# On H-Intersecting Graph Families

Igal Sason

Technion—Israel Institute of Technology eeigal@technion.ac.il

13th European Conference on Combinatorics, Graph Theory and Applications,
Budapest, Hungary, August 25–29, 2025,
EuroComb '25

#### 1. Abstract

This poster applies a version of Shearer's lemma to derive a new upper bound on the maximum cardinality of a family of graphs on a fixed number of vertices, in which the intersection of every two graphs in that family contains a subgraph that is isomorphic to a specified graph H. Such families are referred to as H-intersecting graph families. The derived bound is expressed in terms of the chromatic number of H, extending the bound by Chung, Graham, Frankl, and Shearer (1986) with H specialized to a triangle.

## 2. H-Intersecting Graphs

- ▶ An H-intersecting family of graphs is a set of finite, undirected, and simple graphs (i.e., graphs with no self-loops or parallel edges), whose vertices are labelled, and the intersection of every two graphs in the family contains a subgraph isomorphic to H. Let 𝔾 be a family of graphs on a common vertex set.
- ► These graph families play a central role in extremal graph theory. Determining their maximum possible size, for a fixed number of vertices, is a longstanding challenge.

#### 3. Triangle-Intersecting Graphs

- Let  $\mathcal{G}$  be a family of graphs on the vertex set  $[n] \triangleq \{1, \ldots, n\}$ , with the property that for every  $G_1, G_2 \in \mathcal{G}$ , the intersection  $G_1 \cap G_2$  contains a triangle (i.e, there are three vertices  $i, j, k \in [n]$  such that each of  $\{i, j\}$ ,  $\{i, k\}$ ,  $\{j, k\}$  is in the edge sets of both  $G_1$  and  $G_2$ ). The family  $\mathcal{G}$  is referred to as a *triangle-intersecting* family of graphs on n vertices.
- ▶ A question, posed by Simonovits and Sós (1978), was how large can  $\mathcal{G}$  be?

# 4. Simonovits & Sós Conjecture, '78

- ► The family  $\mathcal{G}$  can be as large as  $2^{\binom{n}{2}-3}$ . with the family of all graphs on n vertices that have a particular triangle.
- Non the other hand,  $|\mathcal{G}|$  cannot exceed  $2^{\binom{n}{2}-1}$ . The latter upper bound holds since, in general, a family of distinct subsets of a set of size m, where any two of these subsets have a non-empty intersection, can have a cardinality of at most  $2^{m-1}$  ( $\mathcal{A}$  and  $\mathcal{A}^{\mathbf{C}}$  cannot be members of this family). The edge sets of the graphs in  $\mathcal{G}$  satisfy this property, with  $m=\binom{n}{2}$ .

#### 5. Ellis, Filmus, and Friedgut, '12

**Theorem.** The size of a family  $\mathcal{G}$  of triangle-intersecting graphs on n vertices satisfies  $|\mathcal{G}| \leq 2^{\binom{n}{2}-3}$ , and it is attained by the family of all graphs with a common vertex set of n vertices, and with a fixed common triangle.

This result was proved by using discrete Fourier analysis to obtain the sharp bound, as conjectured by Simonovits and Sós

### 6. Prior Work (1986)

- The first significant progress towards proving the Simonovits–Sós conjecture came from an information-theoretic approach (1986). Using the combinatorial Shearer lemma, a simple and elegant upper bound on the size of  $\mathcal G$  was derived in their work.
- That bound is equal to  $2^{\binom{n}{2}-2}$ , falling short of the Simonovits–Sós conjecture by a factor of 2.

#### 7. Extended Conjecture and Progress

- It was conjectured by Ellis, Filmus, and Friedgut (2012) that, for  $t \geq 4$ , every  $K_t$ -intersecting family of graphs on a common vertex set [n] has size at most  $2^{\binom{n}{2}-\binom{t}{2}}$ , with equality for the family of all graphs containing a fixed clique on t vertices.
- This conjecture was proved by Berger and Zhao (2023) for t = 4, while its validity is left open for  $t \ge 5$ .

#### 8. Main Result

**Theorem.** Let H be a non-empty graph, and let  $\mathcal{G}$  be a family of H-intersecting graphs on a common vertex set [n]. Then,

$$|\mathcal{G}| \leq 2^{\binom{n}{2} - (\chi(\mathbf{H}) - 1)},$$
 (1)

where  $\chi(H)$  denotes the chromatic number of the graph H.

Applied to  $K_t$ -intersecting families of graphs, for an integer  $t \geq 3$ ,  $|\mathcal{G}| \leq 2^{\binom{n}{2}-(t-1)}$ , extending the result by Shearer's lemma.

