypothesis Testing w/ Control - Setting

- Observation sequence: $Y_{1}, Y_{2}, Y_{3}, \ldots \in \mathcal{Y}^{\infty}$.
- Hypotheses: $\left\{H_{i}, i=0, \ldots, M-1\right\}$.
- Priors: $\mathbb{P}\left\{H_{i}\right\}=\pi_{i}, \quad i \in\{0, \ldots, M-1\}$.
- Control sequence: $U_{1}, U_{2}, U_{3}, \ldots \in \mathcal{U}^{\infty}, \quad|\mathcal{U}|<\infty$.
- $U_{n}=q\left(Y_{1}, \ldots, Y_{n-1}, U_{1}, \ldots, U_{n-1}\right) \quad$ [Causality Constraint]
- Assume: $Y_{n} \perp\left(Y^{n-1}, U^{n-1}\right)$

Sequential Multi-hypothesis Testing w/ Control - Setting

- Observation sequence: $Y_{1}, Y_{2}, Y_{3}, \ldots \in \mathcal{Y}^{\infty}$.
- Hypotheses: $\left\{H_{i}, i=0, \ldots, M-1\right\}$.
- Priors: $\mathbb{P}\left\{H_{i}\right\}=\pi_{i}, \quad i \in\{0, \ldots, M-1\}$.
- Control sequence: $U_{1}, U_{2}, U_{3}, \ldots \in \mathcal{U}^{\infty}, \quad|\mathcal{U}|<\infty$.
- $U_{n}=q\left(Y_{1}, \ldots, Y_{n-1}, U_{1}, \ldots, U_{n-1}\right) \quad$ [Causality Constraint]
- Assume: $Y_{n} \perp\left(Y^{n-1}, U^{n-1}\right)$
- Observation kernel:

$$
p_{i}^{u_{n}}\left(y_{n}\right) \triangleq \mathbb{P}\left(Y_{n}=y_{n} \mid H_{i}, U_{n}=u_{n}\right) .
$$

Hypothesis Testing with Control - Definitions

- A Multi-hypothesis test with control Δ is a triplet (q, N, d) where:

Hypothesis Testing with Control - Definitions

- A Multi-hypothesis test with control Δ is a triplet (q, N, d) where:
(1) $q=\left\{q_{k}\left(Y^{k-1}, U^{k-1}\right)\right\}_{k=1, \ldots, N}$ is an observation control policy.

Hypothesis Testing with Control - Definitions

- A Multi-hypothesis test with control Δ is a triplet (q, N, d) where:
(1) $q=\left\{q_{k}\left(Y^{k-1}, U^{k-1}\right)\right\}_{k=1, \ldots, N}$ is an observation control policy.
(2) N is the stopping time, $N \in \mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}, U_{1}, \ldots, U_{n}\right)$.
(3) $d=d\left(Y^{N}, U^{N}\right)$ is the decision rule.

Hypothesis Testing with Control - Definitions

- A Multi-hypothesis test with control Δ is a triplet (q, N, d) where:
(1) $q=\left\{q_{k}\left(Y^{k-1}, U^{k-1}\right)\right\}_{k=1, \ldots, N}$ is an observation control policy.
(2) N is the stopping time, $N \in \mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}, U_{1}, \ldots, U_{n}\right)$.
(3) $d=d\left(Y^{N}, U^{N}\right)$ is the decision rule.
- The Objective: Find Δ that:

$$
\text { minimize } \mathbb{E}[N] \text { subject to } P_{\text {er }} \leq \epsilon \quad[\text { Max. Information }]
$$

Hypothesis Testing with Control - Definitions

- A Multi-hypothesis test with control Δ is a triplet (q, N, d) where:
(1) $q=\left\{q_{k}\left(Y^{k-1}, U^{k-1}\right)\right\}_{k=1, \ldots, N}$ is an observation control policy.
(2) N is the stopping time, $N \in \mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}, U_{1}, \ldots, U_{n}\right)$.
(3) $d=d\left(Y^{N}, U^{N}\right)$ is the decision rule.
- The Objective: Find Δ that:
minimize $\mathbb{E}[N]$ subject to $P_{\text {er }} \leq \epsilon \quad$ [Max. Information]
- Let $\mathbb{E}\left[N^{\star}\right]$ be the minimal expected number of samples required to achieve $P_{\mathrm{er}} \leq \epsilon$.
- Achievablility: Chernoff (1960), Veeravalli (2012), Javidi (2013)...

Lower Bounds on $\mathbb{E}\left[N^{\star}\right]$

Theorem (Javidi et al. 2013)

For $\frac{\log (M)}{I_{\max }}<w$ and arbitrary $\delta \in(0,0.5]$:

$$
\begin{aligned}
\mathbb{E}\left[N^{\star}\right] \geq & (1-\epsilon w)\left[\frac{H(\theta)-\left[h_{2}(\delta)+\delta \log (M-1)\right]}{I_{\max }}\right. \\
& \left.+\frac{\log \left(\frac{\delta}{1-\delta}\right)-\log \left(\frac{w^{-1}}{1-w^{-1}}\right)}{D_{\max }} \mathbb{I}\left\{\max _{i} \pi_{i} \leq 1-\delta\right\}-\hat{K}^{\prime}\right]^{+}
\end{aligned}
$$

where $D_{\max }=\max _{i, j u} D\left(p_{i}^{u} \| p_{j}^{u}\right)$, and $I_{\max }=\max _{u, \tilde{\pi}} I\left(\tilde{\pi} ; p_{\tilde{\pi}}^{u}\right)$.

Lower Bounds on $\mathbb{E}\left[N^{\star}\right]$

Theorem (Javidi et al. 2013)

For $\frac{\log (M)}{I_{\max }}<w$ and arbitrary $\delta \in(0,0.5]$:

$$
\begin{aligned}
\mathbb{E}\left[N^{\star}\right] \geq & (1-\epsilon w)\left[\frac{H(\theta)-\left[h_{2}(\delta)+\delta \log (M-1)\right]}{I_{\max }}\right. \\
& \left.+\frac{\log \left(\frac{\delta}{1-\delta}\right)-\log \left(\frac{w^{-1}}{1-w^{-1}}\right)}{D_{\max }} \mathbb{I}\left\{\max _{i} \pi_{i} \leq 1-\delta\right\}-\hat{K}^{\prime}\right]^{+}
\end{aligned}
$$

where $D_{\max }=\max _{i, j u} D\left(p_{i}^{u} \| p_{j}^{u}\right)$, and $I_{\max }=\max _{u, \tilde{\pi}} I\left(\tilde{\pi} ; p_{\tilde{\pi}}^{u}\right)$.

- Remainder [Fano's Inequality]: Let δ be the error probability of the estimator $\hat{\theta}$ of θ. Then

$$
H(\theta \mid \hat{\theta}) \leq h_{2}(\delta)+\delta \log (M-1)
$$

Lower Bounds on $\mathbb{E}\left[N^{\star}\right]$

Theorem (Javidi et al. 2013)

For $\frac{\log (M)}{I_{\max }}<w$ and arbitrary $\delta \in(0,0.5]$:

$$
\begin{aligned}
\mathbb{E}\left[N^{\star}\right] \geq & (1-\epsilon w)\left[\frac{H(\theta)-\left[h_{2}(\delta)+\delta \log (M-1)\right]}{I_{\max }}\right. \\
& \left.+\frac{\log \left(\frac{\delta}{1-\delta}\right)-\log \left(\frac{w^{-1}}{1-w^{-1}}\right)}{D_{\max }} \mathbb{I}\left\{\max _{i} \pi_{i} \leq 1-\delta\right\}-\hat{K}^{\prime}\right]^{+}
\end{aligned}
$$

where $D_{\max }=\max _{i, j u} D\left(p_{i}^{u} \| p_{j}^{u}\right)$, and $I_{\max }=\max _{u, \tilde{\pi}} I\left(\tilde{\pi} ; p_{\tilde{\pi}}^{u}\right)$.

- Remainder [Fano's Inequality]: Let δ be the error probability of the estimator $\hat{\theta}$ of θ. Then

$$
H(\theta \mid \hat{\theta}) \leq h_{2}(\delta)+\delta \log (M-1)
$$

VL Coding with Perfect Feedback

- Message: One of M equiprobable symbols $\theta \in\{0 \ldots, M-1\}$.
- Forward Channel: $\mathcal{X}=\{1, \ldots, K\}$ and $\mathcal{Y}=\{1, \ldots, L\}$.
- Feedback channel: Instantaneous, infinite capacity, noiseless.

