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EPFL – Swiss Federal Institute of Technology
CH-1015 Lausanne, Switzerland

E-mails: {Igal.Sason, Emre.Telatar, Rudiger.Urbanke}@epfl.ch

December 1, 2002

Abstract

We present a general method for computing the asymptotic input-output weight distribution of
convolutional encoders. In some instances, one can derive explicit analytic expressions. In general
though, to determine the growth rate of the input-output weight distribution for a particular normal-
ized input weight κ and output weight ω, a system of polynomial equations has to be solved. This
method is then used to determine the asymptotic weight distribution of various concatenated code
ensembles and to derive lower bounds on the thresholds of these ensembles under maximum likelihood
decoding.

Index Terms: Convolutional codes, maximum-likelihood decoding, serially concatenated codes,
thresholds, turbo codes, uniform interleaver, weight distribution.

1 Introduction

Consider an ensemble of turbo-like codes, defined by a concatenation of uniformly interleaved con-
volutional encoders. Such ensembles of codes include the standard parallel concatenated turbo
codes [2, 3], ensembles of uniformly interleaved and serially concatenated codes [1], and other en-
sembles of turbo-like codes, such as the repeat-accumulate (RA) codes [8]. For a fixed decoding
algorithm, these ensembles of codes typically exhibit a threshold phenomenon: most of the suf-
ficiently long codes from such an ensemble can be used to transmit reliably up to a particular
channel parameter, called the threshold, but will result in error rates bounded away from zero by
a fixed constant above this threshold. For the case of iterative decoders, such thresholds have been
determined, e.g., in [19, 20]. In such a setting it is then of interest to determine how much is lost

by employing an iterative decoding technique rather than the optimal maximum likelihood (ML)
decoder. A lower bound on the suffered loss can be found by upper bounding the error probability
of an ML decoder (typically as a function of the weight distribution). This has been done, e.g., in
[7, 8, 10, 14, 21, 22, 24, 25] for various classes of code ensembles. A basic ingredient of this approach
is to determine the average weight distribution of the given ensemble. Although there are analytic
approaches to determine this weight distribution exactly for relatively small lengths [5, 7, 15], none
of the suggested approaches allow for a direct determination of the asymptotic growth rate. One
exception is the case of repeat-accumulate codes, for which a compact analytic formula for the

1



exact input-output weight distribution has been found [8]. Moreover, the weight distribution of a
class of doubly concatenated repeat-accumulate codes (introduced in [18]), as well as the weight
distribution of a rate-1 convolutional encoder with transfer function 1

1+D+D2 were derived in [12]
(see Appendix B, pp. 134–137).

In this paper, we will present a simple method that allows for the determination of the asymp-
totic input-output weight distribution of convolutional encoders (see also [23]). In some cases, we
are able to derive analytic expressions. In general, the determination of the growth rate for a fixed
normalized input weight κ and output weight ω requires the (numerical) solution of a system of
polynomial equations. We then apply our method to determine the growth rates of the weight
distributions of various concatenated ensembles and to derive thresholds under ML decoding.1

The paper is organized as follows: In Section 2 we introduce our notations and give some
general transformation rules for the asymptotic exponent of input-output weight distributions of
convolutional encoders. In Section 3 we derive a method which is used to calculate the asymptotic
growth rate of input-output weight distributions of convolutional encoders. Considerations regard-
ing the use of this method for general convolutional encoders and some computation tasks which
are involved in that respect are addressed in Section 4. Applications of this method to ensembles
of uniformly interleaved parallel and serial concatenated codes are presented in Section 5. Finally,
we exemplify our method to the classical turbo code which was devised by Berrou et al. [3].

2 Convolutional Encoders and General Transformation Rules

Let F be a field and let F[[D]] denote the associated ring of rationals. By a convolutional encoder

of rate Rc := 1
t , t ∈ N, we mean a t-tuple G(D) := (G1(D), · · · , Gt(D)), where Gi(D) ∈ F[[D]],

i ∈ [t].2 All our examples will be limited to the case F = GF(2) and t ∈ {1, 2}, although the basic
method is not restricted to this setting. Let x be an input sequence of length l and let y be the
corresponding output, where we restrict the output to the first l time steps, i.e., y will have total
length lt. We will write y = xG to denote this relationship. Consider the set

S l
G(κ, ω) := {(x, y) : y = xG; W (x) = κl; W (y) = ωtl},

where W (x) denotes the Hamming weight of x and κ, ω denote the normalized input and output
weights, respectively. We are interested in the exponential growth rate of |S l

G(κ, ω)|, which we
denote by FG(κ, ω). To make this growth rate well defined, consider the cardinality of the set of
all input-output pairs which have normalized weight within ε, ε > 0, of κ and ω, respectively. One
can check that this function has a well defined growth rate. Now define FG(κ, ω) as the limit of
this growth rate as ε approaches zero. One can verify that this limit is well defined and that the
limit function FG(κ, ω) is continuous.3

1For iteratively decoded ensembles, there is not yet a general theory which enables one to calculate analytically
the performance of these codes. However, for iteratively decoded ensembles over the binary erasure channel, one can
proceed with the performance analysis in a completely similar fashion to the performance analysis of ML decoding,
provided that one looks not at the weight distribution of the codewords, but rather at the weight spectrum of stopping

sets, see [6].
2The generalization of our results to encoders of rate p

q
is straightforward and we will omit the details.

