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Setup

F,G finite, undirected graphs without multiple edges; F - no loops.

A homomorphism ϕ : V(F) → V(G) is adjacency-preserving (not
necessarily injective).

F and G are referred to as the source and target graphs, respectively.

Hom(F,G) = set of homomorphisms ϕ : V(F) → V(G).

hom(F,G) ≜ |Hom(F,G)|.
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The Importance of Counting Graph Homomorphisms

Large networks & graph limits

Computer science (CSP)

Statistical physics (partition functions)
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Exact Counts: Core Examples

Star Sm = K1,m−1:

hom(Sm,G) =
∑

v∈V(G)

dG(v)
m−1.

Length-m cycle Cm:

hom(Cm,G) = tr(Am
G ) =

∑
i

λi(G)
m,

where A is the adjacency matrix of G, and the multiset {λi(G)} is its
spectrum. Here, hom(Cm,G) counts closed walks of length m in G.

Complete bipartite source and target graphs:

hom(Kp,q,Kn1,n2) = np
1n

q
2 + nq

1n
p
2.
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Exact Counts: Core Examples (cont.)

Additional closed forms highlight the tractability in special cases:

hom(Kp,q,Cn) =

{
n(2p + 2q − 2), n = 3 or n ≥ 5,

2p+q+1, n = 4,

hom(Kp,q,Pℓ) = 2 + (ℓ− 2)(2p + 2q − 2).

The tree-walk algorithm is an efficient recursive algorithm for
numerically computing the exact number of homomorphisms
from a tree to an arbitrary graph (Csikvári and Lin, 2014).
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Stirling number of 2nd type

Let n, k ∈ N with k ∈ [n]. The Stirling number of the second kind,
denoted S(n, k), is defined as the number of ways to partition the
set [n] into k nonempty, pairwise disjoint subsets. If k ̸∈ [n], then
S(n, k) ≜ 0.

Computation

The Stirling numbers of the second kind satisfy the recurrence relation

S(n, k) = k S(n− 1, k) + S(n− 1, k − 1), n, k ∈ N, k ≤ n,

which yields the following closed-form expression:

S(n, k) =
1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jn, 1 ≤ k ≤ n.

I. Sason, Technion, Israel August 26, 2025 6 / 18



Exact Expression via Stirling Numbers and Bipartite Cliques

Let G be bipartite with partite sets L,R. For p, q ∈ N,

hom(Kp,q,G) =

p∑
k=1

q∑
ℓ=1

k! ℓ!S(p, k)S(q, ℓ)
(
Nk,ℓ(G) +Nℓ,k(G)

)
,

where

S(·, ·) = Stirling numbers of the second kind.

Nk,ℓ(G) = number of labelled bipartite cliques with k in L and ℓ in R.
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Let G be bipartite with partite sets L,R. For p, q ∈ N,

hom(Kp,q,G) =

p∑
k=1

q∑
ℓ=1

k! ℓ!S(p, k)S(q, ℓ)
(
Nk,ℓ(G) +Nℓ,k(G)

)
,

where

S(·, ·) = Stirling numbers of the second kind.

Nk,ℓ(G) = number of labelled bipartite cliques with k in L and ℓ in R.

Idea

The complete bipartite graph Kp,q is mapped, by a homomorphism, to
a bipartite clique of G. All vertices in the same partite set of Kp,q

must be mapped to non-isolated vertices in the same partite set of G.

The factors k!S(p, k) and ℓ!S(q, ℓ) count surjective mappings from
the p (resp. q) vertices of Kp,q onto k (resp. ℓ) distinct vertices in the
two partite sets of G.
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The main difficulty in the exact expression is the computation of the
coefficients {Nk,ℓ(G)} for a large bipartite graph G as p and q grow.

I. Sason, Technion, Israel August 26, 2025 8 / 18



The main difficulty in the exact expression is the computation of the
coefficients {Nk,ℓ(G)} for a large bipartite graph G as p and q grow.