VL Coding with Perfect Feedback

- Message: One of M equiprobable symbols $\theta \in\{0 \ldots, M-1\}$.
- Forward Channel: $\mathcal{X}=\{1, \ldots, K\}$ and $\mathcal{Y}=\{1, \ldots, L\}$.
- Feedback channel: Instantaneous, infinite capacity, noiseless.
- Coding Algorithm: $X_{n}(\theta) \triangleq X_{n}\left(\theta, Y_{1}, \ldots Y_{n-1}\right), \forall \theta, Y_{1}, \ldots Y_{n-1}$

VL Coding with Perfect Feedback

- Message: One of M equiprobable symbols $\theta \in\{0 \ldots, M-1\}$.
- Forward Channel: $\mathcal{X}=\{1, \ldots, K\}$ and $\mathcal{Y}=\{1, \ldots, L\}$.
- Feedback channel: Instantaneous, infinite capacity, noiseless.
- Coding Algorithm: $X_{n}(\theta) \triangleq X_{n}\left(\theta, Y_{1}, \ldots Y_{n-1}\right), \forall \theta, Y_{1}, \ldots Y_{n-1}$
- Decoding Criterion: A pair (N, d), where N is the stopping time and d is the decision function.

VL Coding - Performance Indices

- For block codes with fixed block-length n :
(1) Rate: $R \triangleq \frac{\log (M)}{n}$.
(2) Error Exponent: $E(R)=\lim \sup _{n \rightarrow \infty} \frac{-\log \left(P_{e r}\right)}{n}$.

VL Coding - Performance Indices

- For block codes with fixed block-length n :
(1) Rate: $R \triangleq \frac{\log (M)}{n}$.
(2) Error Exponent: $E(R)=\limsup \sup _{n \rightarrow \infty} \frac{-\log \left(P_{e r}\right)}{n}$.
- For VL codes:
(1) Rate: $R \triangleq \frac{\log (M)}{\mathbb{E}[N]}$.
(2) Error Exponent: $E(R)=\lim \sup _{\mathbb{E}[N] \rightarrow \infty} \frac{-\log \left(P_{e r}\right)}{\mathbb{E}[N]}$.

VL Coding - Performance Indices

- For block codes with fixed block-length n :
(1) Rate: $R \triangleq \frac{\log (M)}{n}$.
(2) Error Exponent: $E(R)=\lim \sup _{n \rightarrow \infty} \frac{-\log \left(P_{\mathrm{er}}\right)}{n}$.
- For VL codes:
(1) Rate: $R \triangleq \frac{\log (M)}{\mathbb{E}[N]}$.
(2) Error Exponent: $E(R)=\lim \sup _{\mathbb{E}[N] \rightarrow \infty} \frac{-\log \left(P_{e r}\right)}{\mathbb{E}[N]}$.

Q: Is the VL coding problem amenable to hypothesis testing analysis?

VL Coding - Performance Indices

- For block codes with fixed block-length n :
(1) Rate: $R \triangleq \frac{\log (M)}{n}$.
(2) Error Exponent: $E(R)=\lim \sup _{n \rightarrow \infty} \frac{-\log \left(P_{\mathrm{er}}\right)}{n}$.
- For VL codes:
(1) Rate: $R \triangleq \frac{\log (M)}{\mathbb{E}[N]}$.
(2) Error Exponent: $E(R)=\lim \sup _{\mathbb{E}[N] \rightarrow \infty} \frac{-\log \left(P_{e r}\right)}{\mathbb{E}[N]}$.

Q: Is the VL coding problem amenable to hypothesis testing analysis?
A: Yes!

VL Coding and Controlled Hypothesis Testing, Cont.

- $\pi=\left[\frac{1}{M}, \frac{1}{M}, \ldots, \frac{1}{M}\right]$.
- $p_{i}^{u}\left(y_{n}\right)=p\left(y_{n} \mid x_{n}(i, u)\right)$.
- $D_{\max }=\max _{j, k} D(p(\cdot \mid j) \| p(\cdot \mid k)) \triangleq C_{1}$.
- $I_{\max }=\max _{P_{X}} I(X ; Y)=C$.

VL Coding and Controlled Hypothesis Testing, Cont.

- Recap:

Theorem (Javidi et al. 2013)

For $\frac{\log (M)}{I_{\max }}<w<1 / \epsilon$ and arbitrary $\delta \in(0,0.5]$:

$$
\begin{aligned}
\mathbb{E}\left[N^{\star}\right] \geq & (1-\epsilon w)\left[\frac{H(\pi)-h_{2}(\delta)-\delta \log (M-1)}{I_{\max }}\right. \\
& \left.+\frac{\log \left(\frac{1-w^{-1}}{w^{-1}}\right)-\log \left(\frac{1-\delta}{\delta}\right)}{D_{\max }} \mathbb{I}\left\{\max _{i} \pi_{i} \leq 1-\delta\right\}-\hat{K}^{\prime}\right]^{+}
\end{aligned}
$$

where $D_{\max }=\max _{i, j u} D\left(p_{i}^{u} \| p_{j}^{u}\right)$, and $I_{\max }=\max _{u, \tilde{\pi}} I\left(\tilde{\pi} ; p_{\tilde{\pi}}^{u}\right)$.

VL Coding and Controlled Hypothesis Testing, Cont.

- Recap:

Theorem (Javidi et al. 2013)

For $w=\frac{1}{\epsilon \log \left(\frac{M}{\epsilon}\right)}$ and $\delta=\frac{1}{\log \left(\frac{M}{\epsilon}\right)}$:

$$
\begin{aligned}
\mathbb{E}\left[N^{\star}\right] \gtrsim & \left(1-\frac{1}{\log \left(\frac{M}{\epsilon}\right)}\right)\left[\frac{\log (M)-h_{2}\left(\frac{1}{\log \left(\frac{M}{\epsilon}\right)}\right)-\frac{\log (M-1)}{\log \left(\frac{M}{\epsilon}\right)}}{C}-\hat{K}^{\prime}\right. \\
& \left.+\frac{-\log \left(\epsilon \log \left(\frac{M}{\epsilon}\right)\right)-\log \left(\log \left(\frac{M}{\epsilon}\right)\right)}{C_{1}} \mathbb{I}\left\{\frac{1}{M} \leq 1-\frac{1}{\log \left(\frac{M}{\epsilon}\right)}\right\}\right]^{+}
\end{aligned}
$$

VL Coding and Controlled Hypothesis Testing, Cont.

Theorem (Javidi et al. 2013)

For large M and small ϵ,

$$
\mathbb{E}\left[N^{\star}\right] \gtrsim \frac{\log (M)}{C}+\frac{-\log \left(P_{\mathrm{er}}\right)}{C_{1}}+O\left(\log \left(\log \left(\frac{M}{\epsilon}\right)\right)\right) .
$$

VL Coding and Controlled Hypothesis Testing, Cont.

Theorem (Javidi et al. 2013)

For large M and small ϵ,

$$
\mathbb{E}\left[N^{\star}\right] \gtrsim \frac{\log (M)}{C}+\frac{-\log \left(P_{\mathrm{er}}\right)}{C_{1}}+O\left(\log \left(\log \left(\frac{M}{\epsilon}\right)\right)\right) .
$$

- Equivalently,

$$
E(R) \lesssim C_{1}\left(1-\frac{R}{C}\right) \triangleq E_{\mathrm{B}}(R)
$$

VL Coding and Controlled Hypothesis Testing, Cont.

Theorem (Javidi et al. 2013)

For large M and small ϵ,

$$
\mathbb{E}\left[N^{\star}\right] \gtrsim \frac{\log (M)}{C}+\frac{-\log \left(P_{\mathrm{er}}\right)}{C_{1}}+O\left(\log \left(\log \left(\frac{M}{\epsilon}\right)\right)\right) .
$$

- Equivalently,

$$
E(R) \lesssim C_{1}\left(1-\frac{R}{C}\right) \triangleq E_{\mathrm{B}}(R)
$$

Theorem (Burnashev 1976)

For any transmission method over a DMC with perfect feedback and any $R \in[0, C]$

$$
E(R)=E_{\mathrm{B}}(R) .
$$

Achievablity - General Scheme

- Akin to Yamamoto \& Itoh (1979).

Direct Statement - Phase I (Tentative Decision)

- Codebook: For each message $i \in\{0, \ldots, M-1\}$ randomly draw an infinite P_{X} - i.i.d. sequence.

Direct Statement - Phase I (Tentative Decision)

- Codebook: For each message $i \in\{0, \ldots, M-1\}$ randomly draw an infinite P_{X} - i.i.d. sequence.
- Let $\boldsymbol{x}^{(i)}$ be the codeword assigned to the i 'th message.