3Consider the sets of the input/output sequences that determine |Sl1
G (κ, ω)| and |Sl2

G (κ, ω)|, respectively. By
combining a sequence from the first set with a sequence from the second set, separated by a number of zeros
which is equal to the memory length of the convolutional encoder (M), one obtains that log |Sl1+l2+M

G (κ, ω)| ≥
log |Sl1

G (κ, ω)| + log |Sl2
G (κ, ω)|, a property akin to super-additivity, which implies that the limit of the sequence

{

log |Sl

G
(κ,ω)|

l

}∞

l=1
exists (this serves as an outline of a proof why the function FG(·, ·) is well defined).
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Note that FG(κ, ω) does not depend on the initial state of the encoder. This is true, since within
a finite number of steps, one can change the state of the encoder from any given initial state to any
desired final state. Therefore, by prepending a finite prefix to the input one can relate the output
sequences corresponding to different initial states, [11]. The finite prefix has a negligible effect on
the resulting input and output weights, from which the claim follows.

The following straightforward transformation rules allow in some cases to relate the exponential
growth rates of two convolutional encoders. We say that a rational function P (D)

Q(D) is in minimal

form if P (D) and Q(D) are relatively prime. More generally, we will say that G(D) is in minimal

form if all its components Gi(D) are in minimal form. Given a general encoder G(D), we associate
to it an encoder Ĝ(D) by eliminating from each component of G(D) all common factors.

Lemma 1 (Transformation Rules). The following transformation rules hold for the asymptotic
growth rates of convolutional codes:

[Minimal Form] FG(κ, ω) = FĜ(κ, ω).

[Shift] For any convolutional encoder G(D) = (G1(D), · · · , Gt(D)) of rate 1
t and any t-tuple of

natural numbers (s1, · · · , st),

F[Ds1G1(D),··· ,DstGt(D)](κ, ω) = FG(D)(κ, ω).

[Multiplicity] For any convolutional encoder G(D) and any integer d,

FG(Dd)(κ, ω) = FG(D)(κ, ω).

[Duality] Let G(D) be a convolutional encoder of rate one. Then

F 1
G

(κ, ω) = FG(ω, κ).

Proof. The minimal and the shift rule are elementary and are only listed for completeness. For
the multiplicity rule, note that the output of the encoder G(Dd) at the i-th time instance only
depends on the input at time instances which are congruent to i modulo d. Therefore, we can
think of generating the output by first splitting the input into d separate streams and feeding each
stream into an encoder G(D) (rather than G(Dd)).4 Finally consider the duality rule. Assume that
y = xG where W (x) = αl and W (y) = βl. Now feed y into the encoder 1

G(D) . Then by definition,

we will recover x (but perhaps for the last M steps, where M is the memory length of the encoder).
This shows that F 1

G
(β, α) ≥ FG(α, β). The claim is now established by noting that by a reversal

of the roles of G(D) and 1
G(D) , we get the converse inequality FG(α, β) ≥ F 1

G
(β, α).

Example 1 (G(D) = D
1+D2 ). Consider the example G(D) = D

1+D2 . By the shift rule we have
F D

1+D2
(κ, ω) = F 1

1+D2
(κ, ω), which by the multiplicity rule is equivalent to F 1

1+D
(κ, ω). Using

finally the duality rule, we conclude that F D

1+D2
(κ, ω) = F1+D(ω, κ).

4The problem that in the case of a G(Dd) encoder the initial states are linked can be circumvented by inserting
finite length guard sequences which guarantee that the encoder returns into the zero state.
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3 The Basic Method

We will now discuss the basic method of determining the quantity FG(κ, ω).

Assume we are given a list L := {(ki, wi, li)} of triples. Each triple represents a pattern of input

weight ki, output weight wi and input length li. Let l be the given block length (length of the input
stream).5 We would like to determine in how many ways one can arrange these patterns (in a linear
fashion) such that their total input weight is k, their total output weight is w and their total input
length is l. More precisely, we are interested in the growth rate of the quantity

∑

1≤m≤l

∑

∑

miki=k;
∑

miwi=w
∑

mili=l;
∑

mi=m

(

m

m1, · · · , mj

)

.

