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Abstract

In this thesis, we review concepts and methods of both sequential hypothesis testing

and communication systems with feedback, where variable length coding is used. We

begin with a concise review of many aspects of sequential hypothesis testing problems,

starting with the problem of sequentially inferring between two simple hypotheses,

through problems of composite and multiple hypotheses, and ending with problems

in which there exists some feedback mechanism that enables the receiver to control

future observations, using the knowledge gathered thus far. The discussion regarding

hypothesis testing is concentrated around tests with the property that, as the expected

number of observation grows, the average error probability tends to zero, and most

of the results stated willhold under account this asymptotic regime. Nevertheless,

some non-asymptotic results will also be presented, along with very basic and simple

sequential tests that have been proposed in the literature. One of the main goals is

to illuminate the interplay between sequential hypothesis testing and variable length

coding communication problem. This connection is established in the second part

of the thesis, along with a review of some important and relevant results regarding

communication systems with feedback. In addition to a review of existing work, we

provide some novel results. Specifically, a new communication scheme for variable

length coding is proposed and is proven optimal in the error-exponent sense. The nov-

elty here is that it is purely sequential. In addition, for the ”stop-feedback” constraint,

in which only one feedback bit per message is allowed, bounds on the error exponent

function are obtained in the random coding regime.
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Chapter 1

Introduction

This work is an overview on the interplay between two fields that attracted a lot of

attention in the last three decades: sequential hypothesis testing and variable length

channel coding with feedback. Although the two problems have been widely studied

separately over the years, the number of works in which the two are combined is rela-

tively small. This is somewhat surprising since there is an obvious similarity between

the two problems, as will be discussed in Part II of this work. Nevertheless, over

the last few years, some researchers have harnessed results from sequential hypothesis

testing to obtain bounds on performance of communication systems with feedback

and variable block length. These results, along with the strong analogy between the

two problems, is the main motivation behind this work. We aimed at the following

goals: (a) to give a concise and comprehensive summary of results on statistical se-

quential hypothesis testing with special focus on those that help in the analysis of

communication systems, and (b) to show how some of these results were utilized in

both classic and state-of-the-art work. However, the scope of this work does not en-

able one to cover the entire volume of literature on sequential hypothesis testing and

coding with feedback. Therefore we have limited the discussion only to the interplay

between sequential discrimination between simple hypotheses, and its connection to

the error exponent function of some variable-length schemes with feedback. In this

sense, Chapter 3 is an exception, since it deals with composite hypotheses. The rea-

son this topic is covered is twofold: first, these types of hypotheses play a pivotal role

in sequential hypothesis testing theory, and, second, results on composite hypothesis

testing may be useful both in gaining intuition on general hypothesis testing problems

and in communication with feedback where the decoder chooses a set of messages (also

3



known as list-decoding) rather than just one message.

The operational meaning of the aforementioned focus on simple hypotheses and

the exponential behaviour of the average error probability, is that we consider only

hypotheses of the form:

Hi : Pr (Y) = Pi (Y), (1.0.1)

where the different hypotheses are denoted by {Hi}M−1
i=0 , and {Pi (Y)}M−1

i=0 are known

probability distributions. Here Y = Y1, Y2, . . . is assumed an infinite sequence of

random variables, distributed according to one of the Pi’s. The objective is to find

both a stopping rule and a decision rule that guarantees that the average stopping

time would be as small as possible and the average probability of error would be as

small as possible. The rigorous mathematical formulation of these requirements will

be given in the first part of this work.

In the first part, four families of sequential hypothesis testing problems will be

covered:

Binary hypothesis testing: For the case of two hypothesis only, Wald’s test is

optimal in the sense of the trade-off between the expected stopping time and the two

kinds of error probabilities.

Multiple hypothesis testing: M hypotheses to be tested, where M > 2.

Multiple hypothesis testing with control: Testing among M > 2 hypotheses

with some control over future observations. Given the observations Y1, . . . , Yn−1, the

experimenter can decide on one out of K actions to take, each one corresponding to a

different statistical behavior of the next observation Yn.

Composite hypothesis testing: Here, the hypotheses are of the form:

Hi : Pr (Y) = Pθ (Y) , θ ∈ Θi (1.0.2)

where the Θi’s are are unknown.

Since an optimal test has not been found only for the binary case, the part of

the work in which multiple simple hypotheses are discussed will focus on practical

examples that were analysed over the years, as well as some tests with “good behavior”

at least asymptotically. Although less attention was given to the problem of composite

hypothesis testing, the interested reader can still find results in that field in the sequel,

along with a list of references to some of the leading work on the subject.

In the second part of this work, we deal with communication problems in which

the decoder takes as many observations as needed to obtain a reliable decision. The

4



fidelity criteria under which different decoding schemes are compared to each other

is the error exponent function, defined as lim log(Perror)
E[N ]

, where Perror and E [N ] denote,

respectively, the average error probability and the average time it takes the decoder

to make its decision; the limit is taken as E [N ] → ∞ and Perror → 0, in a way that

ensures that the rate is constant. The available feedback is assumed to be utilized in

one of the following ways:

Perfect instantaneous feedback, in which the feedback channel has zero delay,

unlimited capacity, and it is available at any time instant. For this type of feedback,

the error exponent function is known exactly for all rates. A few different proofs of

this claim are covered in the sequel, where each of them illuminates this result in a

different light, using various mathematical techniques and giving rise to a different

intuitive explanation. A novel scheme that uses sequential analysis tools is also given.

Single bit feedback, in which the feedback is limited to one bit per message.

This restricts the use of feedback to the case where the decoder cannot control the

symbols sent through the channel, but only signal back as soon as it has gathered

enough samples to make a decision. For this feedback channel, two types of coding

and decoding schemes are addressed. The first is where coding is done in blocks, i.e.,

where a codebook is chosen in advance and some codeword is sent consecutively until

the decoder makes a decision. The second is more general and it is named “stop-

feedback scheme”. Here, each message is mapped to a codeword that is infinitely long,

and the decoder can stop its transmission at any time and declare its estimate. Some

novel results are obtained regarding the best achievable error exponent.

The remainder of the thesis is organized as follows: In Part I, we deal mostly with

sequential hypothesis testing. In Section 2 the sequential binary hypothesis testing

problem is addressed. Some of the most fundamental relations of sequential analysis

are given, along with the definition and optimality property of Wald’s test. Section

3 describes composite hypothesis testing, along with a unified theory of asymptotic

optimality. In Section 4, we return to simple hypotheses. We begin the discussion with

three simple sequential tests,are easy to implement, and discuss their performance. In

addition, two asymptotically optimal tests are given. We conclude with a review of

results on multiple hypotheses with observation control. Part II is devoted to variable-

length coding. In Section 5 the case of perfect feedback is discussed. Specifically, an

optimality claim on the error exponent function in such a setup is made, along with

outlines of some of its known proofs. A novel sequential coding scheme is also shown

5



to achieve optimal performance. In Section 6, the problem of limited feedback is

reviewed. The main focus is on feedback channels over which only a single bit per

symbol is allowed to be transmitted. Some classical and state of the art results are

discussed, and novel results regarding a certain feedback scheme are given. Chapter 7

concludes the thesis, and it suggests topics for further research.
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Part I

Sequential Hypothesis Testing
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Chapter 2

Sequential Binary Hypothesis

Testing

2.1 Introduction

In traditional binary hypothesis testing, after a random sample is observed, one of the

two possible actions is taken: accept the null hypothesis H0, or accept the alternative

hypothesis H1. We will assume a Bayesian framework where prior probabilities are

assigned to each hypothesis. In the case of simple hypotheses, the strength of the

evidence for H1 is given by likelihood ratio function, which is defined as the ratio of

the probability of the data under H1 and the probability of the data under H0. We

will denote this function by λ. For the non-Bayesian setting, the Neyman-Pearson

lemma implies that the likelihood ratio test (LRT) is the most powerful test. The

LRT accepts H1 if λ is large enough, and H0 otherwise. However, in some cases the

evidence regarding H0 and H1 may not be convincing, nevertheless, a decision must be

made. In sequential tests, there is a third possible course of action when the evidence

is ambiguous: take more observations. Such a test is typically continued until the

evidence strongly favors one of the two hypotheses.

There are various sequential procedures for deciding when to continue sampling.

Each such procedure consists of a stopping rule and a terminal decision rule. The

nature of the latter depends on the nature of the problem. On the other hand, the

mathematical structure stopping rule is mostly common to all statistical procedures

and is a prescription adopted by the ”experimenter” when to stop the sampling. Any

stopping rule gives rise to a random sample size N , also called stopping time. It has

8



to satisfy the condition that the event {N = n} depends only on Y1, Y2, . . . , Yn. In

general, the event {N =∞} is allowed, and we then say that the sequential procedure

does not terminate. If P (N =∞) = 0, we say that the procedure terminates with

probability 1 under P .

In 1943, Wald [149] proposed the sequential probability ratio test (SPRT). In its

simplest form, the SPRT is described as follows. Suppose that Y is a random variable

(or vector) distributed according to f (that is, f is a probability mass function if Y

is discrete or a density if Y is continuous). The problem is to test the hypothesis

H0 : f = P against H1 : f = Q, where P and Q are specified. The instructions

provided by the SPRT are: observe values of Y successively where each sample is

independent of the rest. We denote the observation sequence by y1, y2, . . .. Then the

random variables Yi, corresponding to yi, are independent and identically distributed

(i.i.d.) with a common distribution f . Let λn =
∏n

i=1
Q(yi)
P (yi)

be the observed likelihood

ratio at stage n. Choose two constants or boundaries, A and B, satisfying 0 < B <

A < ∞. Accept H0 if λn ≤ B, accept H1 if λn ≥ A, and continue to stage n + 1 if

B < λn < A. In practice, the constants A and B in the SPRT are determined by the

desired error probabilities and do not depend on the distributions of the likelihood

ratios λ1, λ2, . . .. When A and B are replaced by An and Bn (n ≥ 1), one gets a

generalized SPRT. A more formal and general definition of the SPRT is given in the

next section, but many details of SPRTs have been omitted in the sequel. These can

be found in numerous articles and books, for example, [59], [131], [146] , [155].

2.2 Sequential Likelihood-Ratio Tests - General Re-

sults

Although we will mostly focus on the i.i.d. case, there are important examples where

this is not the case. In this section, we describe certain properties of SPRTs which

hold under very general conditions on the sequence of observations. The results are

direct consequences of the definition of likelihood ratio.Consider sequence of random

variables (or vectors), not necessarily i.i.d. Y1, Y2, . . . on a measurable space (Ω,F).

The hypotheses H0 and H1 are represented by probability measures P and Q satisfying

P 6≡ Q. We assume that hypothesis H1 occurs with prior probability π, and H0 with

prior probability 1 − π. We denote the joint distribution of (Y1, Y2, . . . , Yn) under

P and Q by Pn and Qn, respectively, and denote the filtration generated by it by

9



{Fn , n = 1, 2, . . .}, that is

Fn = σ (Y1, . . . , Yn) , n = 1, 2, . . . ,F0 = {Ω, ∅} . (2.2.1)

For simplicity, we assume that for each n, Pn and Qn are mutually absolutely contin-

uous with a likelihood ratio λn = dQn
dPn

(that is, we assume that the Radon-Nikodym

derivative exists and is denoted by λn). In particular, if Pn has density fn and Qn

has density gn, then λn = gn(y1 ...,yn)
fn(y1 ...,yn)

, which is the likelihood ratio defined earlier. We

denote the random variables Ln = λn (Y1, . . . , Yn), defined on Ω, and for every An ∈ Fn∫
An

LndPn = Qn (An) . (2.2.2)

A sequential test is a pair (N, d) consisting of a stopping time N ∈ N , where N
denotes the set of all stopping times with respect to the filtration {Fn} (that is, for

each n, the events {N = n} and {N > n} each belong to Fn), and a terminal decision

rule d, which is an FN -measurable random variable taking values in {0, 1} (such that

the events {d = H0} ∩ {N = n} and {d = H1} ∩ {N = n} belong to Fn for each n).

Let D denote the set of all such d. The random variable N designates the time to stop

sampling, and once the value of N is given, d takes the value 0 or 1, depending on the

two accepted hypotheses.

It then follows that

Qn (N > n) =

∫
{N>n}

LndPn, (2.2.3)

Qn ({d = H1} ∩ {N = n}) =

∫
{d=H1}∩{N=n}

LndPn. (2.2.4)

Furthermore, equation (2.2.2) can also be modified in the following way

Q (A ∩ {N <∞}) = EP [LNI {A ∩ {N <∞}}] , (2.2.5)

where LN denotes the likelihood ratio at the stopping time N (that is, LN = Ln on

the set {N = n}). The relation (2.2.5) is known as Wald’s LR identity, whose proof

is in [155, Theorem 1.1] and in [131, Proposition 2.24].

Assuming P (N <∞) = 1, let A be such that A ∩{N = n} ∈ Fn. Then, a useful

generalization of (2.2.2) is ∫
A

LNdP = Q (A ) . (2.2.6)

10



In other words, the relation above holds for A determined by the observations up to

the stopping time. Suppose next that H0 is true. Then, the event that a decision rule

d would make an error is called an error of type 1 or type 1 error, and its probability

is denoted by α, i.e,

α = P (d = H1) . (2.2.7)

Similarly, if H1 is true, then the event that a decision rule d would make an error

is called an error of type 2 or type 2 error, and its probability is denoted by β, where

β = Q (d = H0) . (2.2.8)

An important inequality follows from (2.2.6), Jensen’s inequality and (2.2.7). For

any sequential test with finite N (a.s.) and any convex function g, we have∫
Ω

g (LN) dP ≥ αg

(
Q (d = H1)

α

)
+ (1− α) g

(
Q (d = H0)

1− α

)
(2.2.9)

= αg

(
1− β
α

)
+ (1− α) g

(
β

1− α

)
. (2.2.10)

If g is strictly convex, equality holds only if LN is constant on {d = H0} and on

{d = H1}. In particular, for g (x) = − log x one gets∫
Ω

(logLN) dP ≤ α log

(
1− β
α

)
+ (1− α) log

(
β

1− α

)
. (2.2.11)

Using (2.2.11), it is possible to prove a weak, but general optimality property of the

SPRT (e.g., [131]) and to obtain a lower bound on the stopping time of the SPRT.

This will be discussed in the next subsection.

As the SPRT stops (that is {N = n} is determined) at the first time instant sat-

isfying Ln ≤ B with d = H0, or Ln ≥ A, with d = H1, it holds that B < Ln < A

for n < N . From these simple relations, one can derive some important proper-

ties regarding the SPRT. For example, it follows from (2.2.3) that BP (N > n) ≤
Q (N > n) ≤ AP (N > n) for each n. For 0 < B < A < ∞, this implies that

P (N =∞) = limn→∞ P (N > n) = 0 if and only if Q (N =∞) = 0. It also im-

plies that for the average sample size EP [N ] < ∞ if and only if EQ [N ] < ∞, and

that the stopping times are exponentially bounded1 under P if and only if they are

exponentially bounded under Q.

1A nonnegative random variable N is said to be exponentially bounded (EB) under probability
P is there exists a constant c > 0 and 0 < ρ < 1 such that P (N > n) < cρn , n = 1, 2, . . .. This
property implies that the moment generating function (MGF) of N is finite on any subset of R. As
a consequence, all the moments of N are finite. A fortiori, P (N <∞) = 1

11



Since Ln ≥ A on {d = H1} ∩ {N = n}, it follows from (2.2.4) that

Q {d = H1 ∩N <∞} ≥ AP (d = H1 ∩N <∞) . (2.2.12)

Thus, if P (N <∞) = 1, then 1−β = Q (d = H1) ≥ AP (d = H1) = Aα. By a similar

argument, one also gets 1 − α = P (d = H0) ≥ B−1Q (d = H0) = β
B

. Altogether, we

have, for the SPRT with finite stopping time,

1− β ≥ Aα, 1− α ≥ β

B
. (2.2.13)

These relations are fundamental in the construction and analysis of SPRTs. The

inequalities show that, for given values of A and B, the possible values of α and β are

limited to a convex set as is shown in Figure 2.2.1.

0 1/A 1
0

B

1

α

β

achievable region of (α,β) in an SPRT test

 

 
1−β = Aα
1−α = β/B

Figure 2.2.1: For given boundary values A and B, the region of the achievable values of

(α, β) is given by the convex hull of the set
{

(0, 0) , (0, 1/A) ,
(

1−B
A−B ,

B(A−1)
A−B

)
, (B, 0)

}

An important question is how to choose A and B to achieve some given error

probabilities (α0, β0). Although an exact answer to this question is not known in

general, a “conservative” choice A = 1
α0

and B = β0 (and then α ≤ 1
A

= α0 and

β ≤ B = β0).

Another choice of the boundaries is a consequence of a well known approximation,

often called the Wald approximation. Under this approximation, the excess of the

test statistic over the boundaries when the test ends is neglected, i.e., LN = A when

12



d = H1 and LN = B when d = H0 are assumed. These approximate relations yield

the Wald boundaries

A =
1− β0

α0

, B =
β0

1− α0

. (2.2.14)

In this case, α = α0 and β = β0. This crude and somewhat heuristic approach took a

more analytical form after results from renewal theory were harnessed to the field of

sequential testing (see [155] for a comprehensive survey on the subject).

Even from the simple analysis leading to Figure 2.2.1, one can learn something

about the nature of α and β when changing the A and B. It is clear that if one increases

A and decreases B, the set of possible values of the error probabilities shrinks. It is

possible, however, that the actual error probabilities will increase. In [48] it is shown

that, if an alternative SPRT with boundaries A′ and B′ has α′ ≤ α and β′ ≤ β then

P (N ≤ N ′) = 1. It also follows that if α′ = α and β′ = β then P (N = N ′ , d = d′) = 1

so that, although the boundaries of the two tests may differ, the tests are equivalent.

2.3 Fundamental Results for Stopping Times of Ran-

dom Walks

In many cases, it is both reasonable and simple to model the observations as a sequence

of i.i.d. random variables (or vectors) distributed according to some probability mea-

sure P . The cumulative sum of such a sequence is a random walk. More precisely, let

Y1, Y2 . . . be i.i.d. random variables distributed according to P with EP [Y1] = µP . We

will denote Ŝn = 1
n

∑n
i=1 Yi. In general, we would like to evaluate decision rules and

stopping times based on Ŝn. The literature on random walks and stopped random

walks is far too vast to cover in this work, so we cover here only very few important

statements.

One property of interest is whether or not a sequential test terminates with proba-

bility 1. The following theorem by Chernoff [23] helps to answer this question, provided

the moment generating function (MGF) ϕ (t) = EP [exp {tY }] exists and is finite for

all t ∈ R.

Theorem 1 Let Y1, Y2, . . . be i.i.d. real-valued random variables with a finite MGF

and distributed according to P . Let EP [Y1] = µP , and let Ŝn = 1
n

∑n
i=1 Yi. Then, given

any x < µP , there exists 0 < ρ < 1 such that

• P
(
Ŝn < x

)
≤ ρn for n = 1, 2, . . .

13



• 1
n

log
[
P
(
Ŝn < x

)]
→ log ρ as n→∞

Actually, Chernoff’s theorem is stronger in that it also gives the value of ρ in terms

of the MGF of Y . Many generalizations of Theorem 1 have been established over the

years [38].

In [145], Wald also proved the following property, relating Sn =
∑n

i=1 Yi to a

stopping time defined on it in terms of the MGF of Y :

Theorem 2 ( Wald’s identity) If N is a stopping time for S1, S2, . . . such that

|Sn| < γ for any n ∈ N satisfying n ≤ N and EP [N ] < ∞, then for any real t 6= 0

such that 1 ≤ ϕ (t) <∞

EP
[
etSNϕ (t)−N

]
= 1. (2.3.1)

Theorem 2 follows from the fact that for any (deterministic) time n, the process(
etSnϕ (t)−n

)
n≥0

is a martingale with respect to the natural filtration Fn = σ (Y1, . . . , Yn)

(which is the σ-algebra generated by Y1, . . . , Yn), and therefore (2.3.1) holds under any

condition which implies the satisfiability of Doob’s optional sampling theorem2 (see,

e.g., [152], Sec. 10.10) for this martingale. The proof of this theorem appears in [15].

Theorem 2 implies the following:

Corollary 3 Suppose ϕ (t) <∞ in a neighborhood of t = 0, then

1. If P (Y > 0) > 0 , P (Y < 0) > 0, and µP 6= 0 there exists two non-zero numbers

t0 and t1 such that ϕ (t0) = ϕ (t1) = 1 and Wald’s identity implies that

EP
[
et0SN

]
= EP

[
et1SN

]
= 1. (2.3.2)

2.

EP [SN ] = µPEP [N ] . (2.3.3)

3. Define σ2 , Var (Y1). Then

EP
[
(SN −NµP )2] = σ2EP [N ] . (2.3.4)

2Generally, Doob’s optional sampling theorem says that, under certain conditions, the expected
value of a martingale at a stopping time is equal to the expected value of its initial value.
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The relations (2.3.3) and (2.3.4) are often referred to as “Wald’s first equation” and

“Wald’s second equation”, respectively. The first part of this corollary is proved in

[51], and parts 2 and 3 are simply applications of the monotone convergence theorem

combined with Theorem 2 [120]3.

Recall that Wald’s SPRT consists of choosing real numbers 0 < B < 1 < A <∞,

and defining the stopping time

N = inf
n≥1
{Ln ≥ A or Ln ≤ B} . (2.3.5)

The decision rule is then to accept H1 if LN ≥ A and accept H0 if LN ≤ B.

In order to connect the results in this section to Wald’s SPRT, it is convenient to

express the test in terms of the log-likelihood ratio logLn. Let

Z = log

[
Q (Y )

P (Y )

]
, Zk = log

[
Q (Yk)

P (Yk)

]
, k = 1, 2, . . . (2.3.6)

where Q is another probability measure under which Y1, Y2, . . . are i.i.d., and define

Sn , log (Ln) =
∑n

k=1 Zk. For any fixed n, the random variable Sn is then a random

walk with EP [Z] < 0 < EQ [Z]. Furthermore, by setting a = logA , b = logB

(b < 0 < a), N can be rewritten as

N = inf
n≥1
{Sn ≥ a or Sn ≤ b} . (2.3.7)

This representation allows us to obtain some of the important properties of N , using

the results above. Using Theorem 1, we conclude that N is EB under P and under

Q (and, as a matter of fact, N is EB under any measure P excluding measures under

which P (Z = 0) = 1). Consequently, if Pr (Z = 0) < 1, then Pr (N <∞) = 1 and N

has moments of all orders. Thus, Wald’s SPRT terminates with probability 1. Also,

applying Wald’s first equation to Sn and using (2.2.11), a lower bound for the expected

stopping time in terms of the error probabilities can be found, that is,

EP [N ] ≥ µ−1
P

[
α log

(
1− β
α

)
+ (1− α) log

(
β

1− α

)]
, (2.3.8)

EQ [N ] ≥ µ−1
Q

[
(1− β) log

(
1− β
α

)
+ β log

(
β

1− α

)]
. (2.3.9)

3More accurately, it follows from the theorem that both Un , Sn−nµ and Vn , (Sn − µn)
2−nσ2

are martingales with respect to their natural filtration. The result follows using Doob’s Sampling
Theorem for Martingales.
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Notice that in order to obtain these lower bounds all that was used is the fact that

the observations are i.i.d., combined with (2.2.6) and Jensen’s inequality, and hence

they are valid for any sequential test with error probabilities α and β and a stopping

time N .

In order to gain more insight on equations (2.3.8) and (2.3.9), we rewrite, say,

equation (2.3.9) in the following form, using the definition of the Kullback-Leibler

divergence [29] µQ = EQ [Z] = D (Q ‖ P ):

EQ [N ]D (Q ‖ P ) ≥
[
(1− β) log

(
1− β
α

)
+ β log

(
β

1− α

)]
. (2.3.10)

Now, denoting by QN and PN the distributions of the observations under Q and P re-

stricted to FN , i.e., QN (A) = Q ({Y1, . . . , YN} ∈ A) and PN (B) = P ({Y1, . . . , YN} ∈ B),

the left hand side of (2.3.10) equals D
(
QN ‖ PN

)
(this can be checked using Wald’s

first equation). In order to give an information-theoretic interpretation of the right

hand side of (2.3.10), notice that the final decision of the decision function can be

described using the following random variable: under the measure Q,

d (Y1, . . . , YN) =

0 w.p. 1− β

1 w.p. β
(2.3.11)

and under the measure P ,

d (Y1, . . . , YN) =

0 w.p. α

1 w.p. 1− α
(2.3.12)

Next, define the measures Q̃N and P̃N such that Q̃N (i) = Q (d (Y1, . . . , YN) = i) and

P̃N (i) = P (d (Y1, . . . , YN) = i) (i = 0, 1). Using these notation, (2.3.10) can be

written as:

D
(
QN ‖ PN

)
≥ D

(
Q̃N ‖ P̃N

)
(2.3.13)

and equality holds if the random variable d (Y1, . . . , YN) provides a full description of

the random vector Y1, . . . , Yn on the event {N = n}, which is the case where there is no

excess over the boundary values of the test statistic of the SPRT (with probability 1).

By applying Wald’s approximation to the SPRT, it is easy to verify that the in-

equality signs are replaced by equalities, and so, under this crude approximation,

Wald’s SPRT is the optimal test in the sense that for given error probabilities, it

minimizes the expected value of the stopping time under both hypotheses. This opti-

mality property holds also in the general case, as is implied from the Wald-Wolfowitz

Theorem, to be discussed in the next section.
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2.4 Optimality Property of Wald’s SPRT

The SPRT exhibits minimal expected stopping time, both under P and Q, among all

sequential tests between a simple hypothesis against a simple alternative with i.i.d.

observations, given error probabilities and finite EP [N ] and EQ [N ]. In particular, we

have the following well-known result by Wald and Wolfowitz [147],[148]:

Theorem 4 (Wald and Wolfowitz) Suppose that (N, d) is the SPRT with bound-

ary values A and B (with 0 < A < 1 < B <∞) and error probabilities α and β. Let

(d′, N ′) be any other sequential decision rule with finite EP [N ′] and EQ [N ′] and error

probabilities α′ and β′ satisfying

α′ ≤ α, β′ ≤ β. (2.4.1)

Then

EP [N ′] ≥ EP [N ] , EQ [N ′] ≥ EQ [N ] . (2.4.2)

Another feature of Wald’s SPRT is its similarity to the classical Neyman-Pearson

fixed-sample-size test of the simple null hypothesis H0 versus the simple alternative

H1 subject to the type I error constraint. Both tests involve the likelihood ratios and

are, if fact, solutions to natural optimization problems. While the Neyman-Pearson

optimization criterion is aimed to minimize the type II error probability for the given

sample size and type I error bound, the Wald and Wolfowitz criterion is aimed to

minimize both EP [N ] and EQ [N ] under the type I and II error constraints.

There are essentially two parts in the proof: first, under a given loss (for making

the wrong decision) and cost (for taking a single observation), show that a Bayes test4

is an SPRT; second, given a SPRT, show that there is a loss and cost structure that

makes it Bayes. A walk through of the main steps of the proof is given in [26]. Note

that in the classical proofs of this theorem (as appear in [147] and [6]), there are some

flaws. More rigorous and clear proofs of this theorem can be found in [91], [60], [102],

[27], [17] (with relaxation of the finiteness of expected stopping time), [51] and [97] for

a more modern analysis using Markov chain properties.

4A Bayes test is a sequential procedure which minimizes the Bayes risk. The notions “Bayes risk”,
“cost” and “loss” will be formally defined in the next section of the text.
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2.5 A Note on the Derivation of Wald’s SPRT

Let us consider a probability space (R∞,B∞, Pπ) where

Pπ = (1− π)P∞ + πQ∞, 0 < π < 1 (2.5.1)

and where P∞ and Q∞ are probability measures on (R∞,B∞) with marginal distribu-

tion P and Q on (R,B) such that, under P∞ (Q∞) Y1, Y2, . . . are i.i.d. with marginal

distribution P (Q). Note that as n→∞

λn =
n∏
k=1

Q (Yk)

P (Yk)
→

{
0 a.s. under P∞

∞ a.s. under Q∞
(2.5.2)

and so, if we are observing Y1, Y2, . . ., one can decide perfectly between the two hy-

potheses of interest.

In his paper, Wald [145] used basic mathematical and probabilistic tools in order

to develop his sequential probability ratio test. In general, Wald’s idea was to up-

date the posteriori probabilities of the two hypotheses at each time step, using the

information given by the observations available up to that time, and to stop taking

observations as soon as one of the two computed a posteriori probabilities passes a

certain, predetermined constant. This constant may differ from one hypothesis to the

other and is set according to the prior probabilities and the desired error probabilities

α and β. This simple decision protocol (and stopping procedure) comprises the very

essence of sequential hypothesis testing: as soon as we can declare that one of the

two hypotheses is true with a reasonable certainty, we stop taking observations and

decide on this reasonable hypothesis. Here “reasonable certainty” is in the sense that

the a-posteriori probability of one hypothesis is “large enough” so that the chance of

making an error is small. This heuristic approach led Wald to come up with what

is now known to be the optimal sequential hypothesis test (in the sense of Theorem

4). In addition, the classical sequential detection problem can be viewed as an opti-

mal stopping problem (or, more accurately, a Markov optimal stopping problem) 5 in a

Bayesian framework. It is possible to prove that Wald’s SPRT is the solution of the

optimal stopping problem. This was done, for example, in [27] and [119]. Since the

5An optimal stopping problem is a problem in which we try to choose a stopping time N to
minimize E [ZN ] over some interesting class of stopping times where Zk represents a loss or a cost
to be paid at time k. A Markov optimal stopping problem is an optimal stopping problem whose
loss sequence can be represented as Zk = gk (Xk) where gk (·) are measurable functions and Xk is a
Markov process.
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latter approach gives more insight into the fundamental structure of the SPRT, we

will concentrate on it rather than on Wald’s original techniques.

The starting point of the derivation of an optimal sequential decision rule is to

introduce costs cj > 0 for falsely rejecting hypothesis Hj (j = 0, 1) and a cost C > 0

per sample, so that the cost of taking n samples is nC. To understand the necessity

of theses costs, notice that (2.5.2) implies that the quality of a decision will keep on

improving as the number of samples grows, and thus, a mathematical tool is needed

in order to temper the net benefit of that improvement and to implement the tradeoff

between the error probabilities and the time until the test terminates. To that end, we

define, for any sequential test (N, d), two performance indices of interest: the average

cost of errors,

ce (N, d) = (1− π) c0P (d = 1) + πc1Q (d = 0) (2.5.3)

and the average cost of sampling,

CEπ [N ] , (2.5.4)

where Eπ [·] denotes expectation with respect to Pπ. The sum of the two costs is often

referred to as the Bayes risk or simply as the risk, denoted by R (π,N, d), and is given

by

R (π,N, d) = ce (N, d) + CEπ [N ] . (2.5.5)

To see the structure of the optimum decision rule, it is useful to consider the

function V (π,N ,D) defined as the solution to the following optimization problem:

V (π,N ,D) , inf
N∈N , d∈D

[ce (N, d) + CEπ [N ]] . (2.5.6)

The first step in solving (2.5.6) is to notice that, given a stopping time N ∈ N , it

is easy to determine a terminal decision rule d ∈ D which minimizes the function

V (π,N ,D) for fixed values of c0, c1 and π. To that end, note that the summand

V (π,N ,D) that depends on d, ce (N, d), satisfies ([119], Proposition 4.1)

inf
d∈D

ce (N, d) = Eπ [min {c1π
π
N , c0 (1− ππN)}] (2.5.7)

and the sequence {ππk} is defined by the recursion

ππk =
ππk−1Q (Yk)

ππk−1Q (Yk) + ππk−1P (Yk)
, k = 1, 2, . . . , ππ0 = π (2.5.8)

where the random variable ππk is the posterior probability that H1 is true, given

Y1, . . . , Yk.
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Moreover, the infimum in (2.5.7) is achieved by the terminal decision rule

d′N =

{
1 if ππN ≥ c0/ (c0 + c1)

0 if ππN < c0/ (c0 + c1)
(2.5.9)

and thus the problem of (2.5.6) reduces to the alternative problem defined by the

function V (π,N ):

V (π,N ) = inf
N∈N

[Eπ [min {c1π
π
N , c0 (1− ππN)}] + CN ] . (2.5.10)

Hence finding a pair (N, d) that achieves (2.5.6) amounts to solving the following

problem: given 0 < π < 1, let Y1, Y2, . . . have a joint density function Pπ. For given

c0, c1 > 0, let

h (λ) = min {c0λ, c1 (1− λ)} 0 ≤ λ ≤ 1 (2.5.11)

vn = h (ππn) + Cn. (2.5.12)

The goal is then to find a stopping time N ∈ N such that Eπ [vN ] is minimized. We

will denote the random variable vn as the loss at time n. Note that in the present

context we are allowed to take no observations and decide in favor of H0 or H1 with

v0 = h (π); also, a stopping time which takes the value 0 (that is, stops the test before

starting to take observations) must do so with probability 0 or 1, since F0 = {∅,Ω}.
The problem is trivial if c0 ≤ C or c1 ≤ C since then h (λ) < 1 and v0 < vn for all

n, so that the optimal rule is N = 0. We thus assume that the costs are both larger

than C.

The following non-rigorous argument has a considerable intuitive appeal. We ask

initially whether we should take a first observation. We compute

V ? (π) , V
(
π,N (1),D

)
= inf

N∈N (1) , d∈D
[ce (N, d) + CEπ [N ]] , (2.5.13)

where N (1) is the class of all stopping times that take at least one observation. V ? (π)

then represents our minimum expected cost if we take at least one observation. If we

take no observations, our loss is h (π) and hence we should take a first observation if

and only if h (π) > V ? (π).

Next, notice that: (a) vn depends on Y1, . . . , Yn only through the value of ππn

and (b) the sequence ππk forms a stationary Markov process [119]. Suppose that we

take an initial observation. If we stop, our loss is h (ππ1 ) + C. If we continue, our
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prospects of the future are exactly the same as those with no samples in the sense

that we still have infinitely many i.i.d. samples at our disposal and the costs are

the same, but we have already “paid” a cost C and the priori is now ππ1 . Hence the

minimum expected loss among rules taking at least one more observation is V ? (ππ1 )+C,

and we should take a second observation if and only if h (ππ1 ) + C > V ? (ππ1 ) + C.

The argument is repeated by induction, so that the natural candidate for an optimal

stopping time is N = inf {n > 0 : h (ππn) ≤ V ? (ππn)}. Let A = {π : h (π) ≤ V ? (π)}.
Since V ? (·) is concave with V ? (0) = V ? (1) = C ([51], 7.6 Lemmas 1 and 2), assuming

A 6= [0, 1], then it is not hard to show that there are unique numbers πU and πL

such that A = {π : π ≤ πL or π ≥ πU} and that (N, d′N) is Wald’s SPRT. This fact

is thoroughly dealt with in [120] which, follows the footsteps of [51] and is illustrated

graphically in both.
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Chapter 3

Composite Hypotheses Testing

3.1 Introduction

So far, we have only considered the problem of sequentially testing two hypotheses

where the observation sequence under each one of the hypotheses is i.i.d. with a given

distribution. Such hypotheses, that specify exactly one distribution, are called simple

hypotheses. In contrast, in the problem of testing two composite hypotheses, there

is an additional uncertainty which will be represented by specifying a collection of

possible models for each hypothesis. In the problems discussed in the sequel, these

collections will be indexed by a parameter. The binary composite hypothesis testing

problem is thus given by

H0 : Pr (Y n
1 ) =

∏n
i=1 Pθ0 (Yi) , θ0 ∈ Θ0 (3.1.1)

H1 : Pr (Y n
1 ) =

∏n
i=1 Pθ1 (Yi) , θ1 ∈ Θ1, (3.1.2)

where Pθ0 and Pθ1 represent families of probability measures indexed by the parameters

θ0 and θ1 respectively, which can be thought of as elements of some vector space

Θ(Θ0 ∩Θ1 = ∅ and Θ0 ∪Θ1 ⊂ Θ). As discussed in the previous section, the problem

of sequentially testing two simple hypotheses was solved by Wald and Wolfowitz [148].

More precisely, the Wald and Wolfowitz theorem implies that among all tests with

given upper bounds on the error probabilities of type I and type II, Wald’s SPRT

minimizes simultaneously the expected sample size under the two hypotheses (provided

that these expected values exist and are finite). The theory of optimal sequential tests

of composite hypotheses, however, is much less complete, and many basic problems are

still open. In addition, the “naive” extension of the optimal finite-sample-size test will
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not yield such a good performance as in the case of the binary sequential hypothesis

test with simple hypotheses.

In the case of fixed sample size tests, the error probabilities cannot be controlled

simultaneously. It is therefore customary to assign a bound on the probability of

rejecting H0 when it is true, and to attempt to minimize the other probability of error

subject to this condition. Thus, one selects a number α ∈ [0, 1], called the level of

significance or simply the level, and imposes the condition

Pθ (choose H1) ≤ α for all θ ∈ Θ0. (3.1.3)

Subject to this condition, it is desired to maximize

Pθ (choose H1) for all θ ∈ Θ1. (3.1.4)

The probability (3.1.4), evaluated at a given θ ∈ Θ1, is called the power of the test

against the alternative θ. Considered as a function of θ, the probability (3.1.4) is called

the power function of the test. Typically, the test that maximizes the power against a

particular alternative in Θ1 depends on the alternative. In special cases, it may turn

out that the same test maximizes the power for all alternatives in Θ1 - in this case,

we say that the test is uniformly most powerful (UMP).

In the case of testing two simple hypotheses, it is well known that the optimal test,

in the sense of maximizing the power function for a given level, is the Neyman-Pearson

(N-P) test. This test is constructed by comparing the likelihood ratio of the fixed-

length observation sequence to a given threshold, the value of which is determined

according to the required level of the test, and deciding on the most likely hypothesis.

The first step to extend the N-P theory from simple to composite hypotheses is to

consider one-sided composite hypotheses of the form H0 : θ ≤ θ0 versus H1 : θ ≥
θ1 (> θ0) in the case of parametric families with a monotonic likelihood ratio indexed

by a real parameter θ. In this case, it can be shown that the level of the N-P test of

H : θ = θ0 versus K : θ = θ1 (> θ0) does not depend on the alternative θ1. Due to this

fact, and the fact that the power function is strictly increasing, it is possible to reduce

the composite problem to the problem of simple hypotheses and, in turn, develop an

optimal test, in the sense of a uniformly most powerful test (the full derivation can be

found, for example, in [128] and [91]).

In the sequential problem, however, this is not possible. As an illustration of

this, let Y1, Y2, . . . be i.i.d. normal random variables with mean θ and variance 1.
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To test the composite null hypothesis H0 : θ ≤ θ0 versus the composite alternative

H1 : θ ≥ θ1 (> θ0) subject to an error constraint Pθ (Reject H0) ≤ α for θ ≤ θ0 and

Pθ (Reject H1) ≤ β for θ ≥ θ1, one can use the SPRT of H : θ = θ0 versus : θ = θ1 with

type I and II error probabilities α and β, respectively. The monotonic likelihood ratio

structure implies that the SPRT also satisfies the error constraints for the composite

hypothesis problem. Although the SPRT that satisfies the error probability constraint

has a minimal expected stopping time at θ = θ0 and θ = θ1, its expected stopping

time can be far from optimal at other values of θ. For example, for α = β, the

expected sample size is maximized when the true value of the parameter is equal

to θ0+θ1
2

. In this case, the expected sample size needed in order to satisfy the error

probability constraints can be larger than the sample size in an optimal fixed size

test, under the same constraints. This was also pointed out by Kiefer and Weiss [81]

who suggested some approaches to deal with problems like the one described. These

include a minimax approach of finding a sequential test which minimizes sup
θ

Eθ [N ]

over the set of feasible values of θ, where N denotes the stopping time (this problem is

better known as the ”Kiefer-Weiss problem”). In the following sections, a few different

variants of this problem are reviewed, and suggestions for further work on the subject

are given.

3.2 Composite Hypothesis Testing - First Steps

In this section, we focus on some of the early ideas of sequentially testing composite

hypotheses. Although, as seen in the previous section, it is not wise to use the natural

extension of the N-P test constructed for the case of fixed (and finite) sample size,

one can still use certain concepts from the finite size problem and apply them on the

unlimited one. Two such concepts are the following:

Generalized Likelihood Ratio Test (GLRT): In the construction of the gen-

eralized likelihood ratio, we model θ ∈ Θ as a fixed, but unknown, parameter. The

GLRT, adopted from the classical fixed-sample size theory, is defined for some 0 <

A < 1 < B <∞ as

NGLRT = min
n≥0

{
GLRn ,

supθ∈Θ0

∏n
i=1 Pθ0 (Yi)

supθ∈Θ1

∏n
i=1 Pθ1 (Yi)

6∈ (A,B)

}
. (3.2.1)

The test statistics GLRn can be constructed by estimating θ using the Maximum

Likelihood (ML) method under H0 and H1 from the data available up to time n,
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and plugging the estimate into the GLR. The decision function dWSPRT rejects H0 if

GLRn ≤ A and rejects H1 if GLRn ≥ B. Note that, although intuitively appealing,

the GLRT is not necessarily the optimal test. This claim holds for the non-sequential

case as well [91].

Weighted SPRT: The next sequential test for composite hypotheses was sug-

gested by Wald and it is described in Section 6 of [145]. When either one or both

hypotheses H0 or H1 are composite, Wald proposed the use of weight functions: the

idea is to construct “new” simple hypotheses out of the composite ones, and to use

Wald’s SPRT for these simple hypotheses. This test is often referred to as the weighted

SPRT (WSPRT) or weighted mixtures. The simple hypotheses are constructed us-

ing the weight functions w0 (θ) , w1 (θ), which satisfy wi (θ) ≥ 0 and
∫
wi (θ) dθ = 1

(i = 0, 1), in the following way:

H0 : Pr (Y n
1 ) =

∫
Θ0
w0 (θ0)

∏n
i=1 Pθ0 (Yi) dθ0 (3.2.2)

H1 : Pr (Y n
1 ) =

∫
Θ1
w1 (θ1)

∏n
i=1 Pθ1 (Yi) dθ1. (3.2.3)

The stopping time takes the form

N
WSPRT

= min
n≥0

{
WLRn ,

∫
Θ0
w0 (θ)

∏n
i=1 Pθ0 (Yi) dθ∫

Θ1
w1 (θ)

∏n
i=1 Pθ1 (Yi) dθ

6∈ (A,B)

}
(3.2.4)

and the decision function d
WSPRT

rejects H0 if WLRn ≤ A, and it rejects H1 if

WLRn ≥ B.

The expressions for Pr (Y n
1 ) can be interpreted as the probability measure on the

sample space of n observations if we use the model that assumes θ0 and θ1 be the

independent random variables with prior probability distribution w0 (θ) and w1 (θ). In

this sense, the WSPRT can be viewed as a method of comparing the average model

(with respect to the priors wi (θ), i = 0, 1). It is also clear from these expressions

why the WSPRT is sometimes referred to as “Bayes factor”. Using the same methods

described in Section 2.2 for bounding the error probabilities, it is possible to obtain

the following bounds:∫
Θ0

w0 (θ0)Pθ0 (dWSPRT = H1) dθ0 ≤
1

B
, (3.2.5)∫

Θ1

w1 (θ1)Pθ1 (dWSPRT = H0) dθ1 ≤ A. (3.2.6)

The WSPRT’s greatest advantage is the fact that it is amenable to simple mathemat-

ical analysis as the one used in order to derive (3.2.5) and (3.2.5) , and the fact that it
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allows the observer to define a weight corresponding to each θ ∈ Θ. This, in turn, can

be used in order to mitigate large error probability on θ’s that are “more important”

in some sense. However, this method of dealing with composite hypotheses has many

downsides. For the non-Bayesian problem, where the weight functions have no specific

meaning and are to be chosen somehow arbitrarily, it is not clear whether the proba-

bilities (3.2.5) and (3.2.6) are of any real significance. Clearly, for practical purposes,

one would strongly prefer to upper-bound rather then the maximal error probabilities

of Types I and II, the average error probabilities, which depend on a particular choice

of weights. However, in general, it is not clear how to obtain the upper bounds on

maximal error probabilities of the WSPRT and the GSLRT. In addition, even when

considering a Bayesian setup, in which the weight function are assumed given and rep-

resent the prior on the parameter space Θ, it has not been possible to obtain analytical

results regarding the optimal sequential test for this composite hypotheses problem

(In contrast to the case of testing simple hypotheses). The fact that exact result seem

to be out of reach triggered the search for asymptotic optimal solutions in a sense soon

to be defined.

3.3 The Modified Kiefer-Weiss Problem and the 2-

SPRT

In this section, a different type of test is presented, taking into account only three

possible “states of Nature”. In other words, a sequential hypothesis testing procedure,

for the case where three simple hypotheses are to be tested about a certain parameter,

is discussed. Although this type of problems will be reviewed more thoroughly in

the next chapter, the motivation and connection to our current discussion, regarding

composite hypotheses, can be understood through the following example, which was

also discussed in the introduction to this section: say a normally distributed i.i.d.

sequence is observed, and is to be tested about its mean, θ ∈ R, where the error

probability constraints of types I and II are given by

Pθ (choose H0) ≤ α for all θ ≤ θ0 (3.3.1)

Pθ (choose H1) ≤ β for all θ ≥ θ1 (> θ0) (3.3.2)

for some α, β ∈ [0, 1] and θ0 < θ1.
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Although satisfying the error probability constraints,the SPRT for the hypotheses

H0 : θ = θ0 versus H1 : θ = θ1 does not yield an optimal test in this case (in the Wald

and Wolfowitz sense), the reason being that this test does not take into account the

possibility that the true θ falls in [θ0, θ1]. In such case, the SPRT may give rise to

an expected stopping time which is unnecessarily large. In fact, a desired formulation

of the problem would be minimize the expected stopping time taken with respect

to the true parameter θ, under the constraints (3.3.1) and (3.3.2). The problem is

that, in general, the true hypothesis is assumed to be unknown. Another appealing

formulation is to try to solve the Kiefer-Weiss problem of minimizing the maximum

(over Θ) expected sample size under the probability of error constraints.

Many attempts have been made to address this well-known criticism of Wald’s

SPRT, namely, the fact that the expected sample size may be large if the “true”

underlying distribution is not one of the two distributions specified by the hypotheses.

In this case, there is no upper bound on the sample size. Examples that will not be

discussed in this work, for such attempts to find upper bounds in specific cases, can

be found in [131, Section 3.6] (The truncated SPRT), [2], [94] (in which the repeated

likelihood ratio test is proposed to test a simple null hypothesis against a composite

alternative, by maximizing the likelihood ratio over the alternative and rejecting the

null hypothesis if, at some stage, the likelihood ratio test rejects it) and in [4, Section

2.4] and [155, Chapter 7] (where the repeated significance tests is defined).

The main motivation to come up with the composite hypothesis testing setting

and the specific test that will be described in the next section, relies on the important

fact that in some cases, the Kiefer-Weiss minimax problem boils down to a simpler

problem where the inner maximum is easy to calculate (e.g., in the example discussed

in the beggining of the section, in which the maximum is achieved at 1
2

(θ0 + θ1) or

other examples [150]). In addition, in cases where the likelihood ratio is a monotonic

function of the tested parameter, for any sequential test that uses the likelihood ratio

as its tested statistics, it is enough to satisfy the error probability constraints on the

boundary, i.e., at θ = θ0 and θ = θ1. An important family of density functions

(or probability mass functions, for the case of a discrete distribution) that bear this

property is the one-parameter exponential family (also called the Koopman-Darmois

family)1.

