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Abstract

We derive upper and lower bounds on the encoding and decoding complexity of two capacity-achieving
ensembles of irregular repeat-accumulate (IRA1 and IRA2) codes on the binary erasure channel (BEC).
These bounds are expressed in terms of the gap between the channel capacity and the rate of a typical code
from this ensemble for which reliable communications is achievable under message-passing iterative (MPI)
decoding. The complexity of the ensemble of IRA1 codes grows like the negative logarithm of the gap to
capacity. On the other hand, the complexity of the ensemble of IRA2 codes with any choice of the degree
distribution grows at least like the inverse square root of the gap to capacity, and at most like the inverse of
the gap to capacity.

Index Terms – Channel capacity, complexity, density evolution, erasure channel, irregular repeat-
accumulate (IRA) codes, low-density parity-check (LDPC) codes, message-passing iterative (MPI)
decoding.

1 Introduction

In recent years, there has been an exciting development in constructing low-complexity error-
correction codes which closely approach the capacity of many standard communication channels.
These codes are usually defined on sparse graphs and decoded by a message-passing iterative (MPI)
algorithm. In spite of the sub-optimality of the decoding algorithm, it is well known that there
exist ensembles of codes which closely approach the capacity of memoryless binary-input output-
symmetric (MBIOS) channels with feasible complexity.

∗The paper will appear in the IEEE Trans. on Information Theory, vol. 50, no. 6, June 2004. It was submitted
on April 12, 2003, and revised on January 12, 2004. The paper was presented in part at the Third International
Symposium on Turbo Codes & Related Topics, Brest, France, September 1–5, 2003.
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In [3, 5], Khandekar and McEliece have suggested to study the encoding and decoding complexity
of ensembles of codes whose transmission takes place over an MBIOS channel. They were especially
interested to explore the growth rate of the complexity under MPI decoding when the gap between
the channel capacity and the achievable rate of these codes vanishes. They conjectured that if
the achievable rate under MPI decoding is a fraction 1 − ε of the channel capacity, then for a
wide class of channels, the encoding complexity scales like ln 1

ε and the decoding complexity scales
like 1

ε ln 1
ε . However, there is one exception: for low-density parity-check (LDPC) codes whose

transmission takes place over a binary erasure channel (BEC), the decoding complexity under the
MPI algorithm behaves like ln 1

ε (same as encoding complexity) [6, 8]. This is true since for a BEC,
the MPI decoding algorithm can be modified so that each edge is only used once (due to the absolute
reliability of information which is not erased by the BEC). For a general MBIOS channel however,
one has to consider the average number of iterations which are required for successful decoding;
under MPI decoding, this number was conjectured to scale like 1

ε . It was stated in [3] and proved in
[4] that the encoding and decoding complexity of the ensemble of right-regular systematic repeat-
accumulate codes behave like 1

ε , which yields a significantly larger complexity as compared to the
logarithmic behavior of the complexity of LDPC codes on the BEC [6, 8]. Khandekar and McEliece
have conjectured (see Conjecture 1 in [3]) that for the ensemble of systematic IRA codes (which
are named here IRA1 codes), there is a choice of degree distributions for which the complexity
on the BEC scales like ln 1

ε (i.e., the same logarithmic behavior as for the complexity of LDPC
codes). In this paper we prove their conjecture, and also derive a probabilistic lower bound on the
complexity of the ensemble of IRA1 codes. We prove in this paper that with high probability (as
the block length of the codes goes to infinity), the encoding and decoding complexity of the IRA1
ensemble under MPI decoding behaves like O

(
ln 1

ε

)
. For a second ensemble which we consider in

this paper (called the IRA2 ensemble), we show that for a certain choice of the degree distribution,
the complexity on the BEC behaves like O

(
1
ε

)
, but it cannot be reduced by any degree distribution

below O
(

1√
ε

)
(the latter statement is true with high probability, as the block length goes to

infinity.) This indicates that although for a certain pair of degree distributions the ensemble of
systematic IRA codes achieves under MPI decoding a complexity which scales like ln 1

ε , there are
some other ensembles of IRA codes, for which this logarithmic behavior of the complexity cannot
be achieved by any degree distribution. These results are summarized in Table 1.

