Counting Graph Homomorphisms by Entropy Arguments

Igal Sason
Technion – Israel Institute of Technology

EuroComb 2025

Budapest, Hungary August 25–29, 2025

Counting Graph Homomorphisms in Bipartite Settings

Igal Sason
Technion – Israel Institute of Technology

EuroComb 2025

Budapest, Hungary August 25–29, 2025

Setup

- F, G finite, undirected graphs without multiple edges; F no loops.
- A homomorphism $\phi \colon V(F) \to V(G)$ is adjacency-preserving (not necessarily injective).
- F and G are referred to as the source and target graphs, respectively.
- $\operatorname{Hom}(\mathsf{F},\mathsf{G}) = \mathsf{set}$ of homomorphisms $\phi \colon \mathsf{V}(\mathsf{F}) \to \mathsf{V}(\mathsf{G})$.
- $hom(F, G) \triangleq |Hom(F, G)|$.

The Importance of Counting Graph Homomorphisms

- Large networks & graph limits
- Computer science (CSP)
- Statistical physics (partition functions)

References

- 1 L. Lovász, Large Networks and Graph Limits, AMS, 2012.
- C. Borgs, J. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi, "Counting graph homomorphisms," Topics in Discrete Mathematics, Springer, 2006.
- **9** Y. Zhao, *Graph Theory and Additive Combinatorics*, CUP, 2023.

Exact Counts: Core Examples

• Star $S_m = K_{1,m-1}$:

$$hom(S_m, \mathsf{G}) = \sum_{v \in \mathsf{V}(\mathsf{G})} d_{\mathsf{G}}(v)^{m-1}.$$

• Length-m cycle C_m :

$$\mathrm{hom}(\mathsf{C}_m,\mathsf{G})=\mathrm{tr}(\mathbf{A}^m_\mathsf{G})=\sum_i \lambda_i(\mathsf{G})^m,$$

where A is the adjacency matrix of G, and the multiset $\{\lambda_i(G)\}$ is its spectrum. Here, $\hom(C_m, G)$ counts closed walks of length m in G.

Complete bipartite source and target graphs:

$$hom(\mathsf{K}_{p,q},\mathsf{K}_{n_1,n_2}) = n_1^p n_2^q + n_1^q n_2^p.$$

Exact Counts: Core Examples (cont.)

• Additional closed forms highlight the tractability in special cases:

$$hom(\mathsf{K}_{p,q},\mathsf{C}_n) = \begin{cases} n(2^p + 2^q - 2), & n = 3 \text{ or } n \ge 5, \\ 2^{p+q+1}, & n = 4, \end{cases}$$
$$hom(\mathsf{K}_{p,q},\mathsf{P}_\ell) = 2 + (\ell - 2)(2^p + 2^q - 2).$$

 The tree-walk algorithm is an efficient recursive algorithm for numerically computing the exact number of homomorphisms from a tree to an arbitrary graph (Csikvári and Lin, 2014).

Stirling number of 2nd type

Let $n,k\in\mathbb{N}$ with $k\in[n]$. The Stirling number of the second kind, denoted S(n,k), is defined as the number of ways to partition the set [n] into k nonempty, pairwise disjoint subsets. If $k\not\in[n]$, then $S(n,k)\triangleq 0$.

Computation

The Stirling numbers of the second kind satisfy the recurrence relation

$$S(n,k) = k S(n-1,k) + S(n-1,k-1), \quad n,k \in \mathbb{N}, \ k \le n,$$

which yields the following closed-form expression:

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}, \quad 1 \le k \le n.$$

I. Sason, Technion, Israel August 26, 2025 6/18

Exact Expression via Stirling Numbers and Bipartite Cliques

Let G be bipartite with partite sets \mathcal{L}, \mathcal{R} . For $p, q \in \mathbb{N}$,

$$\hom(\mathsf{K}_{p,q},\mathsf{G}) = \sum_{k=1}^{p} \sum_{\ell=1}^{q} k! \, \ell! \, S(p,k) \, S(q,\ell) \, \big(N_{k,\ell}(\mathsf{G}) + N_{\ell,k}(\mathsf{G}) \big),$$

where

- $S(\cdot, \cdot) =$ Stirling numbers of the second kind.
- $N_{k,\ell}(\mathsf{G}) = \mathsf{number}$ of labelled bipartite cliques with k in $\mathcal L$ and ℓ in $\mathcal R$.

