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Abstract—Tight bounds for several symmetric divergence mea-
sures are introduced, given in terms of the total variation
distance. Each of these bounds is attained by a pair of 2 or 3-
element probability distributions. An application of these bounds
for lossless source coding is provided, refining and improving a
certain bound by Csiszár. A new inequality relating f -divergences
is derived, and its use is exemplified. The last section of this
conference paper is not included in the recent journal paper [16],
as well as some new remarks that are linked to new references.

I. INTRODUCTION AND PRELIMINARIES

Divergence measures are widely used in information theory,
machine learning, statistics, and other theoretical and applied
branches of mathematics (see, e.g., [3], [5], [15]). The class
of f -divergences forms an important class of divergence
measures. Their properties, including relations to statistical
tests and estimators, were studied, e.g., in [5] and [13].

In [9], Gilardoni studied the problem of minimizing an
arbitrary symmetric f -divergence for a given total variation
distance (these terms are defined later in this section), provid-
ing a closed-form solution of this optimization problem. In a
follow-up paper by the same author [10], Pinsker’s and Vajda’s
type inequalities were studied for symmetric f -divergences,
and the issue of obtaining lower bounds on f -divergences for
a fixed total variation distance was further studied.

One of the main results in [10] was a further derivation of
a simple closed-form lower bound on the relative entropy in
terms of the total variation distance. The relative entropy is an
asymmetric f -divergence, as it is clarified in the continuation
to this section. The lower bound on the relative entropy sug-
gests an improvement over Pinsker’s and Vajda’s inequalities.
A derivation of a simple and reasonably tight closed-form
upper bound on the infimum of the relative entropy has been
also provided in [10] in terms of the total variation distance.
An exact characterization of the minimum of the relative
entropy subject to a fixed total variation distance has been
derived in [8] and [9].

Sharp inequalities for f -divergences were recently studied
in [11] as a general problem of maximizing or minimizing
an arbitrary f -divergence between two probability measures
subject to a finite number of inequality constraints on other
f -divergences. The main result stated in [11] is that such
infinite-dimensional optimization problems are equivalent to
optimization problems over finite-dimensional spaces where
the latter are numerically solvable.

The total variation distance has been further studied from
an information-theoretic perspective by Verdú [19], providing
upper and lower bounds on the total variation distance between
two probability measures P and Q in terms of the distribution
of the relative information log dP

dQ (X) and log dP
dQ (Y ) where

X and Y are distributed according to P and Q, respectively.
Following previous work, tight bounds on symmetric f -

divergences and related distances are introduced in this paper.
An application of these bounds for lossless source coding is
provided, refining and improving a certain bound by Csiszár
[4]. The material in this conference paper appears in the
recently published journal paper by the same author [16].
However, we also provide in this conference paper a new
inequality relating f -divergences, and its use is exemplified;
this material is not included in the journal paper [16] since it
does not necessarily refer to symmetric f -divergences.

The paper is organized as follows: tight bounds for several
symmetric divergence measures, which are either symmetric
f -divergences or related symmetric distances, are introduced
without proofs in Section II; these bounds are expressed in
terms of the total variation distance. An application for the
derivation of an improved and refined bound in the context
of lossless source coding is provided in Section III. The full
version of this work, including proofs of the tight bounds
in Section III, appears in [16]. Section IV provides a new
inequality that relates between f -divergences; this inequality
is proved since it is not included in the journal paper [16].

We end this section by introducing some preliminaries.
Definition 1: Let P and Q be two probability distributions

with a common σ-algebra F . The total variation distance
between P and Q is dTV(P,Q) , supA∈F |P (A)−Q(A)|.
If P and Q are defined on a countable set, it is simplified to

dTV(P,Q) =
1

2

∑
x

∣∣P (x)−Q(x)
∣∣ = ||P −Q||1

2
. (1)

Definition 2: Let f : (0,∞) → IR be a convex function with
f(1) = 0, and let P and Q be two probability distributions.
The f -divergence from P to Q is defined by

Df (P ||Q) ,
∑
x

Q(x) f

(
P (x)

Q(x)

)
(2)



with the convention that

0f
(0
0

)
= 0, f(0) = lim

t→0+
f(t),

0f
(a
0

)
= lim

t→0+
tf
(a
t

)
= a lim

u→∞

f(u)

u
, ∀ a > 0.