Complexity (χ) General Ensembles Right-Regular Ensembles

IRA1 Codes χ = O
(
ln 1

ε

)
χ ≤ O

(
1
ε

)

IRA2 codes O
(

1√
ε

)
≤ χ ≤ O

(
1
ε

)
O

(
1√
ε

)
≤ χ ≤ O

(
1
ε

)

LDPC Codes χ = O
(
ln 1

ε

)
χ = O

(
ln 1

ε

)

Table 1: Bounds on the encoding and the decoding complexity (χ) of general and right-regular
ensembles of IRA and LDPC codes. The bounds refer to MPI decoding on the BEC. The bounds
on the growth rate of the complexity are depicted as the gap ε between the channel capacity and
the achievable rate of these codes vanishes.

Throughout the paper, we use interchangably the terms ’rate’ and ’design rate’ for an ensemble
of LDPC or IRA codes; the latter term forms a lower bound on the actual rate of codes in the
ensemble. Therefore, if the design rate of an ensemble is at least 1− ε of the channel capacity, then
clearly the same is also true for the rate of a code from this ensemble.

The paper is organized as follows: Section 2 provides the main results, Section 3 presents the
two ensembles of IRA codes which achieve the capacity of the BEC under MPI decoding and
whose encoding/ decoding complexity is considered in this paper, Section 4 proves the theorems
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in this paper, and Section 5 provides numerical results for the upper and lower bounds on the
complexity of ensembles of IRA codes. Section 6 concludes our discussion, and an appendix provides
supplementary mathematical details about the proof in Section 4.2.

2 Main Results

Definition 1. Let {Cm} be a sequence of binary linear codes of rate Rm, and assume that for every
m, the codewords of the code Cm are transmitted with equal probability over a BEC whose capacity
is C. This sequence is said to achieve a fraction 1 − ε of the channel capacity with vanishing bit
erasure probability if limm→∞Rm = (1− ε)C, and if there exists a decoding algorithm under which
the average bit erasure probability of the code Cm tends to zero in the limit where m →∞.

Definition 2. Let C be an ensemble of LDPC or IRA codes whose degree distributions λ(·) and
ρ(·) can be chosen arbitrarily, subject to possibly some constraints. The encoding and the decoding
complexity are defined to be the average number of operations per information bit which are required
for encoding and decoding in order to achieve a fraction 1−ε of the channel capacity with vanishing
bit erasure probability. The encoding and the decoding complexity are with respect to the best
ensemble (i.e., for the optimized pair of degree distributions), and refer to the average complexity
over this ensemble (as the block length of the codes tends to infinity, the complexity of a typical
code from this ensemble concentrates to the average complexity). We denote the encoding and the
decoding complexity by χE(ε, C) and χD(ε, C), respectively.

Theorem 1. Consider the ensemble of IRA1 codes which are decoded on a BEC under MPI
decoding. Then in the limit where the block length goes to infinity

χE(ε, IRA1), χD(ε, IRA1) >
K1 + K2 ln

(
1
ε

)

1− ε
(1)

where

K1 =
p

1− p

ln
(

p
1−p

)

ln
(

1
1−p

) , K2 =
p

1− p

1

ln
(

1
1−p

) (2)

and p designates the bit-erasure probability of the BEC.

Theorem 2. In the limit where the block length of the ensemble of IRA1 codes goes to infinity,
the encoding and decoding complexity under MPI decoding satisfy

χE(ε, IRA1), χD(ε, IRA1) = O

(
ln

1
ε

)
. (3)

More specifically, under MPI decoding

χE(ε, IRA1), χD(ε, IRA1) ≤ K3 + K4 ln
(

1
ε

)

1− ε
(4)

where K3 and K4 are constants which only depend on the erasure probability (p) of the BEC.1

Theorem 3. Consider the ensemble of IRA2 codes which are decoded on a BEC under MPI
decoding. Then in the limit where the block length goes to infinity

O

(
1√
ε

)
≤ χE(ε, IRA2), χD(ε, IRA2) ≤ O

(
1
ε

)
. (5)

1The constants K3 and K4 are explicitly determined in the proof of Theorem 2 in Section 4. Numerical values of
these constants and their comparison with the constants in Eq. (2) is shown later in Section 5.
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3 Ensembles of IRA Codes

We introduce here two ensembles of irregular repeat-accumulate (IRA) codes, and assume that
their transmission takes place over a BEC. We present the density evolution equations of these
ensembles under MPI decoding. The IRA1 ensemble was presented in [2] and is reviewed here only
briefly. On the other hand, the IRA2 ensemble is new, and is presented here in detail.