Exact Expression via Stirling Numbers and Bipartite Cliques

Let G be bipartite with partite sets \mathcal{L}, \mathcal{R} . For $p, q \in \mathbb{N}$,

$$hom(\mathsf{K}_{p,q},\mathsf{G}) = \sum_{k=1}^{p} \sum_{\ell=1}^{q} k! \, \ell! \, S(p,k) \, S(q,\ell) \, \big(N_{k,\ell}(\mathsf{G}) + N_{\ell,k}(\mathsf{G}) \big),$$

where

- $S(\cdot, \cdot) =$ Stirling numbers of the second kind.
- $N_{k,\ell}(\mathsf{G}) = \mathsf{number}$ of labelled bipartite cliques with k in $\mathcal L$ and ℓ in $\mathcal R$.

Idea

- The complete bipartite graph $\mathsf{K}_{p,q}$ is mapped, by a homomorphism, to a bipartite clique of G . All vertices in the same partite set of $\mathsf{K}_{p,q}$ must be mapped to non-isolated vertices in the same partite set of G .
- The factors $k!\,S(p,k)$ and $\ell!\,S(q,\ell)$ count surjective mappings from the p (resp. q) vertices of $\mathsf{K}_{p,q}$ onto k (resp. ℓ) distinct vertices in the two partite sets of G .

The main difficulty in the exact expression is the computation of the coefficients $\{N_{k,\ell}(\mathsf{G})\}$ for a large bipartite graph G as p and q grow.

The main difficulty in the exact expression is the computation of the coefficients $\{N_{k,\ell}(\mathsf{G})\}$ for a large bipartite graph G as p and q grow.

Combinatorial Lower Bound; Equality for C₄-free Targets

For bipartite G and $p,q\in\mathbb{N}$,

$$hom(K_{p,q}, G) \ge \sum_{w \in V(G)} \{d(w)^p + d(w)^q\} - 2 |E(G)|,$$

with equality if and only if G is C_4 -free.

The main difficulty in the exact expression is the computation of the coefficients $\{N_{k,\ell}(\mathsf{G})\}$ for a large bipartite graph G as p and q grow.

Combinatorial Lower Bound; Equality for C₄-free Targets

For bipartite G and $p,q\in\mathbb{N}$,

$$hom(K_{p,q}, G) \ge \sum_{w \in V(G)} \{d(w)^p + d(w)^q\} - 2 |E(G)|,$$

with equality if and only if G is C_4 -free.

Idea

- This result follows directly from the exact expression for $\hom(\mathsf{K}_{p,q},\mathsf{G})$ together with the explicit formula for $\hom(\mathsf{S}_m,\mathsf{G})$.
- When G is C₄-free, the lower bound becomes exact.

Entropy-Based Lower Bound (I): Density-Only

Let G be bipartite with partite sizes n_1, n_2 and with an edge density

$$\delta \triangleq \frac{|\mathsf{E}(\mathsf{G})|}{n_1 n_2} \in [0, 1].$$

Then, for all $p, q \in \mathbb{N}$,

$$hom(\mathsf{K}_{p,q},\mathsf{G}) \ge \delta^{pq} \left(n_1^p n_2^q + n_1^q n_2^p \right)$$
$$= \delta^{pq} hom(\mathsf{K}_{p,q},\mathsf{K}_{n_1,n_2})$$

Proof Outline

- Let \mathcal{U} and \mathcal{V} denote the partite vertex sets of the bipartite graph G, where $|\mathcal{U}| = n_1$ and $|\mathcal{V}| = n_2$.
- Let (U,V) be a random vector taking values in $\mathcal{U} \times \mathcal{V}$, and assume that $\{U,V\}$ is distributed uniformly at random over the edge set of G.
- ullet The joint entropy of (U,V) is given by

$$H(U,V) = \log(\delta n_1 n_2).$$

Proof Outline

- Let \mathcal{U} and \mathcal{V} denote the partite vertex sets of the bipartite graph G, where $|\mathcal{U}| = n_1$ and $|\mathcal{V}| = n_2$.
- Let (U,V) be a random vector taking values in $\mathcal{U} \times \mathcal{V}$, and assume that $\{U,V\}$ is distributed uniformly at random over the edge set of G.
- The joint entropy of (U,V) is given by

$$H(U, V) = \log(\delta n_1 n_2).$$

- Construct random vector $(\mathbf{U}^p, \mathbf{V}^q)$ as follows:
 - ▶ 1: The entries of $\mathbf{V}^q \triangleq (V_1, \dots, V_q)$ are conditionally i.i.d. given U,
 - ▶ 2: The entries of $\mathbf{U}^p \triangleq (U_1, \dots, U_p)$ are conditionally i.i.d. given \mathbf{V}^q , in a proper way (explicitly given in the paper) such that
 - \bullet $U_i \sim U$ for all $i \in [p]$.
 - $(U_i, \mathbf{V}^q) \sim (U, \mathbf{V}^q)$ and $(U_i, V_j) \sim (U, V)$ for all $i \in [p]$, $j \in [q]$.

