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e F, G finite, undirected graphs without multiple edges; F - no loops.

@ A homomorphism ¢: V(F) — V(G) is adjacency-preserving (not
necessarily injective).

F and G are referred to as the source and target graphs, respectively.
Hom(F, G) = set of homomorphisms ¢: V(F) — V(G).

hom(F, G) £ |[Hom(F, G)|.
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The Importance of Counting Graph Homomorphisms

o Large networks & graph limits
e Computer science (CSP)
@ Statistical physics (partition functions)
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Exact Counts: Core Examples

e Star S,, = Kl,m,y

hom(S,,, G) Z dg(v
veV(G)

o Length-m cycle C,,
hom(C,p, G) = tr(AZ) ZA

where A is the adjacency matrix of G, and the multiset {\;(G)} is its
spectrum. Here, hom(C,,, G) counts closed walks of length m in G.

@ Complete bipartite source and target graphs:

_P,d . d, P
hom(Kp g, Kny ny) = nyng + ning.
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Exact Counts: Core Examples (cont.)

o Additional closed forms highlight the tractability in special cases:

n(2P +29—-2), n=3orn>5,

hom(Kpg, Cn) = {2p+q+17 n=4,

hom(K, 4, P¢) =2+ (¢ — 2)(2P 4+ 27 — 2).
@ The tree-walk algorithm is an efficient recursive algorithm for

numerically computing the exact number of homomorphisms
from a tree to an arbitrary graph (Csikvari and Lin, 2014).
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Stirling number of 2nd type

Let n,k € N with k € [n]. The Stirling number of the second kind,
denoted S(n, k), is defined as the number of ways to partition the
set [n] into k nonempty, pairwise disjoint subsets. If k & [n], then

S(n, k) = 0.

Computation
The Stirling numbers of the second kind satisfy the recurrence relation

S(n,k)=kSn—1,k)+S(n—1,k—1), nkeN, k<n,

which yields the following closed-form expression:

k
S(n, k) = %Z(—l)k_j <f)g” 1<k<n.
| =
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Exact Expression via Stirling Numbers and Bipartite Cliques

Let G be bipartite with partite sets L,R. For p,q € N,
P

hom(Kp,g, G) = Y Y k€1 S(p, k) S(g,€) (Nue(G) + New(G)),
k=1 ¢=1
where
@ S(-,-) = Stirling numbers of the second kind.
® N ¢(G) = number of labelled bipartite cliques with k£ in £ and £ in R.

v
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Exact Expression via Stirling Numbers and Bipartite Cliques

Let G be bipartite with partite sets L,R. For p,q € N,
P

hom(Kyq,G) = > > k€1 S(p, k) (g, £) (Nie(G) + New(G)),
k=1 ¢=1
where
@ S(-,-) = Stirling numbers of the second kind.
@ N ¢(G) = number of labelled bipartite cliques with k£ in £ and £ in R.

@ The complete bipartite graph K, ; is mapped, by a homomorphism, to
a bipartite clique of G. All vertices in the same partite set of K,
must be mapped to non-isolated vertices in the same partite set of G.

@ The factors k! S(p, k) and £!S(q,¢) count surjective mappings from
the p (resp. ¢) vertices of K, , onto k (resp. /) distinct vertices in the
two partite sets of G.

i = = =
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The main difficulty in the exact expression is the computation of the
coefficients { Ny, ¢(G)} for a large bipartite graph G as p and g grow.
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The main difficulty in the exact expression is the computation of the
coefficients { Ny, ¢(G)} for a large bipartite graph G as p and g grow.

Combinatorial Lower Bound; Equality for C4-free Targets

For bipartite G and p,q € N,

hom(Kp4,G) > Z {d(w)p+d(w)q} - 2|E(G)],
weV(G)

with equality if and only if G is Cy4-free.
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The main difficulty in the exact expression is the computation of the
coefficients { Ny, ¢(G)} for a large bipartite graph G as p and g grow.

Combinatorial Lower Bound; Equality for C4-free Targets

For bipartite G and p,q € N,

hom(Kpg,G) > > {d(w)? +d(w)?} — 2|E(G)],
weV(G)

with equality if and only if G is Cy4-free.