Direct Statement - Phase I (Tentative Decision)

- Codebook: For each message $i \in\{0, \ldots, M-1\}$ randomly draw an infinite $P_{X^{-}}$i.i.d. sequence.
- Let $\boldsymbol{x}^{(i)}$ be the codeword assigned to the i 'th message.
- Define:

$$
N_{I}^{i}=\min _{n \geq 0}\left\{\sum_{k=1}^{n} \log \left[\frac{p\left(y_{k} \mid x_{k}^{(i)}\right)}{\operatorname{Pr}\left(y_{k}\right)}\right] \geq(1+\epsilon) \log (M)\right\} .
$$

Direct Statement - Phase I (Tentative Decision)

- Codebook: For each message $i \in\{0, \ldots, M-1\}$ randomly draw an infinite $P_{X^{-}}$i.i.d. sequence.
- Let $\boldsymbol{x}^{(i)}$ be the codeword assigned to the i 'th message.
- Define:

$$
N_{I}^{i}=\min _{n \geq 0}\left\{\sum_{k=1}^{n} \log \left[\frac{p\left(y_{k} \mid x_{k}^{(i)}\right)}{\operatorname{Pr}\left(y_{k}\right)}\right] \geq(1+\epsilon) \log (M)\right\} .
$$

- Decoder: $\Delta_{I}=\left(N_{I}, d_{I}\right)$:

$$
N_{I}=\min _{0 \leq i \leq M-1} N_{I}^{i}, \quad d_{I}=i^{\star} \text { if } N_{I}=N_{I}^{i^{\star}}
$$

- Assume $\mathbf{x}^{(0)}$ was transmitted. Then

$$
\mathbb{E}\left[N_{I}\right] \leq \mathbb{E}\left[N_{I}^{0}\right] \lesssim \frac{(1+\epsilon) \log (M)}{C}
$$

Achievability - Phase II (Confirmation)

- Encoder: Sends $\left(j^{\star}, j^{\star} \ldots\right)$ if d_{I} is correct and $\left(k^{\star}, k^{\star} \ldots\right)$ otherwise.

Achievability - Phase II (Confirmation)

- Encoder: Sends $\left(j^{\star}, j^{\star} \ldots\right)$ if d_{I} is correct and ($k^{\star}, k^{\star} \ldots$) otherwise.
- Decoder: Runs an SPRT with

$$
\begin{aligned}
H_{A C K}: Y_{i} & \sim p\left(\cdot \mid j^{\star}\right), \\
H_{N A C K}: Y_{i} & \sim p\left(\cdot \mid k^{\star}\right) .
\end{aligned}
$$

Achievability - Phase II (Confirmation)

- Encoder: Sends $\left(j^{\star}, j^{\star} \ldots\right)$ if d_{I} is correct and $\left(k^{\star}, k^{\star} \ldots\right)$ otherwise.
- Decoder: Runs an SPRT with

$$
\begin{aligned}
& H_{A C K}: Y_{i} \sim p\left(\cdot \mid j^{\star}\right), \\
& H_{N A C K}: Y_{i} \sim p\left(\cdot \mid k^{\star}\right) \text {. }
\end{aligned}
$$

- Choose j^{\star} and k^{\star} s.t. $D\left(p\left(\cdot \mid j^{\star}\right) \| p\left(\cdot \mid k^{\star}\right)\right)=C_{1}$

Achievability - Phase II (Confirmation)

- Encoder: Sends $\left(j^{\star}, j^{\star} \ldots\right)$ if d_{I} is correct and $\left(k^{\star}, k^{\star} \ldots\right)$ otherwise.
- Decoder: Runs an SPRT with

$$
\begin{aligned}
& H_{A C K}: Y_{i} \sim p\left(\cdot \mid j^{\star}\right), \\
& H_{N A C K}: Y_{i} \sim p\left(\cdot \mid k^{\star}\right) \text {. }
\end{aligned}
$$

- Choose j^{\star} and k^{\star} s.t. $D\left(p\left(\cdot \mid j^{\star}\right) \| p\left(\cdot \mid k^{\star}\right)\right)=C_{1}$
- For large M,

$$
\mathbb{E}\left[N_{I I}\right] \lesssim \frac{-\log \left(P_{e}\right)}{C_{1}}
$$

Achievability - Phase II (Confirmation)

- Encoder: Sends $\left(j^{\star}, j^{\star} \ldots\right)$ if d_{I} is correct and $\left(k^{\star}, k^{\star} \ldots\right)$ otherwise.
- Decoder: Runs an SPRT with

$$
\begin{aligned}
H_{A C K}: Y_{i} & \sim p\left(\cdot \mid j^{\star}\right), \\
H_{N A C K}: Y_{i} & \sim p\left(\cdot \mid k^{\star}\right) .
\end{aligned}
$$

- Choose j^{\star} and k^{\star} s.t. $D\left(p\left(\cdot \mid j^{\star}\right) \| p\left(\cdot \mid k^{\star}\right)\right)=C_{1}$
- For large M,

$$
\mathbb{E}\left[N_{I I}\right] \lesssim \frac{-\log \left(P_{e}\right)}{C_{1}} .
$$

$\bullet \Rightarrow \mathbb{E}[N] \approx \mathbb{E}\left[N_{I}\right]+\mathbb{E}\left[N_{I I}\right] \lesssim \frac{\log (M)}{C}+\frac{-\log \left(P_{e}\right)}{C_{1}}$.

Limited Feedback - "One Shot" Schemes

Example - ARQ scheme:

Limited Feedback - "One Shot" Schemes

Example - ARQ scheme:

- Codebook: M randomly chosen codewords, each of length n.

Limited Feedback - "One Shot" Schemes

Example - ARQ scheme:

- Codebook: M randomly chosen codewords, each of length n.
- Encoding: Send the i th codeword periodically to transmit the i th message.

Limited Feedback - "One Shot" Schemes

Example - ARQ scheme:

- Codebook: M randomly chosen codewords, each of length n.
- Encoding: Send the i th codeword periodically to transmit the i th message.
- Decoding:
- Partition \mathbb{R}^{n} into M decision regions and one erasure area.
- If $\mathbf{Y} \in \bigcup_{i=0}^{M-1} \mathcal{R}_{i}$ send the stopping bit and decode.
- Else, wait for the next n symbols and repeat the process.

Forney's Decision Regions (Forney 1968)

- Define $T>0$ and for all $i \in\{0, \ldots, M-1\}$

$$
\begin{aligned}
\mathcal{R}_{i}^{\star} & =\left\{y \in \mathcal{Y}^{n}: \frac{p\left(y \mid x^{(i)}\right)}{\sum_{j \neq i} p\left(y \mid x^{(j)}\right)} \geq \exp (n T)\right\}, \quad i \in\{0, \ldots, M-1\}, \\
\mathcal{R}_{M}^{\star} & =\bigcap_{i=0}^{M-1}\left(\mathcal{R}_{i}^{\star}\right)^{c}
\end{aligned}
$$

Forney's Decision Regions (Forney 1968)

- Define $T>0$ and for all $i \in\{0, \ldots, M-1\}$

$$
\begin{aligned}
\mathcal{R}_{i}^{\star} & =\left\{y \in \mathcal{Y}^{n}: \frac{p\left(y \mid x^{(i)}\right)}{\sum_{j \neq i} p\left(y \mid x^{(j)}\right)} \geq \exp (n T)\right\}, \quad i \in\{0, \ldots, M-1\}, \\
\mathcal{R}_{M}^{\star} & =\bigcap_{i=0}^{M-1}\left(\mathcal{R}_{i}^{\star}\right)^{c},
\end{aligned}
$$

- Achievability: $E(R) \geq E_{\text {Forney }}(R)$.

$$
E_{\text {Forney }}(R) \triangleq E_{\mathrm{sp}}(R)+C-R=\beta\left(\delta_{\mathrm{GV}}(R)-\delta_{\mathrm{GV}}(C)\right) .
$$

where $\beta=\log \left(\frac{1-\epsilon}{\epsilon}\right)$ and $\delta_{\mathrm{GV}}(R)$ is the smaller solution to

$$
R+h_{2}(\delta)-\log (2)=0
$$

Stop-Feedback Scheme

One bit per message

- Main difference: decoding can stop at any time.
- Codebook: M i.i.d.-drawn sequences, each assigned to a message.

Stop-Feedback Scheme

One bit per message

- Main difference: decoding can stop at any time.
- Codebook: M i.i.d.-drawn sequences, each assigned to a message.
- This a multi-hypothesis testing problem:

$$
\pi_{i}=\frac{1}{M}, \quad R_{i}(\Delta)=\sum_{j=0, j \neq i}^{M-1} \pi_{j} P_{j}(d=i)=\frac{P_{\mathrm{er}}(\Delta)}{M} .
$$

Stop-Feedback Scheme

One bit per message

- Main difference: decoding can stop at any time.
- Codebook: M i.i.d.-drawn sequences, each assigned to a message.
- This a multi-hypothesis testing problem:

$$
\pi_{i}=\frac{1}{M}, \quad R_{i}(\Delta)=\sum_{j=0, j \neq i}^{M-1} \pi_{j} P_{j}(d=i)=\frac{P_{\mathrm{er}}(\Delta)}{M} .
$$

- Obstacles:
(1) M is not fixed as $\mathbb{E}[N] \rightarrow \infty$.
(2) Observations are not i.i.d. (?)