#### 9. Combinatorial Shearer's lemma

The proof of the main result relies on the following tool. **Theorem.** 

- Let  $\mathscr{F}$  be a finite multiset of subsets of [n] (allowing repetitions of some subsets), where each element  $i \in [n]$  is included in at least  $k \geq 1$  sets of  $\mathscr{F}$ , and let  $\mathscr{M}$  be a set of subsets of [n].
- ▶ For every set  $S \in \mathcal{F}$ , let the trace of  $\mathcal{M}$  on S, denoted by  $\mathrm{trace}_{S}(\mathcal{M})$ , be the set of all possible intersections of elements of  $\mathcal{M}$  with S, i.e.,

$$trace_{\mathcal{S}}(\mathscr{M}) \triangleq \{ \mathcal{A} \cap \mathcal{S} : \mathcal{A} \in \mathscr{M} \}, \quad \forall \, \mathcal{S} \in \mathscr{F}. \tag{2}$$

Then,

$$|\mathcal{M}| \leq \prod_{\mathcal{S} \in \mathscr{F}} \left| \operatorname{trace}_{\mathcal{S}}(\mathcal{M}) \right|^{\frac{1}{k}}.$$
 (3)

#### 10. Main Result: Proof Outline

- ▶ Identify every graph  $G \in \mathcal{G}$  with its edge set E(G), and let  $\mathcal{M} = \{E(G) : G \in \mathcal{G}\}$  (all these graphs have the common vertex set [n]).
- Let  $\mathcal{U} = \mathsf{E}(\mathsf{K}_n)$ . For every  $\mathsf{G} \in \mathcal{G}$ , we have  $\mathsf{E}(\mathsf{G}) \subseteq \mathcal{U}$ , and  $|\mathcal{U}| = \binom{n}{2}$ .
- Let  $t riangleq \chi(H)$ . For every unordered equipartition of [n] into t-1 disjoint subsets, i.e.,  $\int_{j=1}^{t-1} \mathcal{A}_j = [n]$ , which satisfies  $||\mathcal{A}_i| |\mathcal{A}_j|| \le 1$  for all  $1 \le i < j \le t-1$ , let  $\mathcal{U}(\{\mathcal{A}_j\}_{j=1}^{t-1})$  be the subset of  $\mathcal{U}$  consisting of all those edges that lie entirely inside one of the subsets  $\{\mathcal{A}_j\}_{j=1}^{t-1}$ .
- We apply the combinatorial version of Shearer's lemma with  $\mathscr{F} = \{\mathcal{U}(\{\mathcal{A}_j\}_{j=1}^{t-1})\}$ , taken over all unordered equipartitions of [n],  $\{\mathcal{A}_j\}_{j=1}^{t-1}$ , as described above.

# 11. Proof Outline (cont.)

- Let  $m = |\mathcal{U}(\{A_j\}_{j=1}^{t-1})|$ , which is independent of the equipartition. It can be verified that  $m \leq \frac{1}{\chi(H)-1}\binom{n}{2}$ .
- By a simple double-counting argument in regard to the edges of the complete graph  $K_n$  (the set  $\mathcal{U}$ ), if k is the number of elements of  $\mathscr{F}$  in which each element of  $\mathcal{U}$  occurs, then  $m |\mathscr{F}| = \binom{n}{2} k$ .
- ▶ Let  $S \in \mathscr{F}$ . It can be verified that  $\operatorname{trace}_{S}(\mathscr{M})$  forms an intersecting family of subsets of S.
- ▶ Consequently, |S| = m yields  $|\operatorname{trace}_{S}(\mathcal{M})| \leq 2^{m-1}$ .
- The proof of the proposed main result is then completed by an application of the Combinatorial version of Shearer's lemma (and the one-to-one correspondence between  $\mathcal{G}$  and  $\mathcal{M}$ ).

#### Relaxed Bound (Lovász $\vartheta$ -Function)

- The computational complexity of the chromatic number of a graph is in general NP-hard. This poses a problem in calculating the upper bound on the cardinality of H-intersecting families of graphs on a fixed number of vertices. This bound is loosened, expressing it in terms of the Lovász  $\vartheta$ -function of the complement graph  $\overline{H}$ .
- **Corollary.** Let H be a graph, and let  $\mathcal{G}$  be a family of H-intersecting graphs on a common vertex set [n]. Then,

$$|\mathcal{G}| < 2^{\binom{n}{2} - (\lceil \vartheta(\overline{\mathsf{H}}) \rceil - 1)}. \tag{4}$$

The Lovász  $\vartheta$ -function of  $\overline{H}$  can be efficiently computed with a precision of r decimal digits, having a computational complexity that is polynomial in |V(H)| and r by solving a semidefinite programming problem.