1A distribution is said to belong to a one-parameter exponential family if the probability density
function (or probability mass function) can be written as Pθ (y) = h (y) exp {η (θ) · T (y)−A (θ)}
where θ belongs to a real (vector) parameter space and h, η, T,A are some given real-valued functions
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In view of the above, it is clear why it is interesting to consider the problem

known as the modified Kiefer-Weiss problem. Kiefer and Weiss [81] considered the

problem of minimizing the expected sample size Eθ [N ] at some given θ? subject to

error probability constraints at θ0 and θ1 in a one-parameter exponential family with

a parameter θ. More precisely, the modified Kiefer-Weiss problem is formulated as

follows: the observations Y1, Y2, . . . are random variables on a sample space where the

true probability is one of three measures P0, P1 and Pθ? . Under each of these measures,

the Yi’s are i.i.d. For simplicity, we assume that the probability densities exist and

belong to the one-parameter exponential family with a parameter θ ∈ Θ ⊂ R. We

denote the densities by fθ0 , fθ1 and fθ? where θ0, θ1, θ
? ∈ Θ. This assumption will be

made throughout this section unless stated otherwise. As usual, the pair (N, d) is a

sequential test consisting of a stopping time N and a decision rule d : yN1 → {θ0, θ1}.
The error probabilities are then

α = fθ0 ({d = θ1}) , β = fθ1 ({d = θ0}) (3.3.3)

and the goal is to find a sequential test that, for a given pair of error probabilities (α, β),

will ensure that Eθ? [N ] is minimized. The idea behind this mathematical formulation

is that it allows to plug in θ? that may yield an extremely large expected stopping

time. As mentioned before, in cases where the θ that achieves maximum in the Kiffer-

Weiss can be calculated analytically, plugging in this maximizer will yield a solution

to the Kiffer-Weiss problem. In [98], Lorden studied the structure of an optimal test

for the modified Kiefer-Weiss problem in the symmetric case (where θ1 = −θ0) for

the mean of the normal and binomial distributions.In [150] Weiss showed that the

optimal test for this problem will have structure that resembles the SPRT (i.e., based

on likelihood ratios) but with non-linear boundaries Un and Vn. Following this work,

Lorden pointed out the possibility of using “backward induction” to approximately

determine these optimal boundaries for the case of discrete time. Lai [85] considered

the case of testing the drift of a Wiener process, and reduced the problem of finding

the boundaries to the problem of solving a Stefan problem (which is a boundary value

problem for a partial differential equation, adapted to the case in which the boundary

can move with time). However, also in this case, only asymptotic estimates for Un and

Vn were obtained.

Since there was no success in finding an exact solution of the modified Kiefer-Weiss

[92].
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problem (and even if there was such a solution, its implementation would have been

nearly infeasible), researchers began to look for asymptotically optimal solutions with

the hope to gain insight as well as to find simple test structures that perform well

at least asymptotically. In the sequel, a few different criteria for optimality will be

given, but on the other hand, the asymptotics will always be in the sense of very large

sample sizes. Mathematically, this asymptotic regime is implemented by taking the

upper bound constraints on the error probabilities to zero (or, if we assume a cost for

taking a sample in given, then taking the limit as this cost goes to zero will give rise

to an equivalent asymptotic regime, as will be explained later).

Hoeffding [71] derived a lower bound on Eθ? [N ] subject to error probability con-

straints at some θ0 and θ1 in the limit where the error probabilities vanish (where

θ? 6= θ0 6= θ1 and all belong to Θ), and Lorden [95] has made a big progress in the

same direction by providing an asymptotic solution to the modified Kiefer-Weiss prob-

lem. The test that achieves this asymptotic optimality property is called the 2-SPRT.

The 2-SPRT is fully defined given the probability densities fθ0 , fθ1 , fθ? and two con-

stants A0 and A1 which will serve as the threshold values of the test. The stopping

rule of the 2-SPRT takes on the form of

N2 = inf
n≥1

{
n∏
i=1

fθ? (Yi)

fθ0 (Yi)
≥ A0 or

n∏
i=1

fθ? (Yi)

fθ1 (Yi)
≥ A1

}
(3.3.4)

and the decision rule is given by

d2

(
Y
N2

1

)
= θ0 if

N2∏
i=1

fθ? (Yi)

fθ0 (Yi)
≤ A0 and d2

(
Y
N2

1

)
= θ1 if

N2∏
i=1

fθ? (Yi)

fθ1 (Yi)
≤ A1.

(3.3.5)

In the case where both equalities in (3.3.5) hold, the choice between θ0 and θ1 can

be made arbitrarily. Notice that if θ? = θ0 or θ? = θ1, the 2-SPRT degenerates into

Wald’s SPRT, and so, at least for this case, we know that Lorden’s 2-SPRT is optimal

(even before taking the limit of the error probabilities to zero). Moreover, it is known

that the SPRT allows for a good tradeoff between constraints on error probabilities

of type I and II, and the expected stopping time under both hypotheses. From this

point of view, this test is a particulary natural choice from the family of tests that

perform two one-sided SPRTs - one for the possible rejection of θ1 and the other for

the rejection of θ0. The alternative hypothesis, in each one-sided SPRT, is chosen to

be fθ? , which is also quite sensible since the expected stopping time which we want to

control is taken with respect to this measure.
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The optimality of the test is established in the next theorem:

Theorem 5 (Theorem 1 in [95]) Let α (A0, A1) and β (A0, A1) denote the error

probabilities of the 2-SPRT defined by the stopping rule (3.3.4), and let the decision

rule be

d2 =


H0 if

∏N2

i=1
fθ? (Yi)
fθ0 (Yi)

≤ A0 and
∏N2

i=1
fθ? (Yi)
fθ1 (Yi)

> A1

H1 if
∏N2

i=1
fθ? (Yi)
fθ1 (Yi)

≤ A1 and
∏N2

i=1
fθ? (Yi)
fθ0 (Yi)

> A0

or
∏N2

i=1
fθ? (Yi)
fθ1 (Yi)

≤ A1 and
∏N2

i=1
fθ? (Yi)
fθ0 (Yi)

≤ A0

. (3.3.6)

Furthermore, let n (A0, A1) denote the infimum of Eθ? [N ] over all tests satisfying

α ≤ α (A0, A1) and β ≤ β (A0, A1). Under the assumption that the second moment of

both fθ? (Yi)
fθ0 (Yi)

and fθ? (Yi)
fθ1 (Yi)

exist and are finite, if A0 > 0 and A1 > 0, then, in the limit

where max {A0, A1} → ∞,

Eθ? [N ]− n (A0, A1)→ 0. (3.3.7)

In other words, this theorem implies that the difference between the expected stopping

time of the 2-SPRT and the best expected stopping time, taken at θ = θ?, among all

sequential tests satisfying the error probability constraints at θ0 and θ1, goes to zero,

as the upper bound constraints on the error probabilities go to zero. It can be shown

that the same result holds when, instead of the asymptotic regime, the two types

of error probabilities go to zero (using the relations that where reviewed in the first

chapter of this work).

To prove this theorem, Lorden used the Bayes risk formulation in which some

target function, known as the Risk function is minimized (this is done by following the

proof in [148] and invoking results from [27]) to determine that (3.3.4) indeed bears

the structure of an optional stopping rule with respect to the risk function. Another

interesting feature of the 2-SPRT is that for testing a normal family with mean θ such

that θ0 = −θ1, the minimax problem of minimizing supθ Eθ [N ] reduces to a modified

Keifer-Weiss problem with θ? = 0, and in turn, the continuation region2 of the 2-

SPRT is reduced to the triangular stopping boundary introduced earlier by Anderson

[2]3, and is known as ”the Anderson modification to the SPRT”, in which the test

2Let T (·) be the test statistic. In sequential analysis, the region in the space of (T (yn) , n) in
which the decision maker decides to take another observation called the continuation region.

3By triangular stopping boundary we meed that the stopping boundaries of the test form a triangle
in the time-test statistic space, in a way that ensures that E [N ] in finite.
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statistic is the random walk
∑
yi, and the stopping boundaries are linear in the time

variable n. In a later work, Anderson’s modification to the SPRT has been shown

by Lai [85] to be an asymptotic solution to the optimal stopping problem associated

with the original Kiefer-Weiss problem. Although out of the scope of this work, it

is worth mentioning that this asymptotic optimal continuation region holds for the

continuous-time problem as well, if we consider instead of the i.i.d. random process a

standard Wiener process [85].

More results that generalize and extend the result discussed above regarding the

use of the 2-SPRT test can be found, for example, in [64] where Hoeffding’s lower

bounds on Eθ? [N ] are used to derive, for this setup, a family of tests called ”min-

imum probability ratio tests” that include Lorden’s 2-SPRT as a special case. In

[76], Huffman extended Lorden’s results and showed that a suitably chosen 2-SPRT

also provides an asymptotically optimal solution to the minimax sequential testing

problem of H0 : θ ≤ θ0 versus H1 : θ ≥ θ1 (> θ0) for a more general family of expo-

nential density functions but in a weaker sense than (3.3.7)4. Another generalization

is due to Dragalin and Novikov. In [42, Section 2], the authors have shown that as

max {A0, A1} → ∞, the mean time of the 2-SPRT differs from the optimal value only

by o (1) (that is, by a function going to zero like (max {A0, A1})−1 as max {A0, A1}
goes to zero).

In general, the modified Kiefer-Weiss problem does come up in some cases where the

ordinary (and complicated) Kiefer-Weiss problem is the reasonable model to consider.

In addition, the general structure of the test, using stopping criteria that are based

on one-sided SPRTs, or, more generally, on likelihood ratios, will be shown to be of

essence in many other aspects of sequential testing.

3.4 Back to the Bayes Problem - A Unified Theory

As mentioned before, the main drawback of the solution to the modified Kiefer-Weiss

problem, suggested in the previous section, is that ideally, θ? should be chosen to be

the true θ which is unknown. Nevertheless, the general structure of the 2-SPRT came

up also in the derivation of certain optimal sequential tests for composite hypotheses

in the Bayesian formulation. The difference between the 2-SPRT and the test that

4Specifically, in [76] the an optimal test is defined to be a test achieving n(A0,A1)
Eθ? [N ] → 0 as the error

probabilities go to zero.
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will be presented next, is that instead of θ?, an estimate regarding the true parameter

θ at each time step is used. The estimation of the true value of θ will be based on the

knowledge available up to that point, and no prior knowledge will be assumed.

Recall that, in the Bayesian formulation, we assume a known prior π on Θ. A cost

c > 0 is assigned to each observation and, in addition, a loss function w (θ) is given,

where w (θ′) is the loss associated with accepting the incorrect hypothesis θ′. We will

next focus on the Bayesian problem of testing a one-sided composite hypothesis of the

form H0 : θ ≤ θ0 versus H1 : θ ≥ θ1 (> θ0) in the one-parameter exponential family,

subject to the error constraintsPθ (reject H0) ≤ α for θ ≤ θ0

Pθ (reject H1) ≤ β for θ ≥ θ1.
(3.4.1)

A well known asymptotic approach to this problem is due to Schwartz [129] and is

often referred to as Schwarz’s theory of asymptotic shapes. The goal in [129] was to

find an asymptotic solution to the Bayes problem of testing H0 versus H1 with the 0-1

loss function and a cost c per observation, as c → 0 while θ1 and θ0 are kept fixed.

In other words, the problem Schwarz considered was to find a sequential rule that

minimizes

R (π,N, d) = c

∫
Θ

Eθ [N ] dπ (θ) +

∫
θ≤θ0

Pθ (d accepts H1) dπ (θ)

+

∫
θ≥θ0

Pθ (d accepts H0) dπ (θ) . (3.4.2)

Here, as in many other risk functions, c represents the ratio of between the sampling

cost and the cost due to a wrong decision.Schwarz assumed Y1, Y2, . . . are i.i.d. random

variables whose common density belongs to the one parameter exponential family.

Schwarz’s asymptotic theory led to a limiting continuation region in the space of

(
∑
Yi, n). It turns out that replacing θ? in the 2-SPRT by the maximum likelihood

estimate at stage n, denoted by θ̂n, gives rise to the same result as the one by Schwarz.

The sequential test (Ns, ds) corresponding to Schwarz’s ”asymptotic shape theory”, is

the following:

Ns (c) = Ns = inf
n≥1

{
max

{
n∏
i=1

fθ̂n (Yi)

fθ0 (Yi)
,

n∏
i=1

fθ̂n (Yi)

fθ1 (Yi)

}
≥ 1

c

}
(3.4.3)

and the decision rule is defined to be

ds (c) = ds =

{
H0 if

∏Ns
i=1 fθ1 (Yi) >

∏n
i=1 fθ0 (Yi)

H1 if
∏Ns

i=1 fθ1 (Yi) ≤
∏n

i=1 fθ0 (Yi) .
(3.4.4)
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Note that both Ns and ds are random variables that are parameterized by c, although

this will not be emphasized in the notation. Kiefer and Sacks [79] and Wong [154]

proved an upper bound on Ns, and they showed a first order approximation of Eθ [Ns]

for every θ in terms of |log c|, θ0 and θ1 in the limit c→ 0.

The asymptotic optimality of Schwarz’s test was then proved in the sense that for

any prior π

lim
c→0

R (π,Ns, ds)

inf∆=(N,d) {R (π,N, d)}
= 1, (3.4.5)

where R (π,N, d) is defined in (3.4.2).

Another important development in the area of Bayes sequential tests of composite

hypotheses is Chernoff’s work [22], [25] on testing Ĥ0 : θ < θ0 versus Ĥ1 : θ > θ0 in

the case where {Yi} are normal with mean θ and variance 1. Instead of assuming an

indifference zone, in which there are no constraints on the probabilities of error im-

posed, Chernoff derived different and considerably more complicated approximations

to the Bayes test using a different loss function, w (θ), for making a wrong decision.

For example, for θ0 = 0, the risk function of Chernoff was

R (π,N, d) = c

∫ ∞
−∞

Eθ [N ] dπ (θ) +

∫ 0

−∞
|θ|Pθ

(
N∑
i=1

Yi > 0

)
dπ (θ)

+

∫ ∞
0

θPθ

(
N∑
i=1

Yi ≤ 0

)
dπ (θ) , (3.4.6)

where the prior distribution π is assumed normal with mean 0 and variance σ2. More-

over, while Schwarz based his approximation on simple upper and lower bounds that

are associated with stopping when the posterior risk falls below c or below a constant

times c |log c| (for the upper and lower bound respectively), Chernoff’s theory, which

deals only with the normal case, is based on replacing the discrete-time stopping prob-

lem with a continuous-time stopping problem which can in turn be reduced to a partial

differential equation problem.

The fact that setting θ0 = θ1 in Schwarz’s test (and by that eliminating the indif-

ference zone) does not yield Chernoff’s test, has troubled the Statistical Society for

almost two decades. This disturbing discrepancy between the two asymptotic approx-

imations was finally resolved by Lai [86]. Lai proposed to replace the factor |log c| in

(3.4.3) by g (cn) where g is a function that satisfies g (t) ∼ log (1/t) as t → 0, and

is the boundary of an associated optimal stopping problem for the Wiener process5.

5For two function ν and µ we write ν ∼ µ if lim ν(t)
µ(t) → 1 as t→ 0.
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Formally, we get

N = inf
n≥1

{
max

{
n∑
i=1

log

(
fθ̂n (Yi)

fθ0 (Yi)

)
,

n∑
i=1

log

(
fθ̂n (Yi)

fθ1 (Yi)

)}
≥ g (cn)

}
. (3.4.7)

By plugging in the function g (·) that is time-dependent (and hence the boundary

values are adaptive in time), Lai gave a unified solution to both problems; the problem

of testing H0 versus H1, and, by setting θ0 = θ1 in (3.4.7), for testing Ĥ0 versus Ĥ1.

The unified theory for composite hypothesis testing also provides a bridge between

asymptotically optimal sequential and fixed sample size tests. In the fixed sample size

case, the Neyman-Pearson approach replaces the likelihood ratio by the generalized

likelihood ratio (GLR) (see, for example, [91]), which is also used in (3.4.7) for the

sequential test. Since the accuracy of θ̂n varies with n, it is quite natural that a time-

varying boundary g (nc) is used, instead of the constant boundary levels used when θ

is specified. The main idea is that the stopping time defined in (3.4.7) can adapt to

the unknown θ by learning it during the experiment and incorporating the diminishing

uncertainties in its value into the stopping boundary function g.

A natural generalization of these results for the case where multivariate exponential

families are to be tested is given in [89].More results and further references can be found

in [87] and [88].

3.5 The Minimax Bayesian Formulation

An important question is whether it is possible to generalize the non-asymptotic Wald-

Wolfowitz result to more than two hypotheses. Darakovsky [36] proposed a new for-

mulation of the problem of sequential discrimination of two composite hypotheses

admitting a parametric description. Namely, the problem of minimization of the max-

imal Bayesian risk with respect to the class of a priori distributions on a parameter

space is posed. The class of a priori distributions comprises all probabilistic distribu-

tions over the parametric set for which the a priori probability of validity of one of the

composite hypotheses is equal to a given value. It is only natural to call this problem

the minimax-Bayesian problem.

Formally, Darakovsky considered the following problem: Let Θ be a parametric set

in a finite-dimensional space, with Θ0 ∪Θ1 = Θ and Θ0 ∩Θ1 = ∅. The two families of

probabilistic distributions that are considered are Pi = {Pθ (y)}θ∈Θi
, i = 0, 1 where
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Pθ (y) is a density parameterized by θ. It is assumed that if θ1 6= θ2 then Pθ1 (Y) 6=
Pθ2 (Y) on some set Y (with non-zero measure). The two hypotheses to be tested are

(3.1.1) and (3.1.2).

We assume that the parameter θ has a prior distribution F (·) ∈ Fq where Fq =

{F (·)} is the family of distributions on Θ such that
∫

Θ0
dF (θ) = q and 0 < q < 1.

Let ∆ = (N, d) be a sequential test for this problem, and define the error probabilities

to be

α0 (∆, θ0) = Pθ0 (d = 1) for θ0 ∈ Θ0 (3.5.1)

α1 (∆, θ1) = Pθ1 (d = 0) for θ1 ∈ Θ1 (3.5.2)

and the conditional expectation of the stopping time:

T0 (∆, θ0) = Eθ0 [N ] for θ0 ∈ Θ0 (3.5.3)

T1 (∆, θ1) = Eθ1 [N ] for θ1 ∈ Θ1. (3.5.4)

Take w0 > 0 and w1 > 0 to be the losses due to a false decision and c > 0 be the cost

of one observation. Then the Bayesian risk defined earlier takes on the form of

R (F,N, d) =

∫
Θ0

[w0α0 (d, θ0) + cT0 (d, θ0)] dF (θ) (3.5.5)

+

∫
Θ1

[w1α1 (d, θ0) + cT1 (d, θ0)] dF (θ) . (3.5.6)

We say that a test procedure is minimax-Bayesian if it minimizes the maximal

risk with respect to the given class of prior distributions. In other words, a test is

minimax-Bayesian if it attains min
∆

supF∈Fq
R (F,∆) .

Note that in using this particular setting and definitions, we obtain the definition of

the Bayesian criterion for the classical Wald problem in the case where each parametric

set is a singleton.

One of the main results in [36] is the following: Define for n = 1, 2, . . .

L? (n) =
supθ0∈Θ0

∏n
i=1 Pθ0 (Yi)

infθ1∈Θ1

∏n
i=1 Pθ1 (Yi)

= sup
θ0∈Θ0

sup
θ1∈Θ1

∏n
i=1 Pθ0 (Yi)∏n
i=1 Pθ1 (Yi)

, (3.5.7)

L? (n) =
infθ0∈Θ0

∏n
i=1 Pθ0 (Yi)

supθ1∈Θ1

∏n
i=1 Pθ1 (Yi)

= inf
θ0∈Θ0

inf
θ1∈Θ1

∏n
i=1 Pθ0 (Yi)∏n
i=1 Pθ1 (Yi)

. (3.5.8)

Let q? (n) and q? (n) be the following upper and lower posterior probabilities of the

hypothesis H0 being true after n observations:

q? (n) =
qL? (n)

1− q + qL? (n)
, q? (n) =

qL? (n)

1− q + qL? (n)
(3.5.9)
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and let Z? (n) = logL? (n) and Z? (n) = logL? (n). Theorem 1 in [36] states the

following: if Θ isa compact set on which Pθ0 (Yi) and Pθ1 (Yi) are defined, positive and

continuous for all θ0 ∈ Θ0 and θ1 ∈ Θ1, then there exist numbers 0 < C < 1 < D such

that the optimal strategy, in the minimax-Bayesian sense, has the form:

• If Z? (n) > logD then we stop sampling and accept H0

• If Z? (n) < logC then we stop sampling and accept H1

• Otherwise continue sampling.

Note that in the case of simple hypotheses the classical Wald’s SPRT rule follows from

the above because L? (n) = L? (n) and they are both equal to the likelihood ratio. Also,

an equivalent representation of this test procedure can be given in terms of q? (n) and

q? (n), that is, it can be shown that there exist two constants 0 < γ0 < γ1 < 1 such

that the following test is optimal in the minimax-Bayesian sense:

• If q? (n) < γ0 then we stop sampling and accept H1

• If q? (n) > γ1 then we stop sampling and accept H0

• Otherwise continue sampling.

This representation (given in [36]) resembles Wald’s SPRT. These expressions can

be understood intuitively by examining q? (n). Notice that q? (n) can be written in

the following way:

q? (n) =
qL? (n)

1− q + qL? (n)
=

qPθ?0 (Y n)

qPθ?0 (Y n) + (1− q)Pθ?1 (Y n)
, (3.5.10)

where θ?0 and θ?1 are the values that achieve the supremum in (3.5.7). If we assume

that whenever hypothesis θ ∈ Θ0 is true, then θ?0 is, in some sense, “dominating” the

other θ’s in the space Θ0 and the same for θ1, then q? (n) ≈ Pr (Θ0 | Y1 . . . Yn) and

the test stops and accepts H1 as soon as that Pr (Θ0 | Y1 . . . Yn) . γ0, i.e, when H0 is

rejected. The acceptance of H0 can be understood in the same way, with the positions

of Θ0 and Θ1 reversed. As mentioned before, this interpretation, using the posteriors,

sheds light on the resemblance to Wald’s SPRT. The ideas in the proof of the theorem

are based on Markov optimal stopping principles as was described in Chapter 2.

The question still to be answered is whether this test is optimal in the Wald-

Wolfowitz sense (generalized to the case of composite hypotheses, of course)? The
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proof of this claim appeared in [36] and was further refined in [37]. To state the result,

let C,D ∈ R such that 0 < C < 1 < D and define ∆C,D to be the sequential test just

described. Consider the following class of sequential procedures

Ka,b =

{
∆ : sup

θ∈Θ0

α0 (∆, θ0) ≤ a, sup
θ∈Θ1

α1 (∆, θ1) ≤ b

}
. (3.5.11)

In [37], the following theorem was proved under some technical conditions which will

not be repeated here: For any ε > 0, there exists C0, D0 ∈ R such that the in-

equalities C−1 > C−1
0 and D > D0 imply that the procedure ∆C,D is optimal in the

following sense: for any procedure ∆ ∈ Ka,b such that supθ∈Θ0
T0 (d, θ0) < ∞ and

supθ∈Θ1
T0 (d, θ1) <∞, the inequalities

sup
θ∈Θ0

T0 (∆C,D, θ0) ≤ sup
θ∈Θ0

T0 (∆, θ0) + ε (3.5.12)

sup
θ∈Θ1

T1 (∆C,D, θ1) ≤ sup
θ∈Θ1

T1 (∆, θ1) + ε (3.5.13)

hold. When Θ is a finite set, ε can be set to zero. Equations (3.5.12) and (3.5.12)

provides the non-asymptotic generalization of the classical result. Moreover, in the

case of two simple hypotheses sequential testing problem, the result gives rise to the

classical Wald-Wolfowitz theorem. In addition, for any θ?0 ∈ Θ0 and θ?1 ∈ Θ1,

lim
D→∞

T0 (∆C,D, θ
?
0)

log (D)
= max

θ0∈Θ0,θ1∈Θ1

{
Eθ?0

[
log

(
dPθ0
dPθ1

)]}−1

, (3.5.14)

lim
C→0

T1 (∆C,D, θ
?
1)

|log (C)|
= max

θ0∈Θ0,θ1∈Θ1

{
Eθ?1

[
log

(
dPθ1
dPθ0

)]}−1

.. (3.5.15)

These relations are analogous those of two simple hypotheses. For example, in the

SPRT, the test follows the random walk
∑

log
[
P1(Yi)
P0(Yi)

]
and stops when it passes pre-

determined boundary values, logA or logB (where A < B). If P1 is assumed true,

then the drift of this random walk is given by

EP1

[
log

[
P1 (Yi)

P0 (Yi)

]]
, (3.5.16)

and so, at least intuitively, for large sample sizes, one would expect that

log (A)

EP1 [N ]
≈ EP1

[
log

[
P1 (Yi)

P0 (Yi)

]]
(3.5.17)

. Equations (3.5.14) and (3.5.15) imply that a similar phenomenom occurs in the case

of two simple hypotheses as well, except that the limiting behavior of, say,

log (D)

T0 (∆C,D, θ?0)
(3.5.18)
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is determined by the values of θ0 and θ1 that minimize the expected value of

log

[
Pθ0 (Yi)

Pθ0 (Yi)

]
(3.5.19)

taken at θ?0.
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Chapter 4

Multiple Hypothesis Testing

4.1 Introduction

In this chapter, the problem at hand will be still to classify a sequence of observations

into M > 2 different simple hypotheses. Although most of the research on sequential

hypothesis testing has been restricted to two hypotheses, there are several situations,

particularly in engineering applications, where it is natural to consider more than

two hypotheses. Examples include, among a multitude of others, target detection in

multiple-resolution radar [101] and infrared systems [49], signal acquisition in direct

sequence code-division multiple access systems [140], statistical pattern recognition

[55], decentralized detection in sensor networks [21] and more. In the second part of

this work, another example in which analysis of multiple hypothesis testing can be of

aid, will be presented - variable length coding in the presence of feedback.

Several topics will be addressed in this chapter. First, some of the classical test

procedures, in the multiple hypotheses setup, will be reviewed. These tests, cov-

ered in section 4.2, will be defined, and general advantages and disadvantages will

be explained. Next, a modern approach for dealing with multiple hypotheses will be

discussed, and asymptotic properties of some specific (more practical but suboptimal)

sequential tests will be analyzed. The motivation for looking at an asymptotic regime

(for large sample size) is the fact that, unlike the binary case, where Wald’s SPRT is

optimal, for more than two hypotheses, it is not clear if there even exists a test that

minimizes the expected sample size for all hypotheses, and even if so, it would be very

difficult to find its structure. In addition, in this section, a generalization to non-i.i.d.

cases (where log-likelihood ratios are no longer random walks) is presented briefly.
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In the last section of this chapter, yet another problem of multiple hypothesis test-

ing is posed, where that some control over the observation sequence is considered. In

other words, in addition to the M > 2 hypotheses, the decision maker can choose one

out of K > 1 control actions (or “experiments”) and hence, to adaptively manage and

control multiple degrees of freedom and exert control over the samples’ “information

content”. We refer to this generalization as the controlled sensing problem (or the

active sequential hypothesis problem). In this setting, the goal is to design a sequen-

tial test to achieve the optimal tradeoff between reliability in terms of probability of

error, and delay (or cost), in terms of the expected sample size needed for decision

making. Both classical and state-of-the-art results will be reviewed, focusing again on

the asymptotic regime and several notions of optimality will be presented. As in the

case where no control is available, a few particular, suboptimal (yet simple), controlled

sensing tests will be defined, and the analysis of their performance will be discussed.

4.2 The Founding Fathers of Sequential Multiple

Hypothesis Testing

A. The Sobel-Wald Test

The Sobel-Wald test [133] is one of the first tests proposed for M > 2, and it is per-

haps the simplest one. The idea is to combine two SPRTs between different pairs

of hypotheses in the following way: Assume M = 3 and let the distribution related

to each hypothesis be i.i.d. The construction of the Sobel-Wald test begins with

two SPRTs: one for testing H1 versus H2, and another one for H2 versus H3. De-

note the stopping times and decision rules of the two tests by (N1, d1) and (N2, d2),

respectively. Throughout the derivation, Sobel and Wald assumed that the event

{d1 = H1 , d2 = H3} is impossible, and hence this test should only be considered in

problem that can be formalized such that this assumption holds1. Now define the the

stopping rule of the complete test as

N? = max {N1, N2} (4.2.1)

and the decision function
1Note that this is a constraint on the function d which is up to the observer to choose. In the

coding problem discussed in Part II this constraint is on the structure of the decoder, and is easily
implemented
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d? =


H1 if d1 = H1

H3 if d2 = H3

H2 if d1 = H2 or d2 = H2

The motivation is clear: it is a generalization of a test which is known to bear some

optimal characteristics for the fixed sample size case in a sense of controlling the error

probability (see, for example, [91]). Furthermore, Hoel and Peterson [72] presented

an optimal test for multiple simple hypotheses problem for fixed sample size in the

following sense: denoting their decision rule by dHP then there is no other test d′ with

Pr (d′ = Hi | Hi) ≥ Pr (dHP = Hi | Hi) for all i and at least one inequality is strict.

Hoel and Peterson’s test for three hypotheses it is exactly the Sobel-Wald test with

a fixed sample size. This, of course, does not guarantee optimality of the Sobel-Wald

test, but good performance may be expected. Another reason, that most certainly

motivated Sobel and Wald to come up with their test, is the fact that it is constructed

using two SPRTs which are known to be optimal in the sense of Theorem 4.

The Sobel-Wald test allows control of the correct decision probabilities. To control

these probabilities, one must control the error probability of the SPRTs. The latter is,

of course possible (to an extent described in the previous chapter) using (2.2.13). The

bounds (2.2.13) also imply that by selecting the boundary values of the two SPRTs,

the error probabilities can be made arbitrary small. Another important feature is the

fact that in order for a decision to be reached, both SPRTs must stop, and so the

stopping time of the test can be written as N = max {N1, N2} where N1 and N2 are

the stopping times of the two component SPRTs used. The latest expression indicates

that a bound on the expected stopping time is given in terms of the SPRTs stopping

times by max {E [N1] ,E [N2]} ≤ E [N ]. This simple bound will be found useful in the

sequel.

The Sobel-Wald test was considered in the case a of normal distribution with

unknown mean [133], a Bernoulli distribution [151], and the exponential family case

[59]. In all these examples, Walds approximation was used in order to estimate the

error probabilities.

There are a few obvious drawbacks in the Sobel-Wald test:

• It is designed for three hypotheses only.

• There is an assumption that some relation between the three hypotheses holds,
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namely that d1 = H1 cannot occur together with d2 = H3 (this is also the reason

why only two SPRT components are used and are sufficient).

• The Sobel-Wald test does not use all the information available at the stopping

time. To see why, notice that d1 and d2 do not necessarily terminate at the same

time. This is significant since an SPRT can decide on one hypothesis at a certain

time, but as more observations are available, this decision can be reversed.

B. The Armitage Test

The next test, suggested by Armitage in 1950 [5], was aimed to solve, some of the

major problems of the Sobel-Wald test. Like the Sobel-Wald test, the Armitage test,

sometimes referred to as the matrix SPRT, combines a number of SPRTs, but unlike

the former, it is defined for any (finite) number of simple hypotheses. Another main

difference is that the decision in the Armitage test is based on all the information

available up to the stopping time. This is done by using the so called “extended”

SPRTs, which means that each SPRT component is extended until a decision is made.

The structure of the Armitage test is the following: for the M hypotheses to test,

{H0, H1 . . . , HM−1}, the test uses M (M − 1) /2 SPRTs between hypotheses Hi and

Hj for all i < j. The stopping time is defined as the first time instant at which all

(M − 1) SPRTs involving Hj simultaneously lead to the decision Hj. Let λi,jn denote

the likelihood ratio between the hypotheses Hi and Hj, and let the boundary values

of the SPRT between Hi and Hj be chosen to be Aij for the upper boundary value

and Bij = −Aij for the lower boundary value. Since λi,jn = −λj,in , the stopping time of

the Armitage test is given by

N = min
0≤j≤M

inf
n≥1

{
λi,jn ≥ Aij for all i 6= j

}
. (4.2.2)

The decision function d = d
(
Y N
)

is given by

d = Hj for which λi,jn > Aij ∀i 6= j. (4.2.3)

The control over the error probabilities is obtained by the free parameters of the

test, {Aij}. For example, the correct decision probabilities αii = Pr (d = Hi | Hi) can

be upper bounded by using the error probabilities αij = Pr (d = Hj | Hi) and the

relation αij ≤ A−1
ij , which can be shown to hold just as the counterpart bound for the
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SPRT. One also has that

αii = 1−
∑
i 6=j

αij ≥ 1−
∑
i 6=j

A−1
ij (4.2.4)

so that by using the Armitage test one can control the whole matrix of error probabil-

ities (as well as the vector of correct decision probabilities). In [5] Armitage studied a

multiple-hypothesis testing problem with three hypotheses corresponding to three Bi-

nomial probabilities. In this specific setup, the Armitage and Sobel-Wald tests take on

a similar form. In general, since the basic assumptions in the two tests are different, it is

not possible to compare them in any “fair” manner but in the case where the hypothe-

ses satisfy the constraint of Sobel-Wald tests, that is, Pr {d1 = H1 , d2 = H3} = 0. For

this setup, by taking the same boundary values for the SPRTs, it is clear that the

Sobel-Wald stopping time is at most the Armitage stopping time. Moreover, it has

a higher probability of accepting the true hypothesis. Simulation results supporting

this claim were obtained in [47] for the case of testing three hypotheses under which

the observations are i.i.d. and normally distributed with means µ,−µ and zero, and

variance 1.

C. The Lorden Test

The Sobel-Wald and Armitage tests take a “positive” approach. They stop as soon

as some hypothesis is preferred over all others. In this section, a different type of a

multiple-hypothesis test will be presented - the Lorden test [93]. This test rules in favor

of Hj when all other hypotheses can be rejected. The rejections are not necessarily

in favor of Hj; they are just rejections of Hi for all i 6= j. Two other important

features are the fact that this test applies also to composite hypotheses, and, that it is

based on the GLRT that was briefly discussed in the previous chapter. In [93], Lorden

considered the an i.i.d. sequence Y1, Y2, . . . whose density belongs to the exponential

family fθ (y) = exp {θy − b (θ)}, where θ ∈
(
θ, θ
)
⊂ R and b (θ) is a convex and

infinitely differentiable in θ ∈
(
θ, θ
)
. Lorden defined the log-likelihood function up to

time n to be Lθ (n) = θSn + nb (θ), where Sn = Y1 + Y2 + . . .+ Yn and the maximum

likelihood estimator based on (Y1, . . . , Yn) to be θ̂n. The original statistical problem is

specified by M intervals (M ∈ N), (θ0, θ1] , [θ1, θ2] . . . [θM−1, θM), k ≥ 2 decisions that

can be made, and a set of constants {αij, 1 ≤ i ≤ s+ 1, 1 ≤ j ≤ k} representing the
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constraints on the error probabilities:

Pθ (j’th decision) ≤ αij , ∀θ ∈ Hi , i 6= j = 0, 1, . . . ,M − 1 , j = 1, 2, . . . , k. (4.2.5)

Some additional conditions were assumed to hold regarding the structure of {αij} [93].

Instead of considering this general model, we concentrate on a specific case (that also

appears in [48]), in which M hypotheses Hi : θ = θi , i = 0, . . . ,M − 1 are to be

tested about the parameter θ of the one-parameter exponential distribution that was

introduced before. The decision function will then take values in {0, . . . ,M − 1}, and

the error probability constraints will be:

Pθi (j’th decision) ≤ αij , ∀θ ∈ Hi , i 6= j = 0, 1, . . . ,M − 1. (4.2.6)

Lorden defined a likelihood ratio test
(
N̂ , d̂

)
as follows:

N̂j = min
n≥0

{
Lθ̂n (n) ≥ max

i 6=j
[Lθi (n)− logαij + cij]

}
, (4.2.7)

N̂ = min
j
N̂j, (4.2.8)

where αij are the specified constraints on the error probabilities and cij are constants,

which are chosen such that the constraints on the error probability are met. The

decision function d̂ will be equal to the one hypothesis that had not been rejected,

that is, d̂ chooses the smallest j such that N̂ = Nj. The Intuitive explanation is that

the chosen hypothesis is the last to be “ruled off”. Specifically, the test rules in favor

of a hypothesis after the log-likelihood functions of the other hypotheses are relatively

small. This structure was used in other works, for example, in [116] and [122], and

will be further discussed in the next section of the sequel where more modern ideas

are reviewed.

In [93] two main theorems where proven regarding the performance of
(
N̂ , d̂

)
. The

first is that, under the proper choice of the threshold parameters cij, the difference

between the expectation value of N̂ , Eθ
[
N̂
]

and the infimum of Eθ [N ] over all tests

∆ = (N, d) for which (4.2.6) holds, does not exceed a given function of αij for any

θ = θi (Theorem 1 in [93]), and the second is a proof of the asymptotic optimality of

this likelihood ratio test in the sense that there is a choice of {cij} that guarantees

that any procedure satisfying (4.2.6) has expected sample sizes which are larger than

that of the likelihood ratio test as min
i,j

cij → 0 for all θi ∈ {θ0, . . . , θM−1}.
The main downside of this test is that Lorden does not specify how to choose the

boundary values in order to achieve these asymptotically optimal results. Another
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setback in Lorden’s test is the use of the maximum likelihood estimate. This point

will be further discussed in the next chapter, but it should be noted that, although for

i.i.d. observation it is reasonable that this estimate will perform well for large sample

sizes, we have no guarantee regarding its performance over short random sequences.

Evidently, Lorden’s test may be expected to act quite poorly for short to moderate

sample sizes.

4.3 MSPRT and Asymptotic Optimality

A. Two Sequential Test Procedures

In this section, we consider the Bayessian formulation. The setup is similar to the

of the Armitage test. Specifically, assume there are M hypotheses Hi : P = Pi , i ∈
{0, . . . ,M − 1}, where Pi are known distinct probability measures. We denote by

{P n
i , 0 ≤ i ≤M − 1} the restriction of Pi to the σ-algebra Fn = σ (Y1, . . . Yn), and

Li (n) = log

[
dP n

i (Y1, . . . , Yn)

dQn (Y1, . . . , Yn)

]
, i = 0, . . . ,M − 1 (4.3.1)

denotes the log-likelihood ratio (LLR) processes with respect to a dominating measure

Qn. If Qn = P n
j for some 0 ≤ j ≤ M − 1, the corresponding LLR process will be

denoted Lij (n). Take W (j, i) to be a given loss associated with a decision on Hi

when Hj is true (without loss of generality, that the losses due to correct decisions

are zero, i.e., w (j, j) = 0) and let (π0, π1 . . . , πM−1) be the prior distribution vector of

the hypotheses. As before, ∆ = (N, d) will represent a sequential test with a stopping

rule N and a decision function d. As in other Bayesian problems, the risk associated

with decision d = i is defined as

Ri (∆) =
M−1∑
j=0,j 6=i

πjW (j, i)αji (∆) (4.3.2)

where for j 6= i, αji (∆) = Pj (d = i) is the probability of accepting the hypothesis Hi

when Hj is true. In the case of the 0− 1 loss function, where W (j, i) = δj,i, Ri (∆) is

the same as frequentist error probability αi (∆) , which is the probability of accepting

Hi incorrectly. That is, for the 0− 1 loss function

Ri (∆) = αi (∆) =
M−1∑
j=0
j 6=i

πjαji (∆) . (4.3.3)
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We now introduce the following class of tests

∆
(
R
)

=
{

∆ : Ri (∆) ≤ Ri , i = 0, 1, . . . ,M − 1
}
, (4.3.4)

where
(
R
)

=
(
R0, R1, . . . , RM−1

)
is a given vector of positive finite numbers.

A reasonable figure of merit is the minimum average observation time, E [N ] =∑M−1
i=0 πiEi [N ] among all tests in ∆

(
R
)
. It turns out that in the i.i.d. case even a

relatively simple test that is nearly optimal, involves a comparison of posterior prob-

abilities with random thresholds which must be determined for each model separately

([8] and [135]). In general, it is very difficult to find the explicit form of these thresh-

olds. Furthermore, even if one finds the boundaries of the optimal test, it would be

difficult to implement this procedure in practice since it would involve the calcula-

tion of a new boundary value every time instant. In addition, while in the case of

two hypotheses, Wald’s SPRT minimizes not only the average observation time but

both of the expectations under each possible measure, it is unclear if such a test ex-

ists for M ≥ 3 [8]. However, in an asymptotic setting, where the risks (or the error

probabilities) are sufficiently small, such tests may be found.

Next, two asymptotically optimal tests will be described. Both will be based

on the likelihood ratio between the different hypotheses, and are called in general

“multihypothesis SPRT” (MSPRT). The idea is to simplify the structure of the optimal

test by replacing the nonlinear random thresholds with simple functions (constants in

the case of the zero-one loss function):

Test ∆a: Introduce the stopping times

Ni = min
n≥0

{
Li (n) ≥ ai + log

(∑
j 6=i

wji exp {Lj (n)}

)}
, (4.3.5)

where wji ,
πjW (j,i)

πi
and ai are positive threshold values. The test procedure ∆a =

(Na, da) is defined as follows:

Na = min
0≤k≤M−1

Nk, da = i if Na = Ni. (4.3.6)

That is, we stop as soon as the threshold in (4.3.5) is exceeded for some i and decide in

favor of that Hi. This test is motivated by a Bayesian framework and it was considered

earlier by Fishman [52], Golubev and Khas’minskii [61], Baum and Veeravalli [8] and

more. Indeed, in the special case of zero-one losses, the stopping times Ni take on the

following form:

Ni = min
n≥0
{Πi (n) ≥ Ai} , (4.3.7)
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where

Ai =
exp (ai)

1 + exp (ai)
, Πi (n) =

πi exp {Li (n)}∑M−1
j=0 πj exp {Lj (n)}

(4.3.8)

that is, Πi (n) is the posterior of the hypothesis Hi. Note also that the problem is

symmetric it terms of πi and αi (is the sense that it is reasonable to choose Ai = A

for all 0 ≤ i ≤M − 1) the stopping time of the test is then given by

Na = min
n≥0

{
max
i

Πi (n) ≥ A
}

where A =
exp {a}

1 + exp {a}
, (4.3.9)

i.e., we stop as soon as the largest posterior probability exceeds a threshold.

Test ∆b: Introduce the stopping time

Mi = min
n≥0

{
Li (n) ≥ max

j 6=i
[bij + log (wji) + Lj (n)]

}
(4.3.10)

which is the “accepted” stopping time for the hypothesis Hi, where bij are positive

thresholds. The test ∆b = (Mb, db) is defined as follows:

Mb = min
0≤i≤M−1

Mi , db = i if Mb = Mi. (4.3.11)

This is a modification of the matrix SPRT (the combination of one-sided SPRTs) by

Armitage, and was discussed earlier for a specific case. It was also analyzed in Lorden’s

early work on asymptotically optimal tests [96] as well as in other works by Dragalin

(e.g., [42]), Tartakovsky (e.g. [136]) and Verdenskaya [141]. Note also that if bij = bi

and the loss function is 0− 1, then wji =
πj
πi

and the stopping time Mi can be writen

in the form

Mi = min
n≥0

{
Π̂i (n) ≥ exp {bi}

}
, (4.3.12)

where

Π̂i (n) =
πi exp {Li (n)}

max
k∈{0,...,M−1}\(i)

πk exp {Lk (n)}
, (4.3.13)

i.e., Π̂i (n) is the generalized likelihood ratio (GLR) between Hi and the remaining

hypotheses.

Implementation issues: Notice that if the distribution belongs to an exponen-

tial family, which is a good model for many applications, then the test ∆b has an

advantage over the first test in that it does not require exponential transformations of

the observations. This makes it more convenient for practical realizations. However,

the test ∆a has the advantage that it is easier to design the thresholds {ai} so as to

precisely meet constraints on the risks Ri [43].
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B. Bounds on the Performance of ∆a and ∆b

We start by stating a basic lemma that indicates that one can choose the thresholds

so as to guarantee that the tests belong to the class ∆
(
R
)
. It is worth emphasizing

that the bounds hold under general assumptions, and require neither independence

nor homogeneity of the observed data. The proof can be found, for example, in [8]

and it is similar to the analysis in [5].

Lemma 6 Let {Yn , n ≥ 0} be an arbitrary random process observed in discrete time.

For all i = 0, 1, . . . ,M − 1

Ri (∆a) ≤ πi exp (−ai) , Ri (∆b) ≤ πi

M−1∑
j=0,j 6=i

exp (−bij) . (4.3.14)

Corollary 7 Let

ai = log

[
πi

Ri

]
, bij = bi = log

[
(M − 1)πi

Ri

]
. (4.3.15)

Then, both tests belong to the class ∆
(
R
)
. In addition, under this choice of the

threshold values, Na ≤Mb

The following theorem, proved in [44] (Theorem 3.1), has a long evolution in the

theory of sequential multiple hypothesis testing analysis. Its importance will be made

clear in the sequel, as it can be used to obtain a bound on the potential asymptotic

performance of any sequential multihypothesis test in the class ∆
(
R
)

as the risks go

to zero (or as Rmax goes to zero, where Rmax , max
0≤i≤M−1

Ri).

Theorem 8 Assume there exists an increasing nonnegative function f (n) and positive

finite constants qij (i, j = 0, 1, . . .M − 1, i 6= j) such that

Lij (n)

f (n)

Pi-a.s−→ qij as n→∞ , i, j = 0, 1, . . .M − 1, i 6= j. (4.3.16)

In addition, assume that for all L > 0

Pi

(
sup
n≤L

L+
ij (n) <∞

)
= 1. (4.3.17)

Then for all m > 0 and i = 0, 1, . . .M − 1

inf
∆=(N,d)∈∆(R)

Ei [Nm] ≥

[
f−1

( ∣∣logRi

∣∣
mini 6=j qij

)]m
(1 + o (1)) (4.3.18)

as Rmax → 0 and where o (1)→ 0 as Rmax → 0.

48



In order to gain intuition regarding the previous result we return to the binary hy-

pothesis case, inferring between two probability measures P and Q. Recall that in

Section 2.3 we have shown that, for example, under Q

EQ [N ]D (Q ‖ P ) ≥
[
(1− β) log

(
1− β
α

)
+ β log

(
β

1− α

)]
. (4.3.19)

and that the optimal test achieves this bound. In the limit of small error probabilities,

this inequality can be written as

EQ [N ] &
− logα

D (Q ‖ P )
. (4.3.20)

Similarly, it can be proven that for this limit the m’th moment of the expected stopping

time can be bounded by

EQ [Nm] &

[
− logα

D (Q ‖ P )

]m
. (4.3.21)

Theorem 8 tells us that the bound in (4.3.21) holds for a more general case as well, at

least in the case of i.i.d observations, where f is the identity function.