Error Exponent at $\mathrm{R}=0$

- Define

$$
\begin{gathered}
H_{i}: \quad \operatorname{Pr}(\mathbf{z})=P_{i}(\mathbf{z}), \quad i \in\{0, \ldots, M-1\} \\
P_{i}(\mathbf{z})=P_{i}\left(\mathbf{x}^{(0)}, \mathbf{x}^{(1)} \ldots, \mathbf{x}^{(M-1)}, \mathbf{y}\right) \triangleq P_{\mathbf{Y} \mid \mathbf{X}}\left(\mathbf{y} \mid \mathbf{x}^{(i)}\right) \prod_{l=0}^{M-1} P_{\mathbf{X}}\left(\mathbf{x}^{(l)}\right)
\end{gathered}
$$

Error Exponent at $\mathrm{R}=0$

- Define

$$
\begin{aligned}
& H_{i}: \quad \operatorname{Pr}(\mathbf{z})=P_{i}(\mathbf{z}), \quad i \in\{0, \ldots, M-1\} \\
& P_{i}(\mathbf{z})= P_{i}\left(\mathbf{x}^{(0)}, \mathbf{x}^{(1)} \ldots, \mathbf{x}^{(M-1)}, \mathbf{y}\right) \triangleq P_{\mathbf{Y} \mid \mathbf{X}}\left(\mathbf{y} \mid \mathbf{x}^{(i)}\right) \prod_{l=0}^{M-1} P_{\mathbf{X}}\left(\mathbf{x}^{(l)}\right)
\end{aligned}
$$

- Under each H_{i} the elements of \mathbf{z} are i.i.d.

Error Exponent at $\mathrm{R}=0$

- Define

$$
\begin{gathered}
H_{i}: \quad \operatorname{Pr}(\mathbf{z})=P_{i}(\mathbf{z}), \quad i \in\{0, \ldots, M-1\} \\
P_{i}(\mathbf{z})=P_{i}\left(\mathbf{x}^{(0)}, \mathbf{x}^{(1)} \ldots, \mathbf{x}^{(M-1)}, \mathbf{y}\right) \triangleq P_{\mathbf{Y} \mid \mathbf{X}}\left(\mathbf{y} \mid \mathbf{x}^{(i)}\right) \prod_{l=0}^{M-1} P_{\mathbf{X}}\left(\mathbf{x}^{(l)}\right)
\end{gathered}
$$

- Under each H_{i} the elements of \mathbf{z} are i.i.d.
- Hence, it the limit

$$
\begin{aligned}
& \inf _{(N, d)} \mathbb{E}[N]=\frac{-\log \left(R_{i}(\Delta)\right)}{D_{i}}=\frac{\log M-\log \left(P_{\mathrm{er}}\right)}{D_{i}} \\
& \quad \Leftrightarrow E(0)=\lim \frac{-\log \left(P_{\mathrm{er}}\right)}{\mathbb{E}[N]}=D_{i} \triangleq D=E_{\text {Forney }}(0),
\end{aligned}
$$

where

$$
D \triangleq \sum_{x^{(0)} \in \mathcal{X}} \sum_{x^{(1)} \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P_{X}\left(x^{(0)}\right) P_{X}\left(x^{(1)}\right) p\left(y \mid x^{(0)}\right) \log \left[\frac{p\left(y \mid x^{(0)}\right)}{p\left(y \mid x^{(1)}\right)}\right] .
$$

Lower Bound on $E(R)$

- Main idea: Decode using Δ_{a}

Lower Bound on $E(R)$

- Main idea: Decode using Δ_{a}
- Recall we've defined

$$
\begin{aligned}
N_{i} & =\min _{n \geq 0}\left\{L_{i}(n) \geq a+\log \left(\sum_{j \neq i} \exp \left\{L_{j}(n)\right\}\right)\right\} \\
& =\min _{n \geq 0}\left\{\log \left[\frac{P_{\mathbf{Y} \mid \mathbf{X}}\left([\mathbf{y}]_{n} \mid[\mathbf{x}]_{n}^{(i)}\right)}{\sum_{j \neq i} P_{\mathbf{Y} \mid \mathbf{X}}\left([\mathbf{y}]_{n} \mid[\mathbf{x}]_{n}^{(j)}\right)}\right] \geq a\right\} .
\end{aligned}
$$

- $\Delta_{a}=\left(N_{a}, d_{a}\right)$ is then defined as follows:

$$
N_{a}=\min _{0 \leq i \leq M-1} N_{i}, \quad d_{a}=i^{\star} \text { if } N_{a}=N_{i^{\star}} .
$$

Lower Bound on $E(R)$

- Main idea: Decode using Δ_{a}
- Recall we've defined

$$
\begin{aligned}
N_{i} & =\min _{n \geq 0}\left\{L_{i}(n) \geq a+\log \left(\sum_{j \neq i} \exp \left\{L_{j}(n)\right\}\right)\right\} \\
& =\min _{n \geq 0}\left\{\log \left[\frac{P_{\mathbf{Y} \mid \mathbf{X}}\left([\mathbf{y}]_{n} \mid[\mathbf{x}]_{n}^{(i)}\right)}{\sum_{j \neq i} P_{\mathbf{Y} \mid \mathbf{X}}\left([\mathbf{y}]_{n} \mid[\mathbf{x}]_{n}^{(j)}\right)}\right] \geq a\right\} .
\end{aligned}
$$

- $\Delta_{a}=\left(N_{a}, d_{a}\right)$ is then defined as follows:

$$
N_{a}=\min _{0 \leq i \leq M-1} N_{i}, \quad d_{a}=i^{\star} \text { if } N_{a}=N_{i^{\star}} .
$$

Result: $\mathbb{E}_{0}\left[N_{a}\right] \lesssim \frac{-\log P_{e r}}{E_{\text {Formey }}(R+\delta)} \Rightarrow E_{a}(R) \gtrsim E_{\text {Forney }}(R)$

The Stop-Feedback Error Exponent

Theorem - Random Coding Stop-Feedback Error Exponent

The random-coding error exponent of the stop-feedback communication setup with a binary symmetric forward channel is given by

$$
E(R)=\beta\left(\delta_{\mathrm{GV}}(R)-\delta_{\mathrm{GV}}(C)\right)=E_{\mathrm{sp}}(R)+C-R .
$$

Summary and Conclusions

- We have seen an example as to how hypothesis testing theory can help gain intuition and prove results in coding theory.
- New achievable scheme was given for the unlimited feedback case.
- Results from multi-hypothesis testing were used in order to obtain a tight bound on the error exponent at zero rate.
- An optimal multi-hypothesis test was used in order to prove achievability of an error exponent function for a BSC.
- This lower bound was then shown to be tight for the BSC case.

Summary and Conclusions

- We have seen an example as to how hypothesis testing theory can help gain intuition and prove results in coding theory.
- New achievable scheme was given for the unlimited feedback case.
- Results from multi-hypothesis testing were used in order to obtain a tight bound on the error exponent at zero rate.
- An optimal multi-hypothesis test was used in order to prove achievability of an error exponent function for a BSC.
- This lower bound was then shown to be tight for the BSC case.

Thank you!

Appendix:

More On Multi-hypothesis Testing With Control

Hypothesis Testing with Control - Definitions

- A Multihypothesis test with control Δ is a triplet (N, q, d) where:

Hypothesis Testing with Control - Definitions

- A Multihypothesis test with control Δ is a triplet (N, q, d) where:
(1) N is the stopping time, $N \in \mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}, U_{1}, \ldots, U_{n}\right)$.

Hypothesis Testing with Control - Definitions

- A Multihypothesis test with control Δ is a triplet (N, q, d) where:
(1) N is the stopping time, $N \in \mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}, U_{1}, \ldots, U_{n}\right)$.
(2) $q=\left\{q_{k}\left(Y^{k-1}, U^{k-1}\right)\right\}_{k=1, \ldots, N}$ is an observation control policy.

Hypothesis Testing with Control - Definitions

- A Multihypothesis test with control Δ is a triplet (N, q, d) where:
(1) N is the stopping time, $N \in \mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}, U_{1}, \ldots, U_{n}\right)$.
(2) $q=\left\{q_{k}\left(Y^{k-1}, U^{k-1}\right)\right\}_{k=1, \ldots, N}$ is an observation control policy.
(3) $d=d\left(Y^{N}, U^{N}\right)$ is the decision rule.

Hypothesis Testing with Control - Definitions

- A Multihypothesis test with control Δ is a triplet (N, q, d) where:
(1) N is the stopping time, $N \in \mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}, U_{1}, \ldots, U_{n}\right)$.
(2) $q=\left\{q_{k}\left(Y^{k-1}, U^{k-1}\right)\right\}_{k=1, \ldots, N}$ is an observation control policy.
(3) $d=d\left(Y^{N}, U^{N}\right)$ is the decision rule.
- Assume $w>0$ is the loss associated with making the wrong decision.