Define the normalized quantities κ := k
l , ω := w

lt , µ := m
lt and µi = mi

lt . Note that we normalize the
input weight by the input length l, but the output weight as well as m and mi are normalized by
the output length lt. Then it is easily established that this growth rate, call it FL(κ, ω), is equal to

FL(κ, ω) := max
0≤µ≤ 1

t
∑

i µiki=κ/t;
∑

i µiwi=ω
∑

i µili=
1
t
;
∑

i µi=µ

µh(
µ1

µ
, · · · ,

µj

µ
), (1)

where h(· · · ) denotes the entropy function to the base of the natural logarithm.

Using Lagrange multipliers, we see that we have to find the stationary points of

µh(
µ1

µ
, · · · ,

µj

µ
) + α

∑

i

µiki + β
∑

i

µiwi + γ
∑

i

µili + δ

(

∑

i

µi − µ

)

.

Nulling the partial derivative with respect to µ yields that δ = 1 (based on the relation
∑

µi = µ).

By also nulling the partial derivatives with respect to the variables µi (i = 1, 2, · · · , j), one
obtains that the maximizing probability distribution has the form

µi = µeαkieβwieγli , i = 1, · · · , j (2)

where the quantities α, β, γ and µ are chosen such that

∑

i

µiki =
κ

t
, (3)

∑

i

µiwi = ω, (4)

∑

i

µili =
1

t
, (5)

∑

i

µi = µ. (6)

Assume that we specify the list L by means of the formal power sum

R(X, Y, Z) :=
∑

i

XkiY wiZ li ,

5The corresponding length of the output stream is then lt.
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where the triples (ki, wi, li) are not necessarily distinct. Then from (2) and (6) we get the equality

R(eα, eβ , eγ) = 1 . (7)

Define

RX(X, Y, Z) := X
∂R(X, Y, Z)

∂X
=

∑

i

XkiY wiZ liki ,

RY (X, Y, Z) := Y
∂R(X, Y, Z)

∂Y
=

∑

i

XkiY wiZ liwi ,

RZ(X, Y, Z) := Z
∂R(X, Y, Z)

∂Z
=

∑

i

XkiY wiZ li li .

Note that for µi of the form (2), we can express the left side of (3) as

∑

i

µiki = µ
∑

i

eαkieβwieγliki = µ RX(eα, eβ , eγ).

In a similar manner, we can express the left sides of the equations (4) and (5) in terms of RY and
RZ , respectively. Therefore, if we let x = eα, y = eβ and z = eγ , then we can write equations
(3)-(7) in the compact form

R(x, y, z) = 1 , (8)

RX(x, y, z) =
κ

µt
, (9)

RY (x, y, z) =
ω

µ
, (10)

RZ(x, y, z) =
1

µt
. (11)

Note that every choice of (x, y, z) ∈ (R+)3 corresponds to a probability distribution on the list
of patterns L and that each such choice has an associated entropy rate, call it FR, which can be
expressed as follows (based on equations (1), (2) and (8)-(11)):

FR(x, y, z) = −µ
∑

i

{

µi

µ
ln

(

µi

µ

)}

= −µ
∑

i

{

xkiywizli ln
(

xkiywizli
)}

= −µ (RX ln(x) + RY ln(y) + RZ ln(z))

= −RX ln(x) + RY ln(y) + RZ ln(z)

tRZ

= −κ

t
ln(x) − ω ln(y) − 1

t
ln(z) . (12)

Summarizing the results so far, we obtain the following theorem:

Theorem 1. Let R(X, Y, Z) :=
∑

i X
kiY wiZ li be a formal power sum specifying a set of patterns

where the i-th pattern has an associated input weight ki, output weight wi and length li. Let
S l

R(κ, ω) denote the set of all linear arrangements of these patterns whose input weight, output
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weight and input length are κl, ωtl and l, respectively. Let FR(κ, ω) denote the growth rate of
|S l

R(κ, ω)|. Then

FR(κ, ω) = sup
(x,y,z)∈D

{

−κ

t
ln(x) − ω ln(y) − 1

t
ln(z)

}

where

D :=

{

(x, y, z) ∈ (R+)3 : R(x, y, z) = 1,
RX(x, y, z)

RZ(x, y, z)
= κ ,

RY (x, y, z)

RZ(x, y, z)
= ωt

}

. (13)

If the formal power sum has a finite number of terms, then the above formalism simply amounts
to a compact description of the solution. The power of this approach appears when we allow
formal power sums with an infinite number of terms, such that these formal power sums can be
represented as rational generating functions. More precisely, we consider formal power sums of
the form R(X, Y, Z) =

∑

i X
kiY wiZ li such that R(X, Y, Z) ∈ R[[X, Y, Z]], the ring of rationals, or

equivalently, R(X, Y, Z) = P (X,Y,Z)
Q(X,Y,Z) for P (X, Y, Z), Q(X, Y, Z) ∈ R[X, Y, Z], where Q(0, 0, 0) 6= 0

so that Q(X, Y, Z)−1 exists.