C. Asymptotic Optimality of ∆a and ∆b

So far we considered quite a general case imposing only minor restrictions on the

structure of the observed process. All statements made so far have a continuous-time

version as well. In this subsection, we consider the discrete-time case and assume

that, under hypothesis Hi, Y1, Y2, . . . are i.i.d. with a known density fi (y), and that

the densities do not coincide with probability one in the sense that Pi (Lij (1) = 0) < 1

for all j 6= i. In general, all the forthcoming results also hold when each observation,

Yi, is a random vector (that is, {Yi = (Yi,1, . . . , Yi,l) , l ∈ N , i = 1, 2, . . .}).
Define ∆Lij (n)

∆Lij (n) = log

[
fi (Yn)

fj (Yn)

]
, Lij (n) =

n∑
k=1

∆Lij (k) . (4.3.22)

The Kullback-Leibler (KL) divergence is given by

D (fi ‖ fj) , Dij = Ei [∆Lij (n)] . (4.3.23)

In addition, we define the vector {Di, i = 0, 1 . . . ,M − 1} for which each entry is

Di , minj 6=iDij. Due to the aforementioned condition of distinct measures, these
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KL distances are strictly positive. In fact, it is common to associate Dij with a “dis-

tance” property, in spite of the fact that it is not a metric (see, for example, [30]).

Using this interpretation, Di will be said to be the minimal distance between Hi and

the other hypotheses. We shall also assume that Dij <∞.

We consider a general asymmetric case (with respect to risk constraints) with

the restriction that Ri approaches zero such that for all i, j, 0 < logRi
logRj

< ∞. In

addition, due to the i.i.d. assumption, Theorem 8 implies that for any m > 0 and

i ∈ {0, 1, . . . ,M − 1},

inf
∆=(N,d)∈∆(R)

Ei [Nm] ≥

(∣∣logRi

∣∣
Di

)m

(1 + o (1)) as Rmax → 0, (4.3.24)

where Rmax = max
i
Ri. The following theorem summarizes the main results on

the asymptotic performance and the asymptotic optimality in the i.i.d. case. The

theorem and its proof appear in [44], where the authors used results of [8], combined

with classical results from the theory of stopped random walks (that are summarized

in [63]) to show that both ∆a and ∆b, are asymptotically optimal, not only in the

expected sample size, but also in any positive moment of the stopping time.

Theorem 9 Let Na and Mb be the stopping rule of ∆a and ∆b, respectively, and

0 < Dij <∞.

1. For all m ≥ 1 and i = 1, 2, . . . ,M − 1

Ei [Nm
a ] ∼

(
ai
Di

)m
, as amin → 0, (4.3.25)

Ei [Mm
b ] ∼ max

j 6=i

(
bij
Dij

)m
, as bmin → 0, (4.3.26)

where amin , mini ai and bmin , mini,j bij.

2. If the thresholds are determined by (4.3.15), then

inf
∆=(N,d)∈∆(R)

Ei [Nm] ∼ Ei [Nm
a ] ∼ Ei [Mm

b ] ∼

(∣∣logRi

∣∣
Di

)m

(4.3.27)

as Rmax → 0 for all m ≥ 1.

Everywhere above xγ ∼ yγ as γ → γ0 means that limγ→γ0

xγ
yγ

= 1.
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Theorems 8 and 9 are further generalized in [44] in a few directions:

The i.i.d. case: All the results stated above can be generalized to continuous-time

processes if the LLRs processes have independent and stationary increments and finite

first absolute moments [44]. In addition, if

logRi

logRj

∼ 1 ∀i, j, i 6= j as Rmax → 0 (4.3.28)

then a much stronger result is true for the expected observation time. Specifically, if

the thresholds are chosen so that Ri (∆b) ∼ Ri and (4.3.28) is fulfilled, then

Ei [Mb] = inf
∆=(N,d)∈∆(R)

Ei [Nm] + o (1) as Rmax → 0 (4.3.29)

and the same is true for ∆a. This is derived by using the results of Lorden [96]. The

authors of [44] conjecture that this characteristic is true also when (4.3.28) does not

hold. Simulation results presented in [43] support this conjecture.

The non-i.i.d. case: So far the assumption of i.i.d. observations was crucial.It

simplified many of the proofs since in this case the LLR process is a random walk ,

which has many useful properties, most importantly, the convergence due to the strong

law of large numbers and its variants. To obtain similar optimality properties of ∆a

and ∆b in the form of Theorems 8 and 9, a different notion of convergence can be used

- the r-quickly convergence:

Definition 1 Let {ζt , t ∈ R} be a random process. For h > 0, define T (h) to be

T (h) = sup
t∈R
{|ζt − q| ≥ h} . (4.3.30)

For r > 0, ζt is said to converge r-quickly under the measure P if

EP [T r (h)] <∞ ∀h > 0. (4.3.31)

In [44], a generalization of Theorems 8 and 9 are established, with the a.s. convergence

condition (4.3.16) replaced by the r-quickly convergence condition

Lij (n)

f (n)

Pi-r-quickly−→ qij as n→∞ , i, j = 0, 1, . . .M − 1, i 6= j (4.3.32)

and the optimality of ∆a and ∆b is proven up to the order of r (that is, for m ≤ r in

Theorem 8 and 9) where r is the largest constant for which (4.3.32) holds.
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More generalities: Woodroofe’s nonlinear renewal theory [155] comprises power-

ful techniques that allow taking into account the “overshoot” over the boundary of the

test statistics. For i.i.d. observations, asymptotic approximations (up to a vanishing

term, as the risks go to zero) for the expected sample size of Nb and Mb can be made

using tools from the nonlinear renewal theory. We will not elaborate more on these

subjects but good references to this type of calculation are [155] and [43], in addition

to simulation results that show that for some simple examples (such as testing the

mean of an i.i.d. Gaussian sequence) the approximations are fairly accurate, not only

for large, but also for moderate sample sizes.

4.4 Multiple Hypothesis Testing With Control

A. Multiple Hypothesis Testing Via Controlled Sensing

Generally speaking, the topic of controlled sensing for inference deals primarily with

adaptively managing and controlling multiple degrees of freedom in an information-

gathering system. Unlike in traditional control systems, where the control primarily

affects the evolution of the state, in controlled sensing, the control affects only the

observations. In other words, the goal is not to drive the state to some desired level,

but for the decision maker to infer the state accurately by shaping the quality of the

observations.

This section focuses on sequential hypothesis testing as a controlled sensing prob-

lem in which the controller can adaptively decide, based on past observations and

controls, whether to continue collecting new observations, or to stop and make the

final decision (that is, prior to making a decision about the hypothesis, the decision

maker can choose among different actions to shape the quality of the observations).

The discussion in this section will concentrate on a fundamental controlled sensing

test for hypothesis testing and some generalization of it. Two related models will be

considered: one for two composite hypotheses and the other for simple hypothesis

testing of multiple hypotheses, both with observation control. In particular, in the

composite setup we assume that two disjoint sets, Θ0,Θ1 on some parameter space,

are given and define Θ = Θ0 ∪Θ1. The goal is then to test

H0 : θ ∈ Θ0 Vs. H1 : θ ∈ Θ1, (4.4.1)

where θ ∈ Θ is a parameter of some density function, as in the setup introduced in
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Section 3.1. In the second model, we will dwell on an M -hypothesis testing problem,

with a set of simple hypotheses {H0, H1, . . . , HM−1}, similar to the case described in

Section 4.3. In both cases, at each time step k, the observation Yk takes values in

Y . In addition, we now assume control is present and denote the control sequence by

{U1, U2, . . .}, where each Uk is a control variable taking values in a finite alphabet U .

Under each hypothesis i ∈ {0, 1, . . . ,M − 1} or θ ∈ Θ, conditioning on Uk = u, Yk is

assumed conditionally independent of
(
Y k−1, Uk−1

)
.

In general, two classes of control policies are possible: the first is the open-loop con-

trol policy where the (possibly randomized) control sequence {U1, U2, . . .} is assumed

independent of {Y1, Y2, . . .}. The second policy, which will be the one discussed, is the

causal control policy, where at time k, Uk can be any (possibly randomized) function

of past observations and controls. The control is described by a conditional probabil-

ity mass function (pmf) qk
(
uk | yk−1, uk−1

)
and U1 is distributed according to a pmf

q1 (u1) (If all these (conditional) pmfs are point-mass distributions, i.e., the current

control is a deterministic function of past observations and past controls, then the re-

sulting policy is often referred to as a pure control policy). Under the aforementioned

assumption and under each hypothesisi, the joint probability distribution function of

(Y n, Un), denoted by pi (y
n, un), can be written as

pi (y
n, un) = q1 (u1)

n∏
k=1

puki (yk)
n∏
k=2

qk
(
uk | yk−1, uk−1

)
for any n > 1 (4.4.2)

and in the composite setup, the density function, for any θ ∈ Θ, is given by

pθ (yn, un) = q1 (u1)
n∏
k=1

pukθ (yk)
n∏
k=2

qk
(
uk | yk−1, uk−1

)
for any n > 1 (4.4.3)

where we have denoted, for all u ∈ U , i ∈ 0, . . . ,M − 1, θ ∈ Θ:

pi (yk | uk) = puki (yk) and pθ (yk | uk) = pukθ (yk) (4.4.4)

to be the density or mass function of Yk under control uk ∈ U .

Since the controlled problem differs in many aspects from the problem discussed

so far, a few refinements of the notation are in place: in this section we will de-

note by Fk the σ-algebra generated by
(
Y k, Uk

)
. A sequential test ∆ = (φ,N, d)

consists of a causal observation control policy φ, which is described by the pmfs{
q (u1) , q

(
uk | yk−1, Uk−1

)∞
k=2

}
, an Fk-stopping time N representing, as before, the

(random) number of observations before the final decision, and a decision rule d =

d
(
Y N , UN

)
.
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Chernoff’s Test

The problem of sequential binary composite hypothesis testing with observation con-

trol was considered by Chernoff [24], and an asymptotically optimal sequential test

was presented.

While Wald’s SPRT is optimal in the sense that it minimizes the expected values

of the stopping time among all tests for which the probabilities of error do not exceed

predefined thresholds, a weaker notion of optimality is adopted in [24], which is similar

in spirit to the notion of the asymptotic optimality presented in the previous section.

This optimality criterion will be presented via Theorem 10 that will follow.

The proof of the asymptotic optimality of this test requires the following technical

assumptions: for all θ ∈ Θ and θ 6= φ ∈ Θ:

D
(
puθ ‖ puφ

)
> 0, (4.4.5)

Epuθ

(log

[
puθ (Y )

puφ (Y )

])2
 < ∞. (4.4.6)

The Chernoff test for binary composite hypothesis testing admits the following se-

quential description:

Define the sets h (θ) and a (θ) to be

h (θ) =

{
Θ0 if θ ∈ Θ0

Θ1 if θ ∈ Θ1

, a (θ) =

{
Θ1 if θ ∈ Θ0

Θ0 if θ ∈ Θ1.
(4.4.7)

Having fixed the control policy up to time k, and obtaining the first k observations

and control values
(
Y k, Uk

)
, if the controller decides to collect more observations, then

at time k+ 1, a randomized control policy is adopted wherein Uk+1 is drawn from the

following distribution

q (u) = q
(
u | θ̂k

)
= argmax

q̄(u)

min
φ∈a(θ̂k)

∑
u∈U

q̄ (u)D
(
pu
θ̂k
‖ puφ

)
, (4.4.8)

where θ̂k = argmax
θ∈Θ

pθ
(
yk, uk

)
is the ML estimate of the hypothesis at time k. The

stopping time Nch is defined to be

Nch = min
n≥1

{
Sn ,

n∑
i=1

log

[
pUi
θ̂n

(Yi)

pUi
φ̃n

(Yi)

]
≥ − log c

}
, (4.4.9)
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where c is a positive parameter that will be selected to approach zero in order to drive

the error probabilities to zero, and φ̃k is the ML estimator at time k restricted to a
(
θ̂n
)

. At the stopping time, the decision rule, denoted by dch, is the ML decision rule, i.e.,

accept the hypothesis h
(
θ̂n
)

if Sn > − log c.

The asymptotic optimality of Chernoff’s test was proven in [24] with respect to the

Bayes-risk formulation. Let r (θ) represent the (positive) loss function due to making

the wrong decision (in other words, if θ̃ ∈ Θi is true, the loss due to choosing θ ∈ Θ1−i,

is r
(
θ̃
)

). Define the risk under hypothesis θ to be

R̂ (θ) = E
[
r (θ) I

{
dch → error

}
+ cNch

]
, (4.4.10)

where the event
{
dch → error

}
stands for the event that the Chernoff test errs and

the expectation taken with respect to the true hypothesis. The next theorem will

formally establish the optimality of Chernoff’s test is the sense that it achieves the

optimal value of the risk (up to an order of magnitude) for all θ ∈ Θ.

Theorem 10 (Theorem 14.1 in [26] and Theorems 1 and 2 in [24]) For the

case in which Θ0,Θ1 and U are all finite and (4.4.5) and (4.4.6) are satisfied, for any

given ε > 0, there exists a c? = c? (ε) such that R̂ (θ) of the Chernoff test satisfies:

R̂ (θ) ≤ − [1 + ε]
c log c

max
q̄(u)

min
φ∈a(θ)

∑
u∈U q̄ (u)D

(
puθ ‖ puφ

) for c < c? and for all θ ∈ Θ

(4.4.11)

and any procedure ∆? for which R̂ (θ) = O (−c log c) for all θ ∈ Θ, the following holds:

for any ε > 0, there is c?? = c?? (ε) such that

R̂ (θ) ≥ − [1 + ε]
c log c

max
q̄(u)

min
φ∈a(θ)

∑
u∈U q̄ (u)D

(
puθ ‖ puφ

) for c < c?? and for all θ ∈ Θ.

(4.4.12)

A straightforward generalization of the test procedure defined by (4.4.8) and (4.4.9)

to the controlled multiple simple-hypothesis testing was presented by Bessler in [12].

Similarly to the assumptions (4.4.5) and (4.4.6), Bessler assumed that for every u ∈
U , 0 ≤ i < j ≤M − 1:

D
(
pui ‖ puj

)
> 0, (4.4.13)

Epui

[(
log

[
pui (Y )

puj (Y )

])2
]

< ∞ (4.4.14)
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and his test procedure is the following: after fixing the control policy obtain the first

k observations; if the controller decides to take more observations, then at time k + 1

randomly draw Uk+1 ∈ U from qB (u) which is defined to be:

qB (u) = qB
(
u | îk

)
= argmax

q̄(u)

min
j∈{0,...,M−1}\̂ik

∑
u∈U

q̄ (u)D
(
pu
îk
‖ puj

)
, (4.4.15)

where îk = argmax
i∈{0,...,M−1}

pi
(
yk, uk

)
. The stopping rule is defined as the first time n for

which

log

 pîn (yn, un)

max
j 6=în

pj (yn, un)

 ≥ − log c, (4.4.16)

where c is as in (4.4.9). The decision rule is again an ML decision rule, that is,

d (yn, un) = în for the n first satisfying (4.4.16). This test, which is also refereed to

as the Chenoff test (this time, for multiple simple hypotheses), admits the same form

of asymptotic optimality as the parameter c goes to zero. Specifically, the proposed

test is shown to achieve optimal expected values of the stopping time subject to the

constraints of vanishing probabilities of error under each hypothesis. The complete

statement is given in [12] and it is a natural generalization of Theorem 10.

A major shortcoming of the Chernoff test is the “separation” requirement of Θ0

and Θ1 (condition (4.4.5) or similarly (4.4.13) for multiple hypotheses). The necessity

of this constraint is that the instantaneous control picked in (4.4.15) for example, is

a function of the ML estimate of the hypothesis (and not of the reliability of the

estimate). When the ML estimate is incorrect, the instantaneous control can be quite

bad. This can happen with large probability especially when only a few observations

are collected. Condition (4.4.13) or (4.4.5) essentially ensures that when the ML

hypothesis is incorrect, the control value will not be too bad. Consequently, this

control policy leads to a fast convergence of the ML estimate of the hypothesis to

the true one. Without these conditions convergence can be very slow or may not

happen at all (note that this phenomenon is analogous to another known phenomenon

which occurs in a somewhat more exacerbated form, in stochastic adaptive control [84]

illustrating the failure of ML identification in closed-loop [14]). Another drawback is

the substantial dependence of the optimality criterion in the asymptotic nature of the

problem. Note that Chernoff’s approach involves pretending that the current estimate

θ̂n of the true parameter θ is correct in deciding what control action to select next.

No attempt is made to distinguish between an imprecise estimate of θ based on little
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evidence and a very precise estimate. As a result, the behavior of this procedure may

be poor for problems where moderate sample sizes are anticipated. Nevertheless, the

tests that were defined above have some fundamental properties that are quite frequent

in asymptotic design and analysis of controlled hypothesis testing. Noticeable are the

following basic elements:

1. In order to understand the basic structure of the tests from an intuitive point of

view, it is instructive to consider the following toy problem: say an experimenter

is trying to sequentially decide between two hypotheses H0 and H1 and he is

given a choice of one out of two experiments E1 and E2 to conduct, but once

an experiment is chosen, it is used exclusively until a final decision is made.

Assume that c is the cost of taking an observation and also that available to

the experimenter are four figures of merit Di (Ej) regarding the “amount of

information” one can gain from conducting experiment j when hypothesis i is

true. If D0 (E1) > D0 (E2) and D1 (E1) > D1 (E2) then it makes sense to select

E1. If, on the other hand, D0 (E1) > D0 (E2) and D1 (E1) < D1 (E2), then

E1 would be preferable if H0 were true and E2 otherwise. In all cases, if c is

small, it always pays off to take an additional observation, unless the confidence

of one of the hypotheses is very strong. The Chernoff tests are, in a way, a

natural generalization of the proposed solution to this artificial problem. In

our problem, the control action plays the role of the experiments, c is still the

cost of taking an observation, and the “information numbers” are the Kullback-

Leibler divergences. Of course, in the original problem, the true hypothesis is

not known and so the natural thing to do is, presumably, to replace the role of

the true hypothesis by its ML estimate, which is exactly the way the Chernoff

tests were constructed.

2. Another way to understand the intuition behind the Chernoff tests is the fol-

lowing: denote dn (i, j) = log
[
pi(y

n,un)
pj(yn,un)

]
and notice that, given Fn, dn (i, j) is a

constant. Specifically, given Fn, one can calculate both în and dn
(̂
in, j

)
for all

j 6= în. In addition, given Fn and the policy q, dn+1
(̂
in, j

)
, j = {1, . . . ,M − 1} \

în are random variables, the expected values of which are E
[
dn+1

(
în, j

)]
=∑

u q (u)D
(
pu
în
‖ puj

)
for j = {1, . . . ,M − 1} \ în. The Chernoff test can be

interpreted in the following way:

• At time n, estimate the true hypothesis using the maximum likelihood
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decoder, denoted by în.

• Calculate the (deterministic) “distances” dn
(̂
in, j

)
for all j ∈ (0, . . . ,M − 1).

• If minj 6=în d
n
(
în, j

)
> log c, that is, if the most likely hypothesis is far apart

for all other hypothesis in the sense of the general likelihood ratio sense,

stop the process and declare în as the estimate of the true hypothesis.

• Otherwise, choose the control policy q that maximizes the minimum ex-

pected distance
∑

u q (u)D
(
pu
în
‖ puj

)
In this sense, at each time step, the Chernoff scheme chooses a control policy

that moves apart the probability measures from the most likely one (in the sense

of the averaged KL divergence
∑

u q (u)D
(
pui ‖ puj

)
).

3. Randomization is used in the causal control policy discussed above. This facili-

tates the simultaneous minimization of the expected stopping time under the M

hypotheses as the error probability goes to zero. An instructive example similar

to the one given in the previous item, that illuminates the need for randomization

in controlled hypothesis testing problems, is given in Chapter 13 of [26].

4. This sequential test relies on the well known separation principle between esti-

mation and control (e.g., [121] and [16]), with the distinction that the stationary

mapping from the posterior distribution of the hypothesis to the control value is

now randomized.

Stronger results and modifications

Chernoff’s original work was aimed at designing an optimal structure of a sequential

experiment. This challenge was dealt with in numerous different fields and research

areas ranging from a design of clinical trials and medical diagnosis (e.g., [7], [10]),

Multi-Armed Bandit Problems (e.g. [100]) sensor managenemt (e.g. [70]), underwater

inspection (e.g., [74]) and more. Here we focus on recent work that will be relevant to

the second part of this paper, where the aim is to refine the results of optimality in the

asymptotic problem of multiple (simple) hypothesis testing. Most of the results can

be found in [115] and [114]. Other relevant works that are subsequent extensions of

[24] are [1],[13], [78],[80], [90]. Another recent look at the controlled sensing problem

will be discussed in the next section.
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In [115], a “modified Chernoff test” with a control policy, that is slightly different

than (4.4.15), is defined. Specifically, instead of using t (4.4.15) at all times, the

modified controller will occasionally sample from the uniform control, independent of

the index of the ML hypothesis; Precisely, for some a > 0, at times k =
⌈
al
⌉
, l =

0, 1, . . ., we let Uk+1 be uniformly distributed on U . At all other times, we still follow

the control policy in (4.4.15). The stopping rule is still as in (4.4.16) with the same c

therein, and the final decision is still ML.

Two main advantages of the modified Chernoff test are that the constraint (4.4.13)

is no longer necessary in order to prove asymptotic optimality and the ability to prove

asymptotic optimality in a stronger sense then described earlier. In order to formally

present the statement establishing the stronger asymptotic optimality of the modified

Chernoff test, recall first the definition of the probability of incorrectly deciding i,

Ri (∆) , Ri, in (4.3.3), and notice that for each i ∈ {0, . . . ,M − 1}

Ri ≤ max
k∈{0,...,M−1}

Pk (d 6= k) , (4.4.17)

where Pk (A) is the probability of the event A under the k’th hypothesis. Therefore,

the condition max
k∈{0,...,M−1}

Pk (d 6= k)→ 0 implies that max
k∈{0,...,M−1}

Rk → 0. The following

theorem establishes the asymptotically optimal nature of the test:

Theorem 11

1. The modified Chernoff test satisfies

lim
c→0

max
i∈{0,...,M−1}

Pi
(
d
(
Y N , UN

)
6= i
)

= 0 (4.4.18)

and for every i ∈ {0, . . . ,M − 1} and ε > 0, there is a c? such that for any c < c?

Ei [N ] ≤
− log

(
max

k∈0,...,M−1
Pk (d 6= k)

)
max
q̄(u)

min
j∈{0,...,M−1}\{i}

∑
u∈U q̄ (u)D

(
pui ‖ puj

) (1 + ε) (4.4.19)

≤ − logRi

max
q̄(u)

min
j∈{0,...,M−1}\{i}

∑
u∈U q̄ (u)D

(
pui ‖ puj

) (1 + ε) (4.4.20)

2. Any sequence of tests with vanishing maximal risk, i.e., max
k∈0,...,M−1

Rk → 0, and

for every i ∈ {0, . . . ,M − 1} and ε > 0, there there is a c?? such that for any
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c < c??

Ei [N ] ≥ − logRi

max
q̄(u)

min
j∈{0,...,M−1}\{i}

∑
u∈U q̄ (u)D

(
pui ‖ puj

) (1− ε) . (4.4.21)

A question that naturally arises is whether one can utilize the tests presented in

Section 4.3 in order to construct a controlled multiple hypothesis test that would be

optimal within ∆
(
R
)

(defined in (4.3.4)), as was done for non-controlled hypothesis

testing. The first step towards that end is re-defining the Log-Likelihood-Ratios (LLR)

for the controlled case. Let

Li (n) = log

[
dPi (Y

n, Un)

dQ (Y n, Un)

]
, i = 0, . . . ,M − 1 (4.4.22)

where we have assumed that Q (yn, un) is some dominating measure. If Q = Pj, the

corresponding LLR process will be denoted by Lij (n) i.e.,

Lij (n) =
n∑
k=1

log

[
pUki (Yk)

pUkj (Yk)

]
, j, i = 0, . . . ,M − 1, j 6= i. (4.4.23)

In addition, define the generalized likelihood ratio (GLR) to be

Π̂i (n) =
πi exp {Li (n)}

max
k∈{0,...,M−1}\{i}

πk exp {Lk (n)}
. (4.4.24)

Next, a new controlled test (ϕc, Nc, dc) will be presented which is a combination be-

tween the sequential non-controlled test ∆b defined in Section 4.3 (using the GLRT as

a stopping criterion) and the Chernoff test (using a randomized control policy and an

ML decision maker):

Control Policy (ϕc): same as in (4.4.15)

Stopping rule: The stopping time Nc is

Nc = min
i∈{0,...,M−1}

min
n≥0

{
Π̂i (n) ≥ exp (bi)

}
, (4.4.25)

where bi , i ∈ {0, . . . ,M − 1} are the threshold values and are chosen to be bi =
πj(M−1)

R̄i

Decision rule: dc = i if Π̂i (Nc) = max
j∈0,...,M−1

Π̂j (Nc)

The following theorem summarizes the important properties of the test (ϕ,N, d)

and establishes its asymptotic optimality, this time, with respect to the class ∆
(
R
)

as R̄max = max
j∈0,...,M−1

R̄j goes to zero. For brevity, the notation o (1) is used, where

o (1)→ 0 as R̄max → 0
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Theorem 12 (Lemma 3, Theorem 1 and 2 in [114])

1. (Lower bound) Let ∆
(
R
)

denote the class of tests defined in (4.3.4) where

∆ = ∆ (ϕ,N, d) is a controlled multiple hypothesis test. Then, for all i ∈
{0, . . . ,M − 1}, the expected stopping time satisfies

inf
∆∈∆(R)

Ei [N ] ≥ − log R̄i

max
q̄(u)

min
j∈{0,...,M−1}\{i}

∑
u∈U q̄ (u)D

(
pui ‖ puj

) (1 + o (1))

(4.4.26)

as R̄max → 0.

2. The test (φc, Nc, dc) belongs to the class ∆
(
R
)
.

3. (Upper bound) The expected stopping time of Nc satisfies

Ei [Nc] ≤
− log R̄i

max
q̄(u)

min
j∈{0,...,M−1}\{i}

∑
u∈U q̄ (u)D

(
pui ‖ puj

) (1 + o (1)) as R̄max → 0.

(4.4.27)

Using the notation in Section 4.3, we have established the asymptotic optimality since

Ei [Nc] ∼
− log R̄i

max
q̄(u)

min
j∈{0,...,M−1}\{i}

∑
u∈U q̄ (u)D

(
pui ‖ puj

) (4.4.28)

as R̄max → 0.

The proof of item 1 in Theorem 12 follows the exact footsteps of [24]. On the one

hand, a main difficulty arises when attempting to prove the third part of the theorem

in “classical” ways. The reason is that, unlike the traditional sequential hypothesis

testing problem, the LLRs are no longer i.i.d.. On the other hand, we have already

mentioned the notion of r-quickly convergence (Definition 1) for non-i.i.d. likelihood

ratios. In [114], the authors show that indeed 1
n
Lij (n) converges under the i’th measure

r-quickly to positive constants lij. This implies that the r’th moment of the sample

size required for the LLRs to cross predefined thresholds is governed by the minimum

constant min
i 6=j

lij, Specifically, it was shown that for all i 6= j

1

n
Lij (n)

Pi-1-quickly→ max
q̄(u)

min
j∈{0,...,M−1}\{i}

∑
u∈U

q̄ (u)D
(
pui ‖ puj

)
(4.4.29)
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and the claim follows.

So what makes the test (ϕc, Nc, dc) asymptotically optimal and adjustable to meet

hard constraints on the risks? The answer is related to the two main differences

between this test and the two former ones:

• Note that although the calculation of the probability of incorrectly deciding in

favor of i, Ri (i ∈ 0, . . . ,M − 1), involves the prior distribution of the hypoth-

esis, the Chernoff test and it’s modification do not use knowledge of the prior

distribution at all, whereas the new test depends on this knowledge.

• Another key to this new test is the use of different thresholds for the peak of the

posterior distribution depending on the index of the ML hypothesis instead of a

single threshold as in (4.4.16).

B. Controlled Sensing Analysis Using Dynamic Programming

In this section, a different point of view will be presented, which will give rise to yet

another generalization to the Chernoff test. As before, we assume that M simple

hypotheses are to be tested sequentially in the Bayesian scenario, with a prior π =

(π0, . . . πM−1), and a finite set of U controls (sometimes referred to as sensing actions).

Let θ be the random variable that takes the value θ = i when Hi is true (that is,

πi = Pr (θ = i)). A slight variation of the problem of the previous section, is that,

we now assume a loss, w > 0, that is associated with a wrong decision, i.e., w is the

penalty, independent of the underlying hypothesis, of selecting Hj, j 6= i when Hi is

true. The object is again to find a sequential test ∆ = (q,N, d) that minimizes the

total cost defined as:

E
[
N + wI

{
d
(
UN , Y N

)
→ error

}]
= E [N ] + wPer, (4.4.30)

where the expectation is taken with respect to π as well as the distribution of the

observation sequence, and Per = E
[
I
{
d
(
UN , Y N

)
→ error

}]
denotes the probability

of making the wrong decision. The asymptotic regime is w → ∞. The problem of

finding a control policy that minimizes (4.4.30) will be denoted as Problem (P). Note

that in some places in the literature, the total cost is given either by cE [N ]+Per or by

cE [N ] + wPer, where c > 0 is the cost of taking one observation, and the asymptotic

nature of the problem is defined as c → 0. It is straightforward to show that the
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problems are all equivalent. The reason the objective function in this section was

chosen to be (4.4.30) will be made clear in the sequel.

Next, following [108], [110] and [111], results in dynamic programming (DP) theory

will be used to establish lower bounds for the optimal total cost. In order to obtain

upper bounds, two heuristic controlled sensing tests will be defined and analyzed.

In general, the problem of inferring among M > 2 hypotheses in a sequential

manner in the presence of control, is a partially observable Markov decision problem

(POMDP) where the state (the true hypothesis) is static and the observations are

noisy. It is known that any POMDP is equivalent to an MDP with a compact yet

uncountable state space, for which the or the posterior vector (also referred to as the

belief vector of the decision maker about the underlying state) becomes an information

state. At each time instant, n, the information state is given by the vector ππ (n),

whose i’th element is the conditional probability of Hi, given π and all the observations

and control actions up to time instance n. The full derivation can be found, for

example, in Chapter 6 of [84].

In one sensing step, the evolution of the belief vector follows Bayes’ rule and is given

by Φu, a measurable function from 4M ×Y to 4M , where 4M is the M -simplex, and:

Φu (π, y) =

(
π0
pu0 (y)

puπ (y)
, π1

pu1 (y)

puπ (y)
. . . , πM−1

puM−1 (y)

puπ (y)

)
; ∀u ∈ U , (4.4.31)

where pui (y) , i ∈ {0, . . . ,M − 1} are defined in (4.4.4) and puπ (y) =
∑M−1

i=0 πip
u
i (y). In

other words, (π, y) gives the posteriori distribution, when control u has been taken,

and y has been observed. As customary in the DP literature, we next define the

operator Tu, u ∈ U , such that for any measurable function g : 4M → R:

(Tug) (π) =

∫
g (Φu (π, y)) puπ (dz) , (4.4.32)

that is, (Tug) (π) is the expected value of g at the posterior belief, where the computa-

tion of the posterior belief follows the Bayes rule. For example, the mutual information

between θ ∼ π and Y ∼ puπ can be written as I (θ;Y ) = H (π) − (TuH) (π) where H

is the entropy of π, defined to be

H (π) = −
M−1∑
i=0

πi log πi. (4.4.33)

The following theorem, which is a consequence of Propositions 9.1 and 9.8. in [11],

characterizes the solution of Problem (P):
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Theorem 13 Let V ? : 4M → R+ be the minimal solution to the following fixed point

equation:

V ? (π) = min

{
1 + min

u∈U
(TuV ?) (π) , min

j∈{0,...,M−1}
(1− πj)w

}
. (4.4.34)

Then V ? (π), referred to as the optimal value function, is equal to the minimum of the

total cost in Problem (P) with the prior belief π.

As shown in [11, Corollary 9.12.1], this theorem provides a characterization of an opti-

mal Markov stationary deterministic control policy2 for Problem (P): the control u? =

argmin
u∈U

(TuV ?) (π) is the least costly control action, resulting in 1+minu∈U (TuV ?) (π),

and is the optimal action to take, unless the penalty of wrongly declaring Hi? , where

i? = argmin
j∈{0,...,M−1}

w (1− πj), is even less costly. In the latter case, it is optimal to retire

and declare Hi? .

We have the following technical assumptions:

Assumption 1. For any two hypotheses i and j, i 6= j, there exists a control u ∈ U ,

such that D
(
pui ‖ puj

)
> 0.

Assumption 2. It holds that

max
i,j∈{0,...,M−1}

max
u∈U

sup
y∈Y

puj (y)

puj (y)
<∞ (4.4.35)

Assumption 1 ensures the possibility of discrimination between any two hypotheses,

hence ensuring Problem (P) has a meaningful solution. Assumption 2 implies that no

two hypotheses are fully distinguishable using a single observation sample.

The lower bounds on the optimal value function, V ?, that will be presented in this

section, are based on the following lemma, proven in [111]:

Lemma 14 Suppose there exists a functional V ? : 4M → R+ such that for all belief

vectors π̃ ∈ 4M

V (π̃) ≤ min

{
1 + min

u∈U
(TuV ) (π̃) , min

j∈(0,...,M−1)
(1− π̃j)w

}
. (4.4.36)

Then V (π̃) ≤ V ? (π̃) for all π̃ ∈ 4M where V ? is the optimal solution to Problem (P).

2A Markov stationary control policy q is a policy under which the probability of a control u ∈ U
is selected at a belief state π̃ is given by q (u | π̃). A Markov stationary control policy q is referred to
as deterministic if for each π ∈ 4M , there exists a control u ∈ U for which q (u | π̃) = 1
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Using Lemma 14, one can show the following:

Corollary 15 Under Assumption 1 and for w > 1, V ? (π) > V1 (π) where

V1 (π) =

M−1∑
i=0

max
i 6=j

log
(

1−w−1

w−1

)
− log

(
πi
πj

)
maxu∈U D

(
pui ‖ puj

) −K ′
+

(4.4.37)

and K ′ is a constant independent of w.

The next corollary provides another lower bound, which is more appropriate for large

values ofM , as will be explained in Section 5.6. DefineDmax = max
i,j∈{0,...,M−1}

max
u∈U

D
(
pui ‖ puj

)
,

and Imax = max
u∈U

max
π̃∈4M

I (π̃; puπ̃). The following then holds:

Corollary 16 Under Assumption 1 and for w > 1,

V ? (π) ≥
[
H (π)− h2 (α (w,M))− α (L,M) log (M − 1)

Imax

+ α (w,M)w

]+

, (4.4.38)

where α (w,M) = M−1
M−1+2wImax . Furthermore, under Assumption 2 and for L > log(M)

Imax

and arbitrary δ ∈ (0, 0.5],

V ? (π) ≥
[
H (π)− h2 (δ)− δ log (M − 1)

Imax

+
log
(

1−w−1

w−1

)
− log

(
1−δ
δ

)
Dmax

I
{

max
i
πi ≤ 1− δ

}
− K̂ ′

+

, (4.4.39)

where K̂ ′ is a constant independent of w and M .

The two lower bounds can be understood intuitively in the following way: say

we have a “measure of uncertainty” function F : 4M → R+. Assume we start with

some F (ππ (0)) at time zero, and we are interested in reducing uncertainty to a level

of F (π̂). The number of samples required to do so has to be at least F (ππ(0))−F (π̂)
Fmax

,

where Fmax is the maximum amount of reduction in F associated with a single sam-

ple, i.e., Fmax = max
f∈F

max
π̃∈4M

{
F (π̃)−

(
TfF

)
(π̃)
}

. The lower bound in Corollary 15 is

associated with such a lower bound when taking U to be the log-likelihood function,

while the lower bound in Corollary 16 is associated with setting F to be the Shannon

entropy. The intuitive explanation of the second bound of Corollary 16 involves Fano’s
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inequality [29] that states the following: Let X be a random variable taking values in

the set {0, . . . ,M − 1}, suppose Y is a random variable which is related to X by the

conditional distribution P (y | x) and let X̂ (Y ) be an estimate of X. Define the error

probability δ = Pr
(
X 6= X̂

)
. Then

h2 (δ) + δ log (M − 1) ≥ H (X | Y ) . (4.4.40)

Note that the right hand side of (4.4.40) appears in the numerator of the first term

in (4.4.39). Intuitively, the bound can be interpreted in the following way: let δ be

some target error probability, and denote the stopping time by T . Next, we write T

as T = Tδ + (T − Tδ), where Tδ is the time it takes in order for some estimator to

reach the error probability δ. The bound in (4.4.39) implies that the total stopping

time can be written as

F1 (ππ (0))− F1 (π̂)

F1,max

− F2 (ππ (0))− F2 (π̂)

F2,max

(4.4.41)

where F1 is the entropy, and it is used until the error probability drops below δ, and F2

is the likelihood function which is used from time Tδ until the test stops. This intuition

further implies a two-phase scheme that achieves this bound, using the entropy as a

test statistic in the first phase and the likelihood ration in the second. We will see

later that this intuitive approach helps to produce a good upper bound as well. The

proofs of Corollary 15 and Corollary 16 can be found in [111].

In [111], the authors have also proposed two heuristic sequential tests, and analyzed

their performance. These tests will be denoted by ∆I and ∆II . The main difference

between the Chernoff test and its generalizations, discussed in the previous section,

and the tests ∆I and ∆II , is that the latter have two operational phases: the first is

a phase in which the belief about all hypotheses is below a certain threshold; while

in the second phase, the belief about one of the hypotheses has passed that threshold

and actions are selected in favor of that hypothesis. The difference between the two

tests is in the actions they take in each phase.

For a set A, define the collection of all probability distributions on elements of A
by 4|A|. In order to define ∆I and ∆II , we need to specify the stopping times, NI and

NII , the decision rules, dI and dII , and the control policies, qI and qII . To that end,

consider a threshold value π̄, π̄ ∈
(

1
2
, 1− w−1

)
. We define ∆I as follows:
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• The stopping time is defined as

NI = min
n≥0

max
i∈{0,...,M−1}

ππ (n) ≥ 1− w−1 (4.4.42)

and dI selects Hi? , where i? = argmax
i∈{0,...,M−1}

ππ (NI)

• If ππi (n) ∈ [π̄, 1− w−1) for some i, then

qI (u) = µi,u; ∀u ∈ U , (4.4.43)

where µi = argmax
λ∈4|A|

min
j 6=i

∑
u∈U λuD

(
pui ‖ puj

)
.

• If, for all i ∈ {0, . . . ,M − 1}, ππi (n) ∈ [0, π̄), then

qI (u) = µ0,u; ∀u ∈ U , (4.4.44)

where µ0 = argmax
λ∈4|A|

min
i∈{0,...,M−1}

min
j 6=i

∑
u∈U λuD

(
pui ‖ puj

)
.

In its first phase, the control function qI selects actions in a way that all pairs of hy-

potheses can be distinguished; while in the second phase, that coincides with Chernoff’s

scheme, only the pairs including the most likely hypothesis are considered. Among

other advantages of two phase schemes, that will be further discussed in the second

part of this work, one can notice that they allow to relax condition (4.4.13) without

adding additional randomization, as was done in the modified Chernoff test.

The second test proposed in [111], denoted by ∆II , is similar to ∆I , except vectors

µ0 and µi are replaced by η0 and ηi where

η0 = argmax
λ∈4|U|

min
i∈{0,...,M−1}

min
π̂∈4M

∑
u∈U

λuD

(
pui

∣∣∣∣∣∣∣∣∑
i 6=j

π̂j
1− π̂i

puj

)
, (4.4.45)

ηi = argmax
λ∈4|U|

min
π̂∈4M

∑
u∈U

λuD

(
pui

∣∣∣∣∣∣∣∣∑
i 6=j

π̂j
1− π̂i

puj

)
. (4.4.46)

The idea behind this test is similar to that of ∆I , only this time, instead of considering

the minimizing j ∈ {0, . . . ,M − 1} of D
(
pui ‖ puj

)
, the minimum is now taken with

respect to all the measures which are mixtures of puj , that are in the form of qi,j =∑
i 6=j

π̂j
1−π̂ip

u
j (and again, the object is to maximize, over all randomized control policies,

the minimum ”distance” in terms of the Kullback-Leibler divergence)
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By analyzing the performance of tests ∆I and ∆II , upper bounds on the optimal

value function can be attained, as was done in [111]. Nevertheless, the main contri-

bution of [111], to the field of multiple hypothesis testing with control, boils down to

the following theorems regarding the asymptotical optimality of these two tests:

Theorem 17 Let V ∆I (π) denote the value function for test ∆I , i.e., the expected

total cost achieved by test ∆I when the initial belief is π. Then for fixed M , test ∆I

satisfies

lim
w→∞

V ∆I (π)− V ? (π)

V ∆I (π)
< 1 (4.4.47)

for all π ∈ 4M .

From the definition of V ? (π), for any test ∆, limw→∞
V ?(π)
V ∆(π)

≥ 0, whereas Theorem 17

implies that limw→∞
V ?(π)

V ∆I (π)
> 0, that is, asymptotically, for large w (i.e., large sample

sequences), V ∆I (π) grows proportionally to V ? (π).

In order to state the asymptotic performance of ∆II , we denote the vectors attain-

ing η0 and ηi, by η?0 and η?i respectively, that is:

η?0 = max
λ∈4|U|

min
i∈{0,...,M−1}

min
π̂∈4M

∑
u∈U

λuD

(
pui

∣∣∣∣∣∣∣∣∑
i 6=j

π̂j
1− π̂i

puj

)
, (4.4.48)

η?i = max
λ∈4|U|

min
π̂∈4M

∑
u∈U

λuD

(
pui

∣∣∣∣∣∣∣∣∑
i 6=j

π̂j
1− π̂i

puj

)
. (4.4.49)

Then the following holds:

Theorem 18 For w > logM
Imax

and if all the elements η?0 are strictly positive, then ∆II

satisfies

lim
M→∞

lim
w→∞

V ∆II (π̂)− V ? (π̂)

V ∆II (π̂)
< 1, (4.4.50)

where π̂ is the uniform prior(that is, π̂i = 1
M

for all i ∈ {0, . . . ,M − 1})

Theorem 19 If

min
j 6=i

max
u∈U

D
(
pui ‖ puj

)
= η?i ∀i ∈ {0, . . . ,M − 1} , (4.4.51)

then, for fixed M and all π̃, there exists a constant B, such that

V ∆II (π̃)− V ? (π̃) ≤ B. (4.4.52)
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Furthermore, for w > logM
Imax

and if Dmax = η?i for all i ∈ {0, . . . ,M − 1}, then test ∆II

satisfies

lim
M→∞

lim
w→∞

V ∆II (π̂)− V ? (π̂)

V ∆II (π̂)
= 0, (4.4.53)

where π̂ is as above.

We will return to these theorems and their interpretations in Section 5.6 where an

important example of a controlled sensing problem will be formulated. Test ∆II will

then play an important role as an optimal scheme.

We close this section with a lemma connecting Problem (P) to another problem,

denoted by Problem (P’), defined as

minimize E [N ] subject to Per ≤ ε, (4.4.54)

where ε > 0 and the expectation is with respect to the true hypothesis.

Lemma 20 Let E [N?
ε ] be the minimal expected number of samples required to achieve

Per ≤ ε, then

E [N?
ε ] ≥ (1− εw) (V ? (π (0))− 1) , (4.4.55)

where V ? (π (0)) is the optimal solution to Problem (P) for a prior π (0) and cost for

wrong decision w.

The fact that there is a relation between the two problems is not surprising, since

Problem (P) can be viewed as a Lagrangian relaxation3 of Problem (P’). Moreover,

Lemma 20 is a mathematical rationalization of the intuitive idea that, as w →∞, the

solution of Problem (P) is related to that of Problem (P’) as ε→ 0.

3Recall that for the optimization problem of finding the minimum of a function f (x) under the
constraint that g (x) ≤ ε, the Lagrangian relaxation problem is defined to be min {f (x) + wg (x)},
where w ≥ 0 is called the Lagrange multiplier
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Part II

Channel Coding With Feedback

70



Chapter 5

Channel Coding with

Instantaneous Feedback

5.1 Introduction

The effect of feedback in communication that has been studied from the early days of

information theory. In this chapter, results regarding performance of point-to-point

communication systems with instantaneous feedback will be discussed. Unless stated

otherwise, the feedback channel will be assumed perfect, i.e., with infinite capacity

and error free. Another basic assumption is the use of block codes, that is, the infor-

mation sent through the channel is about only one message at a time, and the time

intervals used for sending successive messages are disjoint. In a block coding scheme

with feedback, the transmitter is allowed to have fixed-length codewords, whose ele-

ments depend on previous channel outputs and the message. Another configuration

of block codes is that in which the duration of each coded message is not necessarily

constant. Instead, the receiver decides when to stop transmission and deciphers the

coded message using the information gathered up to that point. In this chapter, we

will focus on the latter problem and the goal will be to illuminate on the connections

with sequential hypothesis testing. Specifically, the block error exponent, which is an

important parameter of communication, is studied. This error exponent is not to be

confused with the bit error exponent that is commonly discussed in non-block code

analysis (for example [75] and [124].

As is well known [130], feedback does not increase the capacity of a point-to-point

memoryless channel. This remains true even if variable-rate coding is allowed (see
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Appendix I).

As for error exponents, Dobrushin [40] showed that for fixed block-length codes and

above a critical rate, the error exponent does not increase for symmetric DMCs1 as a

result of feedback (whereas for rates under this critical rate, Dobrushin results are only

upper bounds on the error exponent). It has been long conjectured, but never proved,

that this is true also for non-symmetric channels. The best known upper bound for

block codes with feedback, when no symmetry is assumed, is Haroutunian’s bound

[65], which coincides with Dobrushin’s result for symmetric channels (i.e., it is equal

to the sphere-packing error exponent for symmetric channels, but strictly larger for

non-symmetric channels). However, there is no achievability result for this exponent.

A similar result for additive white Gaussian noise channels (AWGNC) is given by

Pinsker [117], who assumed, in addition to a constant decoding time constraint, also

constant power for each message. Furthermore, if the feedback link is also an AWGNC

and if there is a power constraint either on the expected power or on the power itself

(in an almost sure sense) then even for two messages, the error probability decays only

exponentially as has been shown by Kim et al. [82].

Pinsker’s result on the best achievable error exponent [117] seems, at first glance, to

contradict the widely known results of Schalkwijk and Kailath [125], [127], according

to which the error probability can decay doubly exponentially in the block length.

These contradictions however are illusive, because the models used in these papers

are different: in [117], the power constraint holds with probability one, whereas in

[125] and [127], the power constraint is only on the expected value. We therefore see,

that the results highly depend on the model used. This is an important point and it

continues to play a role throughout the rest of the sequel.

For the same reason, it is not surprising that in the case of variable length (VL)

coding with feedback (i.e. for schemes where the decoding time is a random variable),

that will be discussed in the following sections, the error exponent will take yet another

form, which is significantly different from the fixed block length expression. As will

be seen in the next section, the error exponent of systems with incorporated feedback

is actually strictly better in almost all non-trivial cases.

This chapter also emphasises the relation between coding with feedback and hy-

pothesis testing. The main idea is that in both problems there are hypotheses to be

1Channels with a transition probability matrix whose columns are permutations of each other,
and so are the rows.
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tested and the decision-maker has the freedom to decide not only in favor of some

hypothesis but also on the time in which this decision is made. After formalizing this

claim, we will demonstrate how one can use the results covered in the previous chapter

to attain intuition and results regarding the communication problem.

5.2 Basic Model and Notation

A. Forward Channel

We will assume that the channel is stationary and memoryless. We denote the channel

input and output at time n by Xn and Yn, respectively, and assume finite input

and output alphabets, X = {1, . . . , K} and Y = {1, . . . , L}. The channel transition

probabilities will be denoted by

p (j | i) = PY |X (Yn = j | Xn = i) , i ∈ X , j ∈ Y . (5.2.1)

It is assumed that all rows of the matrix {p (j | i)} are distinct, and that p (j | i) > 0

for all i, j ∈ X × Y .