Definition 3: An f -divergence is said to be symmetric if
Df (P ||Q) = Df (Q||P ) for every P and Q.

Symmetric f -divergences include (among others) the
squared Hellinger distance where

f(t) = (
√
t−1)2, Df (P ||Q) =

∑
x

(√
P (x)−

√
Q(x)

)2
,

and the total variation distance in (1) where f(t) = 1
2 |t− 1|.

An f -divergence is symmetric if and only if the function f
satisfies the equality (see [9, p. 765])

f(u) = u f

(
1

u

)
+ a(u− 1), ∀u ∈ (0,∞) (3)

for some constant a. If f is differentiable at u = 1 then a
differentiation of both sides of equality (3) at u = 1 gives that
a = 2f ′(1).

Note that the relative entropy (a.k.a. the Kullback-Leibler
divergence) D(P ||Q) ,

∑
x P (x) log

(
P (x)
Q(x)

)
is an f -

divergence with f(t) = t log(t), t > 0; its dual, D(Q||P ),
is an f-divergence with f(t) = − log(t), t > 0; clearly, it is
an asymmetric f -divergence since D(P ||Q) ̸= D(Q||P ) .

The following result, which was derived by Gilardoni (see
[9], [10]), refers to the infimum of a symmetric f -divergence
for a fixed value of the total variation distance:

Theorem 1: Let f : (0,∞) → IR be a convex function with
f(1) = 0, and assume that f is twice differentiable. Let

LDf
(ε) , inf

P,Q : dTV(P,Q)=ε
Df (P ||Q), ∀ ε ∈ [0, 1]

be the infimum of the f -divergence for a given total varia-
tion distance. If Df is a symmetric f -divergence, and f is
differentiable at u = 1, then

LDf
(ε) = (1− ε) f

(
1 + ε

1− ε

)
− 2f ′(1) ε, ∀ ε ∈ [0, 1].

II. TIGHT BOUNDS ON SYMMETRIC DIVERGENCE
MEASURES

The following section introduces tight bounds for several
symmetric divergence measures (where part of them are not
f -divergences) for a fixed value of the total variation distance.

A. Tight Bounds on the Bhattacharyya Coefficient

Definition 4: Let P and Q be two probability distributions
that are defined on the same set. The Bhattacharyya coefficient
between P and Q is given by Z(P,Q) ,

∑
x

√
P (x)Q(x).

Proposition 1: Let P and Q be two probability distributions.
Then, for a fixed value ε ∈ [0, 1] of the total variation
distance (i.e., if dTV(P,Q) = ε), the respective Bhattacharyya

coefficient satisfies the inequality 1−ε ≤ Z(P,Q) ≤
√
1− ε2.

Both upper and lower bounds are tight: the upper bound
is attained by the pair of 2-element probability distributions
P =

(
1−ε
2 , 1+ε

2

)
, and Q =

(
1+ε
2 , 1−ε

2

)
, and the lower bound

is attained by the pair of 3-element probability distributions
P = (ε, 1− ε, 0), and Q = (0, 1− ε, ε).

Remark 1: Although derived independently in this work,
Proposition 1 is a known result in quantum information theory
(on the relation between the trace distance and fidelity [21]).

B. A Tight Bound on the Chernoff Information

Definition 5: The Chernoff information between two prob-
ability distributions P and Q, defined on the same set, is

C(P,Q) , − min
λ∈[0,1]

log

(∑
x

P (x)λ Q(x)1−λ

)
where throughout this paper, the logarithms are on base e.

Proposition 2: Let

C(ε) , min
P,Q : dTV(P,Q)=ε

C(P,Q), ∀ ε ∈ [0, 1] (4)

be the minimum of the Chernoff information for a fixed value
ε ∈ [0, 1] of the total variation distance. This minimum indeed
exists, and it is equal to

C(ε) =

{
−1

2 log(1− ε2) if ε ∈ [0, 1)

+∞ if ε = 1.