Hypothesis Testing with Control - Definitions

- A Multihypothesis test with control Δ is a triplet (N, q, d) where:
(1) N is the stopping time, $N \in \mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}, U_{1}, \ldots, U_{n}\right)$.
(2) $q=\left\{q_{k}\left(Y^{k-1}, U^{k-1}\right)\right\}_{k=1, \ldots, N}$ is an observation control policy.
(3) $d=d\left(Y^{N}, U^{N}\right)$ is the decision rule.
- Assume $w>0$ is the loss associated with making the wrong decision.
- The objective: Find a sequential test $\Delta=(q, N, d)$ that minimizes the total cost defined as:

$$
V(\pi) \triangleq \mathbb{E}\left[N+w \mathbb{I}\left\{d\left(U^{N}, Y^{N}\right) \rightarrow \text { error }\right\}\right]=\mathbb{E}[N]+w P_{\mathrm{er}} .
$$

Hypothesis Testing with Control - Definitions

- A Multihypothesis test with control Δ is a triplet (N, q, d) where:
(1) N is the stopping time, $N \in \mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}, U_{1}, \ldots, U_{n}\right)$.
(2) $q=\left\{q_{k}\left(Y^{k-1}, U^{k-1}\right)\right\}_{k=1, \ldots, N}$ is an observation control policy.
(3) $d=d\left(Y^{N}, U^{N}\right)$ is the decision rule.
- Assume $w>0$ is the loss associated with making the wrong decision.
- The objective: Find a sequential test $\Delta=(q, N, d)$ that minimizes the total cost defined as:

$$
V(\pi) \triangleq \mathbb{E}\left[N+w \mathbb{I}\left\{d\left(U^{N}, Y^{N}\right) \rightarrow \text { error }\right\}\right]=\mathbb{E}[N]+w P_{\mathrm{er}} .
$$

- Asymptotic regime: $w \rightarrow \infty$.

Minimization of the Cost Using DP

- Problem (P): Find $\Delta=(N, q, d)$ that minimizes $V(\pi)$.

Minimization of the Cost Using DP

- Problem (P): Find $\Delta=(N, q, d)$ that minimizes $V(\pi)$.
- Solution - Dynamic Programming:
- Assume control u has been taken and Y has been observed.

Minimization of the Cost Using DP

- Problem (P): Find $\Delta=(N, q, d)$ that minimizes $V(\pi)$.
- Solution - Dynamic Programming:
- Assume control u has been taken and Y has been observed.
- Then the posterior distribution of the hypotheses, $\Phi^{u}(\pi, y)$ is given by

Minimization of the Cost Using DP

- Problem (P): Find $\Delta=(N, q, d)$ that minimizes $V(\pi)$.
- Solution - Dynamic Programming:
- Assume control u has been taken and Y has been observed.
- Then the posterior distribution of the hypotheses, $\Phi^{u}(\pi, y)$ is given by

$$
\Phi^{u}(\pi, y)=\left(\pi_{0} \frac{p_{0}^{u}(y)}{p_{\pi}^{u}(y)}, \pi_{1} \frac{p_{1}^{u}(y)}{p_{\pi}^{u}(y)} \ldots, \pi_{M-1} \frac{p_{M-1}^{u}(y)}{p_{\pi}^{u}(y)}\right), \forall u \in \mathcal{U}
$$

where
(1) $\pi \triangleq\left(\pi_{0}, \ldots, \pi_{M-1}\right)$.
(2) $p_{\pi}^{u}(y)=\sum_{i=0}^{M-1} \pi_{i} p_{i}^{u}(y)$.

Minimization of the Cost Using DP

- Problem (P): Find $\Delta=(N, q, d)$ that minimizes $V(\pi)$.
- Solution - Dynamic Programming:
- Assume control u has been taken and Y has been observed.
- Then the posterior distribution of the hypotheses, $\Phi^{u}(\pi, y)$ is given by

$$
\Phi^{u}(\pi, y)=\left(\pi_{0} \frac{p_{0}^{u}(y)}{p_{\pi}^{u}(y)}, \pi_{1} \frac{p_{1}^{u}(y)}{p_{\pi}^{u}(y)} \ldots, \pi_{M-1} \frac{p_{M-1}^{u}(y)}{p_{\pi}^{u}(y)}\right), \forall u \in \mathcal{U}
$$

where
(1) $\pi \triangleq\left(\pi_{0}, \ldots, \pi_{M-1}\right)$.
(2) $p_{\pi}^{u}(y)=\sum_{i=0}^{M-1} \pi_{i} p_{i}^{u}(y)$.

- Define the operator $\mathbb{T}^{u}, u \in \mathcal{U}$, such that for any measurable function $g: \triangle_{M} \rightarrow \mathbb{R}$:

$$
\left(\mathbb{T}^{u} g\right)(\pi)=\int g\left(\Phi^{u}(\pi, y)\right) p_{\pi}^{u}(y) d y
$$

Lower Bounds on $V^{\star}(\pi)$

Fact - Solution to Problem (P) (Bertsekas, Shereve 2007)

The optimal value function V^{\star} satisfies the fixed point equation:

$$
V^{\star}(\pi)=\min \left\{1+\min _{u \in \mathcal{U}}\left(\mathbb{T}^{u} V^{\star}\right)(\pi), \min _{j \in\{0, \ldots, M-1\}}\left(1-\pi_{j}\right) w\right\} .
$$

Lower Bounds on $V^{\star}(\pi)$

Fact - Solution to Problem (P) (Bertsekas, Shereve 2007)

The optimal value function V^{\star} satisfies the fixed point equation:

$$
V^{\star}(\pi)=\min \left\{1+\min _{u \in \mathcal{U}}\left(\mathbb{T}^{u} V^{\star}\right)(\pi), \min _{j \in\{0, \ldots, M-1\}}\left(1-\pi_{j}\right) w\right\} .
$$

Theorem (Javidi et al. 2013)

Define $D_{\max }=\max _{i, j \in\{0, \ldots, M-1\}} \max _{u \in \mathcal{U}} D\left(p_{i}^{u} \| p_{j}^{u}\right)$, and $I_{\max }=\max _{u \in \mathcal{U}} \max _{\tilde{\pi} \in \triangle_{M}} I\left(\tilde{\pi} ; p_{\tilde{\pi}}^{u}\right)$. For $w>\frac{\log (M)}{I_{\max }}$ and arbitrary $\delta \in(0,0.5]$,

$$
\begin{aligned}
V^{\star}(\pi) \geq & {\left[\frac{H(\pi)-h_{2}(\delta)-\delta \log (M-1)}{I_{\max }}\right.} \\
& \left.+\frac{\log \left(\frac{1-w^{-1}}{w^{-1}}\right)-\log \left(\frac{1-\delta}{\delta}\right)}{D_{\max }} \mathbb{I}\left\{\max _{i} \pi_{i} \leq 1-\delta\right\}-\hat{K}^{\prime}\right]^{+}
\end{aligned}
$$

Information Acquisition Problem

Information Acquisition Problem

- Find a test $\Delta=(N, q, d)$ with the object to minimize $\mathbb{E}[N]$ subject to $P_{\text {er }} \leq \epsilon$

Information Acquisition Problem

- Find a test $\Delta=(N, q, d)$ with the object to minimize $\mathbb{E}[N]$ subject to $P_{\text {er }} \leq \epsilon$
- This is the primal (constrained) version of the previous problem

Information Acquisition Problem

- Find a test $\Delta=(N, q, d)$ with the object to minimize $\mathbb{E}[N]$ subject to $P_{\text {er }} \leq \epsilon$
- This is the primal (constrained) version of the previous problem

Theorem - The relation between the stopping time and the value function (Javidi et al. 2013)
Let $\mathbb{E}\left[N_{\epsilon}^{\star}\right]$ be the minimal expected number of samples required to achieve $P_{\mathrm{er}} \leq \epsilon$. Then

$$
\mathbb{E}\left[N_{\epsilon}^{\star}\right] \geq(1-\epsilon w)\left(V^{\star}(\pi)-1\right)
$$

where $V^{\star}(\pi)$ is the optimal solution to Problem (P) for a prior π and cost for wrong decision w.

More On Fictitious Agent

VL Coding and Controlled Hypothesis Testing

- Error Probability: $P_{\mathrm{er}} \triangleq \frac{1}{M} \sum_{i=0}^{M-1} \mathbb{P}\left(d_{N} \neq i \mid \theta=i\right)$.
- Expected Transmission Time: $\mathbb{E}[N]=\frac{1}{M} \sum_{i=0}^{M-1} \mathbb{E}[N \mid \theta=i]$.
- Rate: $R \triangleq \frac{\log (M)}{\mathbb{E}[N]}$.
- Error exponent: $E(R)=\lim \sup _{\mathbb{E}[N] \rightarrow \infty} \frac{-\log \left(P_{\mathrm{er}}\right)}{\mathbb{E}[N]}$.

Q: Is the VL coding problem amenable to hypothesis testing analysis?
A: Yes!

VL Coding and Controlled Hypothesis Testing, Cont.

- $\pi=\left[\frac{1}{M}, \frac{1}{M}, \ldots, \frac{1}{M}\right]$.
- $p_{i}^{u}(k)=p(k \mid e(i))$.
- $D_{\max }=\max _{i, k} \max _{u \in \mathcal{U}} D\left(p_{i}^{u} \| p_{j}^{u}\right)=\max _{j, k} D(p(\cdot \mid j) \| p(\cdot \mid k)) \triangleq C_{1}$.
- $I_{\max }=\max _{u \in \mathcal{U}} \max _{\tilde{\pi} \in \triangle_{M}} I\left(\tilde{\pi} ; p_{\tilde{\pi}}^{u}\right)=C$.

More On Phase I (Burnashev Achievability)

Direct Statement - Phase I (Tentative Decision)

- For each message $i \in\{0, \ldots, M-1\}$ randomly draw an infinite $P_{X^{-}}$ i.i.d. sequence.