B. Feedback Channel

We denote the feedback channel input at time n, by Zn, and the output at time

n by Z ′n. We only deal with noiseless feedback (that is, Pr (Zn = Z ′n) = 1) for all

Zn, Z
′
n ∈ Z, where Z is the common input and output alphabet of the feedback

channel). In addition to this assumption, it will be further assumed that the feedback

channel is instantaneous, that is, no delay is added to a symbol passing through it.

C. Coding Algorithm

All schemes considered here are block-coding schemes, where the transmitter is as-

signed one of M equiprobable messages, denoted by θ ∈ {0 . . . ,M − 1}.
An encoder is a sequence of functions denoted by

Xn (θ) ≡ X (θ, Z1, . . . Zn−1) , ∀ (Z1, . . . Zn−1) ∈ Zn−1, θ ∈ {0, . . . ,M − 1} . (5.2.2)

For the sake of simplicity we will also use the shorthand notation Xn. We denote by

Fn “all the knowledge accumulated at the receiver up to time n”, which in the case of
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perfect feedback is

Fn = σ (Y1, . . . , Yn, Z1, . . . , Zn) = σ (Z1, . . . , Zn) (5.2.3)

where the second equality holds since under perfect feedback the knowledge of {Z1, . . . , Zn}
implies the knowledge of {Y1, . . . , Yn} as well. Note that the sequence {Fn} forms a

filtration of sigma-algebras (i.e., Fn−1 ⊆ Fn,∀n). The overall communication system

is depicted in Figure 5.2.1.

Encoder Channel Decoder

Feedback Channel

θ X1, X2 . . . Y1, Y2 . . . θ̂ = dN

Z1, Z2 . . .Z ′1, Z
′
2 . . .

Figure 5.2.1: General Communication scheme with feedback.

Since we assume perfect feedback channel, it is possible to draw a equivalent and

simpler representation as depicted in Figure 5.2.2.

Encoder Channel Decoder
θ X1, X2 . . . Y1, Y2 . . . θ̂ = dN

Figure 5.2.2: Communication scheme with perfect feedback.

D. Decoding Criteria

A decoding criterion is a pair (N, dn), where N is the decoding time i.e., a stopping time

with respect to the filtration {Fn}, that indicates whether the receiver continues to
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take samples, or it stops the process and decodes the message based on the observations

available. At each time instant n, the decision function, denoted by dn, takes values

in {0, . . . ,M − 1,M}. When dn ∈ {0 . . . ,M − 1}, dn is the estimator of the message,

and dn = M means continue the transmission. The stopping time N is then given by

N = inf
n≥0
{dn 6= M} . (5.2.4)

The probability of error, Pe, is given by:

Pe =
1

M

M−1∑
i=0

P (e | θ = i) (5.2.5)

where, for i ∈ {0, . . . ,M − 1}, P (e | θ = i) = Pr (dN 6= i | θ = i), and the expected

transmission time is given by

E [N ] =
1

M

M−1∑
i=0

E [N | θ = i] , (5.2.6)

where the expectation is taken over all channel realizations and messages. In other

words, the observation space can be represented as the leaves of a complete |Y|- ary

tree T , (complete in the sense that each intermediate node has |Y| descendants), with

expected depth E [N ]. The decision time N is the first time the sequence Y1, Y2, . . .

of channel outputs hits a leaf of T . Furthermore, we may label each leaf of T with

the message decoded when that leaf is reached. This way the decoder is completely

specified by the labeled tree T . The message statistics, the code, and the transition

probabilities of the channel determine a probability measure on T .

Note that, in this formulation of the problem, the a-posteriori probability vector

of the message at time n, denoted by πn = (πn,0, . . . , πn,M−1), is a random vector, as

it is a function of the random observation process up to that time.2 For this reason,

any functional operating on the a posteriori probability vector, or any function of

the measurements themselves, is a random element. For example, the corresponding

entropy of this a posteriori distribution is a random variable, measurable with respect

2In our model, the prior probability of the messages is assumed to be uniform (at time zero),
i.e., π0 =

(
1
M , . . . , 1

M

)
. After the first observation of the channel output is received, the a-posteriori

probability vector π1 = π1 (y1) takes the place of π0, where π1 is typically different then π0. Obviously,
one can continue to calculate these a posteriori probabilities as more and more observations are
accumulated.
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to Fn. This random variable will be denoted by

Hn = H (πn) = −
M−1∑
i=0

πn,i log (πn,i) (5.2.7)

= H (θ | {Y1 . . . , Yn} = {y1 . . . , yn}) . (5.2.8)

E. Rate and Performance Measure

Since the block lengths are random, new definitions forcoding rate and error exponents

are needed, which are consistent with those of fixed-length codes. We define the rate

as

R =
logM

E [N ]
, (5.2.9)

and the error exponent as

E (R) = lim sup
Pe→0

− logPe
E [N ]

(5.2.10)

where the asymptotic regime is such R is kept fixed. Since in order for Pe to approach

zero, we must have E [N ]→∞, another interpretation of (5.2.10) is

E (R) = lim sup
E[N ]→∞,R fixed

− log (Pe)

E [N ]
. (5.2.11)

These definitions are not only consistent with the definitions for fixed-length codes

and with the definition used in the literature of variable-length coding, they also corre-

spond the average stopping time, to which the system converges after many successive

uses.

Unless stated otherwise, it will be assumed throughout the sequel that the input

letters sent through the forward channel are random. More specifically, we will assume

that the inputs are drawn according to the PMF PX on the input alphabet. We con-

sider the case where at time n, the PMF can depend on n, but once PX is determined

Xn is stochastically independent of X1, . . . , Xn−1 given Y1, . . . , Yn−1. The probability

mass functions on the output alphabet will be denoted by PY .

5.3 The Basic Lemmas of VL Coding

Before stating the famous result by Burnashev [18] regarding the error exponent func-

tion of VL coding, using perfect feedback, we quote four lemmas, which are fundamen-

tal and (are the core of the proof by Burnashev), and are interesting and instructive

76



in general. The proofs of all these lemmas can be found in [18].

Lemma 21 (Generalized Fano Inequality) For any coding algorithm and decod-

ing rule such that Pr (N <∞) = 1,

E [HN ] ≤ h2 (Pe) + Pe log (M − 1) , (5.3.1)

where h2 (p) , −p log (p)− (1− p) log (1− p) for p ∈ [0, 1] denotes the binary entropy

function, and E [HN ] is the expected value of the random process Hn defined in (5.2.8),

evaluated at the random stopping time N , and the expectation is taken over the PMF

of N .

This is a generalization of the Fano inequality (see, for example, [29]), for the case

where N is a stopping time. The general idea in the proof by Burnashev, is to use the

average error probability in order to upper bound the expected entropy over decoding

instances. Then, given a threshold value for the entropy, lower bounds on the expected

time to reach this threshold are established.

The following lemmas deal with the change of entropy at each sampling step:

Lemma 22 For all n ≥ 0, we have the inequality,

E [Hn −Hn+1 | Fn] ≤ C a.s. (5.3.2)

where C is the channel capacity, given by

C = max
PX

I (X;Y ) (5.3.3)

Note that the expected decrease we are bounding here is averaged over different possi-

ble messages using Pr (θ = i | {Y1 . . . , Yn} = {y1 . . . , yn}). In other words, at a specific

a posteriori probability distribution on the messages, one may be able to propose a

coding method under which the entropy will decrease, at every time step, on average

for a specific source message, by more than C. However, this method will have a poorer

performance in the case where one of the other messages is sent. If one weights these

cases with the corresponding probabilities of the messages, then the weighted sum

is less then C. This result appears almost obvious for the viewpoint of information

theory.

Lemma 23 For all n ≥ 0, we have the inequality,

E [logHn − logHn+1 | Fn] ≤ C1 a.s. (5.3.4)
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where

C1 = max
i,k

L∑
j=1

p (j | i) log

[
p (j | i)
p (j | k)

]
= max

i,k
D (p (· | i) ‖ p (· | k)) . (5.3.5)

The proof of the next lemma is quite technical, and the lemma itself is brought

here for completeness.

Lemma 24 For all n ≥ 0, and given the event that Yn+1 = l,

logHn − logHn+1 ≤ max
i,k

log

[
p (l | k)

p (l | i)

]
≤ max

i,k,l
log

[
p (l | k)

p (l | i)

]
, F (5.3.6)

where the first inequality holds almost surely. Note that both Lemmas 22 and 23

consider the average over the difference between information quantities; the entropy

and logarithm respectively. Lemma 22 appears almost obvious for the viewpoint of

information theory. It states that, in average, the entropy cannot be decreased by

more that C. In other words, after n channel uses we can expect that a good code

would be able to increase the decoders knowledge regarding the underlying message

nC bits. This is, of course, a well known fact that is strongly related to the coding

theorem. It is also known that constructing a code using the test statistic I (Xn;Yn)

achieves capacity even without making use of feedback. Note also that the expected

decrease we are bounding here is averaged over different possible messages. In other

words, at a specific a posteriori probability distribution on the messages, one may be

able to propose a coding method under which the entropy will decrease, at every time

step, on average for a specific source message, by more than C. However, this method

will have a poorer performance in the case where one of the other messages is sent.

If one weights these cases with the corresponding probabilities of the messages, then

the weighted sum is less then C. This is also true for Lemma 23, where the average of

the difference between the difference in log of the entropy. In the sequel we show that

Lemma 23 comes in handy when the entropies are small. When this occurs, it makes

sense to use a non-linear function such as log in order to gain a lager difference between

the entropies in successive time instants. Indeed, it is easy to show that C < C1, and

so this lemma gives an even stronger upper bound in terms of difference between two

functions of the entropy.
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5.4 The Converse of the Error Exponent Theorem

In this section, the converse of the theorem of the error exponent for VL coding with

feedback will be given, as well as an outline of the proof by Burnashev [18], using

Lemmas 21 - 24.

Theorem 25 For any transmission method over a DMC with feedback, for all Pe > 0,

and for all M > eB, the expected number of observations E [N ] satisfies the inequality:

E [N ] ≥ logM

C
− logPe

C1

− log (logM − logPe + 1)

C1

− Pe logM

C
+K (5.4.1)

where K and B are constants determined by the channel transition probabilities, sat-

isfying B < F + 1, and F is defined in (5.3.6).

The constants K and B can be computed using only the channel parameters.

In order to see the relation between the error exponent function and Theorem 25,

recall that E (R) is defined in the limit as Pe tends to zero. For M > 2 and Pe > 0,

we can divide both sides by E [N ], and, after some algebra, get:

logPe
C1E [N ]

(
1 +

log (1− logPe)

log (Pe)

)
≤ 1− lim

Pe→∞

logM

CE [N ]

(
1− Pe

+
CC1K − C log (1 + logM)

C1 logM

)
. (5.4.2)

Taking the limit as Pe → 0, and using (5.2.9),

E (R) ≤ C1

(
1− R

C

)
, EB (R) . (5.4.3)

It will be shown that EB (R) is achievable. This means that (5.4.3) is the reliability

function. This is in contrast to the reliability function without feedback which is

known exactly only for rate zero and rates above the critical rate. For positive rates

below the critical rate, only upper and lower bounds are known.

The proof of Theorem 25 is quite lengthy, and only a very brief review of its outline

will be given. The core of the proof is the analysis of the following random process:

ξn =

{
C−1Hn + n if Hn ≥ B

C−1
1 log (Hn) + a+ n if Hn < B

(5.4.4)

= n+ C−1HnI {Hn ≥ B}+
{
C−1

1 log (Hn) + a
}
I {Hn < B} (5.4.5)
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where B and a are some given constants. The first step in the proof is showing that

(ξn,Fn) is a submartingale. To show E [|ξn|] is bounded, Lemma 24 is used, in addition

to the trivial bound Hn ≤ log (M). To show the condition on the difference process

holds, i.e., E [ξn+1 − ξn | Fn] > 0, notice that from Lemma 22 and Lemma 23 if follows

that (C−1Hn + n,Fn) and
(
C−1

1 log (Hn) + a+ n,Fn
)

are both submartingales. Then,

these submartingales are used to show the process ξn, which is a process that ”patches”

together the two, is too a submartingale, if B and a are chosen properly. The next step

of the proof is to use the fact that if (xn,Fn) is a submartingale, then so is (xn∧N ,Fn)

[58], and the following holds:

ξ0 ≤ E [ξn∧N | Fn] ≤ lim
n→∞

E [ξn∧N | Fn] . (5.4.6)

Plugging in (5.4.5), using the non-negativity of the entropy ,and invoking Jensen’s

inequality (for the concave function log (·)), one gets:

ξ0 ≤ lim
n→∞

E
[
(n ∧N) + C−1Hn∧N | F0

]
+ C−1

1 log (E [Hn∧N | F0]) + |a|+ log (B)

C1
(5.4.7)

It is now not hard to show, using the fact that H0 = log (M) > B, Lemma 21 and

taking the limit as n→∞3, that the result in Theorem 25 holds.

5.5 The Direct Part

In this section, we present and discuss a coding theorem by Burnashev [18] that asserts

that the lower bound of Theorem 26 is essentially achievable.

Define J as the set of pairs of input symbols (i, k) ∈ K2 that achieve C1, i.e., for

any (i, k) ∈ J ,

C1 = D (p (· | i) ‖ p (· | k)) , (5.5.1)

and define

C̄1 = max
(i,k)∈J

D (p (· | i) ‖ p (· | k)) . (5.5.2)

Theorem 26 For a DMC with noiseless feedback and zero delay, the following holds:

3The fact that E [n ∧N ] → E [N ] as n → ∞ is since Pr (N <∞) = 1 was assumed. If this does
not hold, the result in Theorem 25 is trivial. Also, E [Hn∧N | F0] → E [HN | F0] as n → ∞, due to
the Bounded Convergence Theorem.
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• If C̄1 > C, a coding algorithm exists such that

E [N ] <
logM

C
− logPe

C1

+K ′ (5.5.3)

where K ′ is a constant determined by the transition probabilities.

• For all values of C̄1 and ε > 0, encoder and decoders exist such that

E [N ] <
1

1− ε

(
log (M)

C
− log (Pe)

C1

+
(C1 − C) log (ε)

CC1

)
+K ′′ (5.5.4)

where K ′′ is a constant determined by the transition probabilities.

The coding schemes used to prove Theorem 26, for the complementary cases where

C̄1 > C and C̄1 ≤ C, are different but similar. We will review only the scheme that is

used in the former case, which is also somewhat simpler.

The converse proof section, relied mostly on the fact that one can distinguish

between two phases in the behavior of an information quantity, Hn. This fact was

used in order to motivate the construction of the submartingale process {ξn,Fn}.
This process is a patch between the submartingale processes ξ′n = C−1Hn + n and

ξ′′n = C−1
1 logHn + a + n, in a way that as long Hn is relatively large, ξn = ξ′n, and

ξn = ξ′′n otherwise.

The direct part of the proof makes use of two different phases of an information

quantity, but this time, instead of Hn, the log likelihood ratio function is used. In

some sense, the proposed coding scheme is a generalization of the sequential test ∆a

defined in Section 4.3.A.; however, the prior is uniform and, since feedback channel is

used, the likelihood ratio at time n is a function, not only of {Y1 . . . , Yn}, but also of

{X1 (Y1) , . . . , Xn−1 (Y1 . . . , Yn−1)}. In other words, the log-likelihood ratio of the m’th

message at time n is now defined as

Λm (n) , Λm (Z1, . . . , Zn−1, Yn) = log

[
πm (n)

1− πm (n)

]
= log

[
πm (n)∑

m′ 6=m πm′ (n)

]
(5.5.5)

where πm (n) = Pr (θ = m | Z1, . . . , Zn−1, Yn) is the posteriori. The stopping time is

then given by

N (δ) = min
n≥0

{
max
j

Λj (n) ≥ ln

(
1

δ

)}
, (5.5.6)

for some predetermined positive constant δ. Next, the coding algorithm will be defined.

The novel approach in this coding algorithm is the fact that the two-phase concept,
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used in the converse statement, influences also on the coding strategy itself. The idea

is the following: at each time instant n, Λj (n) , j = 0 . . .M − 1, are calculated at

the receiver (and, due to the feedback, the result of this computation is known also

to the transmitter). Then, while all Λj’s are less than a predetermined threshold p0,

a randomized strategy will be chosen, drawing the the (n+ 1)’st input letter in a

way that the probability of the k’th input letter, given θ = m,Z1, . . . , Zn−1 and Yn is

φk (θ = m,Z1, . . . , Zn−1, Yn), where

K∑
k=1

φk (θ = m,Z1, . . . , Zn−1, Yn) = 1 ∀m,Z1, . . . , Zn−1, Yn, (5.5.7)

M−1∑
m=0

φk (θ = m,Z1, . . . , Zn−1, Yn) πm (n) = πCk ∀k, Z1, . . . , Zn−1, Yn. (5.5.8)

where πc is the capacity-achieving prior. In other words, φk (θ = m,Z1, . . . , Zn−1, Yn)

will be such that posterior given (m,Z1, . . . , Zn−1, Yn) is equal to the capacity-achieving

distribution. When the a posteriori probability of one of the messages, say θ̂, is over

the threshold p0, then if θ = θ̂, the input symbol i? will be assigned, and otherwise

k? will be assigned, where i? and k? are defined in (5.3.5). This is carried out until

n = N (δ).

The proof that this scheme achieves the error exponent (5.4.3) (in the case at hand)

is based on the following three main steps:

1. Define the stopping time

N̄ (δ) = min
n≥0

{
Λθ (n) ≥ ln

(
1

δ

)}
, (5.5.9)

for any δ > 0. Note that for our coding algorithm, N (δ) ≤ N̄ (δ) holds almost

surely, and so E [N (δ)] ≤ E
[
N̄ (δ)

]
. In [18], the stopping time N̄ (δ) is analyzed

in order to derive an upper bound on E
[
N̄ (δ)

]
.

2. The second step of the proof consists of the analysis of the difference process

Λm (n+ 1) − Λm (n). More precisely, it was proved in [18] that the sequence

Λm (n) forms a submartingale, and

E [Λθ (n+ 1)− Λθ (n) | Z1, . . . , Zn−1, Yn, θ] ≥


C if Λθ (n) < log

[
p0

1−p0

]
C1 if Λθ (n) ≥ log

[
p0

1−p0

]
.

(5.5.10)
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In words, this means that, independent of the phase of the coding, the expected

increase in the log-likelihood ratio process of the true message is greater than

or equal to C, if the a posteriori probability of the true message is less than

some threshold value. In addition, when the a posteriori probability of the true

message is greater than this threshold, the expected increase in the log-likelihood

of the true message is C1.

3. It can be shown that for the coding scheme defined above, the probability of

error is less than or equal to δ. Applying a result from [19] to the submartingale

Λθ (n) yields the following:

E
[
N̄ (δ)

]
<

log (M)

C
− log (Pe)

C1

+K (5.5.11)

where K is a constant determined by the transition probabilities. Hence from

(5.5.6) and (5.5.9) it follows that E [N (δ)] < log(M)
C
− log(Pe)

C1
+K and the direct

part is proven. This result holds in the case where C̄1 > C. In case C̄1 ≤ C

holds, a similar coding scheme can be designed. Its structure is quite similar to

the one described above, and will be omitted in this work.

Both the converse and the direct proofs by Burnashev are important for two rea-

sons: first, his lemmas are useful in many other setups, andmoreover, they are building

blocks for the later proofs, and the second is that it shows how the theory of martin-

gales can be of aid in information-theoretic problems. In addition, we will see in the

next section, that the direct part of Burnashev that is closely related to the hypothesis

testing problem discussed in Section 4.4.B.

5.6 Alternative Proofs of the Error Exponent

In this section, two alternative proofs will be reviewed; one of the direct part, due to

Yamamoto and Itoh [156], and the other for the converse, due to Berlin et al. [9]. The

two proofs may be found, in some sense, more intuitive than the proofs by Burnashev,

and help to shed light on the each element in the reliability function and on the

special nature of the problem at hand. In addition, unlike the cumbersome proofs by

Burnasev, the alternative proofs are simpler, and can be extended to other channels

(for example Markov channels [28]) and to more complex communication setups (for

example, cases with cost constraints [112], feedback and belief propagation decoding

and noisy feedback ).
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A. Yamamoto & Itoh’s Proof of the Direct Part

The Yamamoto-Itoh coding scheme [156] is a generalization of an earlier scheme [126],

for the AWGNC with perfect feedback and a peak power constraint. Like Burnashev’s

scheme [18], this is a two-phase scheme, but instead of taking the log-likelihood ratios

(or the conditioned entropy) to be the test statistics,here, the scheme uses of the error

probability itself.

Yamamoto and Itoh’s coding is done in cycles. Each transmission cycle has two

modes of operation (or phases): the first is a message mode ( “phase I”) and the

second is a control mode ( “phase II”). Throughout the transmission time, the number

of channel uses per operation phase (and, hence, per transmission cycle) is kept fixed.

Let L ∈ N denote the total transmission time of each cycle, and let 0 < γ < 1 be

such that γL and (1− γ)L are the lengths of the first and second phase, respectively.

Next, the coding algorithm in each phase will be described, and the general idea of

the analysis will be given.

Phase I:

In this phase, the transmitter sends one of the M messages using a code at rate

C (1− ε), where ε ∈ (0, 1) is arbitrarily small. It follows from the coding theorem [29],

that given Pe,1 ∈ (0, 1), and all sufficiently large M , there exists a code of block-length
logM
C(1−ε) , for which the probability of error is at most Pe,1. In other words, there exists

a code of rate C (1− ε) for which the error probability is upper bounded by Pe,1 and

its block length is bounded by

γL <
log (M)

C (1− ε)
+K (ε, Pe,1) (5.6.1)

where K (ε, Pe,1) is a function of the transition probabilities ε and Pe,1.

At the end of this phase, the receiver can produce a good estimate θ1, of the

message.

Phase II:

Keeping in mind that the encoder is aware of the tentative estimate θ1, the second

phase is used to transmit an acknowledgment (ACK) message, in the case where

θ1 = θ, or a rejection message (NACK) otherwise. The receiver decodes this control

signal, and if the decoded result is an ACK, the receiver accepts θ1, as the decoded

message. If the output is NACK, the receiver discards the message, and waits for a

retransmission. The transmitter is again informed which of the control signals was
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received. If the receiver’s decision is NACK, the transmitter retransmits in the next

message mode. Otherwise, it sends the next message.

In this phase, a simple repetition code is used, mapping ACK to (i?, i? . . . , i?), and

NACK to (k?, k? . . . , k?), where i?, k? are as defined in (5.5.1). Let ε be some positive

constant, 0 < α0 < 1 and 0 < β0 < 1. Using the Chernoff-Stein Lemma (see, for

example, [33], p. 19, Corollary 1.2) and a little algebra, it can be shown that there

exists a (fixed length) binary hypothesis test with block length (1− γ)L that satisfies

both

α , Pr (Choose ACK | NACK sent) ≤ α0, (5.6.2)

β , Pr (Choose NACK | ACK sent) ≤ β0 (5.6.3)

and

(1− γ)L ≤ − logα0

(1− ε) maxi,kD (p (· | i) ‖ p (· | k))
+K ′ (β0, ε) (5.6.4)

=
− logα0

(1− ε)C1

+K ′ (β0, ε) (5.6.5)

where K ′ (α0, ε) is a function of β0 and ε.

Combining (5.6.1) and (5.6.5), and using the fact that the observations at each

cycle are independent, one obtains that for any δ, ε > 0:

E [N ] ≤ 1

1− 2δ

[
logM

C
− logPe

C1

+
δ

(1− 2δ)C1

+ K̂ (δ, ε)

]
(5.6.6)

≤ 1

1− 2δ − ε

(
logM

C
− logPe

C1

+ K̂ (δ, ε)

)
(5.6.7)

where K̂ (δ, ε) is a function of δ and ε. This proves the achievability of Burnashev’s

exponent.

It is worth mentioning that in [156], Yamamoto and Itoh did not realize that their

scheme achieves the optimal error exponent. The reason was that they compared with

Horstein’s scheme [75], which achieves higher convergence rates. The reason for this

contrariety, is that Horstein’s decoding scheme is not done in blocks, and hence it is

unfair to compare.
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B. Modified Yamamoto & Itoh Scheme and Sequential Anal-

ysis

Instead of going through the analysis of the upper bound (5.6.7), we propose a novel

modification to the Yamamoto and Itoh coding scheme and analyze it. The motivation

for this analysis is that it connects the performance of communication links with

feedback and sequential hypothesis testing, and it provides insight by clarifying the

role played by the quantities that appear in the bound.

In the modified scheme, instead of a fixed-length code, a multiple hypothesis test

procedure will be used in the first communication phase in order to make a tentative

decision. Furthermore, instead of a fixed-length binary hypothesis test in the second

phase, an SPRT is performed. The rest of the coding algorithm remains similar.

Intuitively, the new scheme is not be worse than Yamamoto and Itoh’s one. The

reason is that we know that sequential procedures allow a reduction in the transmission

length at the expense of the use of feedback (in the sense that the expected number

of transmissions needed to reduce the error to a certain level is less than the number

of transmissions needed under the fixed block length constraint). Specifically, the

modified scheme is as follows:

Phase I’:

In this phase, a randomly selected codebook is used, by assigning each message with

an infinite random sequence, generated using the capacity-achieving distribution.

Let the codeword of message i be denoted by x(i) and the channel output by y.

For each i ∈ {0, . . . ,M − 1}, define the following two hypotheses:

H i
0 : Pr

(
x(i),y

)
= p

(
y | x(i)

)
Pr
(
x(i)

)
(5.6.8)

H i
1 : Pr

(
x(i),y

)
= Pr (y) Pr

(
x(i)

)
, (5.6.9)

In words, for each message i, we define H i
0 as the hypothesis that x(i) was transmitted

and H i
1 as the hypothesis that x(j), j ∈ {0, . . . ,M − 1} \ {i} is chosen (and so y and

x(i) are independent).

For any infinite sequence w and n ∈ N, let [w]n be the first n symbols of w. For

each communication cycle k and any ε > 0, define the following M stopping times,
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each stopping time corresponding to a single one-sided SPRT, testing H i
0 versus H i

1:

N i
I,k = inf

n≥0

{
log

[
p
(
[y]n |

[
x(i)

]
n

)
Pr ([y]n)

]
≥ (1 + ε) logM

}
(5.6.10)

= inf
n≥0


n∑
j=1

log

p
(
yj | x(i)

j

)
Pr (yj)

 ≥ (1 + ε) logM

 (5.6.11)

where (5.6.11) holds since the channel is memoryless.

Next, define the stopping time of the first phase at the k’th cycle to be:

NI,k = min
i∈{0,...,M−1}

N i
I,k (5.6.12)

= min
i∈{0,...,M−1}

inf
n≥0


n∑
j=1

log

p
(
yj | x(i)

j

)
Pr (yj)

 ≥ (1 + ε) logM


 .(5.6.13)

The operational meaning of NI,k is that, at each cycle, the decoder constructs M

one-sided SPRTs with a threshold (1 + ε) logM . At the end of each such a phase, the

decoder chooses, as a tentative decision, the i’th message that corresponds to the i’th

one-sided SPRT first to exceed the boundary value.

To understand the intuition and motivation of such a test, assume that x(0) is

transmitted through the channel. Then the one-sided SPRT (corresponding the the

0’th message) follows a random walk with a positive drift E
[
log

[
p
(
yj |x

(0)
j

)
Pr(yj)

]]
= C > 0,

while the other M − 1 random walks have a negative drift. Since NI,k ≤ N0
I,k,

E [NI,k] ≤ E
[
N0
I,l

]
. (5.6.14)

By Wald’s first equation, it is clear that the expected time for a random walk with

drift C to pass the threshold (1 + ε) logM is approximately

E
[
N0
I,k

]
≈ (1 + ε) logM

C
, (5.6.15)

and also, for large enough M , the error probability would meet any constraint. The

full derivation is given in Appendix A.

Phase II’:

In this phase, an infinite repetition code is used4, mapping ACK to (i?, i? . . .), and

4By an infinite repetition code we mean that we do not restrict the codewords to be of finite size.
In particular, each codeword is taken to be an infinite sequence, and it is the decoder that informs
the encoder when to stop transmitting and move on to the next message.
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NACK to (k?, k? . . .). Define the two hypotheses regarding the output sequence at

this phase by:

HACK : Pr (Y n
1 ) =

∏n
i=1 PA (Yi) (5.6.16)

HNACK : Pr (Y n
1 ) =

∏n
i=1 PN (Yi) , (5.6.17)

where PA (y) = p (y | i?) and PN (y) = p (y | k?) for y ∈ (1, . . . , L). In this phase, at

each cycle k, the decoder runs an SPRT with a stopping time denoted NII,k and a

decision function denoted dII,k = dII,k (NII,k). Note that, given the input sequence,

the observations are indeed i.i.d. since a DMC is assumed, and Pr (Y n
1 ) has in a product

form. Let 0 < α0, β0 < 1 be the chosen bounds on the error probabilities α and β,

respectively. By the theory developed in Part I, setting the boundary values of the

SPRT to be A = 1
α0

and B = β0 will assures that

α ≤ α0, β ≤ β0. (5.6.18)

Recall that the (random) length of the second phase of the k’th cycle is denoted

by NII,k and let K ∈ N be the total number of cycles until decoding. Note that the

total transmission time needed for each message is given by

N =
K∑
j=0

[NI,k +NII,k] =
K∑
k=0

NI,k +
K∑
k=0

NII,k. (5.6.19)

The idea of the proof is the following: As will be proven in Appendix A, one

can choose M large enough, such that the probability that NACK would be sent in

the second phase, denoted by πN , is arbitrarily small. Specifically, we take it to be

upper bounded by Pe,1 ∈ (0, 1/3). For this reason, the probability of sending ACK,

πA = 1 − πN , can be made very close to one. Moreover, we know from Part I that

both EPA [NII,k] and EPN [NII,k] are finite and therefore, for all k = 1, 2, . . .,

E [NII,k] = πAEPA [NII,k] + πNEPN [NII,k] (5.6.20)

≈ EPA [NII,k] . (5.6.21)

It is now left to upper bound EPA [NII,k]. Note that underHACK , the SPRT decodes

a message according to whether a random walk,
∑

n log
[
PA(Yn)
PB(Yn)

]
passes one of the

boundary values, set to be − logα0(> 0) and log β0(< 0). Since EA
(

log
[
PA(Yn)
PB(Yn)

])
=

C1 > 0, and Pe ≤ α0Pe,1 it is intuitively clear that

EPA [NII,k] .
− logα0

C1

.
− logPe
C1

. (5.6.22)
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If we take large M and small β0, the overall probability of retransmission is small.

Taking K ≈ 1 yields that

E [N ] ≈ E [NI,1] + E [NII,1] .
logM

C
− logPe

C1

(5.6.23)

which is the leading term in Burnashev’s bound.

To conclude, in this section and in the former one, two alternative achievability

proofs, based on simple schemes, were outlined. In both, the general idea was to al-

ternate between a communication phase and a confirmation phase, until the receiver

estimates the codeword sent by the transmitter, and gets an acknowledgement that the

message estimate is correct. The main advantage of the scheme described in Section

5.6.B., is that it provides some insight, by clarifying the role played by the quantities

that appear in Burnashev’s bound. Specifically, from the channel coding theorem, we

expect it to take roughly log(M)
C

channel uses in order to reduce the probability of error

to a sufficiently low level, so that it is safe to make a tentative decision in a reliable

manner. In the sequential scheme, the fact that we know that approximately nC chan-

nel uses are needed to establish reliable communication, motivated the construction

of a multiple hypothesis scheme that is build out of M one-sided SPRTs, one for each

(equiprobable) possible message, in a way that the test statistics of the test following

the correct message, will be a random walk with drift equal to the channel capacity,

and setting the boundary value to be such that the average time for the random walk

to hit it would be roughly log(M)
C

. After deciding on the primary guess regarding the

message, the encoder and decoder have to agree on a test procedure that will allow

the encoder to gather information about a binary message (ACNK or NACK) in the

best way, in terms of error probability and expected stopping time. It is quite intuitive

that the SPRT would be a good candidate for such a mission, using the two ”most

distinct” codewords for the given channel. Doing the analysis, we showed that the

expected time for such a test to stop is given roughly by − log(Pe)
C1

.

C. An Alternative Converse

The same intuition gained in Section B. was also used to prove a simple converse in [9].

The proof shows that the optimal coding algorithm (or any other coding algorithm

using feedback for that manner) can be artificially divided into two phases: a coding

phase and a binary hypothesis test phase, each having the same role as in the direct

proof. Specifically, in order to lower bound the stopping time of a general feedback
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scheme, another coding scheme is constructed which bears the two-phase structure,

has the same stopping time, but it has a better error probability. Next, the proof will

be outlined, emphasizing the two-phases approach.

Assume N and Pe are the stopping time and error probability of the optimal

decoder with respect to the of error exponent. Let Pe (yn) be the error probability of

the maximum a posteriori probability (MAP) decoder after having received the output

{y1, . . . , yn} (or, in other words, Pe (yn) = 1− max
0≤m≤M−1

PM |Y n (m | yn)) and define the

stopping time τ ∈ Fn to be:

τ = min
n≥0
{Pe (yn) ≤ δ or n = N} , (5.6.24)

for some δ > 0. Using Lemmas 21 and 22, the following result can be proven:

Lemma 27 (Lemma 2 in [9]) For any 0 < δ < 1
2
,

E [τ ] ≥
(

1− δ − Pe
δ

)
logM

C
− h2 (δ)

C
. (5.6.25)

The key idea is the following: in the event {τ 6= N}, which is shown to occur with

high probability, it is possible to artificially divide the decoding time N into two parts:

[0, τ), which is a (random) time interval at the end of which at least one message has

high probability (as implied by the fact that Pe (yτ ) ≤ δ), and the remaining interval

[τ,N ]. Assume that at time τ , the message set is divided into two sets, G and Gc.
Given access to the decoder estimate at time N , denoted by θ̂, consider a second

decoder, working from time τ to time N , that declares θ ∈ G if θ̂ ∈ G and θ 6∈ G
otherwise. The following facts hold regarding the new decoder and the sets G and Gc:

• If θ̂ = θ then both the original decoder and the new one are correct, and hence

the error probability of the new decoder does not exceed the error probability of

the original one, conditioned on Y τ .

• For any realization of Y τ , the message sets G and Gc can be chosen to assure that

both have posterior probabilities greater than λδ, where λ , min
i,j∈X×Y

p (j | i) (> 0).

The way to construct these groups, given Y τ , is described in detail in [9] and

will not be repeated here.

It is now clear that in order to find a lower bound on the error probability, one can

lower bound the error probability of the new decoding scheme, both conditioned on

Y τ . This is done using the following lemma (Lemma 1 in [9], which is closely related

to results obtained in Section III is [137] and in Section 2.2 in [35]):
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Lemma 28 The error probability of a binary hypothesis test performed across a DMC

with feedback and variable-length codes is lower-bounded by

Pe ≥
min {πA, πN}

4
exp (−C1E [N ]) , (5.6.26)

where πA and πN are the prior probabilities of the hypotheses.

This lemma, proven by applying Doob’s optional stopping theorem on the bounded

supermartingale
(

log
[
PA(Y1,...,Yn)
PN (Y1,...,Yn)

]
− nC1,Fn

)
is of importance to the analysis due to

the fact that the new decoder performs a binary hypothesis test from time τ to time

N . In addition, the construction of the two (possibly composite) hypotheses, after

observing T τ , is done such that the conditional probabilities of the two hypotheses are

greater than λδ and hence, by Lemma 28,

Pr
(
θ̂ 6= θ | Y τ

)
≥ λδ

4
exp (−C1E [N − τ | Y τ ]) . (5.6.27)

Using the convexity of the exponential function and Jensen’s inequality, we obtain

Pe ≥
λδ

4
exp (−C1E [N − τ ]) (5.6.28)

and hence

E [N − τ ] ≥ − logPe − log (4) + log λδ

C1

. (5.6.29)

Plugging in (5.6.25) yields that

E [N ] ≥ logM

C
− logPe

C1

−
(
δ +

Pe
δ

)
logM

C
− h2 (δ)

C
+

log λδ − log (4)

C1

(5.6.30)

which is essentially Burnashev’s lower bound (since δ is arbitrarily small).

5.7 Variable-Length Coding with Cost Constraints

The mathematical setup so far assumed that all the input letters have equal cost. In

other words, we have not been taking into account the possibility that some letters

of the set {0, . . . , |X | − 1} are “preferred” over other ones (e.g., require less power

to be used by the transmitter). In this section this restriction will be relaxed, and

a cost criteria will be imposed on the transmitted codewords. The motivation for

this extra constraint is the fact that in practice, such a restriction is inherent to the
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communication problem (such as transmitted energy constraint), in addition to the

desire to separate the effect of cost constraints from that of infinite alphabet size, thus

allowing a better understanding of channels such as additive Gaussian noise, where

these effects are combined. in other words, the work that is presented in this section

isolated one of the elements that differ the setup debt with so far and the one in

practice and analyses its effect on the error. Mathematically, in order to introduce a

cost constraint, we consider the same DMC with feedback model that was proposed in

Section 5.2, with the exception that for each input letter k ∈ X , there is nonnegative

transmission cost ρk ≥ 0 and at least one ρk is zero. The cost SN of transmitting

a codeword of (random) length N is the sum of the costs of the N symbols in the

codeword. A cost constraint P means that E [SN ] ≤ PE [N ]. If this relation holds, the

codeword satisfies a power constraint of P . With this definition, P can also be seen

as an upper bound of the long term time average cost per symbol over a long string

of independent successive message transmissions. Having set the mathematical setup,

the question is whether an optimal error exponent, as defined in Section 5.2, can be

found for a given pair (R,P). In [112] the authors found the answer to be affirmative.

Moreover, a closed-form optimal error exponent function was found for any set of costs

{ρk}, any power constraint and any rate below capacity. By doing so, the Burnashev

error exponent result was generalized to include the case above.

A good way to understand the result in [112] is to follow the direct part of the

proof of main theorem. This part of the proof is a generalization of the Yamamoto-

Itoh scheme that fits the cost constraint setup, and that results in the best error

exponent possible for this case. As in Yamamoto-Itoh’s scheme, the transmission of

each codeword is in two phases. In the first, a capacity-achieving code is used and a

tentative decision is made. In the second, an ACK/NACK message is sent to boost the

reliability of the decision. The transmitter and receiver then act just as in Yamamoto-

Itoh’s scheme, that is, the message is sent again in case a NACK is decoded and an

estimate is generated otherwise. Two key features of the scheme, which also simplifies

the analysis, are the following:

a. The code of the first phase has rate less than the capacity.

b. The binary hypothesis test of the second phase is designed such that the probability

of retransmission vanishes as the expected stopping time goes to infinity.
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For these reasons, and just as in Yamamoto-Itoh’s scheme, one can analyze the perfor-

mance of the code as if it was a fixed-block-length code with a block length of E [N ]5.

There is, however, a main difference between Yamamoto-Itoh’s scheme and the one

to be presented in this section, related to the cost constraint. Specifically, the total

power P is divided between the two phases such that the power allocated to the first

phase is P1, and the power allocated to the second phase is P2. The two new power

constraints are chosen such that

P = γP1 + (1− γ)P2, (5.7.1)

where γ is the time sharing parameter, defining the fraction of time the transmitter

uses each communication phase (see Section 5.6). The way these power constraints

are incorporated in the new proposed scheme is as follows:

• In the first phase, the fixed-block-length code is taken to be a code that achieves

the capacity C (P1) defined as

C (P1) = max
PX :

∑
k PX(k)ρk≤P1

I (X;Y ) (5.7.2)

• Recall that in the original Yamamoto-Itoh scheme, the ACK and NACK code-

words used in the second phase were repetition codewords composed of the two

“most far apart” input letters in the KL divergence sense. These codewords,

when used in a binary hypothesis testing problem are optimal in that they

achieve the best error exponent, as can be seen from the Chernoff-Stein Lemma.

Nevertheless, we have no guarantee that these two codewords will satisfy the

cost constraint and hence we cannot always use them.6. In order to include the

cost constraint, we need the following natural extension of the Chernoff-Stein

Lemma:

Lemma 29 Define the maximum single-letter divergence for the input letter k ∈
5The mathematical reason for this outcome is the fact that the probability of retransmission

vanishes with an exponential rate as E [N ] goes to infinity and hence, effectively, the code length can
be said to be “almost deterministic” and highly concentrated around the value E [N ].

6Note that the only codeword that should satisfy the power constraint is the ACK codeword. The
reason is that the binary hypothesis test in our case, as in Yamamoto-Itoh’s scheme, will be designed
so that the probability that a NACK message will be sent vanishes (exponentially) with the expected
stopping time. For this reason any exceeding from the power constraint caused by this codeword will,
effectively, make no difference asymptotically.
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X as

Dk , max
m∈X

∑
j

p (j | k) log

[
p (j | k)

p (j | m)

]
(5.7.3)

and let mk be the input letter achieving this maximum. If the ACK codeword

contains PX (k)E [N ] occurrences of letter k, and the NACK codeword is cho-

sen to contain the letter mk whenever the ACK codeword contains k then the

following result holds: for any δ > 0 there is an ε ≡ ε (δ) > 0 such that

α ≤ exp

[
− (1− γ)E [N ]

(∑
k

PX (k)Dk − δ

)]
(5.7.4)

β ≤ exp [− (1− γ)E [N ] ε] , (5.7.5)

where α and β are as defined in (5.6.2) - (5.6.3).

From (5.7.4), it is clear that in order to maximize the error exponent we must

choose the ACK codeword to maximize
∑

k PX (k)Dk subject to the power con-

straint. Thus, for a power constraint P2 in phase II, define D (P2) as

D (P2) , max
PX :

∑
k PX(k)ρk≤P2

∑
k

PX (k)Dk. (5.7.6)

Following the aforementioned results, the new proposed scheme can be interpreted

as providing a nominal rate of R = γC (P1), a nominal power constraint of P = γP1 +

(1− γ)P2, and a nominal exponent of error probability (1− γ)D (P2). Altogether,

we have demonstrated the existence of variable length block codes for which the actual

average rate, power, and exponent approach these values arbitrarily closely as E [N ]

becomes large. The error exponent achieved by this scheme is then given by

E (R,P) , sup {(1− γ)D (P2)} (5.7.7)

subject to

γC (P1) =R (5.7.8)

γP1 + (1− γ)P2 =P (5.7.9)

P1,P2 ≥ 0, γ ∈ [0, 1] . (5.7.10)

where the supremum is taken over P1,P2 and γ.
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In [112] it was shown that there is a certain interval of γ for which these constraints

hold, and that P1 and P2 are essentially uniquely defined as a function of γ in that

interval. Thus (5.7.7) is simply a concave maximization over an interval. The resulting

function is then also concave in (R,P), and thus also as a function of R for any given

P . It can be shown that E (R,P) is strictly decreasing in R from D (P) at R = 0.

The main theorem, proven in [112], is the following:

Theorem 30 Assume ideal feedback for a DMC with all p (j | k) > 0. Then for all

P > 0, R ≤ C (P) , δ > 0, and all sufficiently large l there is a variable-length block

code of expected length E [N ] , l ≤ E [N ] ≤ l+1 with M ≥ exp [E [N ] (R− δ)] messages

such that for each message θ ∈ {1, . . . ,M}, the probability of error Pe and the expected

energy E [SN ] satisfy:

Pe ≤ exp {−E [N ] [E (R,P)− δ]} (5.7.11)

E [SN ] ≤PE [N ] + ε (δ) (5.7.12)

where ε (δ) > 0 for each δ > 0, and the probability that the codeword length exceeds l

is at most δ. Furthermore, for sufficiently large E [N ], all variable length block codes

with

• expected energy E [SN ] ≤ PE [N ] + δ

• M ≥ exp {−E [N ] [E (R,P) + δ]} equiprobable massages

must satisfy

Pe ≥ exp {−E [N ] [E (R,P) + δ]} . (5.7.13)

The proof of the converse part of Theorem 30 can be found in [112], where the authors

generalized the basic lemmas of VL coding (see Section 5.3) to fit into the framework

discussed here, and then used them to upper bound the random time of both com-

munication phases, akin to Burnashev’s proof. To conclude, Theorem 30 specifies the

reliability function for the class of variable-length block codes for DMCs with cost

constraints where the transition probabilities of the DMC are all positive, and the

feedback channel is ideal.

A few notes are in place:

1. Assume that at least one transition probability is zero, say p (j | m) = 0 for some

j ∈ Y and m ∈ X . Without loss of generality, assume also that for each output
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j, p (j | k) > 0 for at least one input k and thus Dk = ∞. Suppose that the

ACK codeword of phase II uses all k’s, the NACK message all m’s, and that

the receiver decodes ACK only if it receives one or more j’s. In this case, no

errors can ever occur for the corresponding VL block code. Since, asymptotically,

phase II can occupy a negligible portion of the total communication duration,

designing the first phase such that the total energy satisfies the cost constraint

will yield that the total energy also satisfies E [SN ] ≤ E [N ]P+δ (for any δ > 0).

Following this idea and after a little analysis, one can find that for the case where

at least one transition probability is zero, there is a VL code satisfying

M ≥ exp {E [N ] (R− δ)} , Pe = 0, E [SN ] ≤ PE [N ] + ε (δ) , (5.7.14)

and hence probability of error equal to zero is achievable at all rates up to the

cost constrained capacity.

2. The rate and the error exponent are specified in terms of the expected block

length. By looking at a long sequence of successive message transmissions, it is

evident from the law of large numbers that the rate corresponds to the average

number of bits transmitted per unit time. In the same way, the cost constraint

is satisfied as an average over both time and channel behavior. The theorems

then say that essentially the probability of error, Pe, for the best variable-length

block code of given rate R, power constraint P , and expected stopping time

E [N ] satisfies

− log (Pe)

E [N ]
→ E (R,P) as E [N ]→∞. (5.7.15)

A similar result is true, for the same reason, also for the case where no constraints

are posed on the power of transmission.

5.8 Variable-Length Coding and Controlled Sens-

ing

One of the main motivations behind this work is to establish a better understanding of

the connection between the sequential hypothesis testing problem and variable length

coding. The issue considered in this part of the work, i.e., the VL coding problem,

is of the kind of sequential discrimination of multiple hypotheses with control of the
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observations. Nevertheless, it is important to note that the controlled sensing problem,

that was considered in Part I, is fundamentally different. Unlike in the setup in

Section 5.2, where the control actions are functions of the underlying hypothesis,

the control actions in Section 4.4 cannot be functions of the unknown hypothesis.

Knowledge of he hypothesis simplifies both the optimization of control policies and

their performance analysis. When the hypothesis is unknown, the controller has to

base its actions on estimates of the hypothesis. Another important difference between

the two mathematical setups is the asymptotic regime. In the sequential hypothesis

testing problem, we took interest in the asymptotic regime where E [N ] goes to infinity

(or, equivalently,the probability of error goes to zero), while the number of hypotheses

is kept fixed, whereas in the communication problem, this number grows exponentially

fast, to keep the rate, log(M)
E[N ]

, fixed.