For ε ∈ [0, 1), it is achieved by the pair of 2-element prob-
ability distributions P =

(
1−ε
2 , 1+ε

2

)
, and Q =

(
1+ε
2 , 1−ε

2

)
.

Outline of the proof: Definition 5 with a possibly sub-
optimal value of λ = 1

2 , and Proposition 1 yield that

C(P,Q) ≥ − log

(∑
x

√
P (x)Q(x)

)
= − logZ(P,Q)

≥ −1

2

(
1−

(
dTV(P,Q)

)2)
. (5)

Consequently, from (4), C(ε) ≥ − 1
2 log(1−ε2) for ε ∈ [0, 1).

It can be verified that the lower bound on C(P,Q) is achieved
for P =

(
1−ε
2 , 1+ε

2

)
, and Q =

(
1+ε
2 , 1−ε

2

)
.

Remark 2: A geometric interpretation of the minimum of
the Chernoff information subject to a minimal total variation
distance has been recently provided in [17, Section 3].

Remark 3 (An Application): From (5), a lower bound on the
total variation distance implies a lower bound on the Chernoff
information; consequently, it provides an upper bound on
the best achievable Bayesian probability of error for binary
hypothesis testing. This approach has been recently used in
[20] to obtain a lower bound on the Chernoff information for
studying a communication problem that is related to channel-
code detection via the likelihood ratio test.



C. A Tight Bound on the Capacitory Discrimination

The capacitory discrimination (a.k.a. the Jensen-Shannon
divergence) is defined as follows:

Definition 6: Let P and Q be two probability distributions.
The capacitory discrimination between P and Q is given by

C(P,Q) , D

(
P || P +Q

2

)
+D

(
Q || P +Q

2

)
= 2

[
H

(
P +Q

2

)
− H(P ) +H(Q)

2

]
.

This divergence measure was studied, e.g., in [14] and [18].
Proposition 3: For every ε ∈ [0, 1),

min
P,Q : dTV(P,Q)=ε

C(P,Q) = 2 d

(
1− ε

2

∣∣∣∣ 1
2

)
(6)

and it is achieved by the 2-element probability distributions
P =

(
1−ε
2 , 1+ε

2

)
, and Q =

(
1+ε
2 , 1−ε

2

)
. In (6),

d(p||q) , p log

(
p

q

)
+ (1− p) log

(
1− p

1− q

)
, p, q ∈ [0, 1],

with the convention that 0 log 0 = 0.
Outline of the proof: In [11, p. 119], C(P,Q) = Df (P∥Q)

with f(t) = t log t− (t+1) log(1+ t)+2 log 2 for t > 0. This
is a symmetric f -divergence where f is convex with f(1) = 0,
f ′(1) = − log 2. Eq. (6) follows from Theorem 1.

D. A Tight Bound on Jeffreys’ divergence

Definition 7: Let P and Q be two probability distributions.
Jeffreys’ divergence [12] is a symmetrized version of the
relative entropy, which is defined as

J(P,Q) , D(P ||Q) +D(Q||P )

2
. (7)

Proposition 4: For every ε ∈ [0, 1),

min
P,Q : dTV(P,Q)=ε

J(P,Q) = ε log

(
1 + ε

1− ε

)
. (8)

The minimum in (8) is achieved by the pair of 2-element
distributions P =

(
1−ε
2 , 1+ε

2

)
and Q =

(
1+ε
2 , 1−ε

2

)
.

Outline of the proof: Jeffreys’ divergence can be expressed
as a symmetric f -divergence where f(t) = 1

2 (t− 1) log t for
t > 0. Note that f is convex, and f(1) = f ′(1) = 0. Eq. (8)
follows from Theorem 1.

III. A BOUND FOR LOSSLESS SOURCE CODING

We illustrate in the following a use of Proposition 4 for
lossless source coding. This tightens, and also refines under a
certain condition, a bound by Csiszár [4].