Using standard notations, an ensemble of IRA codes is characterized by its block length n, the inter-
leaver which separates between the outer and inner codes, and the polynomials λ(x) =

∑∞
i=1 λix

i−1

and ρ(x) =
∑∞

i=1 ρix
i−1, where λi (ρi) is equal to the probability that a randomly chosen edge

(among the edges that connect the variable nodes and the check nodes) is connected to a variable
(check) node of degree i. The structure of IRA codes is depicted in Fig. 1. Let

L(x) =
∞∑

i=1

Lix
i , R(x) =

∞∑

i=1

Rix
i

where Li and Ri designate the probability that an information node or a check node has degree i
(see Fig. 1). It is easy to show that

L(x) =

∫ x
0 λ(t) dt∫ 1
0 λ(t) dt

, R(x) =

∫ x
0 ρ(t) dt∫ 1
0 ρ(t) dt

. (6)

Throughout the analysis in this paper which refers to the asymptotic case where n → ∞, we
consider a random interleaver which is chosen uniformly among all interleavers of length n.

3.1 IRA1 Codes (Systematic IRA Codes)

The ensemble of systematic IRA codes was introduced in [2] and [4]. It is easy to show that the
rate of the ensemble of IRA1 codes is

RIRA1 =
1

1 +

∫ 1
0 ρ(x) dx∫ 1
0 λ(x) dx

. (7)

The schedule of the messages under MPI decoding in [2] involves doing a forward/ backward
recursion on the ”accumulate” portion of the graph, and a single update on the ”repeat” portion of
the graph. Though the authors of [2] did not describe this subtlety, it is implicit in their derivation.
Based on the density evolution equations of the ensemble of IRA1 codes, a fixed point of the the
bit erasure probability under MPI decoding satisfies the equation [2]

x = p λ

(
1−

(
1− p

1− p R(1− x)

)2

ρ(1− x)

)
. (8)

If Eq. (8) has no solution in the interval (0, p], then the bit erasure probability under MPI decoding
must converge to zero as the number of iterations grows (under the assumption that the block
length of these codes tends to infinity).

3.2 IRA2 Codes

We consider here an ensemble of IRA codes where every information bit of these interleaved serially
concatenated codes is repeated by the outer code a number of times which varies between 2 and
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Figure 1: The Tanner graph of IRA1 codes. Li and Ri designate the probability that an information
node or a check node have degree i with respect to the edges that connect information nodes with
check nodes (if the degree of a check node is i, then i + 2 edges emanate from this check node, due
to the two additional edges which connect this check node with two parity nodes). For the IRA2
ensemble, there is only one edge between every check node and the information nodes (so basically
R1 = 1 and Ri = 0 for i ≥ 2), and part of the information bits and parity bits are punctured (with
possibly different puncturing rates, rs and rp, respectively). Fig. 1 was reproduced from [2] with
the appropriate modifications.