Proof Outline

- Let $\mathcal U$ and $\mathcal V$ denote the partite vertex sets of the bipartite graph G, where $|\mathcal U|=n_1$ and $|\mathcal V|=n_2$.
- Let (U,V) be a random vector taking values in $\mathcal{U} \times \mathcal{V}$, and assume that $\{U,V\}$ is distributed uniformly at random over the edge set of G.
- The joint entropy of (U,V) is given by

$$H(U, V) = \log(\delta n_1 n_2).$$

- Construct random vector $(\mathbf{U}^p, \mathbf{V}^q)$ as follows:
 - ▶ 1: The entries of $\mathbf{V}^q \triangleq (V_1, \dots, V_q)$ are conditionally i.i.d. given U,
 - ▶ 2: The entries of $\mathbf{U}^p \triangleq (U_1, \dots, U_p)$ are conditionally i.i.d. given \mathbf{V}^q , in a proper way (explicitly given in the paper) such that
 - ① $U_i \sim U$ for all $i \in [p]$.
 - ② $(U_i, \mathbf{V}^q) \sim (U, \mathbf{V}^q)$ and $(U_i, V_j) \sim (U, V)$ for all $i \in [p]$, $j \in [q]$.
- By the chain rule of the Shannon entropy, it can be verified that

$$H(\mathbf{U}^p, \mathbf{V}^q) \ge \log(\delta^{pq} n_1^p n_2^q).$$

Proof Outline (cont.)

- Combine it with the uniform bound of the Shannon entropy to the natural partition of $\text{Hom}(\mathsf{K}_{p,q},\mathsf{G})$ into two disjoint subsets:
 - ▶ \mathcal{H}_1 : homomorphisms where the p-part of $\mathsf{K}_{p,q}$ maps into the n_1 -part of G and the q-part of $\mathsf{K}_{p,q}$ maps into the n_2 -part of G ;
 - ▶ \mathcal{H}_2 : homomorphisms where the p-part of $\mathsf{K}_{p,q}$ maps into the n_2 -part of G and the q-part of $\mathsf{K}_{p,q}$ into the n_1 -part of G .

Proof Outline (cont.)

- Combine it with the uniform bound of the Shannon entropy to the natural partition of $\operatorname{Hom}(\mathsf{K}_{p,q},\mathsf{G})$ into two disjoint subsets:
 - ▶ \mathcal{H}_1 : homomorphisms where the p-part of $\mathsf{K}_{p,q}$ maps into the n_1 -part of G and the q-part of $\mathsf{K}_{p,q}$ maps into the n_2 -part of G ;
 - ▶ \mathcal{H}_2 : homomorphisms where the p-part of $\mathsf{K}_{p,q}$ maps into the n_2 -part of G and the q-part of $\mathsf{K}_{p,q}$ into the n_1 -part of G .
- Overall, this gives

$$\log |\mathcal{H}_1| \ge \mathrm{H}(\mathbf{U}^p, \mathbf{V}^q) \ge \log(\delta^{pq} n_1^p n_2^q).$$

and by symmetry, interchanging p and q (or n_1 and n_2) gives

$$\log |\mathcal{H}_2| \ge \log(\delta^{pq} n_1^q n_2^p).$$

Proof Outline (cont.)

- Combine it with the uniform bound of the Shannon entropy to the natural partition of $Hom(K_{p,q}, G)$ into two disjoint subsets:
 - \triangleright \mathcal{H}_1 : homomorphisms where the p-part of $K_{p,q}$ maps into the n_1 -part of G and the q-part of $K_{p,q}$ maps into the n_2 -part of G;
 - \blacktriangleright \mathcal{H}_2 : homomorphisms where the p-part of $\mathsf{K}_{p,q}$ maps into the n_2 -part of G and the q-part of $K_{p,q}$ into the n_1 -part of G.
- Overall, this gives

$$\log |\mathcal{H}_1| \ge \mathrm{H}(\mathbf{U}^p, \mathbf{V}^q) \ge \log(\delta^{pq} n_1^p n_2^q).$$

and by symmetry, interchanging p and q (or n_1 and n_2) gives

$$\log |\mathcal{H}_2| \ge \log(\delta^{pq} n_1^q n_2^p).$$

Finally,

$$hom(\mathsf{K}_{p,q},\mathsf{G}) = |\mathcal{H}_1| + |\mathcal{H}_2|$$

$$\geq \delta^{pq}(n_1^p n_2^p + n_1^q n_2^p) = \delta^{pq} hom(\mathsf{K}_{p,q},\mathsf{K}_{n_1,n_2}).$$