Consider a memoryless and stationary source with alphabet
U that emits symbols according to a probability distribution
P , and assume a uniquely decodable (UD) code with an
alphabet of size d. It is well known that such a UD code
achieves the entropy of the source if and only if the length
l(u) of the codeword that is assigned to each symbol u ∈ U
satisfies the equality l(u) = − logd P (u) for every u ∈ U .
This corresponds to a dyadic source where, for every u ∈ U ,

we have P (u) = d−nu with a natural number nu; in this
case, l(u) = nu for every symbol u ∈ U . Let L , IE[L]
designate the average length of the codewords, and Hd(U) ,
−
∑

u∈U P (u) logd P (u) be the entropy of the source (to the
base d). Furthermore, let cd,l ,

∑
u∈U d−l(u). According to

the Kraft-McMillian inequality, the inequality cd,l ≤ 1 holds
in general for UD codes, and the equality cd,l = 1 holds if the
code achieves the entropy of the source (i.e., L = Hd(U)).

Define the probability distribution Qd,l(u) ,
(

1
cd,l

)
d−l(u)

for every u ∈ U , and let ∆d , L − Hd(U) designate the
redundancy of the code. Note that for a UD code that achieves
the entropy of the source, its probability distribution P is equal
to Qd,l (since cd,l = 1, and P (u) = d−l(u) for every u ∈ U).

In [4], a generalization for UD source codes has been
studied by a derivation of an upper bound on the L1 norm
between the two probability distributions P and Qd,l as a
function of the redundancy ∆d of the code. To this end,
straightforward calculation shows that the relative entropy
from P to Qd,l is given by

D(P ||Qd,l) = ∆d log d+ log
(
cd,l
)
. (9)

The interest in [4] is in getting an upper bound that only
depends on the (average) redundancy ∆d of the code, but is
independent of the specific distribution of the length of each
codeword. Hence, since the Kraft-McMillian inequality states
that cd,l ≤ 1 for general UD codes, it is concluded in [4] that

D(P ||Qd,l) ≤ ∆d log d. (10)

Consequently, it follows from Pinsker’s inequality that∑
u∈U

∣∣P (u)−Qd,l(u)
∣∣ ≤ min

{√
2∆d log d, 2

}
(11)

where it is also taken into account that, from the triangle
inequality, the sum on the left-hand side of (11) cannot
exceed 2. This inequality is indeed consistent with the fact
that the probability distributions P and Qd,l coincide when
∆d = 0 (i.e., for a UD code which achieves the entropy of
the source).

At this point we deviate from the analysis in [4]. One
possible improvement of the bound in (11) follows by replac-
ing Pinsker’s inequality with the result in [8], i.e., by taking
into account the exact parametrization of the infimum of the
relative entropy for a given total variation distance. This gives
the following tightened bound:∑

u∈U

∣∣P (u)−Qd,l(u)
∣∣ ≤ 2 L−1(∆d log d) (12)

where L−1 is the inverse function of L, given as follows [15]:

L(ε) , inf
P,Q : dTV(P,Q)=ε

D(P ||Q)

= min
β∈[ε−1, 1−ε]

{(
ε+ 1− β

2

)
log

(
β − 1− ε

β − 1 + ε

)
+

(
β + 1− ε

2

)
log

(
β + 1− ε

β + 1 + ε

)}
.

(13)



It can be verified that the numerical minimization w.r.t. β in
(13) can be restricted to the interval [ε− 1, 0] (it is calculated
numerically).