Despite the differences in the information structure, it is not hard to see that the

channel coding problem can be treated as a special case of the sequential hypothesis

testing with control. We start by considering the zero rate case. In other words, the

controlled hypothesis testing problem will be formalized as a “legitimate” VL coding

problem with perfect feedback, while a fixed number of messages (which play the role of

the hypotheses) will still be assumed. As an example, it will be shown, following [114],

that EB (0) is the optimal error exponent at zero-rate. This is done by invoking The-

orem 12 and the controlled hypothesis testing scheme (φc, Nc, dc), defined in Section

4.4.A. To that end, consider the M × 1-dimension vector (Xn (0) , . . . , Xn (M − 1)) ∈
XM to correspond to the control un ∈ U . Particularly, for the equivalent sequen-

tial hypothesis testing problem, we take the control set U = XM . For any spe-

cific control action u = (xn (0) , . . . , xn (M − 1)) the observation model is simply

pui (j) = p (j | i), where p (j | i) is the channel transition matrix defined in (5.2.1).

Assume, as in most communication models, equiprobable messages, i.e., πi = 1
M

for

all i ∈ {0, . . . ,M − 1} and consider a feedback communication system as illustrated

in Figure 5.2.2. The description above can be made more rigorous in the following

way: let E = {e (·) : {0, . . . ,M − 1} → X} be the set of all mappings from the set of

messages {0, . . . ,M − 1} to X . In [109], using the results from [99], it was proven that

without loss of generality, a fictitious agent can be added to the communication system

depicted in Figure 5.2.2, who has access to past channel outputs, and is responsible

for selecting actions from the set E ∪ {D}, where D stands for the decision-making

action, i.e, action D marks the termination of the transmission phase at the stopping
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time, while the choice of encoding function en at time n determines the input to the

channel at time n. In other words, Xn = en (θ). It can be shown that the two def-

initions of the problem, with or without the the addition of the fictitious agent, are

equivalent. The reason is that the decision of the fictitious agent at any time instant

n relies solely on {Y1, . . . , Yn−1}, which is fully observable by both the transmitter and

receiver and hence are easily replicated at transmitter and receiver in isolate. The new

and equivalent representation can be schematically illustrated in Figure 5.8.1.

en (θ) Channel Decoder

Fictitious Agent

θ Xn Yn θ̂ = dN

Y1, Y2 . . . , Yn−1

en (·)

Figure 5.8.1: Variable length coding with feedback from the point of view of the
fictitious agent.

From this point of view, variable-length coding with noiseless feedback is closely

related to a special case of Problem (P’) defined in Section 4.4.B. where the fictitious

agent plays the role of the Bayesian decision maker whose available actions coincide

with the set E , and whose observation kernels are given by pui (j) = p (j | e (i)).

Given that we have posed the channel coding problem as a hypothesis testing prob-

lem, we can simply invoke Theorem 12 to compute an upper bound on the expected

coding length, subject to a constraint on the error probability Pe ≤ ε (for arbitrarily

small values of ε), and evaluate the performance of (φc, Nc, dc) in order to obtain a

lower bound. Note also that, for the equivalent hypothesis testing problem,∑
u∈U

q̄ (u)D
(
pui ‖ puj

)
=
∑
u∈U

q̄ (u)D (p (· | i) ‖ p (· | j)) . (5.8.1)

Following (4.4.26), we are interested in max
q̄(u)

min
j∈{0,...,M−1}\{i}

∑
u∈U q̄ (u)D

(
pui ‖ puj

)
.

From now on we will assume transition probability for all channel inputs bear a cer-

tain symmetry such that the inner minimization over j is superfluous. Consequently,

the outer maximization over the control policy q (u) is achievable by a point mass
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distribution at the two most distinguishable channel input symbols, i.e.

max
q̄(u)

min
j∈{0,...,M−1}\{i}

∑
u∈U

q̄ (u)D
(
pui ‖ puj

)
= C1, ∀i ∈ {0, . . . ,M − 1} (5.8.2)

Note that for this symmetric setup, R̄i = ε
M

for all i, and so, it follows that

E [N ] ∼ − logPe
C1

or
− logPe
E [N ]

∼ C1, (5.8.3)

which is Burnashev’s exponent, defined in (5.4.3), at zero rate.

As was mentioned in the previous part, the main drawback of the feedback schemes

covered in Section 4.4.A., including (φc, Nc, dc), is that in the asymptotic optimality

notion, the complementary role of the number of the hypotheses, M , was neglected.

In particular, the notion of asymptotic optimality in the sense of vanishing error prob-

ability with a fixed number of hypotheses, falls short in showing the tension between

an asymptotically large number of samples to discriminate among a few hypotheses

with asymptotically high accuracy, or, alternatively, an asymptotically large number

of hypotheses with a lower degree of accuracy. This is, of course, why we could obtain

results that are restricted to zero rate, i.e., potentially unbounded number of samples

are used to acquire logM bits of information. It is also worth mentioning that the

scheme of Chernoff, if specialized to channel coding with feedback, coincides with the

second phase of Burnashev’s scheme. However, while the first phase of Burnashev’s

scheme can achieve any information rate up to capacity Chernoff’s one-phase scheme

has a zero rate. The fact that in order to obtain asymptotically optimal performance

a two-phase scheme was used, one to obtain reliability and another to assure non zero

rate, is not surprising.

In what follows, we use the test ∆II in Section 4.4.B., in order to prove the achiev-

ability of optimality for positive rates. Specifically, in order to prove asymptotic

optimality, following [111], upper and lower bounds on E [N?
ε ], defined as the minimal

expected number of samples required to achieve Pe ≤ ε in problem (P’), will be estab-

lished. For the upper bound, Lemma 20 is used, setting w = 1
ε log(M/ε)

, combined with
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Corollary 16, with δ = 1
log(M/ε)

. This yields that:

E [N?
ε ] ≥

(
1− 1

log
(
M
ε

))
H (π)− log(M−1)

log(Mε )

Imax

+
log
(

1
ε

)
− 2 log

(
log
(
M
ε

))
Dmax

I

{
max
i
πi ≤ 1− 1

log
(
M
ε

)}−O (1)

]+

(5.8.4)

≥ log (M)

C
+

log
(

1
ε

)
C1

I

{
max
i
πi ≤ 1− 1

log
(
M
ε

)}−O(log

(
log

(
M

ε

)))
,

(5.8.5)

where the last inequality holds for the specific hypothesis testing depicted in Figure

5.8.1 which was shown to be equivalent to the channel coding problem with perfect

feedback.

For the lower bound, notice that for w > 1
ε
,

E [N?
ε ] ≤ V ? (π) . (5.8.6)

Moreover, for test ∆II , it can be shown (as in [111]) that the following bound on

the value function holds:

V ∆II (π) ≤ H (π)

max
λ∈4|U|

min
i∈{0,...,M−1}

min
π̂∈4M

∑
u∈U λuD

(
pui ‖

∑
i 6=j

π̂j
1−π̂ip

u
j

) (5.8.7)

+
M−1∑
i=0

πi log
(

1−w−1

w−1

)
max
λ∈4|U|

min
π̂∈4M

∑
u∈U λuD

(
pui ‖

∑
i 6=j

π̂j
1−π̂ip

u
j

) +O (1) . (5.8.8)

Applying this bound to the problem at hand, and using the fact that under these

conditions (Claim 1 in [111]):

max
λ∈4|U|

min
i∈{0,...,M−1}

min
π̂∈4M

∑
u∈U

λuD

(
pui

∣∣∣∣∣∣∣∣∑
i 6=j

π̂j
1− π̂i

puj

)
≥ C (5.8.9)

max
λ∈4|U|

min
π̂∈4M

∑
u∈U

λuD

(
pui

∣∣∣∣∣∣∣∣∑
i 6=j

π̂j
1− π̂i

puj

)
= C1, (5.8.10)

it follows that

E [N?
ε ] ≤ logM

C
+

log
(

1
ε

)
C1

+O (1) . (5.8.11)

By combining (5.8.5) and (5.8.11), and using the correct asymptotic regime, Bur-

nashev’s result is recovered for all rates up to capacity.
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Chapter 6

Communication Systems With

Limited Feedback

6.1 Introduction

In the previous chapter, we have characterized and discussed the maximum error

exponent that can be achieved using a DMC in the presence of a perfect feedback

channel, otherwise known as Burnashev’s exponent. One of the main and obvious

drawbacks in the setting considered so far, is the unrealistic assumptions regarding

the feedback channel, i.e., instantaneous and error-free. Another undesired property

of the coding schemes discussed in the previous chapter is the fact that their decoding

time is not necessarily bounded. In other words, at least theoretically, the time one

may wait until a final decision is made can be by far larger than its expected value.

The rest of this work will be devoted to studying how the error exponent function is

affected when some of these assumptions are relaxed.

In this chapter, a different mathematical setup will be considered, which imposes

a more realistic constraint on the feedback channel, and hence on the coding schemes.

In particular, we consider a DMC with a noiseless binary feedback channel1 where only

a single use of this channel per message is allowed, that is, for each codeword trans-

mitted, the receiver can use a binary, instantaneous, error-free feedback channel only

once. As an example, consider the case where the receiver can analyze the observation

sequence, and signal to the transmitter to stop the transmission when it has high con-

fidence regarding the message sent. Note that the most significant difference between

1Using the notation defined at the beginning of Chapter 5, this assumption means that |Z| = 2.
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this setup and the one considered in Chapter 5, is that now, one cannot assume that the

transmitter has access to all the information obtained by the receiver. Therefore, the

transmitter cannot determine whether the message was decoded correctly nor can it

send new symbols in a manner that depends on the observation sequence. Mathemati-

cally, given θ ∈ {0, . . . ,M − 1}, the new constraint implies that the symbol sent by the

encoder at time instant n, denoted in (5.2.2) by X (θ, Z1, . . . Zn−1), is no longer a func-

tion of the received observation sequence {Y1 . . . , Yn−1} (and hence of {Z1 . . . , Zn−1}),
and so, we can redefine X (θ, Z1, . . . Zn−1) , Xn (θ) for any {Z1 . . . , Zn−1}.

6.2 Forney’s Error Exponent

In this section, an achievable error exponent will be presented for the communication

setup at hand via a particular scheme due to Forney [53]. Forney proposed a decoding

scheme based on the erasure-decoding principle to be defined later. The most im-

portant feature of this error exponent function is that it provides a proof that even

a feedback of one bit, as the one described in the Introduction, increases the error

exponent significantly in comparison to the error exponent without feedback.

A. Erasure and Undetected Error Exponents

Before delving into the scheme itself, a few related results, obtained in [53] are needed.

We start by considering fixed block-length coding, where, at the end of transmission,

the decoder has an additional option of not deciding, i.e., of rejecting all messages. The

resulting output is called an erasure. Under this setup, only if the decoder estimates,

the message incorrectly, we have an undetected error. It is clear that by allowing the

erasure probability to increase, the undetected error probability can be reduced.

Mathematically, consider the same forward DMC that was defined in Section 5.A.

A a rate-R block code of length n consists of M = exp (nR) vectors of length n,

{xm ∈ X n,m ∈ {0, . . . ,M − 1}}, which represent M different messages. As before,

we assume that all messages are a-priori equiprobable. A decoder with an erasure

option is a partition of the observation space Yn into (M + 1) regions, R0, . . . ,RM .

Such a decoder works as follows: if the output sequence y ∈ Yn falls into Rm,m ∈
{0, . . . ,M − 1}, then a decision is made in favor of message number m. If, on the

other hand, y ∈ RM , no decision is made and an erasure is declared. We will refer
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to the event {y ∈ RM} as the erasure event. A graphical illustration of the erasure

decoding decision regions is given in Figures 6.2.1 and 6.2.2.

R0

R1

R2

R3

Figure 6.2.1: Typical partition of the observation space in erasure-decoding schemes.

R0R1

R2R3

Figure 6.2.2: Typical partition of the observation space in classical decoding schemes.

Following Forney [53], we next define two additional undesired events. The event

E1 is the event of not making the right decision. This event is the disjoint union of

the erasure event and the event E2, which is the undetected error event, namely, the

event of making the wrong decision. The probabilities of these events are given by

Pr (E1) =
M−1∑
m=0

∑
y∈Rcm

Pr (xm, y) =
1

M

M−1∑
m=0

∑
y∈Rcm

p (y | xm) , (6.2.1)

Pr (E2) =
M−1∑
m=0

∑
y∈Rm

∑
m′ 6=m

Pr (xm′ , y) =
1

M

M−1∑
m=0

∑
y∈Rm

∑
m′ 6=m

p (y | xm′) . (6.2.2)

If E1 occurs, either an undetected error or an erasure must ensue. Therefore, the

probability of erasure is given by

Pr (RM) = Pr (E1)− Pr (E2) (6.2.3)
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In [53], using the Neyman-Pearson theorem, Forney showed that the best trade-off

between Pr (E1) and Pr (E2) (or, equivalently, between Pr (RM) and Pr (E2)) is attained

by the following decision regions:

R?
m =

{
y ∈ Yn :

p (y | xm)∑
m′ 6=m p (y | xm)

≥ exp {nT}

}
, m ∈ {0, . . . ,M − 1} , (6.2.4)

R?
M =

M−1⋂
m=0

(R?
m)c (6.2.5)

where T ≥ 0 is a parameter that controls the balance between Pr (E1) and Pr (E2).

Note that, if T > 0, there can be at most one m ∈ {0, . . . ,M − 1} satisfying the

condition; clearly, as T increases, Pr (E1) increases while Pr (E2) decreases, since the

decision regions {Rm} shrink. In addition, note that

p (y | xm)∑
m′ 6=m p (y | xm)

=
Pr (y, xm)∑

m′ 6=m Pr (y, xm)
=

Pr (xm | y)

1− Pr (xm | y)
, (6.2.6)

and so, an equivalent test statistic, which will produce the exact same estimate, is to

choose the message m ∈ {0, . . . ,M − 1} according to

y ∈ Rm ⇔ Pr (xm | y) ≥ η (6.2.7)

where

η ,
exp (nT )

1 + exp (nT )
≥ 1

2
. (6.2.8)

From this relation, one can read off the idea behind optimal decoding with the

erasure option. Recall that without erasure, the optimal decoding algorithm, in the

sense of minimum error probability, is to choose the codeword xm for which Pr (xm | y)

is the largest among all other codewords. On the other hand, in the erasure case, the

optimal decoding algorithm is to choose the codeword xm for which Pr (xm | y) is the

largest among all other codewords, but only as long as Pr (xm | y) ≥ η, η ≥ 1
2
, and

otherwise, declare an erasure. In other words, the decoder has the option to be “more

careful” with its decision, and it sends an erasure if the confidence after receiving n

output symbols is not large enough.

For the error events E1 and E2, define the error exponents ei (R, T ) , (i = 1, 2),

to be the exponents associated with the average probabilities of error Pr (Ei), where

the average is taken with respect to the ensemble of randomly selected codes, drawn

independently according to an i.i.d. distribution p (x) =
∏n

i=1 p (xi), that is

ei (R, T ) , lim sup
n→∞

[
− 1

n
log
(

Pr (Ei)
)]

. (6.2.9)
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The main contribution of [53] is the following upper bounds on both the erasure and

undetected error probabilities (or, equivalently, lower bounds on the error exponents

e1 (R, T ) and e2 (R, T )):

Theorem 31 (Theorem 2 in [53]) There is a block code of length n and rate R =
logM
n

such that when the likelihood ratio criterion of (6.2.4) and (6.2.5) is used with

some threshold T ≥ 0, one can simultaneously obtain

Pr (E1) ≤ exp {−nE1 (R, T )} , (6.2.10)

Pr (E2) ≤ exp {−nE2 (R, T )} (6.2.11)

where Pr (E1) and Pr (E2) are as defined in (6.2.1) and (6.2.2), and E1 (R, T ) is given

at high rates by

E1 (R, T ) = max
0<s<ρ<1,p

{E0 (s, ρ,p)− ρR− sT} , (6.2.12)

E0 (s, ρ,p) = − log

[∑
y∈Y

(∑
x∈X

p (x) p1−s (y | x)

)
·

(∑
x∈X

p (x) ps/ρ (y | x)

)ρ]
(6.2.13)

and at low rates by

E1 (R, T ) = max
0<s<1,ρ≥1,p

{Ex (s, ρ,p)− ρR− sT} , (6.2.14)

Ex (s, ρ,p) = −ρ log

∑
x∈X

∑
x1∈X

p (x) p (x1)

(∑
y∈Y

p1−s (y | x1) ps (y | x)

)1/ρ
 (6.2.15)

where p = {p (x) , x ∈ X} denotes the input probability distribution. Since

E0 (s, 1,p) = Ex (s, 1,p) , (6.2.16)

it holds that the two bounds are connected at intermediate rates by a straight line of

slop −1.

In addition, E2 (R, T ) is given by:

E2 (R, T ) = E1 (R, T ) + T. (6.2.17)

Note that the terms high rates and low rates can be defined using (6.2.16), that is,

the rates lower than the point at which (6.2.16) holds will be referred to as low rate,

while the rates above the point at which (6.2.16) holds will be denoted as high rates.
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These bounds (6.2.10) and (6.2.11) are merely a generalization of the known bounds

on the error exponent of fixed-length block codes. Specifically, for block codes without

erasure, it is well known that the decoder that operates using decision regions according

to the likelihood ratios, is optimal in the sense of average error probability. Analyzing

the performance of this decoder led to the celebrated Gallager’s lower bound on the

error exponent, for high rates, and to the expurgation bound, for low rates. The

derivation of both bounds can be found, e.g., in [56, Chapter 5] or [143, Chapter

3]. In order to prove (6.2.10) and (6.2.11), similar techniques to those used in the

derivation of the Gallager’s lower bound (for high rates) and the expurgation bound

(for low rates) were used by Forney. Moreover, note that by setting T = 0, we get

the Gallager error exponent. Hence, as mentioned in [53], not only Gallager bound

is a special case of the above bounds, but furthermore, these bounds prove that the

random coding error exponent is attainable, not only under the ML decoder, but also

under the decoding rule of (6.2.4) and (6.2.5) with T = 0. In order to emphasize

how to apply the classical bounding techniques to a decoder using the decision regions

(6.2.4) and (6.2.5), the main steps of the derivation of (6.2.10) for high rates will be

outlined.

Since, for y ∈ Rc
m and s > 0,

1 = exp (snT ) exp (−snT ) ≤ exp (snT )

(∑
m′ 6=m

p (y | xm′)
p (y | xm)

)s

, (6.2.18)

it follows that

Pr (E1) =
1

M

M−1∑
m=0

∑
y∈Rcm

p (y | xm) (6.2.19)

≤ 1

M

M−1∑
m=0

∑
y∈Yn

p (y | xm) exp {snT}

(∑
m′ 6=m

p (y | xm′)
p (y | xm)

)s

(6.2.20)

=
exp {snT}

M

M−1∑
m=0

∑
y∈Yn

p1−s (y | xm)

(∑
m′ 6=m

p (y | xm′)

)s

. (6.2.21)

Taking the expectation with respect to the ensemble of codes, and using the fact p (x)

is in a product form, we get

Pr (E1) ≤ exp {snT}
M

M−1∑
m=0

∑
y∈Yn

E
[
p1−s (y | xm)

]
· E

[(∑
m′ 6=m

p (y | xm′)

)s]
. (6.2.22)
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The first factor of the summand, E [p1−s (y | xm)], appears in (6.2.13), using the explicit

expression for the expectation. For the second factor, Forney used the fact that for

any non-negative sequence {ai , ai > 0}, and for any 0 < λ ≤ 1,
∑

i ai ≤
(∑

i a
λ
i

) 1
λ (see

[143, Appendix 3A]), and so

E

[(∑
m′ 6=m

p (y | xm′)

)s]
≤ E

[(∑
m′ 6=m

p (y | xm′)s/ρ
)ρ]

(6.2.23)

for ρ ≥ s. Then, using Jensen’s inequality to insert the expectation into the brackets,

which is allowed only by limiting ρ to be within the interval [0, 1], yields the bound

(6.2.13). Other, slightly deferent, derivation of the bound (6.2.10) can be found in

[73]. In [73], the exponential behavior of Pr (E1) and Pr (E2) is bounded using tilting

measures, a bounding technique introduced in [39], using an auxiliary tilting measure

and only then invoking Jensen’s inequality. Forney’s bounds are then obtained as a

special case of a more general bound, stated in [73]. Soon after the publication of

Forney’s paper [53], Viterbi showed that for the very noisy channel (VNC) defined in

[143, Chapter 3.4] and for AWGNC these bounds are tight, and can be attained using

orthogonal signalling [142]. Another property of the bounds on Pr (E1) and Pr (E2) in

(6.2.10) and (6.2.11), which was proven in [53], is that they take a very simple form

in the case where the function γy (s) , − log
(∑

x∈X p (x) ps (y | x)
)

is independent of

y for any real s.2 First, note that in this case, the term E [p1−s (y | xm)] is particularly

easy to handle, and E [p1−s (y | xm)] = exp {−nγy (s) (1− s)}. Secondly, following

[143], define the sphere packing exponent, Esp (R), to be

Esp (R) = max
ρ≥0
{E0 (ρ,p)− ρR} (6.2.24)

where E0 (ρ,p) , − log
[∑

y∈Y
(∑

x∈X p (x) p1/1+ρ (y | x)
)1+ρ

]
and p is the uniform

distribution over the input set3. In addition, let Rconj be the conjugate rate of R,

defined to be the rate for which the slope of the sphere-packing error exponent Esp (·)
is the reciprocal of the slope at rate R, i.e.,

E ′sp
(
Rconj

)
=

1

E ′sp (R)
. (6.2.25)

2An important class of channel for which this property holds is the symmetric channels, such as
the binary symmetric channel. For a discussion about channels that satisfy this condition, the reader
is referred to [53] and [103].

3Note that a more general definition of the sphere packing exponent includes also an optimization
over the input distribution p. Since from now on we will be concerned only with totally symmetric
channels, for which uniform distribution is always optimal, the discussion was restricted to this
distribution and the extra optimization was omitted.
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Using these definitions, we can state the following result:

Theorem 32 (Theorem 3(a) in [53]) Assume that γy (s) does not depend on y for

any real s. Then there is a threshold T̂ ≥ 0 such that for any rate R̂ satisfying

Rconj ≤ R̂ ≤ C the following error exponents are achievable:

E1

(
R, T̂

)
= Esp

(
R̂
)
, (6.2.26)

E2

(
R, T̂

)
= Esp (R)−R + R̂. (6.2.27)

In a more recent work, some new results regarding the expressions (6.2.1) and

(6.2.2) were obtained. In [103], Merhav uses a different route in order to evaluate the

second factor of the summand (6.2.22), i.e., E
[(∑

m′ 6=m p (y | xm′)
)s]

. The idea is

that instead of using the inequality
∑

i ai ≤
(∑

i a
λ
i

) 1
λ and Jensen’s inequality, which

are not, in general, exponentially tight, the relevant moments of certain distance enu-

merators were assessed. In order to understand the main novel steps in the derivation

of the new bound, in addition to gaining some geometric insight, it will be enough to

limit the discussion to the special case of the binary symmetric channel (BSC) and

the uniform random coding distribution. The extension to more general DMCs and

random coding distributions, as well as the general and full derivations and results

can be found in [103]. Consider the case where X = Y = {0, 1}, assume the crossover

probability is 0 < ε < 1
2

and the random coding distribution is p (x) = 2−n for all

x ∈ X n. For any given y ∈ Yn, let Ny (d) denote the distance enumerator relative

to y, that is, Ny (d) is the number of incorrect codewords {xm′ ,m′ 6= m} at Hamming

distance d from y. Defining α , log
(

1−ε
ε

)
, it follows that

E

[(∑
m′ 6=m

p (y | xm′)

)s]
= E

[(
(1− ε)n

n∑
d=0

Ny (d) e−αd

)s]
(6.2.28)

.
= E

[(
(1− ε)n max

d
Ny (d) e−αd

)s]
(6.2.29)

.
= (1− ε)ns

n∑
d=0

E
[
N s
y (d)

]
e−αsd (6.2.30)

where the notation an
.
= bn means that limn→∞

1
n

log
(
an
bn

)
= 0, and thus implies that

an and bn are equal to the first order in the exponent. The important point in the above

exponential equalities, is that they hold even before taking the expectations, because

the summation over d consists of a subexponential number of terms, as opposed to
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the exponential number of terms in the original summation over the codewords. The

second main point in the proposed approach is the observation that E
[
N s
y (d)

]
behaves

differently under two distinct ranges of d, or, equivalently, of δ , d
n
. More precisely,

for 0 ≤ δ ≤ 1,

E
[
N s
y (δn)

] .
=

{
ens[R+h2(δ)−log(2)], δ ∈ GR
en[R+h2(δ)−log(2)], δ ∈ GcR

(6.2.31)

where GR , {δ : δ ∈ [δGV (R) , 1− δGV (R)]}, and δGV (R) is the Gilbert-Varshamov

(G-V) distance, i.e., solution, δ, to the equation h2 (δ) = log 2−R for which δ ∈
[
0, 1

2

]
.

Plugging in (6.2.31) into (6.2.30), and using some simple algebraic manipulations

(one of which is using once again the fact that a sum of subexponential number of

exponential terms is exponentially equivalent the maximum over all these terms), we

obtain the following theorem:

Theorem 33 For the BSC with crossover probability 0 < ε < 1
2

and for the uniform

random coding distribution, it holds that ei (R, T ) ≥ E?
i (R, T ) where

E?
1 (R, T ) , sup

s≥0

{
µ (s, R)− s log (1− ε)− log

[
ε1−s + (1− ε)1−s]− sT} (6.2.32)

where

µ (s, R) =

{
µ0 (s, R) s ≥ sR

αsδGV (R) s < sR
, (6.2.33)

sR being the solution of the equation γ (s)− sγ′ (s) = R, and

µ0 (s, R) = s log (1− ε)− log [εs + (1− ε)s] + log 2−R. (6.2.34)

Furthermore E?
2 (R, T ) = E?

1 (R, T ) + T .

The optimal value of s in (6.2.32) has an explicit expression, given in [103], but this

expression was omitted since it does not contribute much to intuition. In (6.2.32) one

can also find the proof of Theorem 33, as well as the analogous theorem that applies

for a general DMC, under the condition that γy (s) is independent of y for any real s.

There are a few points that are worth mentioning regarding the new lower bounds

on the error exponent functions:

• Using the aforementioned bounding techniques, the bounds obtained are at least

as tight as Forney’s bounds. The reason for this is that from the point (6.2.22)

and throughout the derivation, only exponentially tight evaluations of the rele-

vant expressions were done, as opposed to Forney’s derivation.
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• Under certain symmetry conditions associated with the channel (i.e., the con-

dition on the function γy (s)) and the random coding distribution, the bounds

are simpler than Forney’s bounds, in the sense that they involve an optimization

over a single parameter. This simplification is due to the fact that the inequality∑
i ai ≤

(∑
i a

λ
i

) 1
λ , that introduced the second optimization parameter, ρ, was

not used. In addition, in certain special cases, like the BSC, the optimum value

of this parameter can be found in closed form.

• A numerical example for which the new bounds are strictly better than For-

ney’s bound was not found yet. Nevertheless, when applying the same analysis

technique to a certain universal decoder with erasures, it was demonstrated by

numerical examples in [103, Part V], that significantly tighter exponential er-

ror bounds can be obtained, compared to the technique used in [53]. Note,

however, that no optimality claims regarding the decision rule simulated are

made. In addition, in a more recent work [105], Merhav studied lower bounds

of the achievable random coding error exponent pertaining to random binning

associated with Slepian-Wolf decoding4. Specifically, the random binning error

exponent was analyzed using both the bounding techniques used by Gallager

[56] and Forney [53], and the type class enumeration method described above.

Interestingly, for this case, Merhav proved that the bounds produced using the

type class enumeration method are strictly tighter than those produced using

Gallager and Forney’s technique for positive values of the threshold T . More-

over, an arbitrarily large improvement is achieved using negative values of T 5 .

Using negative values of T was not tried in [103], and since the analysis in both

papers is very similar, it will not be surprising if negative values of T will yield

an improvement in our case as well.

In a later work [134], Somekh-Baruch and Merhav continued using distance enu-

merators in order to analyze random coding exponents of an optimum decoder with

an erasure option. However, unlike the approach described above, in this work, the

starting point was not a Gallager-type bound on the probability of error, based on

the expectation of the sum of certain likelihood ratios. The novelty in this work is in

4More information regarding the Slepian-Wolf problem can be found in [132]. For the definition
of the random binning method and its relation to the Slepian-Wolf problem see [34], [32] and [57].

5It was shown in [53] that negative values of T correspond to the problem of “List Decoding”,
in which the decoder outputs a list of messages instead of a single estimator. The parameter T
determines the trade-off between the size of the list and the error exponents.
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the fact that the exact expression that defines the probability of an erasure and un-

detected error, (6.2.1) and (6.2.2), where used in a manner that assures exponentially

tight results. In other words, in [134], the authors derive exact single-letter formulas

for the error exponents, in lieu of the lower bounds that were discussed so far. We will

make do with stating e1 (R, T ) and e2 (R, T ) for the BSC case, where the expressions

take on a simple and compact form.

Theorem 34 For the BSC with crossover probability 0 < ε < 1
2

and for the uniform

random coding distribution, if R ≥ log (2)− h2

(
ε+ T

α

)
, e1 (R, T ) = 0 and otherwise

e1 (R, T ) = min
ν∈[ε,δGV(R)−T

α ]

{
D (ν ‖ ε)− h2

(
ν +

T

α

)
+ log 2−R

}
(6.2.35)

and e2 (R, T ) = e1 (R, T ) + T .

As mentioned before, more general results and full derivations can be found in

[134]. As in the previous result, for the BSC, the optimum value of ν can be found

in closed form. The reason both Theorem 33 and 34 are given here, although the

bounds in Theorem 34 are tighter, is that there is still no analytical assurance that

they are strictly tighter. In fact, in both [103] and [134], the authors mention that

no numerical example was found, for which either one of the bounds is strictly better

than Forney’s bound. This may provide an additional evidence to support Forney’s

conjecture that his bound is tight for the average code. In addition, for the case of

the BSC with the uniform random coding distribution, several numerical calculations

have been conducted, which indicate that Forney’s bound coincides with the exact

random coding exponent of Theorem 34.

Recently, there has been a revived interest in the errors-and-erasures decoding.

Other works on the subject that will not be covered in this work, including topics

like universally achievable performance [33], [106], [107], extensions to channels with

side information [123], and implementation with linear block codes [73]. Note that the

encoders used in these works, as well as the encoder that was reviewed in this section,

do not have feedback. However, a key point is that if the transmitter can learn whether

the decoded message was an erasure, it can resend the message whenever it is erased.

In the next section, we will analyze the performance of such a scheme, using Forney’s

results stated in Theorem 31.
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B. Erasure-Decoders and ARQ Feedback Schemes

In the introduction to this section, a feedback communication link was described. In

that setup, only one bit per message was allowed to be sent from the receiver to the

transmitter, through an instantaneous and error-free binary feedback channel. It is

easy to see how decision rules with an erasure option for fixed-length block codes

can be used in the case of feedback. In particular, in [53], Forney proposed the

following scheme: the transmitter sends a codeword xm ∈ X n of length n, chosen from

a codebook of rate R̃ where m ∈ {0, . . . ,M − 1}. As before, M = enR̃ represents the

total number of messages, each of which is assumed equally likely. The transmitted

codeword reaches the receiver after passing through the forward channel, defined in

(5.2.1). After receiving a block of n symbols, the receiver uses an erasure-decoder,

which decides that the transmitted codeword was xm,m ∈ {0, . . . ,M − 1}, if and only

if the received sequence y ∈ Yn falls in R?
m, defined in (6.2.4), where T ≥ 0 is a

controllable threshold. If, on the other hand, y 6∈ R?
m for all m ∈ {0, . . . ,M − 1}, then

the receiver declares an erasure and sends a NACK bit back to the transmitter. Upon

receiving NACK, the transmitter repeats the same message. For obvious reasons, this

type of protocol is also referred to as an automatic repeat query (ARQ) protocol, and

each decision to repeat the message or decode (that is made every n symbols) is called

an ARQ round. Note that in this scheme, the decoder discards the earlier received

sequence and uses only the latest received n symbols for decoding (also known as

memoryless decoding). In other words, after each erasure event, the decoder gathers

the next n-symbol sequence y. If y ∈ R?
M an erasure is declared (and the decoder

asks for a retransmission). When the decoder does not declare an erasure, the receiver

transmits an ACK to the transmitter, and the transmitter sends the next message.

Note that:

• At least theoretically, this scheme allows for an infinite number of ARQ rounds.

Nevertheless, it will be argued that for the specific decoding and erasure algo-

rithms of interest, the expected number of ARQ rounds is bounded.

• This scheme can also be implemented using only one bit for feedback per code-

word by asking the receiver to only send back ACK bits, and asking the trans-

mitter to keep repeating the current codeword repetitively until it receives an

ACK. Using this modification, we see that this scheme fits the constraints on

the use of the feedback channel discussed earlier.
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Let N denote the total number of channel uses per message. The expected value

of this stopping time (which is equivalently defined in (5.2.6)) is, of course, of interest

and can be easily expressed using the erasure probability Pr (R?
M) in the following

way:

E [N ] = n

∞∑
k=1

k Pr (Transmission stops after k rounds) (6.2.36)

= n
∞∑
k=1

k [Pr (R?
M)]k−1 [1− Pr (R?

M)] (6.2.37)

=
n

1− Pr (R?
M)

, (6.2.38)

which implies that the rate, defined in (5.2.9), is equal to

R =
logM

E [N ]
=

logM

n
[1− Pr (R?

M)] = R̃ [1− Pr (R?
M)] (6.2.39)

where R̃ = logM
n

. It is clear, using Theorem 31 with the results of (6.2.38) and (6.2.39),

that as long as E1

(
R̃, T

)
> 0, R→ R̃ as n→∞.

The overall average probability of error is given by:

Pe =
∞∑
k=1

[Pr (R?
M)]k−1 Pr (E2) = Pr (E2) (1 + o (1)) (6.2.40)

where the second equality follows from Theorem 31 when E1

(
R̃, T

)
> 0. It is,

therefore, clear that the error exponent function, defined in (5.2.10), achieved by

Forney’s memoryless decoding scheme is given by

E (R) = lim sup
n→∞

[
− logPe
E [N ]

]
≥ E2 (R, T ) . (6.2.41)

It is shown in [53] that choosing the threshold T such that E1

(
R̃, T

)
→ 0 maximizes,

the exponent E2

(
R̃, T

)
while ensuring that R→ R̃ as N →∞. This establishes the

fact that Forney’s memoryless decoding scheme achieves the feedback error exponent

Ef (R) defined as

Ef (R) , lim
E1(R̃,T)→0

E2

(
R̃, T

)
(6.2.42)

= max
0≤s≤ρ≤1,p

{
E0 (s, ρ,p)− ρR

s

}
(6.2.43)

= max
ν≥1,p

{E0f (ν,p)− νR} (6.2.44)
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where

E0f (ν,p) ,
d

ds
[E0 (s, νs,p)]s=0 (6.2.45)

and E0 (s, ρ,p) is defined in (6.2.13). An important feature of the error exponent

function Ef (R) is that limR→C E
′
f (R) = −1, in contrast to the error exponent without

feedback, whose slope is typically zero at capacity6. This implies that near capacity,

the achievement of low error probabilities is dramatically simplified by the use of

feedback. In addition, it is shown in [53] that for the symmetric channel of Theorem

32,7

Ef (R) = Esp (R)−R + C , EForney (R) , R∞ ≤ R ≤ C (6.2.46)

where R∞ in the smallest rate at which the sphere packing bound is infinite. In

addition, for any channel for the capacity-achieving input distribution,

Ef (R) ≥ Esp (R)−R + C, R∞ ≤ R ≤ C. (6.2.47)

Note that Ef (R) is larger than Esp (R), which is the exact error exponent in the

absence of feedback at high rates.At least for the BSC with crossover probability

0 < ε < 1
2
, and the uniform random coding distribution, the same result regarding the

error exponent of the ARQ scheme can be easily derived by analyzing e1 (R, T ) and

e2 (R, T ). This derivation can be found in Appendix B.

All the results obtained hitherto were derived random coding and an optimal de-

coder in the sense of the erasure-error trade-off. Nevertheless, in [33], Csiszár and

Körner analyzed a different coding and decoding algorithm that achieves the same

error exponent as in (6.2.46), using constant composition codes, which are block codes

that bear the property that all the codewords are chosen from the same type8. The

decoding algorithm of Csiszár and Körner is a generalization of the maximum mutual

information (MMI) decoder, that chooses the codeword having the highest mutual

information with respect to the received output sequence. Specifically, define the

6For pathological examples where this does not hold, see [143, Problem 3.2].
7This property holds also for the very noisy channel (VNC) defined in [143, Chapter 3.4] and for

AWGC [142].
8The type of a sequence x ∈ Xn is the distribution Px on X defined by Px (a) = 1

nN (a | x) for
every a ∈ X , where N (a | x) denoted the number of occurrences of a in x [31]. In fact, Csiszár and
Körner’s bound is tighter than Foney’s one for compositions that are not optimal, but this difference
disappears after optimizing over the input distribution.
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following decision regions:

Rm,CK =
{
y : I (xm; y) > R̂ + λ [I (xk; y)−R]+ for k 6= m

}
,m ∈ {0, . . . ,M − 1} ,

(6.2.48)

RM,CK =
M−1⋂
m=0

(
R?
m,CK

)c
(6.2.49)

where λ, R̂ and R are parameters satisfying λ > 0 and R̂ ≥ R > 0. The decoder then

decodes m if y ∈ Rm,CK and xm is jointly typical with y. Otherwise, it decides on an

erasure. By studying the performance of this error-and-erasure decoding algorithm,

achievable error and erasure exponents were proved (without indicating whether these

exponents match Forney’s exponent). More importantly, by embedding this decoding

rule as the core of an ARQ algorithm, in the same manner as was done using Forney’s

error-and-erasure decoding algorithm earlier, Csiszár and Körner found that the error

exponent achieved is again lower bounded by EForney (R). Note that although this gen-

eralized MMI decoder does not yield an improvement upon Forney’s results regarding

ARQ schemes, it bears the remarkable feature that it does not depend on the forward

channel. In other words, an ARQ defined by the decision regions (6.2.48) and (6.2.49)

derives an error exponent that is upper bounded by EForney (R) universally over all

DMCs. Constant composition codes were later used also in [138] and [139], where new

bounds on Ef (R) were obtained which are tighter when applied to some classes of

channel models, but for symmetric channels, the two bounds coincide.

A few technical notes are in order:

• Optimality: Note that no optimality claim was made regarding the coding

and decoding algorithms in [33]. One of the reasons that must have motivated

Csiszár and Körner’s choice of the aforementioned decoder (which was recently

generalized in a work by Moulin [107]), is the fact that it is amenable to analysis

using the method of types (see [31] for a survey on the subject). For example,

the packing lemma [33, Lemma 10.1], some basic properties of typical sets and

consideration of joint typicality between the codewords and the received sequence

at each ARQ round were all vastly used in the derivation of the bounds. By

contrast, Forney’s test statistics, i.e.,

p (y | xm)∑
m′ 6=m p (y | xm)

, (6.2.50)
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is much harder to handle using the same considerations. For a further discussion

on this subject, the reader is referred to [106] and [77], where the competitive

minimax approach [50] was used to bypass this difficulty, and where a lower

bound the error and erasure exponents was obtained.

• Complexity: Note that Forney’s scheme requires evaluation of all the like-

lihood values. Of course, Csiszár and Körner’s scheme does not require less

computational power. This practical inconvenience necessitates suboptimal de-

cision schemes which provide reasonable performance with reasonable decoding

complexities. Since computational issues and structured codes are not in the

scope of this work, we will only mention some of the earlier works in which such

suboptimal schemes were analyzed. Examples are schemes based on explicit

error-detection coding, such as convolutional codes or low-density-parity-check

(LDPC) codes. This type of schemes is also known as hybrid ARQ schemes.

Some hybrid ARQ schemes are introduced in [69], [83], [68] and [73] (for the

AWGNC model and decoders that are based on bounded distance maximum-

likelihood or bounded angle maximum-likelihood see also [41] and [3]). Another

technique used in order to reduce computational effort is to consider a modified

version of the the decoding rule in (6.2.48) and (6.2.49), where the term

log

[
p (y | xm)∑

m′ 6=m p (y | xm′)

]
, (6.2.51)

is replaced by an approximated expression of the form

log

[
p (y | xm)

maxm′ 6=m p (y | xm′)

]
(6.2.52)

or

log

 p (y | xm)[
M
∑

x′∈Xn p (x′) p (y | x′)1/(1+ρ)
]1+ρ

 , (6.2.53)

where in the first expression, instead of
∑

m′ 6=m p (y | xm′), only the maximal

term was taken (i.e., this approximation is good if the sum is dominated by the

maximum summand), and in the second, the expression
∑

m′ 6=m p (y | xm) was

bounded using Gallager’s technique [56], when random coding is assumed. These

types of decoding rules are further addressed, for example, in [66], [67], [69] and

[157].
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C. Erasure-Decoding and Burnashev’s Reliability Function

In Chapter 5, we have discussed the maximal attainable error exponent in commu-

nication systems with feedback. The feedback channel described in Chapter 5 was

memoryless, instantaneous, and error-free. The coding scheme to be defined next,

following [45], is another example of using an erasure-decoding block. The motivation

behind the work of Draper et al. [45] is to shed light on the amount of feedback really

needed in order to achieve Burnashev’s error exponent.

Akin to Yamamoto and Itoh’s scheme [156], we define two distinct feed-forward

phases of communication, each accompanied by a different feedback strategy:

Phase I: A message m ∈ {0, . . . ,M − 1} is sent over the forward channel in γn

channel uses (where 0 < γ < 1). The decoder decodes the message using an erasure-

decoder as in Figure 6.2.1. If y ∈ Rm̂, a tentative decision in favor of m̂ is made, or else,

an erasure is declared. Next, the M messages are partitioned into Mfb , exp {nRfb}
bins B0 . . . ,BMfb

. The receiver feeds back the bin index k such that m̂ ∈ Bk. In case of

erasure, the receiver feeds back an erasure symbol and the transmitter retransmits the

same message. The improvement upon Forney’s performance is achieved by passing

the detection of decoding errors from the decoder to the encoder, as in Yamamoto and

Itoh’s scheme.

Phase II: The transmitter uses the forward channel (1− γ)n times to send ACK

in case m ∈ Bk, and NACK otherwise. The ACK and NACK messages are sent using

the same repetition code described in Section A.. The receiver decides whether ACK

or NACK was sent, and feeds back a single bit accordingly. If ACK is detected, the

receiver accepts its tentative guess m̂ and both paties continue to a new message. If

NACK is detected, a repeated attempt to communicate the current message is made.

The decoding process is illustrated through the following example: consider the

error event if a codeword from the bin B1 , {R0,R2} of Figure 6.2.3 is sent, say m = 1.

Unless y falls in one of the other decoding regions of this bin, it has landed either in

the decoding region of a codeword that belongs to a different bin, or in the erasure

region. In either case NACK is sent. Undetectable errors only occur if y lies in the

decoding region of another codeword in the same bin. Such an error event is depicted

in Figure 6.2.4. As can be seen by comparison with Figure 6.2.1, the probability of

this event is just the probability of undetected error in an erasure-decoding problem

where only messages from the bin B1 are taken into account.

A key question yet to be answered is how should one choose the partition of the
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R0

R1

R2

R3

Figure 6.2.3: Typical decision regions of the in erasure-plus-binning-decoding
schemes.

R0

R1

R2

R3

Figure 6.2.4: Decoding error event in which the observation sequence falls into a
different codeword region, but in the same bin.

messages into bins. In order to understand the decision rule used in [45], we first

revisit Telatar’s work [138], [139]. As was already mentioned in Section 6.2.B., in

[138], Telatar has defined an erasure-decoding scheme. His scheme, when used as the

core of an ARQ scheme, achieves a tighter error exponent than the one in [53] and

[33], whereas for symmetric channels, the error exponent of Telatar coincides with

Forney’s one. Let ϕTelatar (y,R, T ) be the criterion by which the observation space was

partitioned in Telatar’s work9, that is, for any y ∈ Yn and any given rate R = logM
n

,

the decision regions of Telatar’s decoding scheme are given by:

RTel
m = {y ∈ Yn : ϕTelatar (y,R, T ) = m} , (6.2.54)

RTel
M =

M−1⋂
m=0

(
RTel
m

)c
(6.2.55)

9The exact definition of ϕTelatar (y,R, T ) was left out here since it does not contribute to the
understanding of the decoding scheme. This definition can be found in [138, Section 4.4].
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where, as in Forney’s decision rule, T ≥ 0 is a tunable parameter, used to adjust the

different decision regions and hence to trade off the undetected error probability with

the erasure probability. Returning to the discussion on two-phase scheme described

above, Draper et al.[45] chose the following criterion for partitioning the observation

space:

ϕDraper (y,R, T ) =


i if ϕTelatar (y,R, T ) = i, ∀j 6= i, j ∈ {0, . . .M − 1}

and ϕTelatar (y,R−Rfb, T ) = i, ∀j 6= i, j ∈ B (i)

erase otherwise

.

(6.2.56)

By closely examining this rule, we see that the first condition for ϕDraper (y,R, T ) =

i is exactly the same as the condition for ϕTelatar (y,R, T ) = i to hold. This is an

erasure-like decision rule for which the observation space is divided into an erasure

region and M − 1 decoding regions (as depicted in Figure 6.2.1) and is known to be

good in the sense of achieving Forney’s error exponents for any positive T . In addition,

utilizing the second condition, the set of codewords are classified into bins in a way

that assures that each bin constitutes a good lower-rate subcode, again, in the sense

that the error event illustrated in Figure 6.2.4 has vanishing error probability as long

as T > 0.

The expected transmission rate, R̄, is determined by the number of length-n trans-

missions, which is, as in Forney’s ARQ scheme, a geometrical random variable. Using

erasure regions that assure that the erasure probability decays to zero exponentially

fast (as in the case where the parameter T in (6.2.56) is strictly positive) and the

Chernoff-Stein lemma [29], it can be shown that the probability of retransmission can

be made arbitrarily small by taking n large enough. This is not surprising, keeping in

mind both Forney’s and Yamamoto-Itoh’s scheme.

In addition, choosing the decision regions according to (6.2.56) makes both the un-

detected error probability and the probability of the error event {m̂ 6= m}∩{m, m̂ ∈ Bk}
exponentially small. The exact analysis in very similar to that of [33] and can be found

in [45]. In this work, we illuminate the importance of this scheme in terms of perfor-

mance and highlight some interesting conclusions.

• The main contribution of this scheme is that it reduces the required feedback

rate in comparison to Yamamoto-Itho scheme, by feeding back only the index

of the bin in which the estimated codeword lays. By doing so, it provides an

achievable error exponent for any feedback rate.
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• Both analytical results and simulations carried out in [45] for the BSC, indicate

quite surprisingly that for some channels, Burnashev’s error exponent can be

achieved with Mfb < M and so, for these channels, reduced feedback rates

suffice.

• In some sense, this scheme offers a unified look at both Yamamoto and Itho’s

scheme and Telatar’s scheme10, since it transitions smoothly from one to the

other, depending on the feedback rate available. This can easily be seen by

taking the erasure probability to be zero in the first phase of the scheme, and

therefore constructing a classical codebook (without the erasure option). This

scheme performs as Yamamoto and Itoh’s scheme, where error-free feedback is

considered, achieves Burnashev’s error exponent. On the other hand, taking

γ = 1 and Rfb = 0 (but still keep one bit of feedback in order too indicate

whether to retransmit or not), leads to Telatar’s ARQ scheme, using an erasure-

decoder as described in the previous section, and hence to EForney (R) as a lower

bound on the error exponent.