Combinatorial Lower Bound; Equality for C4-free Targets

For bipartite G and p, q ∈ N,

hom(Kp,q,G) ≥
∑

w∈V(G)

{
d(w)p + d(w)q

}
− 2 |E(G)|,

with equality if and only if G is C4-free.
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The main difficulty in the exact expression is the computation of the
coefficients {Nk,ℓ(G)} for a large bipartite graph G as p and q grow.

Combinatorial Lower Bound; Equality for C4-free Targets

For bipartite G and p, q ∈ N,

hom(Kp,q,G) ≥
∑

w∈V(G)

{
d(w)p + d(w)q

}
− 2 |E(G)|,

with equality if and only if G is C4-free.

Idea

This result follows directly from the exact expression for hom(Kp,q,G)
together with the explicit formula for hom(Sm,G).

When G is C4-free, the lower bound becomes exact.
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Entropy-Based Lower Bound (I): Density-Only

Let G be bipartite with partite sizes n1, n2 and with an edge density

δ ≜
|E(G)|
n1n2

∈ [0, 1].

Then, for all p, q ∈ N,
hom(Kp,q,G) ≥ δpq

(
np
1n

q
2 + nq

1n
p
2

)
= δpq hom(Kp,q,Kn1,n2)
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Proof Outline

Let U and V denote the partite vertex sets of the bipartite graph G,
where |U| = n1 and |V| = n2.

Let (U, V ) be a random vector taking values in U × V, and assume
that {U, V } is distributed uniformly at random over the edge set of G.

The joint entropy of (U, V ) is given by

H(U, V ) = log(δn1n2).
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Let U and V denote the partite vertex sets of the bipartite graph G,
where |U| = n1 and |V| = n2.

Let (U, V ) be a random vector taking values in U × V, and assume
that {U, V } is distributed uniformly at random over the edge set of G.

The joint entropy of (U, V ) is given by

H(U, V ) = log(δn1n2).

Construct random vector (Up,Vq) as follows:
▶ 1: The entries of Vq ≜ (V1, . . . , Vq) are conditionally i.i.d. given U ,
▶ 2: The entries of Up ≜ (U1, . . . , Up) are conditionally i.i.d. given Vq,

in a proper way (explicitly given in the paper) such that
1 Ui ∼ U for all i ∈ [p].
2 (Ui,V

q) ∼ (U,Vq) and (Ui, Vj) ∼ (U, V ) for all i ∈ [p], j ∈ [q].
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Let U and V denote the partite vertex sets of the bipartite graph G,
where |U| = n1 and |V| = n2.

Let (U, V ) be a random vector taking values in U × V, and assume
that {U, V } is distributed uniformly at random over the edge set of G.

The joint entropy of (U, V ) is given by

H(U, V ) = log(δn1n2).

Construct random vector (Up,Vq) as follows:
▶ 1: The entries of Vq ≜ (V1, . . . , Vq) are conditionally i.i.d. given U ,
▶ 2: The entries of Up ≜ (U1, . . . , Up) are conditionally i.i.d. given Vq,

in a proper way (explicitly given in the paper) such that
1 Ui ∼ U for all i ∈ [p].
2 (Ui,V

q) ∼ (U,Vq) and (Ui, Vj) ∼ (U, V ) for all i ∈ [p], j ∈ [q].

By the chain rule of the Shannon entropy, it can be verified that

H(Up,Vq) ≥ log(δpqnp
1n

q
2).
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Proof Outline (cont.)

Combine it with the uniform bound of the Shannon entropy to the
natural partition of Hom(Kp,q,G) into two disjoint subsets:

▶ H1: homomorphisms where the p-part of Kp,q maps into the n1-part of
G and the q-part of Kp,q maps into the n2-part of G;

▶ H2: homomorphisms where the p-part of Kp,q maps into the n2-part of
G and the q-part of Kp,q into the n1-part of G.

I. Sason, Technion, Israel August 26, 2025 11 / 18



Proof Outline (cont.)

Combine it with the uniform bound of the Shannon entropy to the
natural partition of Hom(Kp,q,G) into two disjoint subsets:

▶ H1: homomorphisms where the p-part of Kp,q maps into the n1-part of
G and the q-part of Kp,q maps into the n2-part of G;
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G and the q-part of Kp,q into the n1-part of G.