@ This result follows directly from the exact expression for hom(K, 4, G)
together with the explicit formula for hom(S,,, G).

@ When G is Cy-free, the lower bound becomes exact.
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Entropy-Based Lower Bound (I): Density-Only

Let G be bipartite with partite sizes n1,no and with an edge density

E
5 & IE@©)] e [0,1].
ning

Then, for all p,q € N,
hom(Kp,g, G) > 674 (nfnd + ninb)

= 0" hom(K, ¢, Kn; ns)
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Proof Outline
@ Let U and V denote the partite vertex sets of the bipartite graph G,
where [U| = n; and |V| = na.
o Let (U,V) be a random vector taking values in & x V, and assume
that {U, V'} is distributed uniformly at random over the edge set of G.

@ The joint entropy of (U, V) is given by
H(U, V) = log(dnins).
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Proof Outline

@ Let U/ and V denote the partite vertex sets of the bipartite graph G,
where [U| = n; and |V| = na.

o Let (U,V) be a random vector taking values in & x V, and assume
that {U, V'} is distributed uniformly at random over the edge set of G.

@ The joint entropy of (U, V) is given by
H(U, V) = log(dnins).

e Construct random vector (UP, V) as follows:
» 1: The entries of V¢ £ (V4,...,V,) are conditionally i.i.d. given U,
» 2: The entries of U? £ (Uy,...,U,) are conditionally i.i.d. given V¢,
in a proper way (explicitly given in the paper) such that
Q U, ~U foralli € [p].
Q@ (U;, V) ~ (U, V) and (U;,V;) ~ (U, V) for all i € [p], j € [q].
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Proof Outline

Let & and V denote the partite vertex sets of the bipartite graph G,
where [U| = n; and |V| = na.

Let (U, V') be a random vector taking values in & x V, and assume
that {U, V'} is distributed uniformly at random over the edge set of G.
The joint entropy of (U, V) is given by

H(U, V) = log(dnins).

Construct random vector (UP, V) as follows:
» 1: The entries of V¢ £ (V4,...,V,) are conditionally i.i.d. given U,
» 2: The entries of U? £ (Uy,...,U,) are conditionally i.i.d. given V¢,
in a proper way (explicitly given in the paper) such that
Q Ui~ U foralli € [p].
Q@ (U;,V?) ~ (U, V) and (U;,V;) ~ (U, V) for all i € [p], j € [q].
By the chain rule of the Shannon entropy, it can be verified that

H(UP, VY) > log(6nind).

= = — — ~a "
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Proof Outline (cont.)

@ Combine it with the uniform bound of the Shannon entropy to the
natural partition of Hom(Kp 4, G) into two disjoint subsets:
» H1: homomorphisms where the p-part of K, ; maps into the n;-part of
G and the g-part of K, ; maps into the ng-part of G;
» Ho: homomorphisms where the p-part of K, , maps into the ng-part of
G and the g-part of K, 4 into the ni-part of G.

v
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Proof Outline (cont.)

@ Combine it with the uniform bound of the Shannon entropy to the
natural partition of Hom(Kp 4, G) into two disjoint subsets:

» H1: homomorphisms where the p-part of K, , maps into the n;-part of
G and the g-part of K, ; maps into the ng-part of G;

» Ho: homomorphisms where the p-part of K, , maps into the ng-part of
G and the g-part of K, ; into the ni-part of G.

@ Overall, this gives

log [#1| > H(UP, V%) > log(6™n&n).

and by symmetry, interchanging p and ¢ (or n1 and ng) gives
log |Ha| > log(PIn{nk).
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Proof Outline (cont.)

@ Combine it with the uniform bound of the Shannon entropy to the
natural partition of Hom(Kp 4, G) into two disjoint subsets:

» H1: homomorphisms where the p-part of K, , maps into the n;-part of
G and the g-part of K, ; maps into the na-part of G;

» Ho: homomorphisms where the p-part of K, , maps into the ng-part of
G and the g-part of K, ; into the ni-part of G.