Direct Statement - Phase I (Tentative Decision)

- For each message $i \in\{0, \ldots, M-1\}$ randomly draw an infinite $P_{X^{-}}$ i.i.d. sequence.
- Let $x^{(i)}$ be the codeword assigned to the i^{\prime} th message.

Direct Statement - Phase I (Tentative Decision)

- For each message $i \in\{0, \ldots, M-1\}$ randomly draw an infinite $P_{X^{-}}$ i.i.d. sequence.
- Let $\boldsymbol{x}^{(i)}$ be the codeword assigned to the i 'th message.
- For each $i \in\{0, \ldots, M-1\}$, define the following two hypotheses:

$$
\begin{aligned}
& H_{0}^{i}: \operatorname{Pr}\left(\boldsymbol{x}^{(i)}, \boldsymbol{y}\right)=p\left(\boldsymbol{y} \mid \boldsymbol{x}^{(i)}\right) P_{X}\left(\boldsymbol{x}^{(i)}\right), \\
& H_{1}^{i}: \operatorname{Pr}\left(\boldsymbol{x}^{(i)}, \boldsymbol{y}\right)=\operatorname{Pr}(\boldsymbol{y}) P_{X}\left(\boldsymbol{x}^{(i)}\right)
\end{aligned}
$$

Direct Statement - Phase I (Tentative Decision)

- For each message $i \in\{0, \ldots, M-1\}$ randomly draw an infinite $P_{X^{-}}$ i.i.d. sequence.
- Let $\boldsymbol{x}^{(i)}$ be the codeword assigned to the i 'th message.
- For each $i \in\{0, \ldots, M-1\}$, define the following two hypotheses:

$$
\begin{aligned}
& H_{0}^{i}: \operatorname{Pr}\left(\boldsymbol{x}^{(i)}, \boldsymbol{y}\right)=p\left(\boldsymbol{y} \mid \boldsymbol{x}^{(i)}\right) P_{X}\left(\boldsymbol{x}^{(i)}\right), \\
& H_{1}^{i}: \operatorname{Pr}\left(\boldsymbol{x}^{(i)}, \boldsymbol{y}\right)=\operatorname{Pr}(\boldsymbol{y}) P_{X}\left(\boldsymbol{x}^{(i)}\right)
\end{aligned}
$$

- Define

$$
\begin{aligned}
N_{I, k}^{i} & =\inf _{n \geq 0}\left\{\log \left[\frac{p\left([\boldsymbol{y}]_{n} \mid\left[\boldsymbol{x}^{(i)}\right]_{n}\right)}{\operatorname{Pr}\left([\boldsymbol{y}]_{n}\right)}\right] \geq(1+\epsilon) \log (M)\right\} \\
& =\inf _{n \geq 0}\left\{\sum_{j=1}^{n} \log \left[\frac{p\left(y_{j} \mid x_{j}^{(i)}\right)}{\operatorname{Pr}\left(y_{j}\right)}\right] \geq(1+\epsilon) \log (M)\right\} .
\end{aligned}
$$

More On Phase II (Burnashev Achievability)

Achievability - Phase II (Confirmation)

- Let m_{1} be the message chosen at Phase I.

Achievability - Phase II (Confirmation)

- Let m_{1} be the message chosen at Phase I.
- Define j^{\star} and k^{\star} by $D\left(p\left(\cdot \mid j^{\star}\right) \| p\left(\cdot \mid k^{\star}\right)\right)=C_{1}$

Achievability - Phase II (Confirmation)

- Let m_{1} be the message chosen at Phase I.
- Define j^{\star} and k^{\star} by $D\left(p\left(\cdot \mid j^{\star}\right) \| p\left(\cdot \mid k^{\star}\right)\right)=C_{1}$
- Encoder: Sends $\left(j^{\star}, j^{\star} \ldots\right)$ if m_{1} is correct and $\left(k^{\star}, k^{\star} \ldots\right)$ o.w.

Achievability - Phase II (Confirmation)

- Let m_{1} be the message chosen at Phase I.
- Define j^{\star} and k^{\star} by $D\left(p\left(\cdot \mid j^{\star}\right) \| p\left(\cdot \mid k^{\star}\right)\right)=C_{1}$
- Encoder: Sends $\left(j^{\star}, j^{\star} \ldots\right)$ if m_{1} is correct and $\left(k^{\star}, k^{\star} \ldots\right)$ o.w.
- Decoder: Runs an SPRT with

$$
\begin{aligned}
H_{A C K}: Y_{i} & \sim p\left(\cdot \mid j^{\star}\right), \\
H_{N A C K}: Y_{i} & \sim p\left(\cdot \mid k^{\star}\right) .
\end{aligned}
$$

Achievability - Phase II (Confirmation)

- Let m_{1} be the message chosen at Phase I.
- Define j^{\star} and k^{\star} by $D\left(p\left(\cdot \mid j^{\star}\right) \| p\left(\cdot \mid k^{\star}\right)\right)=C_{1}$
- Encoder: Sends $\left(j^{\star}, j^{\star} \ldots\right)$ if m_{1} is correct and ($k^{\star}, k^{\star} \ldots$) o.w.
- Decoder: Runs an SPRT with

$$
\begin{aligned}
H_{A C K}: Y_{i} & \sim p\left(\cdot \mid j^{\star}\right), \\
H_{N A C K}: Y_{i} & \sim p\left(\cdot \mid k^{\star}\right) .
\end{aligned}
$$

- For large M,

$$
\mathbb{E}\left[N_{I I, k}\right]=\pi_{A} \mathbb{E}_{P_{A}}\left[N_{I I, k}\right]+\pi_{N} \mathbb{E}_{P_{N}}\left[N_{I I, k}\right] \approx \mathbb{E}_{P_{A}}\left[N_{I I, k}\right] \lesssim \frac{-\log \left(P_{e}\right)}{C_{1}}
$$

$\bullet \Rightarrow \mathbb{E}[N] \approx \mathbb{E}\left[N_{I, 1}\right]+\mathbb{E}\left[N_{I I, 1}\right] \lesssim \frac{\log (M)}{C}+\frac{-\log \left(P_{e}\right)}{C_{1}}$.

Forney's Error Exponent

Limited Feedback - "One Shot" Schemes

Example - ARQ scheme:

Limited Feedback - "One Shot" Schemes

Example - ARQ scheme:

- Codebook: M randomly chosen codewords, each of length n.

Limited Feedback - "One Shot" Schemes

Example - ARQ scheme:

- Codebook: M randomly chosen codewords, each of length n.
- Encoding: Send the i th codeword periodically to transmit the i th message.

Limited Feedback - "One Shot" Schemes

Example - ARQ scheme:

- Codebook: M randomly chosen codewords, each of length n.
- Encoding: Send the i th codeword periodically to transmit the i th message.
- Decoding:

Limited Feedback - "One Shot" Schemes

Example - ARQ scheme:

- Codebook: M randomly chosen codewords, each of length n.
- Encoding: Send the i th codeword periodically to transmit the i th message.
- Decoding:
- Partition \mathbb{R}^{n} into M decision regions and one erasure area.

Limited Feedback - "One Shot" Schemes

Example - ARQ scheme:

- Codebook: M randomly chosen codewords, each of length n.
- Encoding: Send the i th codeword periodically to transmit the i th message.
- Decoding:
- Partition \mathbb{R}^{n} into M decision regions and one erasure area.

- If $Y_{n k+1}^{(n+1) k} \in \bigcup_{i=0}^{M-1} \mathcal{R}_{i}$ sent the stopping bit and decode.

Limited Feedback - "One Shot" Schemes

Example - ARQ scheme:

- Codebook: M randomly chosen codewords, each of length n.
- Encoding: Send the i th codeword periodically to transmit the i th message.
- Decoding:
- Partition \mathbb{R}^{n} into M decision regions and one erasure area.

- If $Y_{n k+1}^{(n+1) k} \in \bigcup_{i=0}^{M-1} \mathcal{R}_{i}$ sent the stopping bit and decode.
- Else, wait for the next n symbols and repeat the process.

ARQ Scheme - Analysis

- Let
$\mathcal{E}_{1, k}=\{$ Not making the right decision on the k th round $\}$, $\mathcal{E}_{2, k}=\{$ Making an undetected error on the k th round $\}$.

ARQ Scheme - Analysis

- Let
$\mathcal{E}_{1, k}=\{$ Not making the right decision on the k th round $\}$, $\mathcal{E}_{2, k}=\{$ Making an undetected error on the k th round $\}$.
- Then $\mathbb{P}($ errasure $)=\mathbb{P}\left(\mathcal{R}_{M}\right)=\mathbb{P}\left(\mathcal{E}_{1}\right)-\mathbb{P}\left(\mathcal{E}_{2}\right)$.