6.3 ARQ with Hard Deadline on the Decoding Time

So far, the total transmission length was considered only in the sense of its expected

value, for determining the rate of communication defined in (5.2.10). Nevertheless, in

many modern applications with feedback, retransmissions usually have costs beyond

their effect on the average transmission time. Such are, for example, in which a

communication systems with multiple layers. In these systems, retransmissions often

affect the performance of higher layers and hence require care [113]. Systems that

are sensitive to overflow in memory or to delay are also examples. In these examples,

the cost paid for long transmissions is sometimes very high, and, mathematically, it is

translated to harder constraints on the probability distribution of the decoding time.

The most natural way to implement a restriction on the transmission time of an

ARQ scheme, such as the one described in the previous chapter, is to impose an upper

bound, L ∈ N, on the maximum number of ARQ rounds. In [62], two such decoding

schemes were studied. The first naively carries out Forney’s communication scheme,

with a modification that takes into account the deadline restriction. The second scheme

10And, as mentioned before, this scheme achieves the same error exponent as does Forney’s scheme.
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differs from Forney’s memoryless scheme in that it does not necessarily perform ARQ

rounds that are equal in length, and, more importantly, it does not disregard the past

after every round. In particular, the first coding algorithm is equivalent to Forney’s

scheme with one exception: due the restriction on the total number of rounds, the

decoder can no longer use the decision regions defined in (6.2.4) and (6.2.4) during the

L’th round. Therefore, after the L’th round, the decoder employs the ML decoding

rule to decide. The error exponent achieved by this decoding scheme, denoted by

EMD (R,L) ,11 is lower and upper bounded as follows [62, Theorem 2]:

Er (R) + (L− 1)

[
max

0≤s≤ρ≤1,p

{
E0 (s, ρ,p)− ρR− sEr (R)

1 + s (L− 2)

}]
≤ EMD (R,L) , (6.3.1)

EMD (R,L) ≤ LEsp (R) (6.3.2)

where Er (R) and Esp (R) denote the random coding and sphere-packing exponents

[143], and E0 (s, ρ,p) is given in (6.2.13).

Using this result, we have the following main conclusions:

• In general, this decoding scheme does not achieve Forney’s error exponentEf (R),

when the maximum number of ARQ rounds is restricted to L, at least at high

rates where LESP (R) < Ef (R).

• As expected, when L→∞ the lower bound on the error exponent becomes

lim
L→∞

EMD (R,L) ≥ max
0≤s≤ρ≤1,p

{
E0 (s, ρ,p)− ρR

s

}
= Ef (R) . (6.3.3)

The second scheme in [62] is a well known variant of Forney’s ARQ, often referred to

as the incremental redundancy automatic repeat request (IR-ARQ) decoding algorithm

[20]. In IR-ARQ, the transmitter, upon receiving NACK, transmits n new coded

symbols (from the same message). The case studied is the one for which these new

symbols are obtained as i.i.d. realizations from the capacity-achieving distribution.

In the IR-ARQ, decoder does not discard the received observations in the case of

erasure, it uses the received sequences of all ARQ rounds jointly in order to decode.

11Two notes are in order: (a) A tighter lower bound may be obtained by using the expurgated
exponent at low rates, but this result was omitted here since it does not add much to the understanding
of the results and (b) The MD stands for memoryless decoding, and indicates that the decoder
”forgets” the past after each round terminates.
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The following erasure decoding rule is employed by the receiver: after the k’th ARQ

round, the decoder rules in favor of the xm ∈ X kn if and only if y ∈ R′m where

R′m =

{
y ∈ Ykn :

p (y | xm)∑
m′ 6=m p (y | x′m)

≥ exp {knTk}

}
, m ∈ {0, . . . ,M − 1} .

(6.3.4)

As before, y and xm,m ∈ {0, . . . ,M − 1} are vectors of length kn, which contain

the received sequence and transmitted codeword, respectively, corresponding to the

k’th ARQ round. Note that (6.3.4) allows a different threshold for each round. Since

the error probability is dominated by events occurring at the first rounds, it makes

sense to take a non-increasing sequence of thresholds. In particular, in the proof of

(6.3.5), the sequence
{
Tk = T

k
, T > 0

}
was used. If no codeword satisfies the above

condition, then an erasure is declared by the decoder, unless L−1 erasures have already

been declared. In that case, an ML rule is used (on the entire nL-length sequence) in

order to decide.

Define EIR (R,L) to be the error exponent achieved by IR-ARQ under a deadline

constraint L. Then12:

EIR (R,L) ≥ min {Ef (R) , LEr (R/L)} , 0 ≤ R ≤ C. (6.3.5)

Altogether, we conclude that:

• When a deadline is given, disregarding the past in every ARQ round, deteriorates

the error exponent performance. Moreover, for finite L, it is shown that the IR-

ARQ outperforms such a decoding algorithm.

• From (6.3.5), it is clear that if the deadline constraint L is large enough to satisfy

Ef (R) ≤ LEr (R/L) then IR-ARQ achieves the feedback exponent Ef (R).

• In [62], for the BSC and VNC models, sufficient conditions on the size of L were

given for the IR-ARQ scheme to achieve Ef (R). In addition, some simulation

results that demonstrate the superiority of the IR-ARQ scheme over ARQ in the

case of finite L are shown.

12Note that, as in the previous result, replacing Er (R) by the expurgated exponent may yield a
tighter lower bound at low rates.
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6.4 Stop-Feedback and Sequential Multiple Hypoth-

esis Testing

In this section, a stronger relation will be established, between the problem of se-

quentially testing multiple hypotheses and communication with limited feedback. So

far, in order to cope with a feedback limitation of one bit per message, some ARQ

decoding schemes were introduced. In these schemes, the idea was to use a ran-

domly chosen fixed block-length codebook and an erasure decoder, working at some

rate R̃ > 0 in the following manner. Let n denote the block length of the code and

let PX = {PX (x) , ∀x ∈ X} denote the capacity-achieving distribution according to

which the code is drawn. In order to send a message, the transmitter transmits the

same codeword repeatedly. After receiving each batch of n symbols, the decoder uses

an erasure decoding algorithm to make a decision whether to:

(a) Wait n additional time units, in the case of an erasure, or,

(b) Decode the message and signal back to the transmitter to stop repeating the

current message and move on to the consecutive one.

In the previous section it was argued that for rates below capacity, one can choose

the decision regions of the erasure decoder in a way that assures that the probability

of an undetected error and the probability of erasure will decay exponentially in the

block-length n. Applying these results to the ARQ scheme described above yields that

E [N ] =n+ o (1) , (6.4.1)

R =R̃, (6.4.2)

E (R) ≥EForney (R) , (6.4.3)

where E [N ], R and E (R) are defined in Section 5.2.E. and EForney (R) is defined in

(6.2.46). Although the ARQ schemes that are constructed using erasure decoders

were proven to be amenable for analysis using classical tools, as well as being able to

achieve good performance, no claim regarding their optimality was made. In fact, ARQ

schemes of this sort are members in a richer family of codes, sometimes referred to as

stop-feedback codes [118], [153], where the communication over the feedback channel

is restricted to the a single signal, used in order to stop the transmission once the

decoder is ready to decode.
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Before we proceed to define a different type of a stop-feedback scheme, another

important term, which was used vastly throughout the work, is generalized - the ran-

dom coding technique. Thus far in this work, as well as in classical information theory

literature, a random codebook of rate R > 0 is a codebook that was constructed by

drawing M = exp (nR) codewords, each of length n, at random, using a predeter-

mined probability distribution in an i.i.d. fashion. The underlying assumption is that

after the code is constructed, it is revealed to both the transmitter and receiver before

the transmission starts, and is kept fixed throughout the decoding process. Using

the same concept, an infinite random code will be defined in a very similar way, with

one difference - instead of assigning each message with a fixed number of i.i.d.-drawn

symbols, we assign an infinitely long such sequence. The question of how to construct

such a codebook in practice, as well as how should the receiver and the transmitter

share it, will not be dealt with here13.

The infinite random coding method will be used in this section, where a more

general decoding scheme for the stop-feedback setup will be considered. The main

motivation behind the new scheme is that it will enable to relax the restriction that

the stopping time is always an integer multiplication of n. A more general framework

is, one of where the decoder can signal back a stopping symbol at any time step, i.e.,at

each time instant, the observation sequence is re-evaluated. Note that the traditional

random coding method was used in all memoryless ARQ schemes that were reviewed

in the previous sections. These ARQ schemes can be slightly modified to fall into the

infinite random coding framework. This is done by constructing an infinite random

codebook, and dividing it into consecutive segments, each of length n. Then, at the

k’th ARQ round, the k’th segment of the codebook is used. Since the decoding is

memoryless, the performance of the modified scheme will be equal to those of the

original schemes.14

13One elegant way around this problem is the assumption that a common source of randomness is
available to both the encoder and the decoder, and hence the two sides can maintain such an infinite
codebook. This assumption is sometimes made in the information theory literature on the subject of
variable length coding, but it still does not solve the implementation problem in practical systems.

14As a matter of fact, Forney’s result and results follow-up prove more than merely an achievable
error exponent for stop-feedback coding; the power of these scheme is also in the fact that they prove
that in order to achieve this error exponent, some observations are not needed and can be disregarded
in the decoding process.
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The main idea behind the results to be presented, is that the problem of infinite

random coding and stop-feedback decoding can be formalized as the sequential mul-

tiple hypothesis testing problem, that was discussed in Section 4.3. To that end, let

us denote the codebook by C ,
{
x(0),x(1) . . . ,x(M−1)

}
, where x(i) =

{
x

(i)
1 , x

(i)
2 . . .

}
is

the infinite codeword assigned to the message i ∈ {0, . . . ,M − 1}. Furthermore, let

z = z1, z2, . . . be the following sequence:

zk ∈ XM × Y , zk =
(
x

(0)
k , x

(1)
k , . . . , x

(M−1)
k , yk

)
(6.4.4)

where y = (y1, y2, . . .) is the observation sequence.

For any infinite sequence v, let [v]n be the first n samples of the infinite sequence

v. In this section we use the same DMC model as was defined in Section 5.2.A., i.e.,

PY|X ([y]n | [x]n) =
n∏
k=1

p(yk | xk) (6.4.5)

Next, define the following M simple hypotheses:

Hi : Pr ([z]n) = Pi ([z]n) , i ∈ {0, . . . ,M − 1} , (6.4.6)

where we have defined the joint probability distributions

Pi ([z]n) = Pi

([
x(0)
]
n
,
[
x(1)
]
n
. . . , [x](M−1) , [y]n

)
(6.4.7)

, PY|X
(
[y]n |

[
x(i)
]
n

)M−1∏
l=0

PX

([
x(l)
]
n

)
. (6.4.8)

Note that for each i ∈ {0, . . . ,M − 1}, Pi ([z]n) is the distribution of the random

process z =
(
x(0),x(1) . . . ,x(M−1),y

)
, where all the x’s are independent, and y is

generated by sending x(i) through the DMC. In other words, if we assume a uniform

prior on the hypotheses, the problem of sequentially testing the hypotheses (6.4.6) is

equivalent to the problem of deciding which one of the M equiprobable sequences,

x(0), . . . ,x(M−1), was sent through the DMC. Once a decision is made, the feedback

can be used to indicate that a new message should be sent. Throughout this section,

we denote the class of sequential tests that select one of the hypotheses Hi in (6.4.6),

by ∆ = (N, d), where, as in Part I, N denotes the stopping time, and d denotes the

decision function.

An important feature is that under hypothesis Hi, the random vectors z1, z2, . . .

are i.i.d. under Pi. This will be used to simplify the calculation.
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For a given n ∈ N and [z]n, denote the log-likelihood ratio sequence between two

hypotheses i and j (i 6= j) by

Λi,j (n) , log

[
Pi ([z]n)

Pi ([z]n)

]
=

n∑
k=1

∆Λi,j (k) (6.4.9)

where

∆Λi,j (k) , log

p
(
yk | x(i)

k

)
p
(
yk | x(j)

k

)
 . (6.4.10)

Note that the Kullback-Leibler (KL) divergence between hypotheses i and j is

D (i ‖ j) , Ei [∆Λi,j (k)] (6.4.11)

where Ei [·] denotes the expected value, under Hi.

The setting described above bears a symmetry in the sense that if we change the

role of two hypotheses, the problem stays the same (this is evident by the structure of

the different hypotheses and the uniform distribution over the messages). Due to this

symmetry, it is clear that D (i ‖ j) are all equal, for any i 6= j, and hence

min
j 6=i

D (i ‖ j) = D (0 ‖ 1) , D (6.4.12)

Also,

C ≤ D ≤ C1 (6.4.13)

where C is the capacity and C1 is defined in (5.3.5). This can be easily proven by first

noticing that

D =
∑
x(0)∈X

∑
y∈Y

PX
(
x(0)
)
p
(
y | x(0)

) ∑
x(1)∈X

PX
(
x(1)
)

log

[
p
(
y | x(0)

)
p (y | x(1))

]
(6.4.14)

≥
∑
x(0)∈X

∑
y∈Y

PX
(
x(0)
)
p
(
y | x(0)

)
log

[
p
(
y | x(0)

)∑
x(1)∈X PX (x(1)) p (y | x(1))

]
(6.4.15)

=
∑
x(0)∈X

∑
y∈Y

PX
(
x(0)
)
p
(
y | x(0)

)
log

[
p
(
y | x(0)

)
PY (y)

]
(6.4.16)

= C (6.4.17)

where (6.4.15) follows from the convexity of t 7→ log
(

1
t

)
and Jensen’s inequality.

Secondly, note that

D = EX(0),X(1)

[∑
y∈Y

p
(
y | x(0)

)
log

[
p
(
y | x(0)

)
p (y | x(1))

]]
= E [D (p (· | i) ‖ p (· | k))] ,

(6.4.18)
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whereas

C1 = max
i,k
{D (p (· | i) ‖ p (· | k))} , (6.4.19)

and so the right inequality of (6.4.13) holds as well.

In the forthcoming sections, we will demonstrate how the equivalence between

stop-feedback schemes and sequential multiple-hypothesis testing can be used, and in

particular, how can results regarding asymptotically optimal tests, discussed in Section

4.3, can be of aid in the analysis of the communication problem.

A. Exact Error Exponent at Zero Rate

In this section, we concentrate on a single point of the E (R) curve, namely, R = 0.

Note that in general, there are two notions of zero rate in the information-theoretic

literature. The first is the asymptotic regime in which the number of messages, M , goes

to infinity such that R = log(M)
E[N ]

→ 0 as E [N ]→∞,15 and the second is the asymptotic

regime where M is fixed and E [N ] → ∞. The notion that will be of interest to us

in this section is the latter. The reason is that for this zero-rate regime, the fact

that the problem of variable length coding with stop-feedback can be formalized as a

sequential multiple-hypothesis testing problem, makes it possible to apply the results

from section 4.3 (or, more precisely, from [44]), where the MSPRT was presented,

and asymptotic optimality was obtained, for exactly the case where the number of

hypotheses was kept fixed. Nevertheless, following closely the derivation of the result

obtained in this section, will show that it holds for both of the two zero-rate regimes.

This point will be re-emphasized later on.

Let ∆ = (N, d) be a sequential multiple hypothesis test which is optimal in the

error exponent sense for the problem in (6.4.6) (i.e., ∆ is assumed to achieve the best

achievable error exponent among all sequential multiple hypothesis tests). Throughout

this section, the following assumptions will be made regarding ∆ and the probability

model used:

Assumption (i): The hypotheses are equiprobable to occur.

Assumption (ii): As mentioned before, the problem at hand is symmetric in the

hypotheses in a sense that without prior knowledge no hypothesis can be preferred

over another. For this reason we will assume that the decoding function d bears a

symmetry such that non of the elements in the matrix {Pj (d = i)}i,j depend on i

15Another way to write this is M = eo(E[N ]) for large enough E [N ].
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or j. In other words, it will be assumed that, without loss of generality, for any

i 6= j ∈ {0, . . . ,M − 1}, Pj (d = i)’s are all equal.

Under these assumptions, the error probability of ∆, denoted by pe (∆), satisfies:

pe (∆) =
M−1∑
j=0

πjPj (d 6= j) =
M−1∑
j=0

πj

M−1∑
i=0,i 6=j

Pj (d = i) =
M−1∑
i=0,i 6=j

Pj (d = i) , (6.4.20)

where in the last equality Assumption (ii) was used. By taking the 0-1 loss function

for wrong decision, the risk of hypothesis i, defined in (4.3.3), takes the form:

Ri (∆) =
M−1∑
j=0,j 6=i

πjPj (d = i) =
pe (∆)

M
. (6.4.21)

Moreover, let ε be some positive constant. Since under any hypothesis Hi, z is i.i.d.

(under any i ∈ {0, . . . ,M − 1}), Theorem 9 can be invoked, yielding the following

results:

• For small enough ε,

inf
∆:pe(∆)≤ε

Ei [N ] ≥ 1

D
log

(
M

pe (∆)

)
(1 + o (1)) . (6.4.22)

• Recall that in Section 4.3.A., two hypothesis testing schemes, denoted by ∆a =

(Na, da) and ∆b = (Nb, db), were defined. Using Theorem 9, we conclude that

applying these tests to the hypothesis testing problem at hand, yields

Ei [Na] ≤
1

D
log

(
M

pe (∆)

)
(1− o (1)) , Ei [Nb] ≤

1

D
log

(
M

pe (∆)

)
(1− o (1)) .

(6.4.23)

Using the definition for E (R) at R = 0 in (5.2.10),

E (0) = max
PX

{
lim

E[N ]→∞,Mfixed

− log (pe (∆))

E [N ]

}
, (6.4.24)

combined with (6.4.22) and (6.4.23), and using the fact that, from symmetry consider-

ations (Assumption ( i)), E [N ] =
∑M−1

i=1 πiEi [N ] = Ei [N ] for any i ∈ {0, . . . ,M − 1},

E (0) = max
PX

D (6.4.25)

where D, defined in (6.4.12), can be written explicitly as:

D = D (0 ‖ 1) =
∑
x(0)∈X

∑
x(1)∈X

∑
y∈Y

PX
(
x(0)
)
PX
(
x(1)
)
p
(
y | x(0)

)
log

[
p
(
y | x(0)

)
p (y | x(1))

]
.

(6.4.26)
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In [138] the same result was obtained by Telatar16 using the method of types and an

MMI decoder, to show that this error exponent is achievable. Although in [138] Telatar

mentions that this result is “curious”, by using the interpretation of the problem given

in the section, the result (6.4.25) makes perfect sense. Another reason why (6.4.25) is

important, is that it shows that the lower bound on the error exponent, using Telatar’s

scheme, is indeed tight for zero rate, while Forney’s error exponent, (6.2.46), is tight

at zero rate for a large family of channels, including symmetric channels.

B. Lower Bound on the Performance of Stop-Feedback Schemes

In Section 5.8, we have seen how results and analytical tools, of sequential multiple-

hypothesis testing with observation control, can be used in evaluating the performance

of variable-length coding with a perfect feedback. The first step, taken in Section

5.8, was to establish the analogy between the problems. It was then demonstrated

how to apply results from hypothesis testing theory to prove an upper bound on the

error exponent function and, show that it is indeed achievable. By doing so, we have

provided an alterative proof of the optimality of Bunrashev’s error exponent.

The natural question that arises is whether the same can be done for variable

length coding with limited feedback, and, particularly, for the stop-feedback coding

setup. Since the mathematical connection between the problems has already been

established in Section 6.4 (under random coding), the next step is to harness results

of sequential multiple hypothesis tests as bounds for the communication model.

To this end we establish a lower bound on the performance of stop-feedback

schemes. We have already seen how the test ∆a = (Na, da), defined in Section 4.3.A.,

can be of use in the analysis of the error exponent at zero rate. In fact, ∆a was shown

to be optimal in that case. In the previous section it was also mentioned that this

analysis was straightforward, since zero-rate is the asymptotic regime that is usually

assumed in hypothesis testing, that is, M fixed while E [N ] → ∞ (or equivalently

pe → 0). In this section, ∆a we will re-examined, this time for a non-zero rate. For

simplicity, we concentrate on the BSC with crossover probability 0 < ε < 1
2
. Define

Ea (R) to be the error exponent of ∆a. Then,

Ea (R) ≥ EForney (R) = Esp (R) + C −R. (6.4.27)

16When deriving the result (6.4.25), we were unaware of the previous work done in [138].
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The meaning of (6.4.27) is that when applying ∆a as a decoding algorithm in stop-

feedback over a BSC, it performs no worse than Forney’s ARQ scheme. Note, however,

that ∆a is quite different from Forney’s ARQ scheme. One of the most obvious dis-

advantages of Forney’s ARQ scheme is that in case of erasure, the decoder delays the

decision by at least n time units, where n is the block length of the erasure decoder,

that is assumed to be very large. It is highly unlikely that, when the confidence is low

after n channel outputs, an additional n observations will be needed to achieve the

desired confidence. This is also evident from the structure of the memoryless schemes,

where past observations are ignored after an erasure. Obviously some useful informa-

tion is lost this way. Instead, a more reasonable test will use the past observations,

and add just a small number of extra observations to “complete the picture”. This

is especially true in our problem, where performance is measured with respect to the

time delay (this is evident by recalling the definition of the error exponent as the limit

of − log pe
E[N ]

). The test ∆a is an example.

Although the main interest in both Forney’s ARQ scheme and ∆a is theoretical, it

pays to note that Forney’s ARQ scheme is somewhat easier to implement. The reason

is that it does not require an infinite random code. In addition, while intuitively ∆a

will take, on average, less time to decode (since it does not require the transmission

of an additional n symbols for each erasure event that occurs), it requires a random

use of the memory resource, whereas in Forney’s ARQ schemes, only a fixed amount

of memory is needed.

We next try to understand the relation between the two decoding schemes and the

reason for the similar bounds for their performance; in some sense, these schemes are

two sides of the same coin.Note that by the proofs of (6.2.46) and (6.4.27), one learns

that both are based on the fact that, with high probability, the decoding procedure

will end after about − log pe
EForney(R)

time units. In Forney’s ARQ scheme, this is the reason

to why the decoder can afford to disregard the past when erasure occurs: since this

is a rare event, the expected decoding time is about the same as in with ∆a. The

improvement of the two schemes over the fixed block-length coding schemes may be

understood by the analogy with lossless source coding. In lossless source coding, more

likely (typical) sequences are assigned codewords whose description length is roughly

equal to the entropy of the source. Such sequences capture most of the probability

mass. By contrast, less likely sequences are assigned longer descriptions. While the

expected description length is roughly equal to that of a typical sequence, zero-error
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is attained by (rarely) using longer descriptions. A feedback channel over which one

bit per message is transmitted, enables a similar variable-length paradigm for channel

coding, such as the memoryless schemes of the previous section, as well as ∆a.

The proof of the claim in (6.4.27) can be found in Appendix C, along with other

properties of ∆a when applied to the stop-feedback problem.

C. Upper Bound on the Performance of Stop-Feedback Schemes

for the BSC Model

In the previous section, a lower bound on the error exponent was obtained for the BSC

in the stop-feedback setup. This lower bound agrees with Forney’s error exponent,

which was derived using the ARQ restrictions. In this section, an upper bound on the

error exponent of a general family of stop-feedback decodes will be given, for the same

forward channel model under random coding. This upper bound coincides with the

lower bound of the previous section, and therefore, it is the exact error exponent.

Let ∆ = (N, d) be an optimal sequential multiple hypothesis test for (6.4.6) in

the error exponent sense. Throughout this subsection, all assumptions regarding

the random coding setting, as were defined in Section 6.4.A., will be used. In par-

ticular, Assumption (i) and Assumption (ii) will be made, and hence, for any

i, j ∈ {0, . . . ,M − 1} we will assume that

pe (∆) =
M−1∑
j=0,j 6=i

Pj (d = i) . (6.4.28)

Define

Λi (N) , log

[
p
(
y | x(i)

)∑M−1
j=0,j 6=i p (y | x(j))

]
(6.4.29)

where y = {y1, . . . , yN} and x(k) =
{
x

(k)
1 , . . . , x

(k)
N

}
for any k ∈ {0, . . . ,M − 1}. In

addition, let a be a positive constant and, for any n̄ ∈ N, define the event Ωi,n̄ as

Ωi,n̄ , {d = i, N ≤ n̄} . (6.4.30)

The values of a and n̄ will be determined later. Note that for any a and n̄ the following

chain of equalities and inequalities hold:
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M−1∑
j=0,j 6=i

Pj (d = i) =
M−1∑
j=0,j 6=i

∑
z

I {z : d = i}Pj (z) (6.4.31)

=
∑

z

M−1∑
j=0,j 6=i

I {z : d = i} Pj (z)

Pi (z)
Pi (z) (6.4.32)

= Ei

[
I {z : d = i}

∑M−1
j=0,j 6=i Pj (z)

Pi (z)

]
(6.4.33)

= Ei

[
I {d = i} exp

{
− log

[
Pi (z)∑M−1

j=0,j 6=i Pj (z)

]}]
(6.4.34)

= Ei [I {d = i} exp {−Λi (N)}] (6.4.35)

≥ Ei [I {Ωi,n̄,Λi (N) < a} exp {−Λi (N)}] (6.4.36)

≥ e−aEi [I {Ωi,n̄,Λi (N) < a}] (6.4.37)

≥ e−aPi

(
Ωi,n̄, sup

n≤n̄
{Λi (n) < a}

)
. (6.4.38)

where Pi (z) is defined in (6.4.8) for any i ∈ {0, . . . ,M − 1}. Using the union bound

and the symmetry implied by Assumption 2 it can be shown that:

1. Pi
(
Ωi,n̄, supn≤n̄ {Λi (n) < a}

)
≥ Pi (Ωi,n̄) - Pi

(
supn≤n̄ {Λi (n) > a}

)
.

2. Pi (Ωi,n̄) ≥ Pi (d = i)− Pi (N ≥ n̄) = 1− pe (∆)− Pi (N ≥ n̄).

By combining these observations with (6.4.28), we get

pe (∆) ea ≥ 1− pe (∆)− Pi (N ≥ n̄)− Pi
(

sup
n≤n̄
{Λi (n) > a}

)
. (6.4.39)

Applying the Markov inequality on the third term on the right-hand side of (6.4.39)

yields:17

E [N ]

n̄
≥ 1− pe (∆) (ea − 1)− Pi

(
sup
n≤n̄
{Λi (n) > a}

)
. (6.4.40)

We now choose the parameters a and n̄. To that end, let ε1 and ε2 be arbitrarily small

positive numbers, and let a , − (1− ε1) log pe (∆) and n̄ , (1 + ε2)E [N ]. Using

17Here we used the symmetry of the problem again in order to conclude that for any i ∈
{0, . . . ,M − 1} it holds that Ei [N ] = E [N ]. In other words, following Assumptions (i) and (ii),
the expected value of the stopping time does not depend on the specific underlying hypothesis.
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these definitions, we get:

pe (∆) (ea − 1) = pe (∆)

(
1

[pe (∆)]1−ε1
− 1

)
= [pe (∆)]ε1 − pe (∆) . (6.4.41)

Considering the asymptotic regime pe (∆) → 0 and E [N ] → ∞, we take the limits

over both sides of (6.4.40) and obtain::

1

1 + ε2
≥ 1− limPi

(
sup
n≤n̄
{Λi (n) > a}

)
≥ 1− lim

∑
n≤n̄

Pi (Λi (n) > a) . (6.4.42)

Define R̄ , R
1+ε2

, T̄ ,
[

1−ε1
1+ε2

]
E (R) and

κ0 , max
κ>0

{
ε− κ > 0 and ε+ κ < δGV

(
R̄
)}
. (6.4.43)

Assume conversely that there exist positive number ε1, ε2 and κ ∈ (0, κ0) such that

T̄ > β
[
δGV

(
R̄
)
− (ε− κ)

]
. (6.4.44)

Then, by Claim E.3 and (E.0.37) in Appendix E, lim
∑

n≤n̄ Pi (Λi (n) > a) = 0 as

E [N ] → ∞ and pe (∆) → 0. Since the left hand side of (6.4.42) is strictly smaller

than 1 for any E [N ], this leads to a contradiction. Therefore, we conclude that for

any such ε1, ε2 and κ,

E (R) ≤
[

1 + ε2
1− ε1

]
β
[
δGV

(
R̄
)
− ε
]

+ κβ

[
1 + ε2
1− ε1

]
. (6.4.45)

Specifically, ε1, ε2 and κ can be made arbitrarily small. By taking the limit as ε1, ε2, κ→
0 (but with ε1, ε2, κ > 0) we further conclude that

E (R) ≤ β [δGV (R)− ε] ≡ EForney (R) . (6.4.46)

Recall that in the previous section, we have seen a decoding scheme that achieves this

upper bound under random coding. Therefore, by combining (6.4.27) and (6.4.46), we

see that, EForney (R) is the best achievable error exponent function for the BSC under

random coding at rate R < C.

D. Upper Bound on Performance of Stop-Feedback Schemes

for a General DMC

In this section, a novel upper bound on the error exponent of stop-feedback schemes

will be given, and its proof will be briefly outlined. The full derivation can be found

in Appendix H.
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Theorem 35 For the DMC of Section 5.2.A., the error exponent of any stop-feedback

coding scheme, using infinite random coding, is upper bounded as follows:

E (R) ≤ D

(
1− R

C

)
(6.4.47)

and R is as in (5.2.9).

Note that in Section 6.2.C., we saw that Burnasev’s error exponent, EB (R), can

sometimes be attained using random coding and a limited feedback. On the other

hand, it follows from (6.4.13) that for non-trivial channels, D < C1 , and so, Theorem

35 asserts that for the forward channel in Section 5.2.A., a single bit of feedback is not

enough to attain EB (R).

Outline of proof: Let ∆ = (N, d) be a general decoding algorithm for the

stop-feedback problem, using infinite random coding, i.e., N is the (random) time

at which the decoder sends the stop symbol through the feedback channel, and d =

d (y1, . . . , yN) is the decision function associated with ∆. The main idea is to artificially

divide the decoding process of any such stop-feedback decoding procedure into two

phases, and separately bound the time it takes for the two phases to terminate. This

idea was first used in [9] to provide a simple proof of the optimality of Burnashev’s

error exponent in the variable-length coding problem over a DMC. Later, a similar

idea was used in [28] to extend this result to finite-state ergodic Markov channels.

Define the following stopping times:

N1 , inf
n>0

{
pMAP
e (yn) < δ

}
(6.4.48)

τ , min {N1, N} = inf
n>0

{
pMAP
e (yn) < δ or N = n

}
(6.4.49)

where δ is some positive constant, and pMAP
e (yn) is the error probability of a MAP

decoder at time n, given {Y1, . . . , Yn} = {y1, . . . , yn}. Since, by definition, τ ≤ N , one

can look at the decoding time N , as having two segments; the first is of length N1 and

the second is the remainder. It can be proven (as done in Appendix F), that δ can be

chosen such that, with high probability, N1 < N , and hence both parts are non-empty.

Recall that πi (n) , Pr (θ = i | yn) is the a posteriori probability of the i’th message

to be sent given all the information available for the decoder at time n.

The next lemma summarizes some of the properties of τ .

Lemma 36 Let τ be as defined in (6.4.49). Then the following hold:
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1. There exists at least one hypothesis, i? ∈ {0, . . . ,M − 1}, satisfying

πi? (τ) = Pr (θ = i? | yτ ) > 1− δ. (6.4.50)

2. For the same i?
M−1∑

j=0,j 6=i?
πj (τ) ≥ λδ (6.4.51)

where λ , minx,y∈X×Y p (x | y).

3. For any 0 < δ ≤ 1/2,

E [τ ] ≥
(

1− δ − pe
δ

) logM

C
− h2 (δ)

C
(6.4.52)

where pe = pe (∆) is the error probability of ∆.

Note that for the DMC model defined in Section 5.2.A., λ > 0. The proof is in Ap-

pendix F. The second key point in the proof, is that after {y1, . . . , yτ} were observed,

a new phase starts in which the test infers among M distinct hypotheses, where at the

“starting point” of this test, both (6.4.50) and (6.4.51) hold. The second mission is,

therefore, to lower bound the stopping time of any multiple-hypothesis test satisfying

these conditions. To that end, we have the following auxiliary lemma:

Lemma 37 Let δ, λ, c and ρ be some constants satisfying δ > 0, λ < 1
2
, c > 1, 0 <

ρ < 1
c
, and ∆̃ =

(
Ñ , d̃

)
be a sequential multiple hypothesis test among the hypotheses

(6.4.6), where the prior probabilities satisfy:

1. The exists at least one hypothesis, satisfying

πi? > 1− δ. (6.4.53)

2. For the same i?
M−1∑

j=0,j 6=i?
πj ≥ λδ. (6.4.54)

Then the following holds:

E
[
Ñ
]
≥ (1− δ) ρ

D
log

 λδ

pe

(
∆̃
)
×

1−
pe

(
∆̃
)

1− δ
−

pe
(

∆̃
)

λδ

1−cρ

− KD2

ρ2 log2
[
λδ/pe

(
∆̃
)]
 , (6.4.55)
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where pe

(
∆̃
)

is the error probability of the scheme ∆̃, and K > 0 is a constant that

depends solely on the channel.

The proof is in Appendix G. Theorem 35 is proven by using the fact that any

stopping time N of the sequential hypothesis problem proposed in the beginning of

this section, can be divided into two phases: the duration of the first phase is τ , which

is either equal to N , or, it is the time by which a parallel sequential MAP test with

threshold δ > 0 as its test statistics, would have stopped. The second’s phase duration

is the time it takes the original test to stop from that point and on. Since, by the

definition of τ , we know that properties 1 and 2 of Lemma 36 hold, the second stopping

time can be bounded using Lemma 37. Using item 3 of Lemma 36 and Lemma 37, we

obtain:

E [N ] ' E
[
τ + Ñ

]
(6.4.56)

≥
(

1− δ − pe
δ

) logM

C
− h2 (δ)

C
(6.4.57)

+ (1− δ) ρ
D

log

 λδ

pe

(
∆̃
)
1− pe

1− δ
−
( pe
λδ

)1−cρ
− KD2

ρ2 log2
[
λδ/pe

(
∆̃
)]
 .

(6.4.58)

Taking the limit pe → 0 and using the definition of R and E (R) in (5.2.9) and

(5.2.10), respectively, yields Theorem 35. The proof is in Appendix H. For the BSC

with crossover probability 0.1, the upper bound of Theorem 35 is illustrated in Figure

6.4.1, where it is plotted along with Forney’s error exponent EForney (R) and the sphere-

packing bound, which is known to be an upper bound on the error exponent function

for fixed block-length codes without any feedback [143].
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Figure 6.4.1: The upper bound of Theorem 35 plotted for a BSC with a crossover
probability 0.1, plotted with EForney (R) and Esp (R).
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Chapter 7

Conclusions and Future Work

We have reviewed aspects of the interplay between sequential hypothesis testing and

variable length channel coding with feedback. Specifically, we focused on the connec-

tion between the following two families of problems: the first is sequential hypotheses

testing. The second is an information-theoretic problem of communication over a noisy

channel in the presence of feedback. The goal is to come up with an encoder-decoder

pair that assures reliable communication. Although feedback cannot increase the ca-

pacity of a memoryless channel, it can improve the reliability, i.e., error exponent.

Various examples emerge from the above description of the two problems. In the

first part, we reviewed results about testing of two simple hypotheses, multiple simple

hypotheses, testing composite hypotheses and hypothesis testing setups with control.

The second part was dedicated to communication, and results on the error exponent

of several communication schemes were given, including perfect and non restricted

feedback along with results on some of the effects of limiting feedback. For several

models, a connection to the sequential hypothesis tests was established. In general, we

have concentrated on harnessing analysis tools of sequential hypothesis testing theory,

to obtain results on the reliability of communication systems, as well as to gain better

intuition.

The main contribution of this work is in that it clusters together some important

examples where hypothesis testing theory can be used in information-theoretic prob-

lems of channel coding with variable length block length. In the course of writing of

this paper, an effort was made in order for it to be self-contained as well as a concise

and thorough source of reference to the subject of sequential hypothesis testing. In

addition, some novel ideas and results were obtained. For example, a new scheme that

138



achieves Burnashev’s exponent was introduced in Section B., and new bounds on the

error exponent function of the when a single bit of feedback is allowed were proven in

Section 6.4. Specifically, we have demonstrated how a family of ARQ communication

setups, denoted in the sequel by stop-feedback schemes, can be defined in a way that

fits the i.i.d. observation model of simple and multiple hypothesis testing framework.

This connection was then further stretched in order to gain both intuition and new

results regarding the reliability of such communication schemes. Using these results

we concluded that Forney’s exponent is tight for the BSC model, as conjectured by

Forney himself in 1969. Another importance of these results is in that they tighten

the already established connection between the two problems discussed.

Nevertheless, the theory of stop-feedback schemes is far from being complete. Fol-

lowing are some direction for future research:

• Generalizing the channel model: Note that the tight bound that appears in

Sections 6.4.B. and 6.4.C. was obtained under the assumption that the forward

channel is binary and symmetric. Under this assumption, the analysis boiled

down to that of evaluating the “time n enumerator” random variables denoted

by
{
N[y]n

}
n>0

. Since the asymptotic behaviour of N[y]n
is fully characterized in

[134], this assumption made the entire analysis simpler. It is worth noting that

in [134] the authors have expanded the results obtained for the BSC to other,

quite general, DMCs. Since both the derivation in [134] and the one carried out

in Sections 6.4.B. and 6.4.C. concern the random sequence defined in Section

6.4 as {Λi (n)}, it may be possible to utilize of the techniques used in [134] to

achieve more general results than those of Section 6.4.

Another approach that may lead to a generalized theory regarding the forward

channel in ARQ schemes is the following: note that the derivation of (6.4.31) -

(6.4.38) holds for any DMC and the loss of generality was made in the next step

to simplify the analysis of the expression

Pi

(
sup
n≤n̄

Λi (n) > a

)
. (7.0.1)

Specifically, techniques similar to those of [134] were used for the asymptotic

evaluation of the probability of
{

supn≤n̄ Λi (n) > a
}

. As was mentioned in Section

6.1, in many cases it is possible to apply the Markov inequality on Pi (Λi (n) > a)

and then analyse the moments of Λi (n). For example, in [103] such an analysis
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was carried out and was shown to yield useful bounds for a large family of

channels. We propose the use of the same technique to simplify the analysis of

(7.0.1). A crucial obstacle is, however, that the Markov inequality does not hold

for (7.0.1) due to the supremum operator. Nevertheless, it is still possible to

bound (7.0.1)by moments of Λi (n) using Doob’s inequality [46], provided that

{Λi (n)} is a submartingale. In Appendix J, this property was proven to hold for

the BSC (were the process {Λi (n)} was considered with respect to its natural

filtration).We conjecture that the fact that Λi (n) is a submartingale holds also

in more general cases, and hence Doob’s inequality can be harnessed to obtain

similar bounds for general DMCs.

• Generalizing the coding scheme: Another important fact regarding the

bound in Section 6.4 is that it was derived under random coding. Although

this assumption is often made in information-theoretic literature, there is no

evidence that random coding is optimal in the error exponent sense. Extending

the bounds to general coding schemes is of interest. One idea how to obtain such

results is to the technique in Section 5.8. Specifically, in Section 5.8 we have seen

how to pose the communication setup in which a DMC with perfect feedback

is used, as a DP problem. The next step was to use the well known theory

of DP and closed-loop feedback schemes to obtain upper and lower bounds on

the error exponent, in addition to gaining some intuition regarding the optimal

coding scheme. If one could define the problem of stop-feedback as a different DP

problem, then perhaps open-loop results can be used to reach some conclusions

regarding the optimal control policy, which will reveal some intuition regarding

the optimal coding scheme for this case as well.

• Practical considerations: As explained in the text, in many modern appli-

cations with feedback retransmissions and average transmission time are only

part of the parameters to be taken into account. Other important parameters,

that were partially discussed, are upper bounds on the actual transmission time

and higher moments of the stopping time. In Section 6.3, we have concentrated

on ARQ systems where the number of retransmission requests is restricted to L.

The same idea can be applied to the stop-feedback scenario, where the number of

samples is bounded. Note that for stop-feedback schemes, this restriction takes

an even more important role since L will determine, not only an upper bound
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on the transmission time, but also to restrict the length of the codewords, where

in the original setup this length is thought of as infinite. We propose two such

schemes: the first carries out the same stopping and decision rules as in Section

6.4 at time instances that are less than L. If by the time L, a decision is not

reached, then the encoder uses an ML decision, based on the L observations. A

second, and more reasonable scheme is to adjust both the stopping and decision

rules to be time-dependent. Such rules may be derived using ideas from the the-

ory of stopped random walks (and, specifically, using backward induction) [63].

As for higher moments of the stopping time, we propose to use the tail formula

for E [N2] instead of that for E [N ] as in (C.0.5), and Chebyshev’s inequality

instead of Markov’s inequality in (6.4.39). Of course, to do so, we may have

to redefine Ωi,n and analyse higher moment of {Λi (n)}, but we conjecture that

such analysis is feasible using the same tools of Section 6.4.

To conclude, we hope that this review will resolve in better understanding of the

two research fields that were discussed and will help to attract interest to the interplay

between them.
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Appendix A

Proof of the Achievability of

Burnashev’s Exponent

In this appendix, a proof of the direct part of Burnashev’s reliability function will be

given, using the modified Yamamoto-Itoh scheme, described in Section 5.6.B..

By its definition, the coding algorithm bears a regenerative property, i.e., after each

communication cycle, the encoding and decoding procedures “forget” about their past

and start over. For this reason, the random variables {NI,1, NI,2, . . .} are i.i.d. given

the message sent, and the same holds for
{
N i
I,1, N

i
I,2, . . .

}
(for i ∈ {0, . . . ,M − 1}) and

{NII,1, NII,2, . . .}.
Phase I’ analysis:

Recall that in phase I ′, M one sided SPRTs are performed, each with a stopping time

N i
I,k = min

n≥0

{
n∑
j=1

ξij ≥ (1 + ε) logM

}
, i ∈ {0, . . .M − 1} . (A.0.1)

where ξij , log

[
p(yj |xij)
Pr(yj)

]
. The stopping time and decision function of the first operation

phase are defined to be:

NI,k , min
i∈{0,...,M−1}

N i
I,k, dI,k (NI,k) = argmin

i∈{0,...,M−1}
N i
I,k. (A.0.2)

Assume, without loss of generality, that the 0’th message was sent, and define the

error event at the k’th cycle by:

Ek,0 , {dI,k (NI,k) 6= 0} . (A.0.3)
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Since {NI,1, NI,2 . . .} are identically distributed,

Pr (Ek,0) = Pr (E1,0) (A.0.4)

= Pr
M−1⋃
i=1


NI,1∑
j=1

ξij ≥
NI,1∑
j=1

ξ0
j

 (A.0.5)

≤ Pr
M−1⋃
i=1


NI,1∑
j=1

ξij ≥ (1 + ε) log (M)

 (A.0.6)

≤ (M − 1) Pr


NI,1∑
j=1

ξ1
j ≥ (1 + ε) log (M)

 (A.0.7)

≤ (M − 1) Pr
(
N1
I,1 <∞

)
, (A.0.8)

where (A.0.6) follows from (A.0.1).

Lemma 38 Under the assumption that the 0’th message was sent,

Pr
(
N1
I,1 <∞

)
≤ 1

M1+ε
. (A.0.9)

Proof. LetH0 andH1 be as in (5.6.8) and (5.6.9). Then, P0

(
N1
I,1 <∞

)
= P1

(
N0
I,1 <∞

)
and

P1

(
N0
I,1 <∞

)
= E0

exp

−
N0
I,1∑

j=1

ξ0
j

 I
(
N0
I,1 <∞

) (A.0.10)

≤ exp {− (1 + ε) logM} (A.0.11)

=
1

M1+ε
, (A.0.12)

where in the first equality Wald’s LR identity (2.2.6) was used, and the second equality

follows directly from the definition of N0
I,1 in (A.0.1).

Setting the result from Lemma 38 in (A.0.8) yields Pr (Ek,0) ≤ 1
Mε , and so, for large

enough M , Pr (Ek,0) ≤ Pe,1 for any ε > 0.

Since the messages are uniform in {0, . . . ,M − 1}, i.e., πi = 1
M

for all i ∈ {0, . . . ,M − 1},
and following the definition of NI,k,

E [NI,k] = E [NI,k | 0 sent] ≤ E
[
N0
I,k | 0 sent

]
. (A.0.13)
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Using Wald’s first equation (2.3.3) and the definition of N0
I,k yields

E
[
N0
I,k | 0 sent

]
C = E

N0
I,k∑
j=0

ξij | 0 sent

 ≤ (1 + ε) logM + ∆̃ (A.0.14)

where ∆̃ = max ξij, which, by the assumption on the channel, is finite. Using (A.0.14)

E [NI,k] ≤ (1 + ε)
logM

C
+ ∆ (A.0.15)

where ∆ , ∆̃
C

is a constant that depends solely on the channel.

A few notes are in order:

• The multiple hypotheses test defined above lends itself to the asymptotic regime

for which the number of hypotheses goes to infinity while the rate is kept fixed.

This is not the case for most of the tests described in Part I of this work, where

we were only interested in the asymptotic regime where the expected number of

samples taken is large, while the number of hypotheses is kept fixed.

• Equation (A.0.15) implies that

C ≤ (1 + ε)
logM

E [NI,k]
+

C∆

E [NI,k]
, (1 + ε)R′ +

C∆

E [NI,k]
(A.0.16)

where R′ is the rate of the code used in the first communication phase. Keeping

in mind that for large enough M , the error probability can be made as small

as desired, this is yet another proof that for R < C reliable communication is

possible (and, indeed, the code rate used in the first phase is very close to the

channel’s capacity). In addition, this is also analogous to the fixed block length

code of rate C (1− ε) that was used in the communication operation mode in

Yamamoto and Itoh’s original scheme.

Phase II’ analysis:

Assume that M is large enough such that the probability of error in the first phase is

bounded by Pe,1 ∈
(
0, 1

3

)
. By the definition of the coding algorithm, this means that

the prior probability, at the beginning of the second phase, of the “NACK” hypothesis

is upper bounded by Pe,1, and so, for any k,

E [NII,k] = πAEPA [NII,k] + πNEPN [NII,k] (A.0.17)

≤ EPA [NII,k] + Pe,1EPN [NII,k] . (A.0.18)
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Let ζj = log
[
PA(yj)

PN (yj)

]
. Note that

NII,k = min
n≥0

{
n∑
j=1

ζj ≥ logA or
n∑
j=1

ζj ≤ logB

}
≤ inf

n≥0

{
n∑
j=1

ζj ≥ logA

}
. (A.0.19)

Since, by the SPRT properties, α ≤ α0 = 1
A

and β ≤ β0 = B (where α and β are as

defined in (5.6.2) and (5.6.3) respectively), following the same exact reasoning as is

(A.0.14) with the aid of (A.0.19) yields

EPA [NII,k] ≤
logA

C1

+ ∆A ≤
− logα

C1

+ ∆A, (A.0.20)

EPN [NII,k] ≤
|logB|
C̄1

+ ∆N (A.0.21)

where ∆A and ∆N are defined as

max log
[
PA(Yn)
PN (Yn)

]
C1

(A.0.22)

and

min
∣∣∣log

[
PA(Yn)
PN (Yn)

]∣∣∣
C̄1

, (A.0.23)

respectively, and C1, C̄1 are as defined in (5.5.1) and (5.5.2). By substituting these

results in (A.0.18) we get

E [NII,k] ≤
− logα

C1

+ Pe,1
|logB|
C̄1

+ ∆C (A.0.24)

where ∆C = ∆A + ∆N is a constant that solely depends on the channel.