Let us now return to our original problem. Recall that given a convolutional encoder G(D) we
want to determine the growth rate of all input-output pairs which have normalized input weight κ
and normalized output weight ω. To accomplish this, we need to find a generating function which
counts patterns such that every codeword of the encoder can be parsed in a unique way into a
sequence of these patterns and such that any linear arrangement of such patterns corresponds to
a codeword. Let R̃G(X, Y, Z) denote the standard generating function of a convolutional encoder
which counts detours from the zero state, i.e., codeword segments that start and end in the zero
state and do not take on the zero state in between. Then a possible choice is RG(X, Y, Z) =
Z + R̃G(X, Y, Z), since every codeword is composed in a unique way of detours and “silent periods”
in which the encoder rests in the zero state. But this choice is far from unique! Another possible
choice is given by RG(X, Y, Z) = 1

1−Z R̃G(X, Y, Z). Here we think of patterns that consist of a
“silent period” together with a detour. Although obviously both choices must lead to the same
result, the involved algebra can be essentially different for the two cases. There are many more
choices. We can count code segments that start and end in a given state s which is not necessarily

the zero state. To be precise, let R
[s]
G (X, Y, Z) denote the generating function which counts detours

which start and end in state s, where we allow an arbitrarily long prefix which corresponds to self
loops at state s. For the sake of simplicity we will in the sequel limit our attention to those choices
of the generating function.

We are now ready to list our main result.

Theorem 2. For a given convolutional encoder G(D), let R = R
[s]
G (X, Y, Z) have the form

R
[s]
G (X, Y, Z) = P (X,Y,Z)

Q(X,Y,Z) , where P and Q have no common factor and where the powers of X,
Y and Z correspond to the input weight, output weight and input length, respectively. Then

FG(κ, ω) = sup
(x,y,z)∈D

{

−κ

t
ln(x) − ω ln(y) − 1

t
ln(z)

}

where the set D is introduced in (13).

We note that in view of the function FG(·, ·), one can obtain the growth rate of the minimum
distance of the associated code if the latter grows linearly with the block length. However, if this
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is not the case (e.g., the increase of the minimum distance of turbo codes is at most logarithmic
with the interleaver length, even with the optimal interleaver, see [4]), then the function FG(·, ·) is
not helpful for determining the asymptotic behavior of the minimum distance of these codes.

In the following, we exemplify the use of Theorem 2 for convolutional encoders whose above
equations can be solved analytically. In the following two examples, we think of input sequences
with an arbitrary number of leading zeros, followed by a detour. As noted above, this approach
gives rise to the factor 1

1−Z appearing in the formal power series R(X, Y, Z).

Example 2 (G(D) = 1+D). We start with the simplest non-trivial encoder, namely G(D) = 1+D.
It is easily established that

R
[0]
1+D(X, Y, Z) =

XY 2Z2

(1 − Z)(1 − XZ)
.

After some manipulations, one gets the following solution for the set of three equations: x∗ =

(2κ−ω)(1−κ)
κ(2−2κ−ω) , z∗ = 2−2κ−ω

2−2κ , and y∗ =
(

(1−x∗z∗)(1−z∗)
x∗z∗2

)
1
2
. With these values we obtain

F1+D(κ, ω) = (1 − κ)h

(

ω

2(1 − κ)

)

+ κh
( ω

2κ

)

.

Note that by the duality property in Lemma 1, it follows that

F 1
1+D

(κ, ω) = (1 − ω)h

(

κ

2(1 − ω)

)

+ ωh
( κ

2ω

)

. (14)

As remarked in the introduction, the case G(D) := 1
1+D is actually a non-trivial case for which

FG(κ, ω) was previously known. Even more, in this case it was shown in [8] that the exact number
of input-output pairs of input weight k, output weight w and length l is equal to

(

l − w

bk/2c

)(

w − 1

dk/2 − 1e

)

,

from which the asymptotic growth rate, as stated in (14), can be deduced easily.