ARQ Scheme - Analysis

- Let
$\mathcal{E}_{1, k}=\{$ Not making the right decision on the k th round $\}$, $\mathcal{E}_{2, k}=\{$ Making an undetected error on the k th round $\}$.
- Then $\mathbb{P}($ errasure $)=\mathbb{P}\left(\mathcal{R}_{M}\right)=\mathbb{P}\left(\mathcal{E}_{1}\right)-\mathbb{P}\left(\mathcal{E}_{2}\right)$.
- More results:

$$
\begin{aligned}
\mathbb{E}[N] & =n \sum_{k=1}^{\infty} k \mathbb{P}(\text { stop after } k \text { rounds })=\frac{n}{1-\mathbb{P}\left(\mathcal{R}_{M}\right)} \\
R & =\frac{\log (M)}{\mathbb{E}[N]}=\frac{\log (M)}{n}\left(1-\mathbb{P}\left(\mathcal{R}_{M}\right)\right)=\tilde{R}\left(1-\mathbb{P}\left(\mathcal{R}_{M}\right)\right) \\
P_{\text {er }} & =\sum_{k=1}^{\infty}\left(\mathbb{P}\left(\mathcal{R}_{M}\right)\right)^{k-1} \mathbb{P}\left(\mathcal{E}_{2}\right)
\end{aligned}
$$

ARQ scheme - Analysis

- Let

$$
\begin{aligned}
& \mathcal{E}_{1, k}=\{\text { Not making the right decision on the } k \text { th round }\} \\
& \mathcal{E}_{2, k}=\{\text { Making an undetected error on the } k \text { th round }\}
\end{aligned}
$$

- Then $\mathbb{P}($ errasure $)=\mathbb{P}\left(\mathcal{R}_{M}\right)=\mathbb{P}\left(\mathcal{E}_{1}\right)-\mathbb{P}\left(\mathcal{E}_{2}\right) \rightarrow 0$.
- More results:

$$
\begin{aligned}
\mathbb{E}[N] & =n \sum_{k=1}^{\infty} k \mathbb{P}(\text { stop after } k \text { rounds })=\frac{n}{1-\mathbb{P}\left(\mathcal{R}_{M}\right)} \rightarrow n . \\
R & =\frac{\log (M)}{\mathbb{E}[N]}=\frac{\log (M)}{n}\left(1-\mathbb{P}\left(\mathcal{R}_{M}\right)\right) \rightarrow \frac{\log (M)}{n} \triangleq \tilde{R} . \\
P_{\text {er }} & =\sum_{k=1}^{\infty}\left(\mathbb{P}\left(\mathcal{R}_{M}\right)\right)^{k-1} \mathbb{P}\left(\mathcal{E}_{2}\right) \rightarrow \mathbb{P}\left(\mathcal{E}_{2}\right) . \\
E_{\text {Forney }}(R) & =\frac{-\log \left(P_{\text {er }}\right)}{\mathbb{E}[N]} \rightarrow-\frac{1}{n} \log \left(\mathbb{P}\left(\mathcal{E}_{2}\right)\right) .
\end{aligned}
$$

Forney's Decision Regions (Forney 1968)

- Define

$$
\begin{aligned}
& \mathcal{R}_{m}^{\star}=\left\{y \in \mathcal{Y}^{n}: \frac{p\left(y \mid x_{m}\right)}{\sum_{m^{\prime} \neq m} p\left(y \mid x_{m}\right)} \geq \exp (n T)\right\}, \quad m \in\{0, \ldots, M-1\}, \\
& \mathcal{R}_{M}^{\star}=\bigcap_{m=0}^{M-1}\left(\mathcal{R}_{m}^{\star}\right)^{c},
\end{aligned}
$$

Forney's Decision Regions (Forney 1968)

- Define

$$
\begin{aligned}
& \mathcal{R}_{m}^{\star}=\left\{y \in \mathcal{Y}^{n}: \frac{p\left(y \mid x_{m}\right)}{\sum_{m^{\prime} \neq m} p\left(y \mid x_{m}\right)} \geq \exp (n T)\right\}, \quad m \in\{0, \ldots, M-1\}, \\
& \mathcal{R}_{M}^{\star}=\bigcap_{m=0}^{M-1}\left(\mathcal{R}_{m}^{\star}\right)^{c}, \\
& \text { and } e_{i}(R, T) \triangleq \lim \sup _{n \rightarrow \infty}\left[-\frac{1}{n} \log \left(\mathbb{P}\left(\mathcal{E}_{i}\right)\right)\right] .
\end{aligned}
$$

Forney's Decision Regions (Forney 1968)

- Define

$$
\begin{aligned}
& \mathcal{R}_{m}^{\star}=\left\{y \in \mathcal{Y}^{n}: \frac{p\left(y \mid x_{m}\right)}{\sum_{m^{\prime} \neq m} p\left(y \mid x_{m}\right)} \geq \exp (n T)\right\}, \quad m \in\{0, \ldots, M-1\}, \\
& \mathcal{R}_{M}^{\star}=\bigcap_{m=0}^{M-1}\left(\mathcal{R}_{m}^{\star}\right)^{c}
\end{aligned}
$$

$$
\text { and } e_{i}(R, T) \triangleq \limsup _{n \rightarrow \infty}\left[-\frac{1}{n} \log \left(\mathbb{P}\left(\mathcal{E}_{i}\right)\right)\right] .
$$

Theorem - Forney's error exponents for the BSC (ϵ) (Somekh-Baruch,Merhav 2011)

Let $\beta \triangleq \log \left(\frac{1-\epsilon}{\epsilon}\right)$. If $R<\log (2)-h_{2}\left(\epsilon+\frac{T}{\beta}\right)$ then $e_{1}(R, T)>0$ and $e_{2}(R, T)=e_{1}(R, T)+T$. Otherwise $e_{1}(R, T)=0$.

$$
\text { - } \Rightarrow \text { If } 0<e_{1}(R, T) \rightarrow 0 \text { then and } E_{\text {Forney }}(R)=e_{2}(R, T) \approx T
$$

Forney's Achievable Error Exponent (Forney 1968)

- Define $\delta_{\mathrm{GV}}(R)=\left\{\delta: h_{2}(\delta)=\log (2)-R\right\}$.
- Then,

$$
\begin{aligned}
R & \approx \log (2)-h_{2}\left(\epsilon+\frac{T}{\beta}\right) \\
\Leftrightarrow E_{\text {Forney }}(R)=T & \approx \beta\left(\delta_{\mathrm{GV}}(R)-\delta_{\mathrm{GV}}(C)\right)=E_{\mathrm{sp}}(R)+C-R .
\end{aligned}
$$

Forney's Achievable Error Exponent (Forney 1968)

- Define $\delta_{\mathrm{GV}}(R)=\left\{\delta: h_{2}(\delta)=\log (2)-R\right\}$.
- Then,

$$
\begin{aligned}
R & \approx \log (2)-h_{2}\left(\epsilon+\frac{T}{\beta}\right) \\
\Leftrightarrow E_{\text {Forney }}(R)=T & \approx \beta\left(\delta_{\mathrm{GV}}(R)-\delta_{\mathrm{GV}}(C)\right)=E_{\mathrm{sp}}(R)+C-R .
\end{aligned}
$$

Reliability Func. (Stop Feedback)

Lower Bound on $E(R)$

- Main idea: Decode using Δ_{a}

Lower Bound on $E(R)$

- Main idea: Decode using Δ_{a}
- Recall we've defined

$$
\begin{aligned}
N_{i} & =\min _{n \geq 0}\left\{L_{i}(n) \geq a+\log \left(\sum_{j \neq i} \exp \left\{L_{j}(n)\right\}\right)\right\} \\
& =\min _{n \geq 0}\left\{\log \left[\frac{P_{i}\left([\mathbf{z}]_{n}\right)}{\sum_{j \neq i} P_{j}\left([\mathbf{z}]_{n}\right)}\right] \geq a\right\} \\
& =\min _{n \geq 0}\left\{\log \left[\frac{P_{\mathbf{Y} \mid \mathbf{X}}\left([\mathbf{y}]_{n} \mid[\mathbf{x}]_{n}^{(i)}\right)}{\sum_{j \neq i} P_{\mathbf{Y} \mid \mathbf{X}}\left([\mathbf{y}]_{n} \mid[\mathbf{x}]_{n}^{(j)}\right)}\right] \geq a\right\} .
\end{aligned}
$$

- $\Delta_{a}=\left(N_{a}, d_{a}\right)$ is then defined as follows:

$$
N_{a}=\min _{0 \leq i \leq M-1} N_{i}, \quad d_{a}=i^{\star} \text { if } N_{a}=N_{i^{\star}} .
$$

Lower Bound - Proof Outline, Cont.

- It holds that $a \leq-\log P_{\text {er }}$.
- $\mathbb{E}_{0}\left[N_{a}\right]=\sum_{n=0}^{\infty} P_{0}\left(N_{0} \geq n\right) \leq \bar{n}+\sum_{n=\bar{n}+1}^{\infty} P_{0}\left(N_{0} \geq n\right)$.

Lower Bound - Proof Outline, Cont.

- It holds that $a \leq-\log P_{\text {er }}$.
- $\mathbb{E}_{0}\left[N_{a}\right]=\sum_{n=0}^{\infty} P_{0}\left(N_{0} \geq n\right) \leq \bar{n}+\sum_{n=\bar{n}+1}^{\infty} P_{0}\left(N_{0} \geq n\right)$.
- For arbitrarily small $\delta>0$, take

$$
\bar{n} \triangleq \max _{n \in \mathbb{N}}\left\{\frac{\log M}{n} \geq \log (2)-h_{2}\left(\epsilon+\frac{a}{n \beta}\right)-\delta\right\} .
$$

Lower Bound - Proof Outline, Cont.