@ Overall, this gives
log |H1| > H(UP, V%) > log(6PInind).

and by symmetry, interchanging p and ¢ (or n1 and ng) gives
log |Ha| > log(PIn{nk).

e Finally,
hom(K, 4, G) = |H1| + |H2]

> 6¥(ning + niny) = 0" hom(Kp g, Kny ny)-
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Comparison to Sidorenko Inequality (for complete bipartite sources)

If G is a bipartite graph with edge density § that has no isolated vertices,
then
hom(Kp 4, G) > (20)P7 (ny + ng) PTI72P (nyng)Pd.

Our density-only entropy bound improves this for every bipartite graph G
(proof by invoking Jensen's inequality).
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Refined Entropy-Based Lower Bound (with Degree Profiles)

Let U,V be the partite sets (|U/| = nq1, |V| = n2), and let
ny o)
A dj, |E(G)] o LEC)I
= 2L TEE) B Z | ey g ) THY)

Then for all p,q € N,

hom(K, 4, G)

> maux{((Snlnz)pqe—p(q—l)w—q(z)—1)y7 (6n1n2)qe_(q_1)’”, (5n1n2)pe—(p—1)y}

+max{(5n1n2)pqefq(pfl)w*p(qfl)y, (6n1ny)Pe —(p—Dz , (Onyns)e (qfl)y}‘

o Captures irregularity via entropy of the degree distributions of the
vertices in each partite set; refines and strengthens the density-only
lower bound.
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Numerical Evidence

hom(K3 3, G)

Lower Bounds (LBs) and Exact Value vs. § (n; =n, = 100)
1011 4
109 -
107
10° 1
10° 4 - -
*e LB by Sidorenko inequality
== Entropy-based LB in Proposition 2.1
«s Refined entroFy-based LB in Proposition 2.2
10! 4 Combinatorial LB in Proposition 1.2
x« Exact value in Proposition 1.1
)
0.0 0.2 0.4 0.6 0.8 1.0

Exact values of hom(K3 3, G) vs. lower bounds for random bipartite G.

T mid =
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Beyond Complete Bipartite Sources

@ Extend to general bipartite F — G: lower bounds derived from the
Kp,q case + new auxiliary lemmas.

@ Upper bounds via reverse Sidorenko (Sah—Sawhney—Stoner—Zhao,
2020) + exact-count expression for complete bipartite sources,
including its simplification for C4-free targets.

Full version: arXiv:2508.06977. )
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https://arxiv.org/abs/2508.06977

Example 1: Fixed Bipartite Source Graph F
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Example 1: Fixed Bipartite Source Graph F

hom(F, G)
1010
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- ==k
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A ‘_——""— e UB in Proposition 4.1, J:%
10¢ 1 & #s Exact counting, J:%
+4 LB in Proposition 4.2, J:%
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102 e UB in Proposition 4.1, 5=+
/’.l" »a Exact counting, 5 :%
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i «s LB in Proposition 4.2, J:%
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|. Sason, Technion, Israel August 26, 20



Example 2: Fixed Target Graph G (Tree on 100 vertices)
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Example 2: Fixed Target Graph G (Tree on 100 vertices)

hom(F, G)

10% 4 . N . - /'(-

oo UB in Proposition 4.1, a’:%‘ solid line I
) .
+4 LB in Proposition 4.2, a‘:% solid line e
3s | . . i -

10 «e UB in Proposition 4.1, d:%, dashed line v
&4 LB in Proposition 4.2, 5= 1, dashed line ’/"
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1024
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1014

109 A
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@ We study homomorphism counts from bipartite source graphs to
bipartite target graphs.

@ Combinatorial and two entropy-based lower bounds are derived for
complete bipartite source graphs.

@ Both entropy-based bounds improve upon the inequality implied by
Sidorenko’s conjecture for complete bipartite graphs.

@ These lower bounds, combined with new auxiliary results, yield general
bounds on homomorphism counts between arbitrary bipartite graphs.

@ A known reverse Sidorenko inequality (by Sah, Sawhney, Stoner, and
Zhao, 2020) is used to derive corresponding upper bounds.

@ Numerical comparisons with exact counts in tractable cases support
the effectiveness of the proposed computable bounds.

o Full paper version: I.S., " Counting graph homomorphisms in bipartite
settings,” submitted, August 2025. https://arxiv.org/abs/2508.06977
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