Example 3 (G(D) = (1+D2, 1+D+D2)). Consider now the example G(D) = (1+D2, 1+D+D2).
After some manipulations we get

R
[0,0]
(1+D2,1+D+D2)

(X, Y, Z) =
XY 5Z3

(1 − Z)(1 − XY Z(1 + Z))
. (15)

A tedious but otherwise straightforward calculation reveals that

z∗ =







√
5κ2−10κ+8κω+4(1−ω)−κ

2(1−2κ) if κ < 1
2√

5κ2−10κ+8κω+4(1−ω)+κ

2(2κ−1) if κ > 1
2

y∗ =

(

1 − z∗2

z∗2

2ω − κ

5κ − 2ω

)

1
4

x∗ =
1

y∗z∗(1 + z∗)

5κ − 2ω

4κ
.
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Using these relations we can establish that

F(1+D2,1+D+D2)(κ, ω) = −2 − κ − 2ω

4
ln(z∗) − 5κ − 2ω

8
ln

(

5κ − 2ω

4κ(1 + z∗)

)

−

2ω − κ

8
ln

(

(2ω − κ)(1 − z∗)

4κ

)

where the expression is valid in the region where 0 < z∗ < 1 and x∗y∗ > 0 (the last condition is
equivalent to κ ≤ 2ω ≤ 5κ), and the exponent is zero elsewhere. A plot of F(1+D2,1+D+D2)(κ, ω) is
depicted in Fig. 1.
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Figure 1: A plot of the asymptotic exponent F(1+D2,1+D+D2)(κ, ω).

4 An Efficient Numerical Algorithm for the General Case

In general one can not hope to give explicit analytic expressions for the growth rate. Nevertheless,
as we will show now, there exists an efficient numerical procedure to determine this growth rate to
any desired degree of accuracy.

For the numerical determination of FG(κ, ω), instead of trying to find the values of (x, y, z) that
satisfy

R(x, y, z) = 1,
RX(x, y, z)

RZ(x, y, z)
= κ,

RY (x, y, z)

RZ(x, y, z)
= ωt

it is more advantageous to find a parametric representation of κ, ω and FG in terms of (x, y). Then,
by varying (x, y) over (R+)2, we will trace the surface (κ(x, y), ω(x, y), FG(x, y)). To this end,
observe first that for any (x, y) ∈ (R+)2, the map z 7→ R(x, y, z) is non-decreasing for z ≥ 0 (since
all terms in the summation for R are non-decreasing in z), takes on the value zero at z = 0, and is
unbounded as z gets large. Thus, given (x, y) ∈ (R+)2, one can find the unique z = z(x, y) ∈ R

+

such that R(x, y, z) = 1. One can now compute κ, ω and FG via

κ =
RX(x, y, z)

RZ(x, y, z)
, ω =

RY (x, y, z)

tRZ(x, y, z)
, FG = −κ

t
ln(x) − ω ln(y) − 1

t
ln(z).
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We have thus seen how to produce a plot of FG as a function of κ and ω when the functions
R, RX , RY and RZ are explicitly given. In most cases, however, the code is described in terms of
a finite state machine that produces the codeword as its output when fed with the data sequence.
To derive R explicitly from such a description becomes quickly infeasible as the memory grows. In
such a case, one can still carry out the program outlined above by the following procedure: Pick a
distinguished state among the states of the machine, and consider all input/output sequences that
start with the machine in this state and end in the same state; let R be the formal power sum that
is associated with this collection. Denote the distinguished state by 0, and let the other states be
1, . . . , n. Suppose the finite state machine is described by the input/output sequences that define
one-step transitions between states. For (i, j) ∈ {1, · · · , n}2, let aji(x, y, z) = xkjiywjizlji if there
is a one-step transition from state i to state j, where kji is the weight of the input sequence that
takes the machine from state i to j, wji is the weight of the corresponding output sequence and
lji is the length of the input sequence; set aji = 0 if there is no one-step transition from state i
to state j. Also, let bi(x, y, z) = xkiywizli , where ki is the weight of the input sequence that takes
the machine from state 0 to state i, wi the weight of the corresponding output sequence and li
the length of the input sequence, and let ci(x, y, z) = xkiywizli , where ki is the weight of the input
sequence that takes the machine from state i to state 0, wi the weight of the corresponding output
sequence and li the length of the input sequence. If there is a self-loop at state 0, let d(x, y, z) be
the corresponding term for that loop, otherwise let d(x, y, z) = 0. With all these definitions, one
sees that

R(x, y, z) = [1 − d(x, y, z)]−1c(x, y, z)T [In − A(x, y, z)]−1b(x, y, z), (16)

where A is the matrix whose entries are aij , and b and c are column vectors whose entries are bi and
ci. Now, for any (x, y, z), one can evaluate the value of R(x, y, z), by first evaluating aij , bi, ci and
d, then compute the value of R via the formula above. Recall that to carry out our program we also
need the values of RX , RY and RZ , the partial derivatives of R. Even though one could compute
these derivatives at a point (x, y, z) numerically by evaluating R at points (x, y, z), (x + δ, y, z),
etc., this leads to instability. A better way is to use (16) and write

∂R

∂ν
= [1 − d]−1 ∂d

∂ν
R + [1 − d]−1 ∂cT

∂ν
[In − A]−1b

+[1 − d]−1cT [In − A]−1 ∂A

∂ν
[In − A]−1b + [1 − d]−1cT [In − A]−1 ∂b

∂ν

for ν ∈ {x, y, z}, so that RX , RY and RZ can be evaluated directly from the finite state machine
description.

