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Abstract

This paper applies the combinatorial version of Shearer’s inequalities to derive a new
upper bound on the maximum cardinality of a family of graphs on a fixed number of ver-
tices, in which the intersection of every two graphs in that family contains a subgraph that
is isomorphic to a specified graph H. Such families are referred to as H-intersecting graph
families. The derived bound is expressed in terms of the chromatic number of H, extending
the bound by Chung, Graham, Frankl, and Shearer (1986) with H specialized to a triangle.

1 Introduction
An H-intersecting family of graphs is a collection of finite, undirected, and simple graphs (i.e.,
graphs with no self-loops or parallel edges), whose vertices are labelled, and the intersection
of every two graphs in the family contains a subgraph isomorphic to H. For instance, if H
is an edge or a triangle, then every pair of graphs in the family shares at least one edge or
triangle, respectively. These intersecting families of graphs play a central role in extremal
combinatorics and graph theory, where determining their maximum possible size remains a
longstanding challenge. Different choices of H lead to distinct combinatorial problems and
structural constraints.

A pivotal conjecture, proposed in 1976 by Simonovits and Sós, concerned the maximum
size of triangle-intersecting graph families—those in which the intersection of any two graphs
contains a triangle. Their foundational work, initially presented in [1], along with other results
on intersection theorems for families of graphs where the shared subgraphs are cycles or paths,
was surveyed in [2]. The first major progress on this conjecture was made by Chung, Graham,
Frankl, and Shearer [3], who utilized Shearer’s inequality to establish a non-trivial bound on
the largest possible cardinality of a family of triangle-intersecting graphs with a fixed number
of vertices. This bound lay between the trivial bound and the conjectured bound.

The conjecture by Simonovits and Sós was ultimately resolved by Ellis, Filmus, and
Friedgut [4], who proved that the largest triangle-intersecting family comprises all graphs
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containing a fixed triangle. Building on the spectral approach in [4] (see also [5]), a recent
work by Berger and Zhao [6] extended the investigation to K4-intersecting graph families,
addressing analogous questions for graph families where every pair of graphs intersects in a
complete subgraph of size four. Additionally, Keller and Lifshitz [7] provided high-probability
results for constructing, for every graph H, families of large random graphs with a common
vertex set such that every pair of graphs contains a subgraph isomorphic to H. These are
referred to as families of H-intersecting graphs.

The paper employs the combinatorial version of Shearer’s lemma for upper bounding the
size of H-intersecting families of graphs. An extended version of this work is available in [8].

2 Preliminaries
Definition 2.1 (Triangle-Intersecting Families of Graphs). Let G be a family of graphs on
the vertex set [n] ≜ {1, . . . , n}, with the property that for every G1, G2 ∈ G, the intersection
G1 ∩ G2 contains a triangle (i.e, there are three vertices i, j, k ∈ [n] such that each of {i, j},
{i, k}, {j, k} is in the edge sets of both G1 and G2). The family G is referred to as a triangle-
intersecting family of graphs on n vertices.

The question that was posed by Simonovits and Sós [1] was how large can G, a family of
triangle-intersecting graphs, be?

The family G can be as large as 2(n
2)−3. To that end, consider the family G of all graphs

on n vertices that include a particular triangle. On the other hand, |G| cannot exceed 2(n
2)−1.

The latter upper bound holds since, in general, a family of distinct subsets of a set of size m,
where any two of these subsets have a non-empty intersection, can have a cardinality of at
most 2m−1 (A and Ac cannot be members of this family). The edge sets of the graphs in G
satisfy this property, with m =

(n
2
)
.

Theorem 2.1 (Ellis, Filmus, and Friedgut, [4]). The size of a family G of triangle-intersecting
graphs on n vertices satisfies |G| ≤ 2(n

2)−3, and it is attained by the family of all graphs with
a common vertex set of n vertices, and with a fixed common triangle.

This result was proved by using discrete Fourier analysis to obtain the sharp bound in
Theorem 2.1, as conjectured by Simonovits and Sós [1].

The graph Kt, with t ∈ N, denotes the complete graph on t vertices, e.g., K3 is a triangle.
All results in this paper apply to finite, undirected, and simple graphs.

