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The Rényi Divergence

The Rényi Divergence

Let P and Q be two probability mass functions defined on a set X .

Let α ∈ (0, 1) ∪ (1,∞).

The Rényi divergence of order α is given by

Dα(P ||Q) =
1

α− 1
log

(

∑

x∈X

Pα(x)Q1−α(x)

)

.
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The Rényi Divergence

Let P and Q be two probability mass functions defined on a set X .

Let α ∈ (0, 1) ∪ (1,∞).

The Rényi divergence of order α is given by

Dα(P ||Q) =
1

α− 1
log

(

∑

x∈X

Pα(x)Q1−α(x)

)

.

Extreme cases:

If α = 0 then D0(P ||Q) = − logQ(Support(P )),

If α = +∞ then D∞(P ||Q) = log
(

ess sup P
Q

)

,

If α = 1, it is defined to be D(P ||Q) =
∑

P (x) log P (x)
Q(x) .
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∑
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Q(x) .

If D(P ||Q) < ∞, L’Hôpital’s rule ⇒ D(P ||Q) = limα→1− Dα(P ||Q).
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The Rényi Divergence

Some Basic Properties of the Rényi Divergences

1 Non-negativity: Dα(P ||Q) ≥ 0 with equality if and only if P = Q.

2 Monotonicity: Dα(P ||Q) is monotonic increasing in the parameter α.
3 Convexity properties of Dα(P ||Q):

◮ jointly convex in (P,Q) for α ∈ [0, 1],
◮ convex in Q for α ∈ [0,∞], but not in P for α > 1.
◮ jointly quasi-convex in (P,Q) for α ∈ [0,∞].

4 The Rényi divergence satisfies the data processing inequality (DPI).
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Paper

T. van Erven and P. Harremoës, “Rényi divergence and Kullback-Leibler
divergence,” IEEE Trans. on Information Theory, vol. 60, no. 7,
pp. 3797–3820, July 2014.
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The Rényi Divergence

Information-Theoretic Applications of the Rényi divergence

Channel coding error exponents
(Gallager ’65, Arimoto ’73, Polyanskiy & Verdu ’10).

Generalized cutoff rates for hypothesis testing
(Csiszár ’95, Alajaji et al. ’04).

Multiple source adaptation (Mansour et al., ’09).

Generalized guessing moments (van Erven & Harremoes, ’10).

Two-sensor composite hypothesis testing (Shayevitz, ’11).

Strong data processing theorems for discrete memoryless channels
(Raginsky, ’13).

Strong converse theorems for classes of networks
(Fong and Tan, arXiv ’14).

IT applications of the logarithmic probability comparison bound
(Atar and Merhav, arXiv ’15).
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New Bound on the ML Decoding Error Probability

Motivation

Performance analysis of linear codes under ML decoding is of interest
for the study of their potential performance under optimal decoding.

Also of interest for evaluating the degradation in performance that is
incurred by sub-optimal & practical decoding algorithms.

The new bound quantifies the degradation in performance of ML
decoded block codes in terms of the deviation of their distance spectra
from the binomial distribution (same as Shulman-Feder bound).

Binomial distribution characterizes the average distance spectrum of
the ensemble of fully random binary block codes, achieving the
capacity of any memoryless binary-input output-symmetric channel.
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New Bound on the ML Decoding Error Probability

Theorem: A New Upper Bound on the ML Decoding Error Probability

Consider a binary linear block code of length N and rate R = log(M)
N

where M designates the number of codewords.

Let S0 = 0 and, for l ∈ {1, . . . , N}, let Sl be the number of non-zero
codewords of Hamming weight l.

Assume that the transmission of the code takes place over a
memoryless, binary-input and output-symmetric channel.

Assume that the code is maximum-likelihood (ML) decoded.
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New Bound on the ML Decoding Error Probability

Theorem: A New Upper Bound (Cont.)

The block error probability satisfies

Pe = Pe|0 ≤ exp

(

−N sup
r≥1

max
0≤ρ′≤ 1

r

[

E0

(

ρ′, q =
(1

2
,
1

2

)

)

−ρ′
(

rR+
Ds(PN‖QN )

N

)])

where

s , s(r) = r
r−1 for r ≥ 1 (with the convention that s = ∞ for r = 1),

QN is the binomial distribution with parameter 1
2 and N i.i.d. trials,

PN is the PMF defined by PN (l) = Sl

M−1 for l ∈ {0, . . . , N},

Ds(·‖·) is the Rényi divergence of order s,

E0(ρ, q) is the Gallager random coding error exponent.
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New Bound on the ML Decoding Error Probability

Special Case: The Shulman-Feder Bound

Loosening the bound by taking r = 1 ⇒ s = ∞ gives

Pe = Pe|0

≤ exp

(

−N Er

(

R+
D∞(PN‖QN )

N

))

= exp

(

−N Er

(

R+
1

N
log max

0≤l≤N

PN (l)

QN (l)

))

= exp

(

−N Er

(

R+
1

N
log max

0≤l≤N

Sl

e−N(log 2−R)
(

N
l

)

))

which coincides with the Shulman-Feder bound.
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New Bound on the ML Decoding Error Probability

Related Papers on Variations of the Gallager Bounds

1 S. Shamai and I. Sason, “Variations on the Gallager bounds,
connections, and applications,” IEEE Trans. on Information Theory,
vol. 48, no. 12, pp. 3029–3051, December 2002.