I. Sason, Technion, Israel August 26, 2025 11 / 18

Comparison to Sidorenko Inequality (for complete bipartite sources)

If G is a bipartite graph with edge density δ that has no isolated vertices, then

$$hom(K_{p,q},G) \ge (2\delta)^{pq} (n_1 + n_2)^{p+q-2pq} (n_1 n_2)^{pq}.$$

Our density-only entropy bound improves this for every bipartite graph G (proof by invoking Jensen's inequality).

Refined Entropy-Based Lower Bound (with Degree Profiles)

Let \mathcal{U}, \mathcal{V} be the partite sets $(|\mathcal{U}| = n_1, |\mathcal{V}| = n_2)$, and let

$$x \triangleq \sum_{k=1}^{n_1} \frac{d_k^{(\mathcal{U})}}{|\operatorname{E}(\operatorname{G})|} \, \log \left(\frac{|\operatorname{E}(\operatorname{G})|}{d_k^{(\mathcal{U})}} \right) = \operatorname{H}(U), \quad y \triangleq \sum_{k=1}^{n_2} \frac{d_k^{(\mathcal{V})}}{|\operatorname{E}(\operatorname{G})|} \, \log \left(\frac{|\operatorname{E}(\operatorname{G})|}{d_k^{(\mathcal{V})}} \right) = \operatorname{H}(V).$$

Then for all $p, q \in \mathbb{N}$,

$$\begin{split} & \hom(\mathsf{K}_{p,q},\mathsf{G}) \\ & \geq \max \Big\{ (\delta n_1 n_2)^{pq} e^{-p(q-1)x - q(p-1)y}, \ (\delta n_1 n_2)^q e^{-(q-1)x}, \ (\delta n_1 n_2)^p e^{-(p-1)y} \Big\} \\ & + \max \Big\{ (\delta n_1 n_2)^{pq} e^{-q(p-1)x - p(q-1)y}, \ (\delta n_1 n_2)^p e^{-(p-1)x}, \ (\delta n_1 n_2)^q e^{-(q-1)y} \Big\}. \end{split}$$

 Captures irregularity via entropy of the degree distributions of the vertices in each partite set; refines and strengthens the density-only lower bound.

13 / 18

I. Sason, Technion, Israel August 26, 2025

Numerical Evidence

Exact values of $\hom(\mathsf{K}_{3,3},\mathsf{G})$ vs. lower bounds for random bipartite $\mathsf{G}.$

Beyond Complete Bipartite Sources

- Extend to general bipartite $F \to G$: lower bounds derived from the $K_{p,q}$ case + new auxiliary lemmas.
- Upper bounds via reverse Sidorenko (Sah–Sawhney–Stoner–Zhao, 2020) + exact-count expression for complete bipartite sources, including its simplification for C₄-free targets.

Full version: arXiv:2508.06977.

Example 1: Fixed Bipartite Source Graph F

Example 1: Fixed Bipartite Source Graph F

Example 2: Fixed Target Graph G (Tree on 100 vertices)

Example 2: Fixed Target Graph G (Tree on 100 vertices)

Summary

- We study homomorphism counts from bipartite source graphs to bipartite target graphs.
- Combinatorial and two entropy-based lower bounds are derived for complete bipartite source graphs.
- Both entropy-based bounds improve upon the inequality implied by Sidorenko's conjecture for complete bipartite graphs.
- These lower bounds, combined with new auxiliary results, yield general bounds on homomorphism counts between arbitrary bipartite graphs.
- A known reverse Sidorenko inequality (by Sah, Sawhney, Stoner, and Zhao, 2020) is used to derive corresponding upper bounds.
- Numerical comparisons with exact counts in tractable cases support the effectiveness of the proposed computable bounds.
- <u>Full paper version:</u> I.S., "Counting graph homomorphisms in bipartite settings," submitted, August 2025. https://arxiv.org/abs/2508.06977