The first significant progress towards proving the Simonovits–Sós conjecture came from
an information-theoretic approach [3]. Using the combinatorial Shearer lemma, a simple and
elegant upper bound on the size of G was derived in [3]. That bound is equal to 2(n

2)−2, falling
short of the Simonovits–Sós conjecture by a factor of 2.

Proposition 2.1 (Chung, Graham, Frankl, and Shearer, [3]). Let G be a family of K3-
intersecting graphs on a common vertex set [n]. Then, |G| ≤ 2(n

2)−2.

We next consider more general intersecting families of graphs.

Definition 2.2 (H-intersecting Families of Graphs). Let G be a family of graphs on a common
vertex set. Then, it is said that G is H-intersecting if for every two graphs G1, G2 ∈ G, the
graph G1 ∩ G2 contains a subgraph isomorphic to H.
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The combinatorial version of Shearer’s lemma, presented next, was essential in [3] for
deriving Proposition 2.1. It is also used later in this work to establish a nontrivial extension
of that result, providing a new upper bound on the maximum cardinality of a family of graphs
with a fixed number of vertices that is H-intersecting for an arbitrary nonempty graph H.

Theorem 2.2 (Combinatorial version of Shearer’s lemma, [3]). Let F be a finite multiset
of subsets of [n] (allowing repetitions of some subsets), where each element i ∈ [n] is included
in at least k ≥ 1 sets of F , and let M be a set of subsets of [n]. For every set S ∈ F , let the
trace of M on S, denoted by traceS(M ), be the set of all possible intersections of elements
of M with S, i.e.,

traceS(M ) ≜
{
A ∩ S : A ∈ M

}
, ∀ S ∈ F . (1)

Then,

|M | ≤
∏

S∈F

∣∣traceS(M )
∣∣ 1

k . (2)

An open problem in extremal combinatorics is, given H and n, what is the maximum
size of an H-intersecting family of graphs on n labeled vertices? It was conjectured by Ellis,
Filmus, and Friedgut in [4] that every Kt-intersecting family of graphs on a common vertex
set [n] has size at most 2(n

2)−(t
2), with equality for the family of all graphs containing a fixed

clique on t vertices. This conjecture was proved in [4] for t = 3, and was recently proved by
Berger and Zhao [6] for t = 4, while this problem is left open for t ≥ 5.

3 Intersecting Families of Graphs
The following result generalizes Proposition 2.1 and it extends the concept of proof in [3] to
hold for every family of H-intersecting graphs on a common vertex set.

Proposition 3.1 (An upper bound on the cardinality of H-intersecting graphs, [8]). Let H
be a non-empty graph, and let G be a family of H-intersecting graphs on a common vertex
set [n]. Then,

|G| ≤ 2(n
2)−(χ(H)−1). (3)

Proof.

• Identify every graph G ∈ G with its edge set E(G), and let M =
{
E(G) : G ∈ G

}
(all

these graphs have the common vertex set [n]).

• Let U = E(Kn). For every G ∈ G, we have E(G) ⊆ U , and |U| =
(n

2
)
.

• Let t ≜ χ(H). For every unordered equipartition of [n] into t − 1 disjoint subsets, i.e.,
t−1⋃
j=1

Aj = [n], which satisfies
∣∣|Ai| − |Aj |

∣∣ ≤ 1 for all 1 ≤ i < j ≤ t − 1, let U({Aj}t−1
j=1) be

the subset of U consisting of all those edges that lie entirely inside one of the subsets
{Aj}t−1

j=1.



On H-Intersecting Graph Families 4

• We apply the combinatorial version of Shearer’s lemma (Theorem 2.2) with

F = {U({Aj}t−1
j=1)}, (4)

taken over all unordered equipartitions of [n], {Aj}t−1
j=1, as described above.

• Let m = | U({Aj}t−1
j=1) |, which is independent of the equipartition since

m =



(t − 1)
(n/(t−1)

2
)

if (t − 1)|n,

(t − 2)
(⌊n/(t−1)⌋

2
)

+
(⌈n/(t−1)⌉

2
)

if (t − 1)|(n − 1),
...(⌊n/(t−1)⌋

2
)

+ (t − 2)
(⌈n/(t−1)⌉

2
)

if (t − 1)|
(
n − (t − 2)

)
.