2 I. Sason and S. Shamai, Performance Analysis of Linear Codes under

Maximum-Likelihood Decoding: A Tutorial, Foundations and Trends

in Communications and Information Theory, vol. 3, no. 1–2,
pp. 1–222, NOW Publishers, Delft, the Netherlands, July 2006.
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New Bound on the ML Decoding Error Probability

Novelty of this Proof

The proof of this theorem has an overlap with Appendix A in the
paper by Shamai and Sason (2002).

Unlike the analysis there, working with the Rényi divergence of order
s ≥ 1, instead of the Kullback-Leibler divergence as a lower bound
reveals a need for an optimization of the error exponent.

If r ≥ 1 is increased, s = r
r−1 ≥ 1 is decreased, and Ds(PN‖QN ) is

decreased (unless it is 0; note that PN , QN do not depend on r, s).

The maximization of the error exponent in the theorem aims to find a
proper balance between the two summands rR and Ds(PN‖QN )

N
in the

exponent of the new bound, while also optimizing ρ′ ∈
[

0, 1
r

]

.
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New Bound on the ML Decoding Error Probability

Applicability of the New Bound to Code Ensembles

The bound can be shown to be applicable to code ensembles of binary
linear block codes:

In the probability distribution PN , the distance spectrum is replaced
by the average distance spectrum of the ensemble.
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New Bound on the ML Decoding Error Probability

Combination of the New Bound with an Existing Approach

We borrow a concept of bounding by Miller and Burshtein, and
propose to combine it with the new bound.

In order to utilize the Shulman-Feder bound for binary linear block
codes in a clever way, they partitioned the binary linear block code C
into two subcodes C1 and C2 where

C1 ∪ C2 = C, C1 ∩ C2 = {0}.

The subcode C1 contains the all-zero codeword and all the codewords
of C whose Hamming weights l belong to a subset L ⊆ {1, 2, ..., N}.

The subcode C2 contains the other codewords of C (with Hamming
weights of l ∈ Lc , {1, 2, ..., N} \ L), and the all-zero codeword.
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New Bound on the ML Decoding Error Probability

Idea in Selecting C1
Select C1 such that its distance spectrum is close to the binomial
distribution:

PN (l) ≈ QN (l), ∀ l ∈ L.

This selection implies that the normalized Rényi divergence Ds(PN‖QN )
N

in
the exponent of the new bound has a marginal effect on the conditional
ML decoding error probability of the subcode C1.
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New Bound on the ML Decoding Error Probability

Combination of the New Bound with an Existing Approach (Cont.)

From the symmetry of the channel,

Pe = Pe|0 ≤ Pe|0(C1) + Pe|0(C2)

where Pe|0(C1) and Pe|0(C2) are the conditional ML decoding error
probabilities of C1 and C2 given that the zero codeword is transmitted.

One can rely on different upper bounds on the conditional error
probabilities Pe|0(C1) and Pe|0(C2):

1 Bound Pe|0(C1) by invoking the new bound, due to the closeness of its
distance spectrum to the binomial distribution.

2 Rely on an alternative approach for bounding Pe|0(C2) (e.g., using the
union bound w.r.t. the fixed composition codes of the subcode C2).
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Performance bounds for a Turbo-Block Ensemble

Example: Performance Bounds for an Ensemble of Turbo-Block Bodes

Consider

An ensemble of uniformly interleaved turbo codes whose two
component codes are chosen uniformly at random from the ensemble
of (1072, 1000) binary systematic linear block codes.

The overall code rate is 0.8741 bits per channel use.

The transmission of these codes takes place over an additive white
Gaussian noise (AWGN) channel.

The codes are BPSK modulated and coherently detected.
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Performance bounds for a Turbo-Block Ensemble

Example: Turbo-block codes (Cont.)

The following upper bounds under ML decoding are compared:

The tangential-sphere bound (TSB) of Herzberg and Poltyrev.

The suggested combination of the union bound (UB) and the new
bound (NB). An optimal partitioning is performed to obtain the
tightest bound within this form.
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Performance bounds for a Turbo-Block Ensemble

Example: Turbo-block codes (Cont.)

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

U
P

P
E

R
  B

O
U

N
D

S
  O

N
  T

H
E

  B
LO

C
K

  E
R

R
O

R
  P

R
O

B
A

B
IL

IT
Y

TSB
UB+NB

Figure: Comparison between upper bounds on the block error probability.
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Summary

Summary

A new bound on the ML decoding error probability has been derived,
involving the Rényi divergence.

The derivation of this bound relies on variations of the Gallager
bounds (the Duman and Salehi bound).

It reproduces the 1965 random coding Gallager bound, and the
Shulman-Feder bound for binary linear block codes (or ensembles).

It has an additional parameter that is subject to optimization.

The bound has been applied to an ensemble of uniformly interleaved
turbo-block codes with systematic random component codes, and its
superiority has been exemplified.
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