a certain maximal number (q), subject to an arbitrary probability distribution. The inner code
is a differential encoder, and the interleaver separating between these two component codes is
uniform. Finally, the information (systematic) bits and the parity bits are randomly punctured,
with possibly different puncturing rates (designated by rs and rp, respectively). Referring to Fig. 1,
the IRA2 codes are decoded by an MPI decoding algorithm, where the scheduling of the messages
which are transmitted through the edges of the Tanner graph is as follows: the messages are
transmitted through the edges emanating from the parity nodes to the check nodes, and then they
are transmitted through the edges emanating from the check nodes to the information nodes (where
every check node is connected by an edge to a single information node, since the inner code of the
IRA2 codes is a differential encoder). The messages are then transmitted back through the edges
emanating from the information nodes to the check nodes, and finally they are transmitted back
through the edges emanating from the check nodes to the parity nodes. Since we consider the BEC
which is error-free, we assume that the message-passing decoding algorithm uses every edge only
once: after passing a message through an edge in the graph (which is of absolute certainty for the
BEC), this edge is removed from the graph.
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We note that the ensemble of regular RA codes [1] is a particular case of the IRA2 ensemble for
the specific case of an outer code which repeats the information bits a constant number of times
(q) and by setting: rs = 1, rp = 0 (i.e., in the case where all the information bits are punctured and
all the parity bits are transmitted). It can be easily verified that the rate of the IRA2 ensemble is

RIRA2 =
1

1− rs +
1− rp∫ 1

0
λ(x) dx

. (9)

We introduce now the density evolution equations for the IRA2 ensemble under MPI decoding.
Let p be the erasure probability of the BEC. We will iterate the probability of erasure along the
edges of the graph during the course of the algorithm. Referring to the lth iteration of the decoding
algorithm, let xl be the probability of erasure on an edge from a parity node to a check node, let
ul be the probability of erasure on an edge from a check node to an information node, let vl be
the probability of erasure on an edge from an information node to a check node, and let wl be the
probability of erasure on an edge from a check node to a parity node. Then in the asymptotic case
where the block length tends to infinity, and the messages are statistically independent, we obtain
the following equations from the Tanner graph of the IRA2 ensemble

ul = 1− (1− xl)2

vl = p1 λ(ul)
wl = 1− (1− xl)(1− vl)
xl+1 = p2 wl

(10)

where
p1 = 1− (1− p)(1− rs), p2 = 1− (1− p)(1− rp) (11)

are the effective probabilities of erasure of the information bits and the parity bits, respectively,
caused either by the BEC or the puncturing of the code. Clearly, we have the two trivial extreme
cases in (11): if the code is not punctured, then p1,2 = p, and on the other hand, if all the bits are
punctured (i.e., rs = rp = 1) then p1,2 = 1.

Based on the density evolution equations in (10), it follows that

xl+1 = f(xl, p1, p2) l = 0, 1, 2, . . . (12)

where the initial value is x0 = p2, and

f(x, p1, p2) = p2

(
1− (1− x)

(
1− p1 λ

(
1− (1− x)2

)))
. (13)

By calculating the first derivative of the right side of (13) w.r.t. x at zero, it follows immediately
that the stability condition for the IRA2 ensemble under MPI decoding is

(
1 + 2p1λ

′(0)
)

p2 < 1. (14)

From the recursive equation (12), then for a given polynomial λ(·), the resulting threshold on the
BEC is the supremum over the values of p for which f(x, p1, p2) < x , ∀x : 0 < x ≤ p2.

The substitution x = 1−√1− u transforms the above inequality to

λ(u) <
1
p1

(
1
p2
− 1

)(
1√

1− u
− 1

)
, ∀u : 0 < u ≤ 1− (1− p2)2 (15)

or equivalently
∞∑

i=2

λiu
i−1 <

1
p1

(
1
p2
− 1

) ∞∑

i=1

{
1
4i

(
2i

i

)
ui

}
, ∀u : 0 < u ≤ 1− (1− p2)2. (16)
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4 Proofs of the Theorems

4.1 Proof of Theorem 1

We derive here a lower bound on the encoding and decoding complexity of IRA1 codes where the
transmission takes place over a BEC with an erasure probability p, and the codes are iteratively
decoded with an MPI decoding algorithm. Based on Eq. (8), in order to achieve vanishing bit
erasure probability as the number of iterations tends to infinity, we require that

p λ

(
1−

(
1− p

1− p R(1− x)

)2

ρ(1− x)

)
< x ∀ 0 < x ≤ p. (17)

By dividing both sides of Eq. (17) by p, taking the inverse of λ(·) from both sides of the inequality
(since λ(·) is a monotonic increasing function, then also λ−1(·) is monotonic increasing), and finally
integrating from x = 0 to x = p, we obtain that

p−
∫ p

0

(
1− p

1− p R(1− x)

)2

ρ(1− x) dx <

∫ p

0
λ−1

(
x

p

)
dx. (18)

Since λ(0) = 0 and λ(1) = 1, the substitution x = pλ(u) and integration by parts give
∫ p

0
λ−1

(
x

p

)
dx = p

∫ 1

0
u λ′(u) du

= p

(
uλ(u)

∣∣∣
1

u=0
−

∫ 1

0
λ(u) du

)

= p

(
1−

∫ 1

0
λ(u) du

)
.