- It holds that $a \leq-\log P_{\text {er }}$.
- $\mathbb{E}_{0}\left[N_{a}\right]=\sum_{n=0}^{\infty} P_{0}\left(N_{0} \geq n\right) \leq \bar{n}+\sum_{n=\bar{n}+1}^{\infty} P_{0}\left(N_{0} \geq n\right)$.
- For arbitrarily small $\delta>0$, take
$\bar{n} \triangleq \max _{n \in \mathbb{N}}\left\{\frac{\log M}{n} \geq \log (2)-h_{2}\left(\epsilon+\frac{a}{n \beta}\right)-\delta\right\}$.
- Then:
(1) $\bar{n} \rightarrow \infty$ as $M \rightarrow \infty$.

Lower Bound - Proof Outline, Cont.

- It holds that $a \leq-\log P_{\text {er }}$.
- $\mathbb{E}_{0}\left[N_{a}\right]=\sum_{n=0}^{\infty} P_{0}\left(N_{0} \geq n\right) \leq \bar{n}+\sum_{n=\bar{n}+1}^{\infty} P_{0}\left(N_{0} \geq n\right)$.
- For arbitrarily small $\delta>0$, take

$$
\bar{n} \triangleq \max _{n \in \mathbb{N}}\left\{\frac{\log M}{n} \geq \log (2)-h_{2}\left(\epsilon+\frac{a}{n \beta}\right)-\delta\right\} .
$$

- Then:
(1) $\bar{n} \rightarrow \infty$ as $M \rightarrow \infty$.
(2) $\bar{n} \leq \frac{a}{E_{\text {formey }}(R+\delta)} \leq \frac{-\log P_{e r}}{E_{\text {Forney }}(R+\delta)}$.

Lower Bound - Proof Outline, Cont.

- It holds that $a \leq-\log P_{\mathrm{er}}$.
- $\mathbb{E}_{0}\left[N_{a}\right]=\sum_{n=0}^{\infty} P_{0}\left(N_{0} \geq n\right) \leq \bar{n}+\sum_{n=\bar{n}+1}^{\infty} P_{0}\left(N_{0} \geq n\right)$.
- For arbitrarily small $\delta>0$, take

$$
\bar{n} \triangleq \max _{n \in \mathbb{N}}\left\{\frac{\log M}{n} \geq \log (2)-h_{2}\left(\epsilon+\frac{a}{n \beta}\right)-\delta\right\} .
$$

- Then:
(1) $\bar{n} \rightarrow \infty$ as $M \rightarrow \infty$.
(2) $\bar{n} \leq \frac{a}{E_{\text {Formey }}(R+\delta)} \leq \frac{-\log P_{\text {er }}}{E_{\text {Formey }}(R+\delta)}$.
(3) For any $n_{0} \geq \bar{n}+1$

$$
P_{0}\left(N_{0} \geq n_{0}\right) \leq P_{0}\left(\log \left[\frac{P_{\mathbf{Y} \mid \mathbf{X}}\left([\mathbf{y}]_{n_{0}} \mid[\mathbf{x}]_{n_{0}}^{(i)}\right)}{\sum_{j \neq i} P_{\mathbf{Y} \mid \mathbf{X}}\left([\mathbf{y}]_{n_{0}} \mid[\mathbf{x}]_{n_{0}}^{(j)}\right)}\right]<a\right) \leq e^{-n \delta}
$$

- \Rightarrow Asymptotically, $\mathbb{E}_{0}\left[N_{a}\right] \lesssim \frac{-\log P_{\text {er }}}{E_{\text {Formey }}(R+\delta)} \Rightarrow E_{a}(R) \gtrsim E_{\text {Forney }}(R)$.

Upper Bound on $E(R)$ - Proof Outline

- Define $\Lambda_{i}(N) \triangleq \log \left[\frac{p\left(y \mid x^{(i)}\right)}{\sum_{j=0, j \neq i}^{M-1} p\left(y \mid x^{(j)}\right)}\right]$ and $\Omega_{i, \bar{n}} \triangleq\{d=i, N \leq \bar{n}\}$.

Upper Bound on $E(R)$ - Proof Outline

- Define $\Lambda_{i}(N) \triangleq \log \left[\frac{p\left(y \mid x^{(i)}\right)}{\sum_{j=0, j \neq i}^{M-1} p\left(y \mid x^{(j)}\right)}\right]$ and $\Omega_{i, \bar{n}} \triangleq\{d=i, N \leq \bar{n}\}$.
- On the one hand $P_{\text {er }}(\Delta)=\sum_{j=0, j \neq i}^{M-1} P_{j}(d=i)$.

Upper Bound on $E(R)$ - Proof Outline

- Define $\Lambda_{i}(N) \triangleq \log \left[\frac{p\left(y \mid x^{(i)}\right)}{\sum_{j=0, j \neq i}^{M-1} p\left(y \mid x^{(j)}\right)}\right]$ and $\Omega_{i, \bar{n}} \triangleq\{d=i, N \leq \bar{n}\}$.
- On the one hand $P_{\text {er }}(\Delta)=\sum_{j=0, j \neq i}^{M-1} P_{j}(d=i)$.
- On the other hand:

$$
\begin{aligned}
\sum_{j=0, j \neq i}^{M-1} P_{j}(d=i) & =\sum_{j=0, j \neq i}^{M-1} \sum_{\mathbf{z}} \mathbb{I}\{\mathbf{z}: d=i\} P_{j}(\mathbf{z}) \\
& =\mathbb{E}_{i}\left[\mathbb{I}\{\mathbf{z}: d=i\} \frac{\sum_{j=0, j \neq i}^{M-1} P_{j}(\mathbf{z})}{P_{i}(\mathbf{z})}\right] \\
& \geq e^{-a} P_{i}\left(\Omega_{i, \bar{n}}, \sup _{n \leq \bar{n}}\left\{\Lambda_{i}(n)<a\right\}\right) . \\
\bullet \Rightarrow p_{e}(\Delta) e^{a} \geq 1-p_{e}(\Delta)- & P_{i}(N \geq \bar{n})-P_{i}\left(\sup _{n \leq \bar{n}}\left\{\Lambda_{i}(n)>a\right\}\right) .
\end{aligned}
$$

Upper bound on $E(R)$ - Proof Outline, Cont.

- Using Markov ineq. we obtaine

$$
\frac{\mathbb{E}[N]}{\bar{n}} \geq 1-p_{e}(\Delta)\left(e^{a}-1\right)-P_{i}\left(\sup _{n \leq \bar{n}}\left\{\Lambda_{i}(n)>a\right\}\right) .
$$

Upper bound on $E(R)$ - Proof Outline, Cont.

- Using Markov ineq. we obtaine

$$
\frac{\mathbb{E}[N]}{\bar{n}} \geq 1-p_{e}(\Delta)\left(e^{a}-1\right)-P_{i}\left(\sup _{n \leq \bar{n}}\left\{\Lambda_{i}(n)>a\right\}\right) .
$$

- Take $a \triangleq-\left(1-\delta_{1}\right) \log \left(p_{e}(\Delta)\right)$.

Upper bound on $E(R)$ - Proof Outline, Cont.

- Using Markov ineq. we obtaine

$$
\frac{\mathbb{E}[N]}{\bar{n}} \geq 1-p_{e}(\Delta)\left(e^{a}-1\right)-P_{i}\left(\sup _{n \leq \bar{n}}\left\{\Lambda_{i}(n)>a\right\}\right) .
$$

- Take $a \triangleq-\left(1-\delta_{1}\right) \log \left(p_{e}(\Delta)\right)$.
- Take $\bar{n}=\left(1+\delta_{2}\right) \mathbb{E}[N]$, assume by contradiction that $E(R)>E_{\text {Forney }}(R)$ and get that

$$
P_{i}\left(\sup _{n \leq \bar{n}}\left\{\Lambda_{i}(n)>a\right\}\right) \rightarrow 0 .
$$

Upper bound on $E(R)$ - Proof Outline, Cont.

- Using Markov ineq. we obtaine

$$
\frac{\mathbb{E}[N]}{\bar{n}} \geq 1-p_{e}(\Delta)\left(e^{a}-1\right)-P_{i}\left(\sup _{n \leq \bar{n}}\left\{\Lambda_{i}(n)>a\right\}\right) .
$$

- Take $a \triangleq-\left(1-\delta_{1}\right) \log \left(p_{e}(\Delta)\right)$.
- Take $\bar{n}=\left(1+\delta_{2}\right) \mathbb{E}[N]$, assume by contradiction that $E(R)>E_{\text {Forney }}(R)$ and get that

$$
P_{i}\left(\sup _{n \leq \bar{n}}\left\{\Lambda_{i}(n)>a\right\}\right) \rightarrow 0 .
$$

- Conclude that $E(R) \leq E_{\text {Forney }}(R)$.