A point that needs to be recognized is that (16) is valid only in the region of convergence of
the formal power sum R, and R computed via (16) is no longer non-decreasing in z. However, this
does not cause any major difficulty, as the convergence of the formal power sum is equivalent to the
spectral radius ρ(A) of A being less than 1. For any (x, y, z) ∈ (R+)3, one can check if ρ(A) is less
than 1; if not, assign the value ∞ to R, otherwise compute R via (16). Since the entries of A are
non-decreasing in z, so is ρ(A), and this procedure thus yields a value of R that is non-decreasing
in z. In implementing this approach however, one should be careful not to try to compute ρ(A)
precisely for all (x, y, z) as this is computationally expensive. It is better to perform first a quick
check to see if ρ(A) is clearly larger than 1 or clearly less than 1, and compute ρ only in those cases
where there is ambiguity.

Example 4. As an illustration, Fig. 2 shows the asymptotic exponent of the input-output weight
distribution of the encoder G(D) = 1+D4

1+D+D2+D3+D4 computed by this method. This encoder is of
particular interest since the classical turbo code [3] comprises two such encoders as components.
We will use this result later in Example 8 to compute the asymptotic weight distribution of the
classical turbo code and to determine a lower bound on its threshold under ML decoding.
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Figure 2: A plot of the asymptotic exponent F 1+D4
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(κ, ω).

5 Applications to Uniformly Interleaved Concatenated Codes

5.1 Ensembles of Serially Concatenated Codes

We consider here the asymptotic weight distribution of ensembles of uniformly interleaved serially
concatenated codes. Let Cs, Co, Ci and N designate the serially concatenated code, the outer and
inner codes, and the interleaver length respectively. The input-output weight distribution of this
ensemble of codes is calculable in terms of the input-output weight distributions of its component
codes [1] via

ACs(κ, ω) =
∑

δ

ACo(κ, δ)ACi
(δ, ω)

(

N
Nδ

) , (17)

where κ, δ and ω are normalized with respect to the information block length, the interleaver
length and the length of the output bits respectively; ACo(κ, δ), ACi

(δ, ω) and ACs(κ, ω) designate
the number of codewords of the outer, inner and serial concatenated code respectively, and the first
and second parameters stand for the normalized input and output bits of these codes respectively.
The parameter δ in the summation gets the values in the set

{

0, 1
N , . . . , 1

}

, and it therefore varies
continuously between zero and unity in the limit where N → ∞.

Let Ro, Ri and n designate the rates of the outer and inner codes and the length of the
serial concatenated code, respectively. The asymptotic growth rates of the input-output weight
distributions of the component codes and the serial concatenated code satisfy the equalities

ACo(κ, δ)
.
= enRiFCo (κ,δ), ACi

(δ, ω)
.
= enFCi

(δ,ω), ACs(κ, ω)
.
= enFCs (κ,ω).

Since
(

N
Nδ

) .
= eNh(δ), one gets from (17)

FCs(κ, ω) = max
0≤δ≤1

{RiFCo(κ, δ) + FCi
(δ, ω) − Rih(δ)}. (18)

We will consider now the particular case where the inner code is a rate-1 differential encoder

10



(Ri = 1). This ensemble of uniformly interleaved serially concatenated codes encompass the en-
semble of the Repeat-Accumulate codes [8]. Based on Example 2 and (18), one gets

FCs(κ, ω) = max
0≤δ≤αω

{

FCo(κ, δ) + (1 − ω)h

(

δ

2(1 − ω)

)

+ ωh

(

δ

2ω

)

− h(δ)

}

. (19)

where αω := min{2ω, 2(1−ω)}. Note that since the binary entropy function is concave, by invoking
Jensen’s inequality in (19), one gets the inequality FCs(κ, ω) ≤ max0≤δ≤αω

FCo(κ, δ). This indicates
the weight distribution thinning for the uniformly interleaved serially concatenated scheme which
shapes the weight distribution of the outer convolutional code to resemble more closely the binomial
distribution (typically of a full random code of the same rate), as was also mentioned in [16, 17].

Example 5 (Repeat-Accumulate Codes). For the RA ensemble, see [8], it is well-known that

ACo(κ, δ) equals
( n/q
nδ/q

)

if κ = δ and is zero otherwise, or equivalently, that

FCo(κ, δ) =

{

h(δ)
q , if κ = δ,

−∞, otherwise.
(20)

By substituting (20) into (19) we get

FRA(κ, ω) = −
(

1 − 1

q

)

h(κ) + (1 − ω)h

(

κ

2(1 − ω)

)

+ ωh
( κ

2ω

)

. (21)

From this it follows immediately that the asymptotic growth rate of the average distance spectrum
of uniformly interleaved RA codes is equal to

rRA(ω) = max
0≤κ≤min{2ω,2(1−ω)}

FRA(κ, ω), (22)

which coincides with the analysis of Jin and McEliece [13].