In the following, the utility of Proposition 4 is shown by
refining the bound in (12). Let δ(u) , l(u) + logd P (u) for
every u ∈ U . Calculation of the dual divergence gives

D(Qd,l||P ) = − log
(
cd,l
)
−
(
log d

cd,l

)
IE
[
δ(U) d−δ(U)

]
(14)

and the combination of (7), (9) and (14) yields that

J(P,Qd,l) =
1

2

[
∆d log d−

(
log d

cd,l

)
IE
[
δ(U) d−δ(U)]] . (15)

For the simplicity of the continuation of the analysis, we
restrict our attention to UD codes that satisfy the condition

l(u) ≥
⌈
logd

1

P (u)

⌉
, ∀u ∈ U . (16)

In general, it excludes Huffman codes; nevertheless, it is sat-
isfied by some other important UD codes such as the Shannon
code, Shannon-Fano-Elias code, and arithmetic coding. Since
(16) is equivalent to the condition that δ is non-negative on
U , it follows from (15) that

J(P,Qd,l) ≤
∆d log d

2
(17)

so, the upper bound on Jeffreys’ divergence in (17) is twice
smaller than the upper bound on the relative entropy in (10). It
is partially because the term log cd,l is canceled out along the
derivation of the bound in (17), in contrast to the derivation
of the bound in (10) where this term was removed from the
bound in order to avoid its dependence on the length of the
codeword for each individual symbol.

Following Proposition 4, for an arbitrary x ≥ 0, let ε , ε(x)
be the solution in the interval [0, 1) of the equation

ε log

(
1 + ε

1− ε

)
= x. (18)

The combination of (8) and (17) implies that∑
u∈U

∣∣P (u)−Qd,l(u)
∣∣ ≤ 2 ε

(
∆d log d

2

)
. (19)

In the following, the bounds in (12) and (19) are compared
analytically for the case where the average redundancy is small
(i.e., ∆d ≈ 0). Under this approximation, the bound in (11)
(i.e., the original bound from [4]) coincides with its tightened
version in (12). On the other hand, since for ε ≈ 0, the left-
hand side of (18) is approximately 2ε2, it follows from (18)
that, for x ≈ 0, we have ε(x) ≈

√
x
2 . It follows that, if

∆d ≈ 0, inequality (19) gets approximately the form∑
u∈U

∣∣P (u)−Qd,l(u)
∣∣ ≤√∆d log d.

Hence, even for a small redundancy, the bound in (19)
improves (11) by a factor of

√
2.

A numerical comparison of the bounds in (11), (12) and
(19) is provided in the journal paper, see [16, Figure 2].

Remark 4: Another application of Jeffreys’ divergence has
been recently studied in [1, Section 5] where the mutual
information I(X;Y ) = D(PX,Y ∥PXPY ) has been upper
bounded by the symmetrized divergence

Dsym(PX,Y ∥PXPY ) = D(PX,Y ∥PXPY ) +D(PXPY ∥PX,Y )

= 2J(PX,Y , PXPY ).

Consequently, the channel capacity satisfies the upper bound
C = maxPX I(X;Y ) ≤ 2maxPX J(PX,Y , PXPY ). This
provides a good bound on the channel capacity in the low SNR
regime (see [1, Section 5]). It has been applied in [1, Section 6]
to obtain a bound on the capacity of a linear-time invariant
Poisson channel; this bound is improved by increasing the
parameter of the background noise (λ0) [1].

IV. A NEW INEQUALITY RELATING f -DIVERGENCES

We introduce in the following an inequality which relates
f -divergences, and its use is exemplified. This inequality is
proved here since it is not included in the journal paper [16].

Recall the following definition of the χ2-divergence.
Definition 8: The chi-squared divergence between two prob-

ability distributions P and Q on a set A is given by

χ2(P,Q) ,
∑
x∈A

(
P (x)−Q(x)

)2
Q(x)

=
∑
x∈A

P (x)2

Q(x)
− 1 . (20)

The chi-squared divergence is an asymmetric f -divergence
where f(t) = (t− 1)2 for t ≥ 0.