(5)

• By (5) with t ≜ χ(H), it can be verified that

m ≤ 1
χ(H) − 1

(
n

2

)
. (6)

The details of that derivation are omitted and can be found in [8].

• By a simple double-counting argument in regard to the edges of the complete graph Kn

(the set U), if k is the number of elements of F in which each element of U occurs, then

m |F | =
(

n

2

)
k. (7)

• Let S ∈ F . Observe that trace S(M ), as defined in (1), forms an intersecting family of
subsets of S. Indeed,

1. Assign to each vertex in [n] the index j of the subset Aj (1 ≤ j ≤ χ(H) − 1) in
the partition of [n] corresponding to S. Let these assignments be associated with
χ(H) − 1 color classes of the vertices.

2. For any G, G′ ∈ G, the graph G ∩ G′ contains a subgraph H (by assumption).
3. By the definition of the chromatic number of H as the smallest number of colors

that are required such that any two adjacent vertices in H are assigned different
colors, it follows that there exists an edge in H whose two vertices are assigned the
same index (color). Hence, that edge belongs to the set Aj , for some j ∈ [χ(H)−1],
so it belongs to S.

4. The complement of S (in U) is therefore H-free (viewed as a graph with the vertex
set [n]).

Consequently, since |S| = m, we get

|trace S(M )| ≤ 2m−1. (8)
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• By Theorem 2.2 (and the one-to-one correspondence between G and M ),
|G| = |M |

≤
(
2m−1

) |F|
k (9)

= 2(n
2)(1− 1

m ) (10)

≤ 2(n
2)−(χ(H)−1), (11)

where (9) relies on (2) and (8), then (10) relies on (7), and (11) is due to (6).

The family G of H-intersecting graphs on n vertices can be as large as 2(n
2)−|E(H)|. To that

end, consider the family G of all graphs on n vertices that include a particular H subgraph.
Combining this lower bound on |G| with its upper bound in Theorem 3 gives that the largest
family G of H-intersecting graphs on n vertices satisfies

2(n
2)−|E(H)| ≤ |G| ≤ 2(n

2)−(χ(H)−1). (12)
Specialization of Proposition 3.1 to a family G that is Kt-intersecting graphs, with t ≥ 2,

on a common vertex set [n], gives that |G| ≤ 2(n
2)−(t−1).

The computational complexity of the chromatic number of a graph is in general NP-
hard [9]. This poses a problem in calculating the upper bound in Proposition 3.1 on the
cardinality of H-intersecting families of graphs on a fixed number of vertices. This bound can
be loosened, expressing it in terms of the Lovász ϑ-function of the complement graph H.
Corollary 3.1. Let H be a graph, and let G be a family of H-intersecting graphs on a common
vertex set [n]. Then,

|G| ≤ 2(n
2)−(⌈ϑ(H)⌉−1). (13)

Proof. The Lovász ϑ-function of the complement graph H satisfies (see Corollary 3 of [10])
ω(H) ≤ ϑ(H) ≤ χ(H), (14)

so it is bounded between the clique and chromatic numbers of H, which are both NP-hard
to compute [9]. Since the chromatic number χ(H) is an integer, we have χ(H) ≥ ⌈ϑ(H)⌉.
Combining (3) and the latter inequality yields (13).

The Lovász ϑ-function of the complement graph H, as presented in Corollary 3.1, can be
efficiently computed with a precision of r decimal digits, having a computational complexity
that is polynomial in p ≜ | V(H)| and r. It is obtained by solving the following semidefinite
programming (SDP) problem [11]:

maximize Tr(B Jp)
subject to{

B ∈ Sp
+, Tr(B) = 1,

Ai,j = 0 ⇒ Bi,j = 0, i, j ∈ [p], i ̸= j,

(15)

where the following notation is used: A = A(H) is the p × p adjacency matrix of H; Jp is the
all-ones p × p matrix, and Sp

+ is the set of all p × p positive semidefinite matrices. The reader
is referred to an account of interesting properties of the Lovász ϑ-function in [12], Chapter 11
of [13], and more recently in Section 2.5 of [14].
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