Example 6. Let’s next replace the rate-1
q repetition code of the RA ensemble with a convolutional

encoder whose generator is GCo(D) = [1, 1, . . . , 1, 1 + D]. We will see that this improves the ML
decoding threshold on the binary-input AWGN channel markedly. From Example 2, it can be easily
verified that

FCo(κ, ω) =
1 − κ

q
· h

(

qω − (q − 1)κ

2(1 − κ)

)

+
κ

q
· h

(

qω − (q − 1)κ

2κ

)

. (23)

Substituting (23) into (19) gives

FCs(κ, ω)

= max
0≤δ≤1

{

1 − κ

q
· h

(

qδ − (q − 1)κ

2(1 − κ)

)

+
κ

q
· h

(

qδ − (q − 1)κ

2κ

)

+(1 − ω)h

(

δ

2(1 − ω)

)

+ ω h

(

δ

2ω

)

− h(δ)

}

.

Based on the bound of Divsalar [7], an upper bound on the threshold of Eb

N0
which corresponds

to ML decoding of a code or ensemble of codes is given by
(

Eb

N0

)

threshold

≤ 1

Rc
· max
0≤ω≤1

{

(1 − e−2r(ω))(1 − ω)

2ω

}

, (24)

where r(w) designates the asymptotic growth rate of the distance spectrum, and Rc is the rate (in
bits per channel use) of the code (or ensemble). For the ensemble of RA codes (Example 5), then
r(w) = max0≤κ≤1 FCs(κ, ω) and Rc = 1

q . This upper bound on the Eb

N0
threshold was evaluated

numerically as a function of the parameter q (which gives rise to a rate-1
q code), and the resulting

thresholds are also compared in Table 1 to the ultimate capacity limit of rate-1
q codes.
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q RA ensemble The ensemble of Example 6 Capacity limit

2 3.419 dB 1.020 dB 0.184 dB

3 0.792 dB 0.074 dB -0.495 dB

4 -0.052 dB -0.392 dB -0.794 dB

5 -0.480 dB -0.668 dB -0.963 dB

6 -0.734 dB -0.848 dB -1.071 dB

7 -0.900 dB -0.974 dB -1.150 dB

8 -1.015 dB -1.065 dB -1.210 dB

Table 1: Upper bounds on Eb

N0
for a binary-input AWGN channel and ML decoding, based on

Divsalar’s bound [7] for the ensemble of the RA codes (Example 2) and the ensemble of serially
concatenated codes in Example 6.

Example 7. Let’s consider next the ensemble of uniformly interleaved serially concatenated codes,
where the outer code is a convolutional encoder whose generator is GCo(D) = [1+D2, 1+D +D2],
and the inner code is a differential encoder. This ensemble was studied by Divsalar and Polara [9]
for short block lengths. The asymptotic exponent of the input-output weight distribution of this
ensemble is (based on Example 3 and (19))

FCs(κ, ω)

= max
0≤δ≤min{2ω,2(1−ω)}

{

4 − 3κ − 2δ − 8ε

8
h

(

2δ − κ

4 − 3κ − 2δ − 8ε

)

+
κ

2
h

(

2δ − κ

4κ

)

+

5κ − 2δ

8
h

(

8ε

5κ − 2δ

)

+ (1 − ω)h

(

δ

2(1 − ω)

)

+ ωh

(

δ

2ω

)

− h(δ)

}

where

ε :=
2(1 − δ) −

√

4(1 − δ) − 10κ + 5κ2 + 8κδ

8
.

Based on the bound of Divsalar [7], an upper bound on the threshold of Eb

N0
for a binary-input

AWGN channel is given in (24), where Rc = 1
2 is the rate of the ensemble of the serially concatenated

codes considered here, and r(ω) = max0≤κ≤1 FCs(κ, ω) is the asymptotic exponent of the distance
spectrum of this ensemble. The threshold was calculated numerically, and is equal to 0.397 dB.
For a code rate of 1

2 bits per channel use, the value of Eb

N0
which corresponds to the capacity of a

binary-input AWGN channel is equal to 0.184 dB. Hence, the gap between the channel capacity
and the threshold of the considered ensemble under ML decoding is at most 0.213 dB.