Overall, this gives

log |H1| ≥ H(Up,Vq) ≥ log(δpqnp
1n

q
2).

and by symmetry, interchanging p and q (or n1 and n2) gives

log |H2| ≥ log(δpqnq
1n

p
2).
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Proof Outline (cont.)

Combine it with the uniform bound of the Shannon entropy to the
natural partition of Hom(Kp,q,G) into two disjoint subsets:

▶ H1: homomorphisms where the p-part of Kp,q maps into the n1-part of
G and the q-part of Kp,q maps into the n2-part of G;

▶ H2: homomorphisms where the p-part of Kp,q maps into the n2-part of
G and the q-part of Kp,q into the n1-part of G.

Overall, this gives

log |H1| ≥ H(Up,Vq) ≥ log(δpqnp
1n

q
2).

and by symmetry, interchanging p and q (or n1 and n2) gives

log |H2| ≥ log(δpqnq
1n

p
2).

Finally,

hom(Kp,q,G) = |H1|+ |H2|
≥ δpq(np

1n
q
2 + nq

1n
p
2) = δpq hom(Kp,q,Kn1,n2).
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Comparison to Sidorenko Inequality (for complete bipartite sources)

If G is a bipartite graph with edge density δ that has no isolated vertices,
then

hom(Kp,q,G) ≥ (2δ)pq (n1 + n2)
p+q−2pq (n1n2)

pq.

Our density-only entropy bound improves this for every bipartite graph G
(proof by invoking Jensen’s inequality).
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Refined Entropy-Based Lower Bound (with Degree Profiles)

Let U ,V be the partite sets (|U| = n1, |V| = n2), and let

x ≜
n1∑
k=1

d
(U)
k

|E(G)|
log

(
|E(G)|
d
(U)
k

)
= H(U), y ≜

n2∑
k=1

d
(V)
k

|E(G)|
log

(
|E(G)|
d
(V)
k

)
= H(V ).

Then for all p, q ∈ N,

hom(Kp,q,G)

≥ max
{
(δn1n2)

pqe−p(q−1)x−q(p−1)y, (δn1n2)
qe−(q−1)x, (δn1n2)

pe−(p−1)y
}

+max
{
(δn1n2)

pqe−q(p−1)x−p(q−1)y, (δn1n2)
pe−(p−1)x, (δn1n2)

qe−(q−1)y
}
.

Captures irregularity via entropy of the degree distributions of the
vertices in each partite set; refines and strengthens the density-only
lower bound.
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Numerical Evidence

Exact values of hom(K3,3,G) vs. lower bounds for random bipartite G.
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Beyond Complete Bipartite Sources

Extend to general bipartite F → G: lower bounds derived from the
Kp,q case + new auxiliary lemmas.

Upper bounds via reverse Sidorenko (Sah–Sawhney–Stoner–Zhao,
2020) + exact-count expression for complete bipartite sources,
including its simplification for C4-free targets.

Full version: arXiv:2508.06977.
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Example 1: Fixed Bipartite Source Graph F
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Example 1: Fixed Bipartite Source Graph F
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Example 2: Fixed Target Graph G (Tree on 100 vertices)
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Example 2: Fixed Target Graph G (Tree on 100 vertices)
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Summary

We study homomorphism counts from bipartite source graphs to
bipartite target graphs.

Combinatorial and two entropy-based lower bounds are derived for
complete bipartite source graphs.

Both entropy-based bounds improve upon the inequality implied by
Sidorenko’s conjecture for complete bipartite graphs.

These lower bounds, combined with new auxiliary results, yield general
bounds on homomorphism counts between arbitrary bipartite graphs.

A known reverse Sidorenko inequality (by Sah, Sawhney, Stoner, and
Zhao, 2020) is used to derive corresponding upper bounds.

Numerical comparisons with exact counts in tractable cases support
the effectiveness of the proposed computable bounds.

Full paper version: I.S., ”Counting graph homomorphisms in bipartite
settings,” submitted, August 2025. https://arxiv.org/abs/2508.06977
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