To analyze the performance, assume again, that the 0’th message was sent, and

define the following events:

CII,k = {dI,k = 0, dII,k = ACK} , (A.0.25)

RII,k = {dI,k = 0, dII,k = NACK}
⋃
{dI,k 6= 0, dII,k = NACK} , (A.0.26)

EII,k = {dI,k 6= 0, dII,k = ACK} , (A.0.27)

that is, CII,k is the event of stopping and correctly decoding at cycle k, the probability

of which is Pr (CII,k) = (1− Pe,1) (1− β), RII,k is the event of retransmission at cycle

k, the probability of which is Pr (RII,k) = (1− Pe,1) β + Pe,1 (1− α) and EII,k is the
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event of stopping and incorrectly decoding at cycle k, the probability of which is

Pr (CII,k) = Pe,1α. Setting B = Pe,1 yields the following results:

Pr (RII,k) ≤ 2Pe,1 (A.0.28)

Pe = Pe1α
∞∑
j=0

[Pr (RII,k)]
k (A.0.29)

=
Pe1α

1− Pr (RII,k)
(A.0.30)

≤ Pe,1
1− 2Pe,1

α (A.0.31)

E [K] =
1

1− Pr (RII,k)
≤ 1

1− Pe,1
. (A.0.32)

By (5.6.19) we can then bound N as follows:

E [N ] = E

[
K∑
k=0

NI,k

]
+ E

[
K∑
k=0

NII,k

]
(A.0.33)

= E [K] (E [NI,0] + E [NII,0]) (A.0.34)

≤ 1

1− Pe,1

[
(1 + ε)

logM

C
+
− logα

C1

+ Pe,1
logPe,1
C̄1

+ ∆̄

]
(A.0.35)

where (A.0.34) is Wald’s first equation (2.3.3) applied to the stopping time K and the

i.i.d. random sequences NI,k and NII,k, and ∆̄ = ∆+∆A is a (finite positive) constant

that depends only on the channels. By (A.0.29) - (A.0.31) we have:

− logα ≤ − logPe + log

(
Pe,1

1− 2Pe,1

)
≤ − logPe. (A.0.36)

where the second inequality holds since Pe,1 ∈ (0, 1/3). Since Pe,1 > 0 can be chosen

to be arbitrarily small, and since the bound in E [N ] holds for any ε, it then follows

that

E [N ] ≤ (1 + ε′′)

(
logM

C
− logPe

C1

)
+ ∆̄ (A.0.37)

for arbitrarily small ε′′ > 0, which is exactly the leading term in Burnashev’s bound.
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Appendix B

Alternative Derivation of Forney’s

Exponent for the BSC

Consider the BSC with crossover probability 0 < ε < 1
2
, and assume the uniform

random coding distribution For this model, a slightly different derivation of Forney’s

error exponent for ARQ schemes, defined in (6.2.46), will be given.

In general, we revisit Forney’s ARQ scheme, i.e., embedding Forney’s erasure-

decoder in an ARQ scheme in the same way that was done in Section 6.2.B.. The

difference is that this time, the exact error exponent for both the erasure and the

undetected error events are used. The idea is that as long as the probability of an

erasure event decays exponentially as the block-length grows (i.e., as long as e1 (R, T ),

defined in (6.2.9), is strictly positive), the expected decoding time, denoted by E [N ],

is close to the (fixed) block-length of the erasure-decoder codebook, while the error

exponent is lower bounded by e2 (R, T ), defined in (6.2.9). These properties of Froney’s

ARQ scheme were proven in Section 6.2.B..

Following [53], we define the following achievable error exponent function for For-

ney’s ARQ scheme:

Êf (R) , lim
e1(R,T )→0

e2 (R, T ) . (B.0.1)

For the case at hand, we know, using Theorem 34, that if R ≥ log 2− h2

(
ε+ T

α

)
,

e1 (R, T ) = 0 and otherwise

e1 (R, T ) = min
ν∈[ε,δGV(R)−T

α ]

{
D (ν ‖ ε)− h2

(
ν +

T

α

)
+ log 2−R

}
(B.0.2)
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and e2 (R, T ) = e1 (R, T ) + T . Therefore, it holds that

Êf (R) = lim
e1(R,T )→0

T. (B.0.3)

Note that according to [54]:

Esp (R) = D (δGV (R) ‖ ε) , δGV (C) = ε, C = log 2− h2 (ε) , (B.0.4)

where δGV (R) is the G-V distance, defined in Section 6.2.A.. Moreover, since T 7→
e1 (R, T ) is continuous around zero, it will be enough to concentrate on the limiting

threshold T0, for which e1 (R, T ) = 0. By Theorem 34, this happens when R =

log 2− h2

(
ε+ T0

α

)
, or, equivalently, when

T0 = α
[
h−1

2 (log 2−R) + ε
]

= α [δGV (R)− ε] = α [δGV (R)− δGV (C)] (B.0.5)

where the definition of δGV (R) and (B.0.4) were used in the first and second equality

signs respectively. It then follows that:

EForney (R) = Esp (R) + C −R (B.0.6)

= D (δGV (R) ‖ ε) + log 2− h2 (ε)−R (B.0.7)

= −h2 (δGV (R))− δGV (R) log ε− [1− δGV (R)] log (1− ε) (B.0.8)

+ ε log (ε) + (1− ε) log (1− ε) + log 2−R (B.0.9)

= log

(
1− ε
ε

)
[δGV (R)− δGV (C)] (B.0.10)

where in the last equality we have used the fact that −h2 (δGV (R)) + log 2 − R = 0,

which follows directly from the definition of δGV (R). We therefore showed that indeed:

Êf (R) = EForney (R) = α [δGV (R)− δGV (C)] . (B.0.11)

To conclude, we have seen how results from [134] can be harnessed to simplify

calculations regarding Forney’s ARQ scheme. This simplification is also apparent

through the fact that the closed form expression for e1 (R, T ) and e2 (R, T ), which are

calculated in [134], were not needed in our analysis. For a fixed R, the only interesting

point T on the curves e1 (R, T ) and e2 (R, T ), was the one at which e1 (R, T ) becomes

strictly positive.

Although this was only demonstrated for the BSC, the analysis tools used above

can also be generalized to any DMC. In addition, for the BSC, this analysis gave rise

to a simple alternative expression for EForney (R) in terms of the difference between

the G-V distance at the capacity and the G-V distance at the communication rate R.
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Appendix C

Lower Bounding the Error

Exponent Function of ∆a

Recall that the stop-feedback communication problem under random coding can be

viewed as a sequential multiple hypothesis testing problem, where the hypotheses are

defined by (6.4.6), and the uniform prior on {H0, . . . , HM−1}. This structure bears

a symmetry between the different hypotheses1. By using the symmetry between the

different hypotheses, taking the 0−1 loss function, defined in Section 4.3, and plugging

in the definition of the hypotheses (6.4.6) in the definition of the sequential multiple

hypothesis test defined as ∆a = (Na, da) in Section 4.3.A., the test ∆a takes on the

following form:

Test ∆a applied to the stop-feedback problem: For all i ∈ {0, . . . ,M − 1}
and any positive threshold value a, the stopping times Ni, defined in (4.3.5), take on

the following form:

Ni = min
n≥0

{
Li (n) ≥ a+ log

(∑
j 6=i

exp {Lj (n)}

)}
(C.0.1)

= min
n≥0

{
log

[
Pi ([z]n)∑
j 6=i Pj ([z]n)

]
≥ a

}
(C.0.2)

= min
n≥0

log

 PY|X

(
[y]n | [x](i)n

)
∑

j 6=i PY|X

(
[y]n | [x](j)n

)
 ≥ a

 (C.0.3)

1for obvious reasons, these hypotheses will sometimes be referred to as ’messages’.
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where for an infinite sequence w, [w]n is defined the restriction of w to its first n

instances, Li (n) , i ∈ {0, . . . ,M − 1} are the log-likelihood ratios at time n, defined

in (4.3.1) for some dominating measure Q, and Pi ([z]n) and PY|X

(
[y]n | [x](i)n

)
are

defined in (6.4.6) and (6.4.5), respectively, for any i ∈ {0, . . . ,M − 1}. The test

procedure ∆a = (Na, da) is then defined as follows:

Na = min
0≤k≤M−1

Nk, da = i if Na = Ni. (C.0.4)

Analysis: Fix M > 1 and a > 0, where M is the number of messages, and a is the

threshold for ∆a. Note that in the asymptotic regime of interest, M = M (E [Na]) goes

to infinity as E [Na] does (so that R = log(M(E[Na]))
E[Na]

is fixed), although this dependence

of M on E [N ] will be omitted for readability reasons. Later in this Appendix it will

also be made evident that in order for ∆a to satisfy E [Na] → ∞, the threshold, a,

should tend to infinity as M grows. In turn, this will imply that pe (∆a) → 0 as M

grows.

Throughout the analysis it will be assumed, without loss of generality, that the

0’th message was sent. In addition, note that by the definitions of Na and Ni, i ∈
{0, . . . ,M − 1}, Na ≤ N0 a.s., and so

E0 [Na] ≤ E0 [N0] =
∞∑
n=1

P0 (N0 ≥ n) (C.0.5)

where E0 [·] denotes the expectation with respect to the P0.

Let n̄ ∈ N∪{∞} be a positive integer. The value on n̄ will be determined later. For

any such n̄, one can trivially bound P0 (N0 ≥ n) for all n ≤ n̄, and get the following

bound in E0 [Na]:

E0 [Na] ≤ n̄+
∞∑

n=n̄+1

P0 (N0 ≥ n) . (C.0.6)

Note that the derivation thus far was done for a general DMC. For simplicity, the

BSC with crossover probability 0 < ε < 1
2

will be taken to be the forward channel

from this point and on. For this channel, results from [134] will be used to bound the

error exponents of ∆a, when applied to the stop-feedback coding problem. Specifically,

define n̄ ∈ N ∪ {∞} to be:

n̄ , max
n∈N

{
R̂ ≥ log 2− h2

(
ε+

a

nβ

)
− δ1

}
(C.0.7)

where δ1 > 0 is an, arbitrarily small constant, a is the threshold of ∆a, and R̂ = log(M)
n

.

Two important properties of n̄, following (C.0.7), are the following:
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1. The following equivalences hold:

R̂ ≥ log 2− h2

(
ε+

a

nβ

)
− δ1 ⇔ (C.0.8)

h2

(
ε+

a

nβ

)
≥ log 2− δ1 − R̂⇔ (C.0.9)

n ≤ a

β
(
δGV

(
R̂ + δ1

)
− ε
) ⇔ (C.0.10)

n ≤ a

EForney

(
R̂ + δ1

) , (C.0.11)

where (C.0.10) is due to the definition of δGV (·) in Section 6.2.A., and (C.0.11)

was shown to hold for the BSC in Appendix B. Hence,

n̄ ≤ a

EForney

(
R̄
) (C.0.12)

where R̄ , log(M)
n̄

.

2. From the definition of n̄ in (C.0.7), we see that n̄ = n̄ (M) is a function of the

M . Moreover, n̄ (M) increases with M and n̄ (M)→∞ as M →∞.

Next, using properties 1 and 2 above, E0 [Na] will be further bounded. This will be

done by closely examining the terms on the right-hand-side of (C.0.6). To that end,

fix n0 > n̄ and denote the fraction a
n0

by T0. By the definition of n̄, the following hold

for each such n0:

• Since n̄→∞ as M →∞, and n0 > n̄, the same holds for n0 as well.

• Using the definitions of T0 and of the definition of the stopping time N0 of the

test procedure ∆a, it holds that:

P0 (N0 ≥ n0) ≤ P0

log

 PY|X

(
[y]n0

| [x](i)n0

)
∑

j 6=i PY|X

(
[y]n0

| [x](j)n0

)
 < a

 (C.0.13)

= P0

 PY|X

(
[y]n0

| [x](i)n0

)
∑

j 6=i PY|X

(
[y]n0

| [x](j)n0

) < en0T0

 . (C.0.14)

152



• Since n0 > n̄,

R0 < log 2− h2

(
ε+

a

n0α

)
− δ1 (C.0.15)

= log 2− h2

(
ε+

T0

α

)
− δ1 (C.0.16)

< log 2− h2

(
ε+

T0

β

)
(C.0.17)

where R0 ,
log(M)
n0

.

Interestingly, the event

E1 (n0, T0) ,

 PY|X

(
[y]n0

| [x](i)n0

)
∑

j 6=i PY|X

(
[y]n0

| [x](j)n0

) < en0T0

 (C.0.18)

is exactly the event that Forney’s erasure decoder, will not make the right decision

when a random code of block length n0 is used, and the threshold is T0 > 0. As men-

tioned in Section 6.2.A., the exact asymptotic exponential behavior of P0 (E1 (n0, T0))

was found in [134], for any DMC. Following [134], define

e1 (n0, T0) = lim sup
n0→∞

− 1

n0

logP0 [E1 (n0, T0)]. (C.0.19)

Recall that the discussion was restricted to the BSC. For this case, we know, using

Theorem 34, that if R0 ≥ log 2− h2

(
ε+ T0

α

)
, e1 (R0, T0) = 0, and otherwise2

e1 (R0, T0) , min
ν∈[ε,δGV(R0)−T0

α ]

{
D (ν ‖ ε)− h2

(
ν +

T0

α

)
+ log 2−R0

}
> δ1. (C.0.20)

Using this result, and keeping in mind that for any n0 > n̄, (C.0.14) and (C.0.20)

hold, the following is implied:

1. For an arbitrarily small δ1, there exists a large enough M such that

P0 (N0 ≥ n0) ≤ exp {−δ1n0 +O (log n0)} . (C.0.21)

2Note that for the BSC case, the closed form expression for c (n0) was found in [134], but in order
to prove (6.4.27), this expression will not be needed.
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2. Since (C.0.21) holds for any n0 > n̄,
∑

n P0 (N0 ≥ n) converges. In addition,

n̄ → ∞ as M → ∞, and so for an arbitrarily small δ2, there exists a large

enough M such that
∞∑

n=n̄+1

P0 (N0 ≥ n) < δ2, (C.0.22)

as a tail of a converging sum.

3. Plugging in (C.0.22) into (C.0.6), we get E0 [Na] ≤ n̄+δ2 for an arbitrarily small

δ2, and so for any δ3 > 0, there exists a large enough M such that

R̄− δ3 =
logM

n̄+ δ2

≤ logM

E0 [Na]
= R. (C.0.23)

Since EForney (·) is monotonically decreasing for · ∈ [0, C], and a > 0,

a

EForney

(
R̄− δ3 + δ1

) ≤ a

EForney (R + δ1)
, (C.0.24)

and since EForney (·) is also differentiable (and so is x 7→ 1
x

for x > 0), it follows

that for any arbitrarily small constant δ4 > 0, there exists large enough M such

that
a

EForney

(
R̄− δ3 + δ1

) =
a

EForney

(
R̄ + δ1

) − δ4. (C.0.25)

Combining (C.0.6), (C.0.22) and (C.0.25) and using the differentiability ofEForney (·)
again yields the following bound on E0 [N0]

E0 [Na] ≤
a

EForney (R)
+ δ (C.0.26)

where δ > 0 can be made arbitrarily small for large enough M .

In order to evaluate a, note that the following chain of inequalities holds:

pe (∆a) =
M−1∑
i=0

M−1∑
j=0,j 6=i

πjPj (Na = Ni, Ni <∞) (C.0.27)

=
M−1∑
j=1

Pj (Na = N0, N0 <∞) (C.0.28)

= E0

[
I {Na = N0, N0 <∞}

∑M−1
j=1 Pj (z)

P0 (z)

]
(C.0.29)

≤ e−a (C.0.30)
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where (C.0.28) is due to symmetry, and (C.0.29) follows from the definition of ∆a.

This result is also evident using Lemma 6, and keeping in mind the same type of

symmetry. Using (C.0.30) we finally get

E0 [Na] ≤
− log pe (∆a)

EForney (R)
+ δ. (C.0.31)

Since δ > 0 is arbitrarily small in the asymptotic regime of interest, it follows, using

the error exponent definition in Section 5.2.E., that

E (R) ≥ EForney (R) , (C.0.32)

which proves (6.4.27).

From the derivations done above, one can also learn the following:

• Since, by (C.0.6),

E [Na] ≤
a

EForney (R)
+ δ2, (C.0.33)

it follows that for E [Na] → ∞ to hold (which is required in the asymptotic

regime of interest), one must take a → ∞. Keeping this observation in mind,

the definition T0 = a
n0

for every n0 > n̄, makes sense. In addition, by (C.0.30), we

see that the requirement that the error probability goes to zero, implies, again,

that a → ∞. We conclude that for the sequential test ∆a, the threshold a is

tunable and it determines the tradeoff between E [Na] and the error probability

pe (∆a), and the asymptotic regime of interest is that where a is taken to be

large.

• Note that both (C.0.6) and (C.0.14) hold for a general DMC as well. Moreover,

as in Appendix B, the exact error exponents of the error events, defined for

the erasure-decoder, where not used. Instead, the focus was on a single point

on the R 7→ e1 (R, T ) curve - the point at which e1 (R, T ) first becomes non-

zero. This implies that the same techniquehere, can also be invoked for more

complicated channel models, where closed form results for the error exponents

of the erasure-decoder were not yet found.
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Appendix D

Gallager-Type Lower Bound on the

Error Exponent of ∆a

In this appendix we give an alternative proof that the best achievable error exponent

in the stop-feedback setup satisfies E (R) ≥ EForney (R). As in Appendix C, this will

done by utilizing ∆a . This time, the proof is a natural extension of Forney’s proof

of the achievability of this error exponent in [53], except that here we will not restrict

ourselves to block codes. A similar idea was also presented in [69].where Hashimoto

showed that to obtain EForney (R) in an ARQ setup (using block codes), it is enough

to use a decoding algorithm similar to that of Forney, with the exception that instead

of using the test statisticslog

 PY|X

(
[y]n | [x](i)n

)
∑

j 6=i PY|X

(
[y]n | [x](j)n

)
 , i = 0, . . . ,M − 1, (D.0.1)

it is enough to use:log

 PY|X

(
[y]n | [x](i)n

)
[∑

j 6=i P
1/(ρ+1)
Y|X

(
[y]n | [x](j)n

)]ρ+1


 , i = 0, . . . ,M − 1, (D.0.2)

where ρ > 0 is a parameter of the algorithm, that can be chosen either arbitrarily or

by an optimization procedure. Akin to Forney (and to Gallager’s classic derivation

of error exponents), we use the inequality
∑

i ai ≤
(∑

i a
λ
i

)1/λ
, that holds for any
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0 < λ < 1, to show that for any DMC, any ρ > 0, and any i ∈ {0, . . . ,M − 1},

log

 PY|X

(
[y]n | [x](i)n

)
∑

j 6=i PY|X

(
[y]n | [x](j)n

)
 ≥ log

 PY|X

(
[y]n | [x](i)n

)
[∑

j 6=i P
1/(ρ+1)
Y|X

(
[y]n | [x](j)n

)]ρ+1

 a.s.,

(D.0.3)

and therefore,

P0

 PY|X

(
[y]n | [x](0)

n

)
∑

j 6=0 PY|X

(
[y]n | [x](j)n

) < ea

 ≤ P0

 PY|X

(
[y]n | [x](0)

n

)
[∑

j 6=0 P
1/(ρ+1)
Y|X

(
[y]n | [x](j)n

)]ρ+1 ≤ ea

 .

(D.0.4)
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To calculate an upper bound on the error exponent, we continue the derivation in C

from (C.0.13) using (D.0.4) and get, for any n ∈ N

P0 (N0 ≥ n) ≤ P0

 PY|X

(
[y]n | [x](0)

n

)
∑

j 6=0 PY|X

(
[y]n | [x](j)n

) < ea

 (D.0.5)

≤ P0

 PY|X

(
[y]n | [x](0)

n

)
[∑

j 6=0 P
1/(ρ+1)
Y|X

(
[y]n | [x](j)n

)]ρ+1 ≤ ea

 (D.0.6)

=
∑

[z]n∈Zn
P0 ([z]n) I


ea
[∑

j 6=0 P
1/(ρ+1)
Y|X

(
[y]n | [x](j)n

)]ρ+1

PY|X

(
[y]n | [x](0)

n

) ≥ 1

 (D.0.7)

≤
∑

[z]n∈Zn
P0 ([z]n)

ea
[∑

j 6=0 P
1/(ρ+1)
Y|X

(
[y]n | [x](j)n

)]ρ+1

PY|X

(
[y]n | [x](0)

n

)

s

(D.0.8)

= esa
∑

[z]n∈Zn
P0 ([z]n)


[∑

j 6=0 P
1/(ρ+1)
Y|X

(
[y]n | [x](j)n

)]ρ+1

PY|X

(
[y]n | [x](0)

n

)

s

(D.0.9)

= esa
∑

[y]n,[x](0)
n

PX

(
[x](0)

n

)
PY|X

(
[y]n | [x](0)

n

)
× (D.0.10)

 ∑
[x](l)n ,l=1...,M−1

M−1∏
l=1

PX

(
[x](l)n

)
[∑

j 6=0 P
1/(ρ+1)
Y|X

(
[y]n | [x](j)n

)]ρ+1

PY|X

(
[y]n | [x](0)

n

)

s

(D.0.11)

= esa
∑

[y]n,[x](0)
n

PX

(
[x](0)

n

)
PY|X

(
[y]n | [x](0)

n

)
× (D.0.12)

E[x](l)n ,l=1...M−1



[∑

j 6=0 P
1/(ρ+1)
Y|X

(
[y]n | [x](j)n

)]ρ+1

PY|X

(
[y]n | [x](0)

n

)

s (D.0.13)

= esa
∑

[y]n,[x](0)
n

PX

(
[x](0)

n

)
PY|X

(
[y]n | [x](0)

n

) 1

P s
Y|X

(
[y]n | [x](0)

n

)×
(D.0.14)

E[x](l)n ,l=1...M−1

(∑
j 6=0

P
1/(ρ+1)
Y|X

(
[y]n | [x](j)n

))s(ρ+1)
 (D.0.15)
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≤ esa
∑

[y]n,[x](0)
n

PX

(
[x](0)

n

)
PY|X

(
[y]n | [x](0)

n

) 1

P s
Y|X

(
[y]n | [x](0)

n

)× (D.0.16)

(
E[x](l)n ,l=1...M−1

[∑
j 6=0

P
1/(ρ+1)
Y|X

(
[y]n | [x](j)n

)])s(ρ+1)

(D.0.17)

= esa
∑

[y]n,[x](0)
n

PX

(
[x](0)

n

)
PY|X

(
[y]n | [x](0)

n

) 1

P s
Y|X

(
[y]n | [x](0)

n

)× (D.0.18)

 ∑
[x](l)n ,l=1...,M−1

M−1∏
l=1

PX

(
[x](l)n

)∑
j 6=0

P
1/(ρ+1)
Y|X

(
[y]n | [x](j)n

)s(ρ+1)

(D.0.19)

=esa
∑

[y]n,[x](0)
n

PX

(
[x](0)

n

)
PY|X

(
[y]n | [x](0)

n

) 1

P s
Y|X

(
[y]n | [x](0)

n

)× (D.0.20)

∑
j 6=0

 ∑
[x](l)n ,l=1...,M−1

PX

(
[x](l)n

)
P

1/(ρ+1)
Y|X

(
[y]n | [x](j)n

)s(ρ+1)

(D.0.21)

= esa (M − 1)s(1+ρ)
∑

[y]n,[x](0)
n

PX

(
[x](0)

n

)
PY|X

(
[y]n | [x](0)

n

) 1

P s
Y|X

(
[y]n | [x](0)

n

)×
(D.0.22) ∑

[x](l)n ,l=1...,M−1

PX

(
[x](l)n

)
P

1/(ρ+1)
Y|X

(
[y]n | [x](j)n

)s(ρ+1)

(D.0.23)

= esa (M − 1)s(1+ρ)× (D.0.24) ∑
x,y∈X×Y

PX (x) p (y | x)
1

ps (y | x)

(∑
x∈X

PX (x) p1/(ρ+1) (y | x)

)s(ρ+1)
n (D.0.25)

= esa (M − 1)s(1+ρ) EX,Y

 1

ps (Y | X)

(∑
x∈X

PX (x) p1/(ρ+1) (Y | x)

)s(ρ+1)
n (D.0.26)

where (D.0.8) holds for any s > 0 and in (D.0.11) the definition of P0 was used.

The operator E[x](l)n ,l=1...,M−1 [·] in (D.0.13) is the expectation taken with respect to∏M−1
l=1 PX

(
x(l)
)
. In (D.0.19) Jensen’s inequality was used, (D.0.23) is due the symme-

try of the coding procedure and the channel, (D.0.25) is since the channel is memoryless

and since random coding is used, and so both PY|X (· | ·) and PX (·) have a product
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form, where all the products have the same statistics, and in (D.0.26) EX,Y [·] is the

expectation over the joint measure of X and Y . We now use the fact that we assume

a BSC with crossover probability 0 < ε < 1
2
. Since this channel is symmetric, we have

chosen the singleton probability to be PX (x) = 1
2

for x ∈ X = {0, 1}. In addition, by

the definition of the BSC, the random variable p (Y | X) is equal to the following:

p (Y | X) = (1− ε) e−αX⊕Y . (D.0.27)

Moreover, note that for any realization of Y∑
x∈X

PX (x) p1/(ρ+1) (Y | x) =
1

2

[
p1/(ρ+1) + (1− p)1/(ρ+1)

]
. (D.0.28)

Since the right hand side of (D.0.28) does not depend on Y , we can simplify (D.0.26)

and get:

P0 (N0 ≥ n) (D.0.29)

≤ esa (M − 1)s(1+ρ)

[
1

2

(
p1/(ρ+1) + (1− p)1/(ρ+1)

)]ns(ρ+1)

EX,Y
[

1

ps (Y | X)

]n
(D.0.30)

= exp

{
s

[
a+ (1 + ρ) log (M − 1) +

n (1 + ρ)
(

log
(
p1/(ρ+1) + (1− p)1/(ρ+1)

)
− log 2

)]}
EX,Y

[
1

ps (Y | X)

]n
.

(D.0.31)

Using (D.0.27) we can carry out the expectation in (D.0.31) as follows:

EX,Y
[

1

ps (Y | X)

]
= (1− ε)1−s + (1− ε)−s eαsε (D.0.32)

= (1− ε)1−s + (1− ε)−s
(

1− ε
ε

)s
ε (D.0.33)

= (1− ε)1−s + ε1−s. (D.0.34)

Define the function g (s, n) to be:

g (s, n) , a+ (1 + ρ) log (M − 1) + n (1 + ρ) log
(
p1/(ρ+1) + (1− p)1/(ρ+1)

)
(D.0.35)

− n (1 + ρ) log (2) + n
log
(
(1− ε)1−s + ε1−s

)
s

. (D.0.36)
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Using this definition we can rewrite the above bound as P0 (N0 ≥ n) ≤ esg(s,n).

Combining this with (C.0.6) (that holds for any n̄ ∈ R) we get

E0 [Na] ≤ n̄+
∞∑

n=n̄+1

P0 (N0 > n) ≤ n̄+
∞∑

n=n̄+1

esg(s,n). (D.0.37)

Analogous to the proof in Appendix C, let s > 0 be a parameter to be defined later,

and define n̄ to be1

n̄ , max
n∈R
{g (s, n) > 0} . (D.0.38)

Carrying out the sum in (D.0.37) yields:

∞∑
n=n̄+1

esg(s,n) = exp {s [a+ (1 + ρ) log (M − 1)]}
∞∑

n=n̄+1

exp

{
−ns

[
(1 + ρ) log 2

−
log
(
(1− ε)1−s + ε1−s

)
s

− (1 + ρ) log
(
p1/(ρ+1) + (1− p)1/(ρ+1)

)]}
.

(D.0.39)

The following lemma will help simplify the above expression:

Lemma 39 The function s 7→ log[(1−ε)1−s+ε1−s]
s

satisfies:

log
[
(1− ε)1−s + ε1−s

]
s

= −h2 (ε) +O (s) . (D.0.40)

Proof. The proof follows the Taylor series expansion of the numerator of the function,

i.e., s 7→ log
(
(1− ε)1−s + ε1−s

)
, around s = 0. Specifically, note that

d

ds

[
(1− ε)1−s + ε1−s

]∣∣∣∣
s=0

= −h2 (ε) . (D.0.41)

Using this lemma, the coefficient of −n in the exponent’s argument can be written as:

s [log 2− h2 (ε)] + s
[
ρ log 2− (1 + ρ) log

(
p1/(ρ+1) + (1− p)1/(ρ+1)

)]
+O (s) .

(D.0.42)

As in [144], define the function

E0 (ρ) =
[
ρ log 2− (1 + ρ) log

(
p1/(ρ+1) + (1− p)1/(ρ+1)

)]
. (D.0.43)

Using these results, we can make the following simplifications:

1Since g (s, n) is linear in n, n̄ exists and is finite.
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1. The function g (s, n) can be written as

g (s, n) = a+ (1 + ρ) log (M − 1)− n [C + E0 (ρ) +O (1)] , (D.0.44)

and so, for as given s,

n̄ = max
n∈R

{
n ≤ a+ (1 + ρ) log (M − 1)

C + E0 (ρ) +O (1)

}
≤ a+ (1 + ρ) log (M − 1)

C + E0 (ρ) +O (1)
(D.0.45)

2. The expression in (D.0.39) can be written as:

∞∑
n=n̄+1

esg(s,n) = exp {s [a+ (1 + ρ) log (M − 1)]}×

∞∑
n=n̄+1

exp

{
−ns

[
C + E0 (ρ) +O (1)

]}
. (D.0.46)

3. Choosing s to be small enough, the expression C + E0 (ρ) + O (1) can be made

positive. Carrying out the sum in (D.0.46) then yields:

∞∑
n=n̄+1

esg(s,n) = exp {s [a+ (1 + ρ) log (M − 1)]}×

exp {− (n̄+ 1) s [C + E0 (ρ) +O (1)]}
1− exp {−s [C + E0 (ρ) +O (1)]}

(D.0.47)

=
exp {sg (s, n̄+ 1)}

1− exp {−s [C + E0 (ρ) +O (1)]}
(D.0.48)

≤ 1

1− exp {−s [C + E0 (ρ) +O (1)]}
(D.0.49)

where the last inequality follows from the definition of n̄.

In addition, recall that in (C.0.30) we have shown that for the decoding scheme at

hand, a ≤ − log pe where pe is the average error probability. Combining these results

with (D.0.37) yields:

E0 [Na] ≤ n̄+
∞∑

n=n̄+1

esg(s) (D.0.50)

≤ − log (pe) + (1 + ρ) log (M − 1)

C + E0 (ρ) +O (1)
(D.0.51)

+
1

1− exp {−s [C + E0 (ρ) +O (1)]}
, (D.0.52)
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or

− log pe
E0 [Na]

≥ C + E0 (ρ) +O (1)− (1 + ρ)
log (M − 1)

E0 [Na]
(D.0.53)

− 1

E0 [Na] [1− exp {−s [C + E0 (ρ) +O (1)]}]
(D.0.54)

≥ C + E0 (ρ) +O (1)− (1 + ρ)
log (M)

E0 [Na]
(D.0.55)

− 1

E0 [Na] [1− exp {−s [C + E0 (ρ) +O (1)]}]
. (D.0.56)

Choosing s = 1
E0[Na]

, taking E0 [Na] to infinity2 and using the definitions of R E (R),

the last inequality can be written as:

E (R) ≥ C + E0 (ρ) + (1 + ρ)R = E0 (ρ)− ρR + C −R. (D.0.57)

Optimizing over ρ yields:

E (R) ≥ sup
ρ≥0

[E0 (ρ)− ρR] + C −R = Esp (R) + C −R ≡ EForney (R) (D.0.58)

where in the first equality we have used the definition of Esp (R) [144].

2Note that taking E0 [Na] to infinity and the error probability to zero is the asymptotic regime of
interest. In addition, under this asymptotic regime s→ 0 as was assumed throughout this section
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Appendix E

Proofs For Section 6.4.C.

Consider the hypothesis testing problem (6.4.6) for the BSC with crossover proba-

bility of ε, and let n̄ and a be as defined in Section 6.4.C. Assume W.L.O.G that

the message zero was sent through the channel, and let
[
x(i)
]
n

and [y]n be the

first n symbols of the i’th codeword and the received sequence respectively. Define

δi (n) , dH
([

x(i)
]
n
, [y]n

)
/n where dH (x, y) is the Hamming distance between the

sequences x and y.

Using the result of Section 6.4.B., we know that there exists at least one sequential

test ∆a, that achieves a non negative error exponent for rates below capacity. There-

fore, defining ∆ = (N, d) to be the optimal sequential test in the the error exponent

sense, we can conclude that there exists a non-negative function E 7→ (0, C) such that

for large enough E [N ],

− log pe (∆) = E [N ]E (R) + o (E [N ]) . (E.0.1)

For brevity, reasons we omit the o (E [N ]) term of − log pe (∆). This factor will play no

role in the final results as E [N ] will be taken to infinity. In this section, three claims

will be stated and proven. These claims, together with (6.4.42), will then be used in

Section 6.4.C. to upper bound the error exponent.

Claim E.1 Let a and Λ0 (·) be as defined as in Section 6.C. Then, for any fixed E [N ]

there exists an n0 = n0 (E [N ]) such that for any n ≤ n0,

P0 (Λ0 (n) ≥ a) = 0. (E.0.2)
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Proof. For a memoryless BSC

Λ0 (n) = log

[
p
(
[y]n |

[
x(0)
]
n

)∑
j>0 p ([y]n | [x(j)]n)

]
≤ log

(
1

eE[N ]Rεn

)
. (E.0.3)

Therefore, if

a > log

(
1

eE[N ]Rεn

)
= −E [N ]R− n log ε, (E.0.4)

then (E.0.2) holds. Combining this condition with (E.0.1) and the definition of a, we

get

a = (1− ε1) [− log (pe (∆))] = (1− ε1)E [N ]E (R) > −E [N ]R− n log ε, (E.0.5)

and so the claim holds for

n0 , E [N ]
[(1− ε1)E (R) +R]

− log (ε)
. (E.0.6)

Corollary 40 For the optimal sequential test ∆, it holds that

((1− ε1)E (R) +R)

− log (ε) (1 + ε2)
< 1 (E.0.7)

Proof. Assume Assume the converse is true, then

∑
n≤n̄

P0 (Λ0 (n) > a) =

E[N ](1+ε2)∑
n=n0

Pi (Λi (n) > a) ≡ 0, (E.0.8)

and so, by (6.4.42) 1
1+ε2
≥ 1, which is a contradiction since the left hand side is strictly

less than 1 for any ε2 > 0.

Note that for any ε1, ε2 > 0 the former corollary also implies the following upper

bound:

E (R) <
[log (1/ε)−R] (1 + ε2)

1− ε1
. (E.0.9)

However, in Section 6.4.B. this bound turns out to be loose, and a tighter bound will be

given using the results in this appendix. Towards that end, define T , (1− ε1)E (R)
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and note that

P0 (Λ0 (n) ≥ a) = P0

(
log

[
p
(
[y]n |

[
x(0)
]
n

)∑
j>0 p ([y]n | [x(j)]n)

]
≥ a

)
(E.0.10)

= P0

(
p
(
[y]n |

[
x(0)
]
n

)∑
j>0 p ([y]n | [x(j)]n)

≥ eE[N ]T

)
(E.0.11)

= P0

(∑
j>0

p
(
[y]n |

[
x(0)
]
n

)
≤ e−E[N ]Tp

(
[y]n |

[
x(0)
]
n

))
(E.0.12)

= P0

(
n∑
d=0

N[y]n
(d) e−βd ≤ e−E[N ]T e−nβδ0(n)

)
(E.0.13)

= P0

(∑
δ

N[y]n
(nδ) e−nβδ ≤ e−E[N ]T e−nβδ0(n)

)
(E.0.14)

≤ P0

(
N[y]n

(
nδ̄
)
e−nβδ̄ ≤ e−E[N ]T e−nβδ0(n)

)
(E.0.15)

= P0

(
N[y]n

(
nδ̄
)
≤ e−E[N ]T e−nβ(δ0(n)−δ̄)

)
(E.0.16)

where N[y]n
(d) is defined as the number of codewords among the set

{[
x(j)
]
n
, j 6= i

}
at Hamming distance d from [y]n, and in (E.0.14) we have defined the set {δ} ,{
d
n
, n = 0 . . . d

}
. In (E.0.15) we took δ̄ to be some member of {δ} and the inequality

holds since all the
{
N[y]n

(nδ) e−nβδ
}

’s in the sum are non-negative random variables.

Specifically, let δ̄ be defined as:

δ̄ , argmax
δ∈GR̄

{h2 (δ)− βδ} (E.0.17)

where R̄ = R
1+ε2

and

GR̄ ,
{
δ : δGV

(
R̄
)
≤ δ ≤ 1− δGV

(
R̄
)}

(E.0.18)

In order to further bound P0 (Λ0 (n) ≥ a), define, for any positive number κ, the set

Bκ as:

Bκ , {δ : |δ − ε| < κ} . (E.0.19)
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Conditioning on the event
{[

x(0)
]
n
, [y]n : δ0 (n) ∈ Bκ

}
,

P0 (Λ0 (n) ≥ a) ≤ P0

(
N[y]n

(
nδ̄
)
≤ e−E[N ]T e−nβ(δ0(n)−δ̄)

)
(E.0.20)

= P0

(
N[y]n

(
nδ̄
)
≤ e−E[N ]T e−nβ(δ0(n)−δ̄) |

[
x(0)
]
n
, [y]n : δ0 (n) ∈ Bκ

)
× P0 (δ0 (n) ∈ Bκ) (E.0.21)

+ P0

(
N[y]n

(
nδ̄
)
≤ e−E[N ]T e−nβ(δ0(n)−δ̄) |

[
x(0)
]
n
, [y]n : δ0 (n) 6∈ Bκ

)
× P0 (δ0 (n) 6∈ Bκ) (E.0.22)

≤ P0

(
N[y]n

(
nδ̄
)
≤ e−E[N ]T e−nβ(δ0(n)−δ̄) |

[
x(0)
]
n
, [y]n : δ0 (n) ∈ Bκ

)
(E.0.23)

+ P0 (δ0 (n) 6∈ Bκ) . (E.0.24)

We will continue by bounding (E.0.23) and (E.0.24) separately, staring with (E.0.23),

and making use of the following claim:

Claim E.2 For any ε2 > 0 and δ ∈ GR̄ ε < δ, and, there exists a number κ0 > 0 such

that for any κ ∈ (0, κ0), ε+ κ < δ.

The proof will be given at the end of this appendix. By the definition of δ̄, δ̄ ∈ GR̄ and

hence, by Claim E.2, there exists a κ ∈ (0, κ0) such that δ̄− ε−κ > 0. Moreover, if we

restrict n only to the case where n0 ≤ n ≤ E [N ] (1 + ε2) (which is the only interesting

values corresponding to (6.4.42)) and pairs
{[

x(0)
]
n
, [y]n

}
such that δ0 (n) ∈ Bκ (as

in (E.0.23)), then

P0

(
N[y]n

(
nδ̄
)
≤ e−E[N ]T e−nβ(δ0(n)−δ̄) |

[
x(0)
]
n
, [y]n

)
≤ (E.0.25)

P0

(
N[y]n

(
nδ̄
)
≤ e−E[N ]T e−E[N ](1+ε2)β(ε−κ−δ̄) |

[
x(0)
]
n
, [y]n

)
≤ (E.0.26)

P0

(
N[y](1+ε2)E[N ]δ̄

(
(1 + ε2)E [N ] δ̄

)
≤ e−E[N ]T e−E[N ](1+ε2)β(ε−κ−δ̄) |

[
x(0)
]
n
, [y]n

)
(E.0.27)

where the last inequality holds since, by the definition of N[y]n
(nδ), it can be written

as:

N[y]n
(nδ) =

∑
0<j≤M−1

I
{
dH
([

x(j)
]
n
, [y]n

)
= nδ

}
. (E.0.28)

Since, for a given [y]n, the events
{
dH
([

x(j)
]
n
, [y]n

)
= nδ

}
j>0

are i.i.d., N[y]n
(nδ)

is a binomial random variable with M − 1 “trials”, and a probability of a “success”
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Pr
{
dH
([

x(j)
]
n
, [y]n

)
= nδ

}
for j 6= 0. According to the method of types,

Pr
{
dH
([

x(0)
]
n
, [y]n

)
= nδ

}
=̇ exp {−n [log 2− h2 (δ)]} . (E.0.29)

As this probability is a descending function of n, for a sufficiently large E [N ] the

inequality in (E.0.27) holds.

In addition, similar to the proof in [104], it can be shown that for any δ ∈
GR̄,

{
N[y](1+ε2)E[N ]δ̄

(
(1 + ε2)E [N ] δ̄

)}
are random variables that concentrate double-

exponentially rapidly around their expectations eE[N ](1+ε2)[R̄+h2(δ̄)−log(2)] and so if

eE[N ](1+ε2)[R̄+h2(δ̄)−log(2)] > e−E[N ]T e−E[N ](1+ε2)β(ε−κ−δ̄), (E.0.30)

the expression in (E.0.23) will tend to zero in a double exponential rate as E [N ]→∞.

The former condition is equivalent to

E [N ] (1 + ε2)
[
R̄ + h2 (δ)− log 2

]
> E [N ] (1 + ε2)

[
β
(
δ̄ − (ε− κ)

)
− T̄

]
(E.0.31)

or simply

h2

(
δ̄
)
− βδ̄ + R̄− log 2 > −β (ε+ κ)− T̄ (E.0.32)

where T̄ , T
1+ε2

. Note that

max
δ∈GR̄

[h2 (δ)− βδ] + R̄− log 2 = −βδGV

(
R̄
)

(E.0.33)

and since δ̄ = argmax
δ∈GR̄

{h2 (δ)− βδ} the condition in (E.0.31) boils down to

T̄ > β
[
δGV

(
R̄
)
− (ε− κ)

]
. (E.0.34)

Therefore, the following claim holds:

Claim E.3 If T̄ > β
[
δGV

(
R̄
)
− (ε− κ)

]
for some κ ∈ (0, κ0), then

P0

(
N[y]n

(
nδ̄
)
≤ e−E[N ]T e−nβ(δ0(n)−δ̄) |

[
x(0)
]
n

[y]n : δ0 (n) ∈ Bκ
)
→ 0 (E.0.35)

double exponentially in E [N ] as E [N ]→ 0.

As for the term in (E.0.24), note that as an application of Sanov’s theorem,∑∞
n=1 P0 (δ0 (n) 6∈ Bκ) converges, and hence for

n0 = E [N ]
((1− ε1)E (R) +R)

− log (ε)
, (E.0.36)
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lim
E[N ]→∞

E[N ](1+ε2)∑
n=n0

P0 (δ0 (n) 6∈ Bκ)→ 0. (E.0.37)

We conclude this appendix with the proof of Claim E.2.

Proof. Recall that R̄ , R
1+ε2

for some ε2 > 0, and so R̄ < R. In addition, we have

defined for any fixed r ≤ C the following set:

Gr , {δ : δGV (r) ≤ δ ≤ 1− δGV (r)} , (E.0.38)

and hence GR̄ ⊂ GR.

Next, assume conversely that there exists a δ ∈ GR that satisfies δ < ε. Since ε < 1
2
,

this implies

δGV (R) ≤ ε⇔ (E.0.39)

log 2−R ≤ h2 (ε)⇔ (E.0.40)

C = h2 (ε)− log 2 ≤ R. (E.0.41)

This is in contradiction with the basic assumption that R < C. Therefore we conclude

that ε < δ for all δ ∈ GR, or, in other words, ε ∈
[
0, 1

2

)
∩ GcR. Since GR̄ ⊂ GR (where

the inclusion is strict), Claim E.2 holds.
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Appendix F

Proof of Lemma 36

The proof of Lemma 36 can be found in [9], using results from [18]. It is brought here

for the sake of completeness. We start the proof by analyzing τ , defined in (6.4.49).

Since the MAP decoder will choose, at time n, the message i ∈ {0, . . . ,M − 1} that has

the largest a posteriori probability (or chooses at random between all messages that

attain this maximum together), the probability of error can be written as pMAP
e (yn) =

1 − pmax where pmax = maxi∈{0,...,M−1} Pr (θ = i | yn). Let us denote by pe
(
yN
)

the

probability of error given the observation {y1, . . . , yN}. The unconditioned probability

of error is then given by pe = E
[
pe
(
Y N
)]

.

Since, by the definition of τ ,
{
pMAP
e (yτ ) ≥ δ

}
⊆
{
pe
(
yN
)
≥ δ
}

it holds that

Pr
(
pMAP
e (yτ ) ≥ δ

)
≤ Pr

(
pe
(
yN
)
≥ δ
)
≤ pe

δ
(F.0.1)

and

Pr
(
pMAP
e (yτ ) < δ

)
≥ 1− pe

δ
(F.0.2)

where the second inequality in (F.0.1) is an application of Chebyshev’s inequality.

Define H (i | yn) to be the entropy of the a posteriori distribution Pr (θ = · | yn)

(and so E [H (i | yn)] = H (i | Y n)). The random variable we will next consider is

H (i | yτ ) which is defined in the same manner as H (i | yn) only that the available

observations are now given up to the (random) time τ . The following holds:

E [H (i | yτ )] = E
[
H (i | yτ ) | pMAP

e (yτ ) < δ
]

Pr
(
pMAP
e (yτ ) < δ

)
(F.0.3)

+ E
[
H (i | yτ ) | pMAP

e (yτ ) ≥ δ
]

Pr
(
pMAP
e (yτ ) ≥ δ

)
(F.0.4)

≤ h2 (δ) + δ log (M) + log (M)
pe
δ

(F.0.5)

= h2 (δ) +
(
δ +

pe
δ

)
log (M) (F.0.6)
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where in (F.0.5), (F.0.1) was used, in addition to Fano’s inequality, that was har-

nessed in order to bound E
[
H (i | yτ ) | pMAP

e (yτ ) < δ
]
. The proof of the third item

in Lemma 36 is now strait-forward, keeping in mind (F.0.6) and the fact that the

random process {H (i | yn) + nC,Fn} is a bounded submartingale (a fact proved in

[18]). Using Doob’s optional sampling theorem yields

E [H (i | yτ ) + τC] ≥ H
(
i | y0

)
= log (M) . (F.0.7)

The result (6.4.52) then follows by combining (F.0.6) and (F.0.7).

In order to prove the first two item of Lemma 36, we need to use the following

lemma, which is a direct consequence of the Bayes rule. The proof of this lemma can

be found in [9, Lemma 2].