Fig. 3 compares the asymptotic growth rates of the distance spectrum of the ensemble of codes
considered here with the ensembles of codes of rate–1

2 in Examples 2,6 (where q = 2). The upper

bounds on the thresholds of the Eb

N0
values for the ensembles of the rate–1

2 codes referred in curves
1, 2 and 3 of Fig. 3 are 3.419 dB, 1.020 dB and 0.397 dB respectively, where the ultimate capacity
limit correspond to an Eb

N0
value of 0.184 dB (these upper bounds on the thresholds are based on

the bound of Divsalar [7] for the binary-input AWGN channel and ML decoding). It was noted in
[17] that the improvement in the ensemble performance associated with the optimal ML decoding
is attributed to the “spectral thinning” phenomenon, and based on the thresholds above and the
plots of the growth rates of the distance spectra in Fig. 3, it is reflected that the threshold of
an ensemble of codes with the ML decoding is improved by narrowing the shape of the distance
spectrum.
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Figure 3: A plot of the asymptotic growth rates of the distance spectrum of three ensembles of
serially concatenated, uniformly interleaved and differentially encoded codes of rate–1

2 . Curve 1
corresponds to the ensemble of rate–1

2 RA codes, curve 2 corresponds to the ensemble with the
outer convolutional encoder GCo(D) = [1, 1+D], and curve 3 corresponds to the ensemble of codes
with the outer convolutional encoder GCo(D) = [1 + D2, 1 + D + D2].

5.2 Ensembles of Parallel Concatenated (Turbo) Codes

We consider here the asymptotic input-output weight distribution of ensembles of uniformly inter-
leaved parallel concatenated codes. We designate by Cp the ensemble of uniformly interleaved turbo
codes, and we designate its two components (which are recursive systematic convolutional encoders)
by C1, C2. We assume that no puncturing of the parity bits of these ensembles is performed (i.e., the
rate of the code is Rc = 1

3). The input-output weight distributions of these ensembles is calculable
in terms of the input-output weight distributions of their component codes [2] via

ACp(κ, ω) =
∑

δ1,δ2≥0:
κ+δ1+δ2= ω

Rc

AC1(κ, δ1)AC2(κ, δ2)
(

N
Nκ

) , (25)

where the parameters κ, δ1, δ2 are normalized with respect to the length of the information bits
(which also equals the length of the interleaver), and ω is normalized with respect to the block
length of the turbo code. The first three parameters designate the normalized Hamming weights of
the information bits and the normalized Hamming weight of the parity bits of the codes C1 and C2,
and the last parameter (ω) designate the normalized Hamming weight of the overall code. Since
the rate of the code is one-third, then we get the equality: κ + δ1 + δ2 = 3ω.
Similarly to the previous section, in the limit case where N → ∞, we get the following equality
for the asymptotic exponential behavior of input-output weight distribution of the turbo code in
terms of the corresponding exponents for the two component codes

FCp(κ, ω) =
1

3
max

δ1,δ2≥0:
κ+δ1+δ2=3ω

{FC1(κ, δ1) + FC2(κ, δ2) − h(κ)} . (26)

Example 8 (The Berrou et al. Turbo Code). Consider the classical turbo code with two recursive

systematic convolutional encoders G1(D) = G2(D) = 1+D4

1+D+D2+D3+D4 and no puncturing. Based
on Example 4 and equation (25), the asymptotic exponential behavior of the input-output weight
distribution for this ensemble of codes can be computed. Then, the asymptotic exponent of the
distance spectrum of the ensemble of turbo codes gets the form

rCp(ω) = max
0≤κ≤1

FCp(κ, ω).
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In Fig. 4, we compare the asymptotic exponent of the distance spectrum of the classical turbo
code with the logarithm of the distance spectrum of this ensemble of uniformly interleaved turbo
codes (normalized with respect to the code length of its codewords) for finite uniform interleavers
of lengths N = 100, 200, 500, 1000. Based on the bound of Divsalar [7], an upper bound on the
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1: Interleaver length N = 100
2: Interleaver length N = 200
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4: Interleaver length N = 1000
5: Asymptotic limit as N tends to infinity

Figure 4: A comparison between the asymptotic exponent of the distance spectrum for the ensemble
of uniformly interleaved classical turbo codes and the corresponding exponent for a finite length
code with interleaver lengths of N = 100, 200, 500 and 1000.

threshold for these ensemble of turbo codes in the binary-input AWGN channel is given in (24),
where Rc = 1

3 is the rate of this ensemble, and the asymptotic growth rate of its average distance
spectrum as a function of the normalized Hamming weight is given by r = rCp . A calculation of

this bound yields that
(

Eb

N0

)

threshold
≤ −0.125 dB, as compared to the ultimate Shannon capacity

limit for a rate–1
3 code in the binary-input AWGN channel which corresponds to Eb

N0
= −0.495 dB

(which yields that the gap between the channel capacity and the achievable threshold under ML
decoding is at most 0.370 dB).
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