Proposition 5: Let f : (0,∞) → IR be a convex func-
tion with f(1) = 0 and further assume that the function
g : (0,∞) → IR, defined by g(t) = −tf(t) for every t > 0, is
also convex. Let P and Q be two probability distributions on
a finite set A, and assume that P,Q are positive on this set.
Then, the following inequality holds:

min
x∈A

P (x)

Q(x)
·Df (P ||Q)

≤ −Dg(P ||Q)− f
(
1 + χ2(P,Q)

)
≤ max

x∈A

P (x)

Q(x)
·Df (P ||Q). (21)

Proof Let A =
{
x1, . . . , xn

}
, and u = (u1, . . . , un) ∈ IRn

+

be an arbitrary n-tuple with positive entries. Define

Jn(f, u, P ) ,
n∑

i=1

P (xi) f(ui)− f

(
n∑

i=1

P (xi)ui

)
. (22)

The following refinement of Jensen’s inequality appears in [7,
Theorem 1] for a convex function f : (0,∞) → IR, and it has
been extended in [2, Theorem 1] to hold for a convex f over
an arbitrary interval [a, b]:

min
i∈{1,...,n}

{
P (xi)

Q(xi)

}
Jn(f, u,Q) ≤ Jn(f, u, P )

≤ max
i∈{1,...,n}

{
P (xi)

Q(xi)

}
Jn(f, u,Q). (23)



The refined version of Jensen’s inequality in (23) is applied in
the following to prove (21). Let ui , P (xi)

Q(xi)
for i ∈ {1, . . . , n}.

Calculation of (22) gives that

Jn(f, u,Q) =

n∑
i=1

Q(xi) f

(
P (xi)

Q(xi)

)
− f

(
n∑

i=1

Q(xi) ·
P (xi)

Q(xi)

)

=
∑
x∈A

Q(x) f

(
P (x)

Q(x)

)
− f(1) = Df (P ||Q), (24)

Jn(f, u, P ) =

n∑
i=1

P (xi) f

(
P (xi)

Q(xi)

)
− f

(
n∑

i=1

P (xi)
2

Q(xi)

)
(a)
= −

n∑
i=1

Q(xi) g

(
P (xi)

Q(xi)

)
− f

(
n∑

i=1

P (xi)
2

Q(xi)

)
(b)
= −Dg(P ||Q)− f

(
1 + χ2(P,Q)

)
(25)

where equality (a) holds by the definition of g, and equality (b)
follows from equalities (2) and (20). The substitution of (24)
and (25) in (23) completes the proof.

As a consequence of Proposition 5, we introduce the fol-
lowing inequality which relates between the relative entropy,
its dual and the chi-squared divergence.

Corollary 1: Let P and Q be two probability distributions
on a finite set A, and assume that P,Q are positive on A.
Then, the following inequality holds:

min
x∈A

P (x)

Q(x)
·D(Q||P )

≤ log
(
1 + χ2(P,Q)

)
−D(P ||Q)

≤ max
x∈A

P (x)

Q(x)
·D(Q||P ). (26)

Proof Let f(t) = − log(t) for t > 0. The function
f : (0,∞) → IR is convex with f(1) = 0, and g(t) =
−tf(t) = t log(t) for t > 0 defines a convex function with
g(1) = 0. Inequality (26) follows by substituting f, g in (21)
where Df (P ||Q) = D(Q||P ) and Dg(P ||Q) = D(P ||Q).

Remark 5: Inequality (26) strengthens the inequality

χ2(P,Q) ≥ eD(P ||Q) − 1 (27)

which is derived by using Jensen’s inequality as follows [6]:

χ2(P,Q) =
∑
x∈A

{
P (x)elog(

P (x)
Q(x) )

}
− 1

≥ e
∑

x∈A P (x) log(P (x)
Q(x) ) − 1

= eD(P ||Q) − 1.

The following inequality is another consequence of Propo-
sition 5, relating the chi-squared divergence and its dual:

Corollary 2: Under the same conditions of Corollary 1, the
following inequality holds:

min
x∈A

P (x)

Q(x)
· χ2(Q,P ) ≤ χ2(P,Q)

1 + χ2(P,Q)
≤ max

x∈A

P (x)

Q(x)
· χ2(Q,P ).

Proof This follows from Proposition 5 where f(t) = 1
t − 1,

and g(t) = −tf(t) = t− 1 for t > 0. Consequently, we have
Dg(P ||Q) = 0, Df (P ||Q) = χ2(Q,P ).
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