Lemma 41 Define λ = minX ,Y p (· | ·). For any DMC channel such that 0 < λ ≤ 1/2

it holds that

λPr
(
i | yn−1

)
≤ Pr (i | yn) ≤ Pr (i | yn−1)

λ
(F.0.8)

for all i ∈ {0, . . . ,M − 1}

To see why (6.4.50) and (6.4.51) hold, note that:

1. The strict inequality τ < N implies pMAP
e (yτ ) < δ, and therefore

1− max
i∈{0,...M−1}

Pr (i | yn) < δ. (F.0.9)

The last relation then implies that there exists an i? ∈ {0, . . . ,M − 1} such that

πi? (τ) = Pr (θ = i? | yτ ) > 1− δ. (F.0.10)

2. Notice that, by the definition of τ , it holds that pMAP
e (yτ−1) > δ. Just as in the

previous item, this implies the following relations

max
i∈{0,...M−1}

Pr
(
θ = i | yτ−1

)
< 1− δ ⇒ (F.0.11)

∀i ∈ {0, . . .M − 1} : Pr
(
θ = i | yτ−1

)
< 1− δ, (F.0.12)
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and so for any i ∈ {0, . . .M − 1}:

δ < 1− Pr
(
θ = i | yτ−1

)
(F.0.13)

= Pr
(
θ 6= i | yτ−1

)
(F.0.14)

≤
M−1∑
j=0,j 6=i

Pr
(
θ = j | yτ−1

)
(F.0.15)

=
M−1∑
j=0,j 6=i

πj (τ − 1) (F.0.16)

≤
M−1∑
j=0,j 6=i

πj (τ)

λ
. (F.0.17)

So, for τ defined as in (6.4.49), for i ∈ {0, . . .M − 1},
∑M−1

j=0,j 6=i πj (τ) ≥ λδ. In

particular, if we choose i = i? ∈ {0, . . . ,M − 1}, defined in the previous item,

we get
M−1∑

j=0,j 6=i?
πj (τ) ≥ λδ (F.0.18)

and so Lemma 36 is proven.
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Appendix G

Proof of Lemma 37

Let ∆̃ =
(
Ñ , d̃

)
be the sequential test defined in (6.4.6), and assume that both (6.4.53)

and (6.4.54) hold. For any i ∈ {0, 1, . . . ,M − 1} and any positive constant L, define

the following event

Ωi,L =
{
d̃ = i

}⋂{
Ñ ≤ L

}
. (G.0.1)

The following chain of equalities and inequalities hold for any i and j such that i 6=
j ∈ {0, 1, . . . ,M − 1}:

Pj (d = i) = Ei
[
I
{
d̃ = i

}
exp

{
Λj,i

(
Ñ
)}]

(G.0.2)

= Ei
[
I
{
d̃ = i

}
exp

{
−Λi,j

(
Ñ
)}]

(G.0.3)

≥ Ei
[
I
{

Ωi,L,Λi,j

(
Ñ
)
< B

}
exp

{
−Λi,j

(
Ñ
)}]

(G.0.4)

≥ exp {−B}Pi
(

Ωi,L, sup
n≤L
{Λi,j (n)} < B

)
(G.0.5)

≥ exp {−B}
[
Pi (Ωi,L)− Pi

(
sup
n≤L
{Λi,j (n)} ≥ B

)]
(G.0.6)

where B is a positive constant and Λj,i (n) is defined in (6.4.9). Using the fact that

Pi (Ωi,L) ≥ Pi

(
d̃ = i

)
− Pi

(
Ñ > L

)
, (G.0.7)

(G.0.6) implies that

Pi

(
Ñ > L

)
≥ 1− Pi

(
d̃ 6= i

)
− exp {B}Pj

(
d̃ = i

)
(G.0.8)

− Pi
(

sup
n≤L
{Λi,j (n)} ≥ B

)
. (G.0.9)
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Given (6.4.53) and (6.4.54), one can bound pe

(
∆̃
)

(defined in Lemma 37) by

pe

(
∆̃
)

=
M−1∑
j=0

πjPj

(
d̃ 6= j

)
≥ πi?Pi?

(
d̃ 6= i?

)
≥ (1− δ)Pi?

(
d̃ 6= i?

)
, (G.0.10)

and so

Pi?
(
d̃ 6= i?

)
≤
pe

(
∆̃
)

1− δ
. (G.0.11)

In addition, if we define j0 = argminj 6=i?Pj

(
d̃ = i?

)
then

pe

(
∆̃
)

=
M−1∑
j=0

πj

M−1∑
i=0,i 6=j

Pj

(
d̃ = i

)
≥

M−1∑
j=0,j 6=i?

πjPj

(
d̃ = i?

)
≥ Pj0

(
d̃ = i?

)
λδ,

(G.0.12)

and hence it is possible to bound Pj0

(
d̃ = i?

)
by

Pj0

(
d̃ = i?

)
≤
pe

(
∆̃
)

λδ
. (G.0.13)

Taking i = i? and j = j0 in (G.0.9) and using (G.0.11) and (G.0.13) then yields

Pi?
(
Ñ > L

)
≥1− Pi?

(
d̃ 6= i?

)
− eBPj0

(
d̃ = i?

)
− Pi?

(
sup
n≤L
{Λi?,j0 (n)} ≥ B

)
(G.0.14)

≥1−
pe

(
∆̃
)

1− δ
− eB

pe

(
∆̃
)

λδ
− Pi?

(
sup
n≤L
{Λi?,j0 (n)} ≥ B

)
. (G.0.15)

In order to further bound Pi?
(
Ñ > L

)
, notice that, provided that B − LD > 0,
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and for any i 6= j ∈ {0, 1, . . . ,M − 1},

Pi

(
sup
n≤L
{Λi,j (n)} ≥ B

)
=Pi

(
sup
n≤L

{
n∑
k=1

∆Λi,j (k)− LD

}
≥ B − LD

)
(G.0.16)

≤Pi

(
sup
n≤L

{
n∑
k=1

∆Λi,j (k)− nD

}
≥ B − LD

)
(G.0.17)

≤Pi

(
sup
n≤L

∣∣∣∣∣
n∑
k=1

∆Λi,j (k)− nD

∣∣∣∣∣ ≥ B − LD

)
(G.0.18)

=Pi

sup
n≤L

(
n∑
k=1

∆Λi,j (k)− nD

)4

≥ {B − LD}4


(G.0.19)

≤
Ei
[(∑L

k=1 [∆Λi,j (k)−D]
)4
]

(B − LD)4 (G.0.20)

where in (G.0.20) we have used the Doob’s inequality [46, Page 247] applied to the

Pi-submartingale 
(

n∑
k=1

∆Λi,j (k)− nD

)4

,Fn

 . (G.0.21)

Setting B = cDL where c > 1, then yields:

Pi

(
sup
n≤L
{Λi,j (n)} ≥ B

)
≤

Ei
[(∑L

k=1 [∆Λi,j (k)−D]
)4
]

(c− 1)4 L4D4
. (G.0.22)

Since the LLRs are i.i.d. at different time steps (with mean D), it follows that

{∆Λi,j (k)−D} are i.i.d. zero-mean random variables (with finite fourth moment), so

there exist L0, K ∈ R+ such that for any L0 < L,

Pi

(
sup
n≤L
{Λi,j (n)} ≥ B

)
≤ K

L2
. (G.0.23)

Plugging (G.0.23) into (G.0.15) with i = i?, j = j0, and applying the Chebyshev

inequality leads to

Ei?
[
Ñ
]
≥ L− L

pe

(
∆̃
)

1− δ
− LeB

pe

(
∆̃
)

λδ
− K

L
. (G.0.24)
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We have yet to determine L. We will take L to be

L =
ρ

D
log

 λρ

pe

(
∆̃
)
 (G.0.25)

where 0 < ρ < 1/c is some constant. For this choice of L, and using the assumption

(6.4.53), we conclude that

E
[
Ñ
]
≥ (1− δ)Ei?

[
Ñ
]

(G.0.26)

≥ (1− δ) ρ
D

log

 λρ

pe

(
∆̃
)

1−

pe

(
∆̃
)

1− δ
−

pe
(

∆̃
)

λδ

1−cρ

− K[
ρ
D

log

(
λρ

pe(∆̃)

)]2

 ,

(G.0.27)

and Lemma 37 is proven.
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Appendix H

Proof of Theorem 35

Let ∆ = (N, d) be any coding scheme for the stop-feedback problem, when infinite

random coding is assumed to be used in the construction of the codebook. As described

in Section 6.4.D., we can represent the stopping time N of any such test as

N = τ + N̂ (H.0.1)

where τ is defined in (6.4.49) and N̂ is defined as

N̂ ,

{
0 if pMAP

e (yτ ) ≥ δ

Ñ otherwise
(H.0.2)

and Ñ is defined as the time it takes the test to terminate, after observing {y1, . . . , yτ},
given that pMAP

e (yτ ) < δ. Using Lemma 36, we know that at time τ , conditions 1 and

2 of Lemma 37 hold, and so, Ñ can be described as the time it takes ∆ to infer among

the M hypotheses (6.4.6), given that these conditioned are satisfied. Therefore, N̂ can
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be bounded, using Lemma 37, as follows:

E
[
N̂
]

= E
[
N̂ | pMAP

e (yτ ) < δ
]

Pr
(
pMAP
e (yτ ) < δ

)
(H.0.3)

+ E
[
N̂ | pMAP

e (yτ ) ≥ δ
]

Pr
(
pMAP
e (yτ ) ≥ δ

)
(H.0.4)

≥ E
[
Ñ
] (

1− pe
δ

)
(H.0.5)

≥ (1− δ) ρ
D

log

 λρ

pe

(
∆̃
)
× (H.0.6)

1− p̃e
1− δ

−
(
p̃e
λδ

)1−cρ

− K[
ρ
D

log

(
λρ

pe(∆̃)

)]2

(1− pe
δ

)
(H.0.7)

where p̃e is defined to be the conditioned error probability of the decoding scheme ∆

given that
{
pMAP
e (yτ ) < δ

}
, and pe is defined to be the unconditioned error probability

associated with ∆. Notice that pe can be bounded using (F.0.2) as follows:

pe ≥ p̃e Pr
(
pMAP
e (yτ ) < δ

)
≥ p̃e

(
1− pe

δ

)
≥ 0. (H.0.8)

From (H.0.8) we can deduce that p̃e → 0 as pe → 0, and that p̂e ≤ pe
1−pe/δ . The later

relation thus implies that

− log

(
p̃e
λδ

)
≥ − log

(
pe

λ (δ − pe)

)
. (H.0.9)

Combining (6.4.52), (H.0.7) and (H.0.9) then yields:

E [N ] ≥ (1− δ)
(
ρ log (1/pe)

D

)
× (H.0.10)1− p̃e

1− δ
−
(
p̃e
λδ

)1−cρ

− K(
ρ
D

log
(
p̃e
λρ

))2

(1− pe
δ

)
(H.0.11)

+ (1− δ) ρ
D

log (λ (δ − pe))× (H.0.12)1− p̃e
1− δ

−
(
p̃e
λδ

)1−cρ

− K(
ρ
D

log
(
p̃e
λρ

))2

(1− pe
δ

)
(H.0.13)

+
(

1− δ − pe
δ

) logM

C
− h2 (δ)

C
. (H.0.14)
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Recall that the asymptotic regime of interest is pe → 0 (and E [N ] → ∞) while

lim logM
E[N ]

= R (for 0 ≤ R ≤ C). Using the error exponent in (5.2.10) and some

algebra, the relation above implies that

E (R) ≤ 1

ρ

(
D

1− δ
−DR

C

)
. (H.0.15)

Since δ can be chosen as arbitrarily close to 0 and ρ arbitrarily close to 1, we see that

for any ε > 0 the error exponent in upper bounded by E (R) ≤ D
(
1− R

C

)
+ ε.
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Appendix I

The Weak Converse of VL Coding

In this appendix, the notation and a few results obtained in Appendix F will be used to

prove a weak converse for Chapter 5. Specifically, for any decoding scheme ∆ = (N, d)

and for R and C defined in Section 5.2, it will be shown that if R > C, then the

probability of error is bounded away from zero for sufficiently large E [N ] (and hence

for all E [N ], since if Pe (∆)→ 0 for small E [N ], we can construct codes for large E [N ]

with Pe (∆)→ 0 by concatenating these codes).

Proof. Recall that in Appendix F the random process H (i | yτ ) was defined for any

stopping time τ . By Fano’s inequality applied to ∆,

E
[
H
(
i | Y N

)]
≤ E

[
h2

(
Pe
(
Y N
))]

+ E
[
Pe
(
Y N
)]

logM (I.0.1)

≤ h2 (Pe (∆)) + Pe (∆) logM (I.0.2)

where Pe (yτ ) is as defined in Appendix F, and the second inequality holds due to the

Jensen inequality. Combining (I.0.2) and (F.0.7) then yields:

logM ≤ h2 (Pe (∆)) + Pe (∆) logM + CE [N ] . (I.0.3)

After some algebra, we obtain that (I.0.3) implies

Pe (∆) ≥ 1− C

R
− h2 (Pe (∆))

RC
(I.0.4)

which proves the claim.
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Appendix J

The Submartingale Property of

Λi (n)

Let C =
{
x(0), . . . ,x(M−1)

}
be an infinite, randomly drawn codebook as defined in

Section 6.4, where x(i) =
{
x

(i)
1 x

(i)
2 , . . . : x

(i)
j ∈ {0, 1}

}
is the codeword assigned to

i ∈ {0, . . . ,M − 1}. For any i ∈ {0, . . . ,M − 1} define the random process (Λi (n) ,Fn)

where:

• Λi (n) = log

[
p([y]n|[x(i)]

n
)∑M−1

j=0,j 6=i p([y]n|[x(j)]
n
)

]
,

• Fn is the filtration generated by
{
x(0), . . . ,x(M−1),y

}
,

Throughout this section it will be assumed that the i’th message was sent.

Claim J.1 The process (Λi (n) ,Fn) is a submartingale.

Proof. By definition Λn ∈ Fn and since p (y | x) is positive and finite for any x, y ∈
{0, 1}, it holds that Ei [|Λi (n)|] < ∞. In order to prove the claim it is left to show

that

log

[
p
(
[y]n |

[
x(i)
]
n

)∑M−1
j=0,j 6=i p ([y]n | [x(j)]n)

]
≤ Ei

log

 p
(

[y]n+1 |
[
x(i)
]
n+1

)
∑M−1

j=0,j 6=i p
(
[y]n+1 | [x(j)]n+1

)
 ∣∣∣∣Fn

 .

(J.0.1)
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Towards that end, note that

Ei
{

log
[
p
(

[y]n+1 |
[
x(i)
]
n+1

)]
| Fn

}
=

log
[
p
(
[y]n |

[
x(i)
]
n

)]
+ Ei

{
log
[
p
(
yn+1 | x(i)

n+1

)]}
(J.0.2)

= log
[
p
(
[y]n |

[
x(i)
]
n

)]
− h2 (ε) , (J.0.3)

where the first equality holds due to the memorylessness along with the fact that

log
[
p
(
[y]n |

[
x(i)
]
n

)]
is measurable with respect to Fn and the n + 1 instant of the

random process is independent of Fn. The second equality follows by the definition of

the binary entropy function. Therefore, the right hand side of (J.0.1) is equal to:

log
[
p
(
[y]n |

[
x(i)
]
n

)]
− h2 (ε)− (J.0.4)

Ei

{
log

[
M−1∑
j=0,j 6=i

p

(
[y]n+1

∣∣∣∣[x(j)
]
n+1

)] ∣∣∣∣Fn
}
. (J.0.5)

Note that the first term cancels out on both sides of (J.0.1) and so we have left to

shown that

Ei

{
log

[
M−1∑
j=0,j 6=i

p
(

[y]n+1 |
[
x(j)
]
n+1

)] ∣∣∣∣Fn
}
≤ log

[
M−1∑
j=0,j 6=i

p
(
[y]n |

[
x(j)
]
n

)]
− h2 (ε) .

(J.0.6)
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It is easy to see that indeed the former inequality holds since:

Ei

{
log

[
M−1∑
j=0,j 6=i

p
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≤ log
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= log
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1
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≤ log

[
M−1∑
j=0,j 6=i

p
(
yn+1 | x(j)

n+1

)]
− h2 (ε) , (J.0.11)

where in (J.0.7) Jensen’s inequality was used.

Recall that the submartingale property was needed to enable the use of Doob’s in-

equality to upper bound the probability of the event
{

supn≤n̄ Λi (n) > a
}

as follows:

Pi

(
sup
n≤n̄

Λi (n) > a

)
≤

Ei
{

[Λi (n̄)]+
}

a
, (J.0.12)

where for any z ∈ R,

[z]+ =

{
0 : x < 0

z : x ≥ 0.

Carrying out the [·]+ operator may lead to cumbersome expressions. Nevertheless,

note that we can avoid it if we are willing to bound the random variable eΛi(n̄) instead

of Λi (n̄). This simplification can be achieved by using the fact that, since exp {·} is

convex, the process
(
eΛi(n),Fn

)
is a submartingale too, and furthermore, it is positive.
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Therefore we may write:

Pi

(
sup
n≤n̄

Λi (n) > a

)
= Pi

(
sup
n≤n̄

eΛi(n) > ea
)

(J.0.13)
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]
ea

(J.0.14)

= e−aEi
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p
(
[y]n̄ |

[
x(i)
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j=0,j 6=i p ([y]n̄ | [x(j)]n̄)

}
. (J.0.15)

This last expression may be amenable to further bounding using the techniques of

[103].

184



References

[1] A. E. Albert, “The sequential design of experiments for infinitely many

states of nature,” The Annals of Mathematical Statistics, pp. 774–799,

1961.

[2] T. W. Anderson, “A modification of the sequential probability ratio test

to reduce the sample size,” The Annals of Mathematical Statistics, vol. 31,

pp. 165–197, 1960.

[3] K. Andrews and S. Dolinar, “Performance of the bounded distance decoder

on the AWGN channel,” arXiv preprint arXiv:1207.5850, 2012.

[4] P. Armitage, “Restricted sequential procedures,” Biometrika, vol. 44, no. 1.

[5] ——, “Sequential analysis with more than two alternative hypotheses, and

its relation to discriminant function analysis,” Royal Statistical Society,

vol. Series B, pp. 137 – 144, 1950.

[6] K. J. Arrow, D. Blackwell, and M. A. Girshick, “Bayes and minimax so-

lutions of sequential decision problems,” Econometrica, vol. 17, pp. 213 –

244, 1949.

[7] J. Bartroff, T. L. Lai, and M. C. Shih, Sequential Experimentation in

Clinical Trials. Springer, 2013, vol. 298.

[8] C. W. Baum and V. V. Veeravalli, “A sequential procedure for multi-

hypothesis testing,” Information Theory, IEEE Transactions on, vol. 40,

no. 6, November 1994.

[9] P. Berlin, B. Rimoldi, and I. Telatar, “A simple derivation of Burnashev’s

reliability function,” IEEE transactions on information theory, vol. 55,

no. 7, pp. 3074–3080, March 2006.

185



[10] S. M. Berry, B. P. Carlin, J. J. Lee, and P. Muller, Bayesian adaptive

methods for clinical trials. CRC press, 2010, vol. 38.

[11] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The Discrete

Time Case. Academic Press New York, 1978, vol. 139.

[12] S. Bessler, “Theory and applications of the sequential design of experi-

ments, k-actions and infinitely many experiments: Part i–theory,” Applied

Mathematics and Statistics Laboratories, Stanford University, Tech. Rep&,

no. 55, 1960.

[13] W. J. Blot and D. A. Meeter, “Sequential experimental design procedures,”

Journal of the American Statistical Association, vol. 68, no. 343, pp. 586–

593, 1973.

[14] V. Borkar and P. Varaiya, “Adaptive control of Markov chains, i: Finite

parameter set,” Automatic Control, IEEE Transactions on, vol. 24, no. 6,

pp. 953–957, 1979.

[15] L. Breiman, Probability. Addison-Wesley, 1968, pp. 98 – 100.

[16] C. Brezinski, Computational aspects of linear control. Springer, 2002,

vol. 1.

[17] D. Burkholder and R. A. Wijsman, “Optimum properties and admissibility

of sequential tests,” Annals of Mathematical Statistics, vol. 34, pp. 1 – 17,

1963.

[18] M. V. Burnashev, “Data transmission over a discrete channel with feed-

back. random transmission time,” Problemy peredachi informatsii, vol. 12,

no. 4, pp. 10–30, 1976.

[19] M. V. Burnashev and K. Zigangirov, “On one problem of observation con-

trol,” Problemy Peredachi Informatsii, vol. 11, no. 3, pp. 44–52, 1975.

[20] G. Caire and D. Tuninetti, “The throughput of hybrid-ARQ protocols for

the Gaussian collision channel,” Information Theory, IEEE Transactions

on, vol. 47, no. 5, pp. 1971–1988, July 2001.

186



[21] J. F. Chamberland and V. V. Veeravalli, “Decentralized detection in sensor

networks,” Signal Processing, IEEE Transactions on, vol. 51, no. 2, pp.

407–416, Febuary 2003.

[22] H. Chernoff, “Sequential tests for the mean of a normal distribution III.”

[23] ——, “A measure of asymptotic efficiency for tests of a hypothesis based on

the sum of observations,” The Annals of Mathematical Statistics, vol. 23,

pp. 493–507, 1952.

[24] ——, “Sequential design of experiments,” The Annals of Mathematical

Statistics, pp. 755–770, 1959.

[25] ——, “Sequential tests for the mean of a normal distribution IV (discrete

case),” The Annals of Mathematical Statistics, vol. 36, pp. 28–68, 1965.

[26] ——, sequential analysis and optimal design. Philadelphia, PA: SIAM,

1972.

[27] Y. S. Chow, H. Robbins, and D. Siegmund, Great Expectations: The The-

ory of Optimal Stopping. Houghton-Mifflin, Boston, 1971.

[28] G. Como, S. Yuksel, and S. Tatikonda, “The error exponent of variable-

length codes over Markov channels with feedback,” Information Theory,

IEEE Transactions on, vol. 55, no. 5, pp. 2139–2160, May 2009.

[29] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.

Wieley interscience, 2006.

[30] I. Csiszár, “I-divergence geometry of probability distributions and mini-

mization problems,” The Annals of Probability, pp. 146–158, 1975.

[31] ——, “The method of types,” Information Theory, IEEE Transactions on,

vol. 44, no. 6, pp. 2505–2523, October 1998.

[32] I. Csiszar and J. Korner, “Towards a general theory of source networks,”

Information Theory, IEEE Transactions on, vol. 26, no. 2, pp. 155–165,

March 1980.

187



[33] I. Csiszar and J. Körner, Information Theory: Coding Theorems for Dis-

crete Memoryless Systems, 2nd ed. Cambridge University Press, 2011.

[34] I. Csiszár, J. Körner, and K. Marton, “A new look at the error exponent

of discrete memoryless channels,” in IEEE International Symposium on

Information Theory, 1977.

[35] I. Csiszár and P. C. Shields, “Information Theory and Statistics: A Tu-

torial,” Foundations and Trends R© in Communications and Information

Theory, vol. 1, no. 4, pp. 417–528, 2004.

[36] B. S. Darkhovskii, “Sequential testing of two composite statistical hypothe-

ses,” Automation and Remote Control, vol. 67, no. 9, pp. 1485–1499, 2006.

[37] B. S. Darkhovsky, “Optimal sequential tests for testing two composite and

multiple simple hypotheses,” Sequential Analysis, vol. 30, no. 4, pp. 479–

496, 2011.

[38] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications,

2nd ed. Springer, 1997.

[39] D. Divsalar, “A simple tight bound on error probability of block codes

with application to turbo codes,” TMO progress report, vol. 19, pp. 42–

139, 1999.

[40] R. L. Dobrushin, “An asymptotic bound for the probability error of infor-

mation transmission through a channel without memory using the feed-

back,” Problemy Kibernetiki, vol. 8, pp. 161–168, 1962.

[41] S. Dolinar, K. Andrews, F. Pollara, and D. Divsalar, “The limits of coding

with joint constraints on detected and undetected error rates,” in Informa-

tion Theory, 2008. ISIT 2008. IEEE International Symposium on. IEEE,

2008, pp. 970–974.

[42] V. P. Dragalin, Novikov, and A. Aleksandrovich, “Asymptotic solution

of the Kiefer-Weiss problem for processes with independent increments,”

Theory of Probability & Its Applications, vol. 32, no. 4, pp. 617–627, 1987.

188



[43] V. P. Dragalin, A. G. Tartakovsky, and V. V. Veeravalli, “Multihypothesis

sequential probability ratio tests. II. accurate asymptotic expansions for

the expected sample size,” Information Theory, IEEE Transactions on,

vol. 46, no. 4, pp. 1366–1383, July 2000.

[44] V. P. Draglia, A. G. Tartakovsky, and V. V. Veeravalli, “Multihypothesis

sequential probability ratio tests. I. asymptotic optimality,” Information

Theory, IEEE Transactions on, vol. 45, no. 7, pp. 2448–2461, November

1999.

[45] S. C. Draper, K. Ramchandran, B. Rimoldi, A. Sahai, and D. Tse, “Attain-

ing maximal reliability with minimal feedback via joint channel-code and

hash-function design,” in Allerton Conference in Communication, Control

and Computing, 2005.

[46] R. Durrett, Probability: theory and examples. Cambridge university press,

2010, vol. 3.

[47] Eisenberg and Bennett, “Multihypothesis problems,” Handbook of sequen-

tial analysis, pp. 229–244, 1991.

[48] B. Eisenberg, B. Ghosh, and G. Simons, “Properties of generalized sequen-

tial probability ratio tests,” Ann. statist., vol. 4, pp. 237–251, 1976.

[49] B. Ernisse, R. Steven, M. P. K. DeSimio, and R. A. Raines, “Complete

automatic target cuer/recognition system for tactical forward-looking in-

frared images,” Optical Engineering, vol. 36, no. 9, pp. 2593–2603, 1997.

[50] M. Feder and N. Merhav, “Universal composite hypothesis testing: A com-

petitive minimax approach,” Information Theory, IEEE Transactions on,

vol. 48, no. 6, pp. 1504–1517, June 2002.

[51] T. S. Ferguson, mathematical statistics: A decision theoretic approach,

2nd ed. Academic: NY, 1967.

[52] M. M. Fishman, “Average duration of asymptotically optimal multialter-

native sequential procedure for recognition of processes,” Soviet Journ.

Communic. Technol. Electron, vol. 30, pp. 2541–2548, 1987.

189



[53] G. Forney Jr., “Exponential error bounds for erasure, list, and decision

feedback schemes,” Information Theory, IEEE Transactions on, vol. 14,

no. 2, pp. 206–220, March 1968.

[54] G. D. Forney Jr, “On exponential error bounds for random codes on the

BSC,” 2001.

[55] K. S. Fu, Sequential methods in pattern recognition and machine learning.

Academic press New York, 1968, vol. 52.

[56] R. G. Gallager, “Information theory and reliable communication,” 1968.

[57] ——, “Source coding with side information and universal coding,” LIDS-

P-937, M.I.T, 1976 (revised 1979).

[58] ——, Discrete Stochastic Processes. Kluwer Academic Publishers Boston,

1996, vol. 101.

[59] B. Ghosh, Sequential Tests of Statistical Hypotheses. Addison-Wesley,

1970.

[60] J. K. Ghosh, “On the optimality of probability ratio tests in sequential

and multiple sampling,” Calcutta Statist. Assoc. Bull, vol. 10, pp. 73 – 92,

1961.

[61] G. K. Golubev and R. Z. Khas’ minskii, “Sequential testing for several

signals in Gaussian white noise,” Theory of Probability & Its Applications,

vol. 28, no. 3, pp. 573–584, 1984.

[62] P. K. Gopala, Y. Nam, and H. El Gamal, “On the error exponents of

ARQ channels with deadlines,” Information Theory, IEEE Transactions

on, vol. 53, no. 11, pp. 4265–4273, November 2007.

[63] A. Gut, Stopped Random Walks: Limit Theorems and Applications.

Springer, 2009.

[64] W. J. Hall, Sequential minimum probability ratio tests In Asymptotic The-

ory of Statistical Tests and Estimation (Edited by I. M. Chakravarti). Aca-

demic Press,, NY, 1980, pp. 325 – 350.

190



[65] E. A. Haroutunian, “A lower bound of the probability of error for channels

with feedback,” Problemy Peredachi Informatsii, vol. 13, pp. 36–44, 1977.

[66] T. Hashimoto, “A coded ARQ scheme with the generalized viterbi algo-

rithm,” Information Theory, IEEE Transactions on, vol. 39, no. 2, pp.

423–432, March 1993.

[67] ——, “On the error exponent of convolutionally coded ARQ,” Information

Theory, IEEE Transactions on, vol. 40, no. 2, pp. 567–575, March 1994.

[68] ——, “Composite scheme LR + Th for decoding with erasures d its effec-

tive equivalence to Forney’s rule,” Information Theory, IEEE Transactions

on, vol. 45, no. 1, pp. 78–93, January 1999.

[69] T. Hashimoto and M. Taguchi, “Performance of explicit error detection

and threshold decision in decoding with erasures,” Information Theory,

IEEE Transactions on, vol. 43, no. 5, pp. 1650–1655, September 1997.

[70] A. O. Hero, Foundations and applications of sensor management.

Springer, 2008.

[71] W. Hoeffding, “Lower bounds for the expected sample size and average

risk of a sequential,” The Annals of Mathematical Statistics, vol. 31, pp.

352 – 368, 1960.

[72] P. G. Hoel and R. P. Peterson, “A solution to the problem of optimum

classification,” The Annals of Mathematical Statistics, vol. 20, no. 3, pp.

433–438, 1949.

[73] E. Hof, I. Sason, and S. Shamai, “Performance bounds for erasure, list, and

decision feedback schemes with linear block codes,” Information Theory,

IEEE Transactions on, vol. 56, no. 8, pp. 3754–3778, August 2010.

[74] G. A. Hollinger, U. Mitra, and G. S. Sukhatme, “Active classifica-

tion: Theory and application to underwater inspection,” arXiv preprint

arXiv:1106.5829, 2011.

[75] M. Horstein, “Sequential transmission using noiseless feedback,” Informa-

tion Theory, IEEE Transactions on, vol. 9, no. 3, pp. 136–143, July 1963.

191



[76] M. D. Huffman, “An efficient approximate solution to the Kiefer-Weiss

problem,” The Annals of Statistics, vol. 11, pp. 306–316, 1983.

[77] W. Huleihel, N. Weinberger, and N. Merhav, “Erasure/list random

coding error exponents are not universally achievable,” arXiv preprint

arXiv:1410.7005, 2014.

[78] R. Keener, “Second order efficiency in the sequential design of experi-

ments,” The Annals of Statistics, pp. 510–532, 1984.

[79] J. Kiefer and J. Sacks, “Asymptotically optimum sequential inference and

design,” The Annals of Statistics, vol. 34, pp. 705–750, 1963.

[80] ——, “Asymptotically optimum sequential inference and design,” The An-

nals of Mathematical Statistics, pp. 705–750, 1963.

[81] J. Kiefer and L. Weiss, “Some properties of generalized sequential proba-

bility ratio tests,” The Annals of Mathematical Statistics, vol. 28, pp. 57 –

74, 1957.

[82] Y. Kim, A. Lapidoth, and T. Weissman, “Error exponents for the Gaussian

channel with active noisy feedback,” Information Theory, IEEE Transac-

tions on, vol. 57, no. 3, pp. 1223–1236, March 2011.

[83] T. Kløve and V. Korzhik, Error Detecting Codes: General Theory and

Their Applications in Feedback Communication Systems.

[84] P. R. Kumar and P. Varaiya, Stochastic systems: estimation, identification

and adaptive control. Prentice-Hall, Inc., 1986.

[85] T. L. Lai, “Optimal stopping and sequential tests which minimize the

maximum expected,” The Annals of Statistics, vol. 1, pp. 659–673, 1973.

[86] ——, “Nearly optimal sequential tests of composite hypotheses,” The An-

nals of Statistics, vol. 16, pp. 856–886, 1988.

[87] ——, “Sequential analysis: Some classical problems and new challenges,”

Statistica Sinica, vol. 11, pp. 303–408, 2001.

192



[88] ——, “Likelihood ratio identities and their applications to sequential anal-

ysis,” Sequential Analysis, vol. 23, no. 4, pp. 467–497, 2004.

[89] T. L. Lai and L. M. Zhang, “Nearly optimal generalized sequential like-

lihood ratio tests in multivariate exponential families,” Lecture Notes-

Monograph Series, pp. 331–346, 1994.

[90] S. P. Lalley and G. Lorden, “A control problem arising in the sequential

design of experiments,” The Annals of Probability, vol. 14, no. 1, pp. 136–

172, 1986.

[91] E. L. Lehmann, Testing statistical hypotheses. Wiley, NY, 1959.

[92] E. L. Lehmann and G. Casella, Theory of point estimation. Springer,

1998, vol. 31.

[93] G. Lorden, “Likelihood ratio tests for sequential k-decision problems,” The

Annals of Mathematical Statistics, pp. 1412–1427, 1972.

[94] ——, “Open-ended tests for Koopman-Darmois families,” The Annals of

Statistics, pp. 633–643, 1973.

[95] ——, “2-SPRT’s and the modified Kiefer-Weiss problem of minimizing an

expected sample size,” The Annals of Statistics, vol. 4, pp. 281–291, 1976.

[96] ——, “Nearly-optimal sequential tests for finitely many parameter values,”

The Annals of Statistics, vol. 5, no. 1, pp. 1–21, 1977.

[97] ——, “Structure of sequential tests minimizing an expected sample size,”

Z. Wahrscheinlichkeitstheorie verw. Gebiete, vol. 51, pp. 291 – 302, 1980.

[98] ——, “Structure of sequential tests minimizing an expected sample size,”

Probability Theory and Related Fields, vol. 51, no. 3, pp. 291–302, 1980.

[99] A. Mahajan, A. Nayyar, and D. Teneketzis, “Identifying tractable decen-

tralized control problems on the basis of information structure,” in Com-

munication, Control, and Computing, 2008 46th Annual Allerton Confer-

ence on. IEEE, 2008, pp. 1440–1449.

193



[100] S. Mannor and J. N. Tsitsiklis, “The sample complexity of exploration

in the multi-armed bandit problem,” The Journal of Machine Learning

Research, vol. 5, pp. 623–648, 2004.

[101] M. Marcus and P. Swerling, “Sequential detection in radar with multiple

resolution elements,” Information Theory, IRE Transactions on, vol. 8,

no. 3, pp. 237–245, 1962.

[102] T. K. Matthes, “On the optimality of sequential probability ratio tests,”

The Annals of Mathematical Statistics, vol. 34, pp. 18 – 21, 1963.

[103] N. Merhav, “Error exponents of erasure/list decoding revisited via mo-

ments of distance enumerators,” Information Theory, IEEE Transactions

on, vol. 54, no. 10, pp. 4439–4447, October 2008.

[104] ——, “Statistical physics and information theory,” Foundation sna Trends

in communications and Information Theory, vol. 6, no. 1–2, pp. 1–212,

2009.

[105] ——, “Erasure/list exponents for Slepian-Wolf decoding,” Information

Theory, IEEE Transactions on, vol. 60, no. 8, pp. 4463–4471, August 2014.

[106] N. Merhav and M. Feder, “Minimax universal decoding with an erasure

option,” Information Theory, IEEE Transactions on, vol. 53, no. 5, pp.

1664–1675, May 2007.

[107] P. Moulin, “A Neyman–Pearson approach to universal erasure and list

decoding,” Information Theory, IEEE Transactions on, vol. 55, no. 10,

pp. 4462–4478, October 2009.

[108] M. Naghshvar and T. Javidi, “Active M -ary sequential hypothesis test-

ing,” in Information Theory Proceedings (ISIT), 2010 IEEE International

Symposium on. IEEE, 2010, pp. 1623–1627.

[109] ——, “Variable-length coding with noiseless feedback and finite mes-

sages,” in Signals, Systems and Computers (ASILOMAR), 2010 Confer-

ence Record of the Forty Fourth Asilomar Conference on. IEEE, 2010,

pp. 317–321.

194



[110] ——, “Performance bounds for active sequential hypothesis testing,” in

Information Theory Proceedings (ISIT), 2011 IEEE International Sympo-

sium on. IEEE, 2011, pp. 2666–2670.

[111] M. Naghshvar, T. Javidi et al., “Active sequential hypothesis testing,” The

Annals of Statistics, vol. 41, no. 6, pp. 2703–2738, 2013.

[112] B. Nakiboglu and R. G. Gallager, “Error exponents for variable-length

block codes with feedback and cost constraints,” Information Theory,

IEEE Transactions on, vol. 54, no. 3, pp. 945–963, 2008.

[113] B. Nakiboglu and L. Zheng, “Errors-and-erasures decoding for block codes

with feedback,” Information Theory, IEEE Transactions on, vol. 58, no. 1,

pp. 24–49, January 2012.

[114] S. Nitinawarat, G. K. Atia, and V. V. Veeravalli, “Controlled sensing for

hypothesis testing,” in Acoustics, Speech and Signal Processing (ICASSP),

2012 IEEE International Conference on. IEEE, 2012, pp. 5277–5280.

[115] ——, “Controlled sensing for multihypothesis testing,” Automatic Control,

IEEE Transactions on, vol. 58, no. 10, pp. 2451–2464, October 2013.

[116] I. V. Pavlov, “A sequential procedure for testing many composite hypothe-

ses,” Theory of Probability & Its Applications, vol. 32, no. 1, pp. 138–142,

1987.

[117] M. S. Pinsker, “The probability of error in block transmission in a memo-

ryless Gaussian channel with feedback,” Problemy Peredachi Informatsii,

vol. 4, no. 4, pp. 3–19, 1968.

[118] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Minimum energy to send k bits
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משוב עם ערוץ וקידוד סדרתית השערות בחינת

גנזך שי





מרחב נרי ופרופ' ששון יגאל פרופ' בהנחיית נעשה המחקר

חשמל להנדסת בפקולטה

תודה הכרת

ההנחייה, על מרחב, נרי ופרופ' ששון יגאל פרופ' שלי, למנחים לב מקרב מודה אני
היו זו. עבודה בכתיבת הרבה ולעזרה שלי למחקר שהוקדשו הרב והזמן הסבלנות

אלו. מסורים ומורים מקצועיים חוקרים שני תחת לעבוד והכבוד הזכות לי

בהשתלמותי הנדיבה הכספית התמיכה על לטכניון מודה אני







תקציר

מרובה להתעניינות זכה מהם אחד כל אשר שונים, מחקר תחומי שני שבין בקשר עוסקת זו עבודה

על כי מסתבר משתנה. בלוק באורך ערוץ וקידוד סדרתית השערות בחינת האחרונות: בשנים

שביניהם בקשר העוסקות העבודות מספר רבים, למחקרים מושאים אלו נושאים של היותם אף

הנ"ל, לקשר אזכורים כמה בספרות קיימים זאת, עם ביניהם. גורדי הקשר אף על יחסית דל הוא

של חסמים לקבל מנת על הסדרתית ההשערות בחינת מעולם תוצאות נוצלו שבהן עבודות ומספר

הקשר והן אלו תוצאות הן זו. עבודה של השני בחלקה תסקרנה משוב בנוכחות ערוץ קוד ביצועי

עבודה לכתיבת המוטיבציה עיקר את יחד מהוות התקשורת לבעיית ההשערות בחינת בעיית בין

זו.

תוצאות של וממצה מקיפה סקירה מתן היא הראשונה עיקריות: מטרות שתי זו לעבודה

תקשורת מערכות בניתוח שימושיות להיות שיכולות הסדרתית ההשערות בחינת מעולם הלקוחות

עם התקשרות. לבעיית אלו תוצאות לקשור דרכים כמה של הדגמה היא השניה המטרה משוב. עם

להתמקד בחרנו כך, עקב אלו. מטרות שני של ההיקף כלל את למצות מכדי היריעה קצרה זאת,

קידוד סכמות של השגיאה ומעריך סדרתי באופן פשוטות השערות בחינת שבין בקשר רק בעיקר

סדרתי" באופן פשוטות השערות בחירת ב"בעיית הכוונה העבודה, לאורך משתנה. באורך ערוץ

ההיפותזות: M מ־ אחת לגבי החלטה קבלת תהיה

Hi : Pr (x) = Pi (x) , i ∈ {0, . . . ,M − 1} , x = x0, x1 . . . ,

זו בעיה של הבולט המאפיין האובזרבציה. סדרת הינה x ו־ ידועים, פילוגים הם Pi (·) כאשר

בבעיות כזכור, מוגבל1. איננו המדידות מספר קרי, אינסופי, הינו האובזרבציה סדרת שאורך הוא

מועד מבעוד נקבע ההחלטה מתקבלת בסיסן שעל המדידות מספר הקלאסית ההשערות בחינת

להחלטה בנוסף לקבוע, המפענח על הסדרתית בבעיה מכך, להבדיל המבחן. של פרמטר והינו

סמך ברמת תתקבל זו שהחלטה מנת על לקחת שעליו המדידות מספר את גם לתמוך, השערה באיזו

האובזרבציה סדרת של פונקציה יהיה המדידות מספר בעבודה הנדונות בבעיות בפרט, גבוהה.

זו, בעבודה יידונו שונות השערות בחינת בעיות מספר אקראי). משתנה הינו זה מספר (ולפיכך

האובזרבציה שסדרת החלטה לקבל ניתן האם מחליט והמפענח n זמן לכל Mפילוגים מוגדרים זו בבעיה 1למעשה,

יש אמינה בצורה כזו החלטה לקבל מנת על שמע או ,Pi המקורות אחד ע"י יוצרה xn, n ∈ N כה, עד שנצפתה
מדידות עוד לקחת
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ובחינת פשוטות, השערות של משתיים) (גדול רב מספר בחינת פשוטות, השערות זוג בחינת ובהן

שתיסקר נוספת בעיה המדידות. של הסטטיסטי אופיים על בקרה של אפשרות עם השערות

המפענח ועל פילוגים אוסף מגדירה היפותיזה כל בה אשר מורכבות, השערות בחינת הינה בקצרה

ההחלטה מקבל של המטרה הנ"ל, המקרים בכל לתמוך. השונים האוספים מבין באיזה לבחור

שקלול הוא הטיב מדד כאשר הנכונה, היא ההיפותזות מבין אילו מיטיבית בצורה להחליט היא

הטיב מדד בפרט, זו. להחלטה להגיע הנדרש הממוצע הזמן ושל הממוצעת השגיאה הסתברות של

כ־ המוגדר השגיאה, מעריך הינו נתרכז בו אשר אחד

lim sup
Pe→0

− log (Pe)

E [N ]

כי לציין חשוב העצירה. זמן תוחלת הינה E [N ] ו־ הממוצעת השגיאה הסתברות הינה Pe כאשר

זמן בו המשטר העבודה: לאורך עניין בעל שיהיה מסוים אסימפטוטי משטר מכתיבה גם זו הגדרה

הינו עניין בעל שיהיה נוסף טיב מדד לאפס. שואפת השגיאה והסתברות לאינסוף שואף העצירה

נתונה. סמך רמת עבור העצירה זמן תוחלת של מינימום

הודעה כל לקודד האפשרות ישנה למקודד שבה התקשורת בבעיית דן העבודה של השני החלק

מילת את שולח המקודד לשידור, הודעה בחירת לאחר ערוץ. סימבולי של אינסופית סדרה ע"י

רצף את מקבל מצדו, המפענח, התקשורת. ערוץ דרך סימבול, אחרי סימבול המתאימה, הקוד

השולח לצד להודיע (1) הבאות: המשימות מוטלות המפענח על בערוץ. המעבר לאחר הסימבולים

ההודעה. את לפענח (2) ו־ הבאה להודעה ולעבור הנוכחית ההודעה משליחת לחדול עליו מתי

דיו, מובהק אינו שצבר והמידע במידה ההודעה קבלת את להשהות יכול המפענח זה באופן

זה מתח ארוכה. בהשהיה אפשרי תשלום חשבון על התקשורת של אמינותה את לשפר ובכך

נעסוק. בו הטיב מדד שהינו השגיאה, במעריך ביטוי לידי בא וההשהיה השגיאה הסתברות שבין

שבבעיית הינו התקשורת ובעיית ההשערות בחינת בעיית עבור השגיאה מעריך הגדרת בין ההבדל

עבור גם הקלאסית, התקשורת לבעיית בדומה חיובי. יהיה הקידוד קצב כי נדרש התקשורת

אחר. שגיאה מעריך יתקבל הערוץ) מקיבול (הקטן קצב כל עבור אלו שידור סכימות

ההחלטה. קבלת על למקלט מודיע המשדר מעליו משוב ערוץ של קיומו את נניח עבודה לאורך

הוא המשוב בו הראשון, המשוב: בנוכחות התקשורת מערכת על אילוצים סוגי בשני נדון בפרט,

תחת האופטימאלי השגיאה מעריך שהוא. זמן בכל אליו הגישה מותרת וכן השהייה, וחסר נקי

וכל מזו זו שונות הינן שתסקרנה ההוכחות בעבודה. תובאנה שלו שונות והוכחות ידוע אלו הנחות

תוצג בספרות, שמופיעות תוצאות למספר בנוסף זו. תוצאה לגבי שונה אינטואיציה מספקת אחת

גם בכך אופטימאליים. ביצועים המשיגה סדרתיים אלמנטים ורק אך הכוללת חדשה סכמה גם

על אילוצים של השני בסוג שלפנינו. הקידוד לבעיית ההשערות בחינת בעיית שבין הקשר יודגם

לכל אחת פעם רק מותר בו השימוש כעת אך השהייה, חסר המשוב שערוץ מניחים עדיין המשוב,

להודעה מעבר על לו ולאותת הנוכחית ההודעה שידור מהמשך לחדול למשדר להורות – הודעה

מעריך במובן הזה הסוג מן תקשורת של הביצועים לגבי חדשות תוצאות תוצגנה בעבודה הבאה.
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כי ההנחה תחת יחושב סימטרי בינארי ערוץ עבור האופטימאלי השגיאה מעריך בפרט, השגיאה.

הם. אף יוצגו יותר כלליים ערוצים עבור זה מעריך על וחסמים אקראי בקידוד שימוש נעשה

הסדרתית. ההשערות בחינת לבעיית מוקדש הראשון חלקה כדלקמן: הוא העבודה מבנה

בפרק אופטימאלי. סדרתי מבחן במובן הבעיה של והפתרון בינארית השערות בחינת נדון 2 בפרק

התיאוריה בהתפתחות מרכזיות דרך אבני כמה ונציג מורכבות הינן ההשערות בה בבעיית נדון 3

וכן השערות של מ־2 גדול מספר בחשבון יילקחו כעת אך פשוטות, להשערות נחזור 4 בפרק שלהן.

בין משוב של באמצעותו (המושג המדידות על מסוימת לשליטה אפשרות קיימת בהם במקרים נדון

המשטרים של השונים הסוגים על דגש יושם העבודה של הראשון החלק במהלך למשדר). הקלט

הסדרתית. ההשערות בחינת של בספרות הנהוגים הטיב קריטריוני על וכן האסימפטוטיים

משוב. בנוכחות הפועלת תקשורת מערכת ביצועי על בחסמים נדון העבודה, של השני בחלקה

כתלות משתנה בלוק אורך בעלי קודים עם עבודה מאפשר שהוא הינו המשוב ערוץ של יתרונו

פרמטרי יוגדרו וכן הבעיה של המתמטי הפורמליזם יוצג 5 בפרק במקלט. הנקלטת בהודעה

מקיף דיון ייערך בנוסף השגיאה. מעריך קרי, העבודה, לאורך נתרכז בו הטיב ומדד התקשורת

בתרחיש נדון 6 בפרק מושלם. משוב עם תקשורת מערכת של האופטימאלי השגיאה למעריך בנוגע

מותרת למפענח כי נניח עת, בכל הזמין מושלם משוב ערוץ להניח במקום שבו, מעשי יותר מעט

זה תרחיש עבור בינארי. הוא המשוב שערוץ וכן אינפורמציה בלוק לכל למשוב בודדת גישה

סכימת ניסקור בפרט, מקוריות. תוצאות מספר גם קלאסיות, לתוצאות בנוסף בעבודה, תוצגנה

במקרה אופטימאלי הינו המתקבל השגיאה מעריך כי ונוכיח 1968 בשנת פורני ע"י שהוצעה הקידוד

עתידיים. מחקר כיווני כמה ונציע העבודה את נסכם 7 פרק סימטרי. בינארי ערוץ של
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