The substitution of the latter equality in the right-hand side of Eq. (18) gives
∫ 1

0
λ(u) du <

(1− p)2

p

∫ p

0

ρ(1− x)(
1− p R(1− x)

)2 dx . (19)

Based on Eq. (6), it follows that

ρ(1− x) = −
∫ 1

0
ρ(t) dt · d

dx

[
R(1− x)

]
, (20)

and from the substitution of Eq. (20) in the right-hand side of Eq. (19), one obtains that
∫ p

0

ρ(1− x)(
1− p R(1− x)

)2 dx = −
∫ 1

0
ρ(x) dx ·

∫ p

0

1(
1− p R(1− x)

)2 ·
d
dx

[
R(1− x)

]
dx

=
∫ 1

0
ρ(x) dx ·

∫ 1

R(1−p)

du

(1− pu)2
(since R(1) = 1)

=
1

1− p

1−R(1− p)
1− p R(1− p)

·
∫ 1

0
ρ(x) dx .

(21)

The substitution of Eq.(21) in the right-hand side of Eq. (19) gives
∫ 1

0
λ(u) du <

1− p

p

1−R(1− p)
1− p R(1− p)

·
∫ 1

0
ρ(x) dx . (22)

7



The rate of the ensemble of IRA1 codes is given in Eq. (7), so from Eqs. (7) and (22)

R IRA1 <
1

1
1− p

+
p R(1− p)

1−R(1− p)

. (23)

If a fraction 1 − ε of the capacity is achieved with vanishing bit erasure probability under MPI
decoding, then

R IRA1 = (1− ε)(1− p) (24)

which yields from Eq. (23) that
R(1− p) <

ε

p(1− p)
. (25)

From Jensen’s inequality,

R(1− p) =
∑

i

Ri(1− p)i ≥ (1− p)aR aR ,
∑

i

iRi

which yields from Eq. (25) that for an arbitrary ensemble of IRA1 codes (i.e., for any choice of
their degree distributions)

aR >
ln

(
p(1−p)

ε

)

ln
(

1
1−p

) . (26)

The encoding of IRA1 codes is equivalent to the following two steps: first, sets of information bits
are repeated and interleaved, and then the resulting bits are differentially encoded. The number of
operations which are required for encoding IRA1 codes is therefore equal to the number of edges in
the Tanner graph which represents the code (see Fig. 1). Since the MPI decoder can be modified for
a BEC so that every edge in the graph is only used once, then the number of operations which are
required for decoding IRA1 codes is equal to the number of edges in the Tanner graph. Therefore,
the encoding and decoding complexity of IRA1 codes on a BEC are the same, and their common
value is equal to the average number of edges in the graph normalized per information bit.
The average number of edges in the graph when normalized per check node is aR + 2 (see Fig. 1),
so the average number of edges normalized per information bit is equal to

(
1−R IRA1

R IRA1

)
· (aR + 2) .

The substitution of Eqs. (24) and (26) in the latter result finally gives

χE(ε, IRA1), χD(ε, IRA1) =
(

1−R IRA1

R IRA1

)
· (aR + 2)

>
1− (1− p)(1− ε)

(1− p)(1− ε)


 ln

(
p(1−p)

ε

)

ln
(

1
1−p

) + 2




>
p

(1− p)(1− ε)
·
ln

(
p

ε(1−p)

)

ln
(

1
1−p

)

=
K1 + K2 ln

(
1
ε

)

1− ε

which proves the lower bound in Eq. (1) with the coefficients K1 and K2 in Eq. (2). We note that
the concept of the derivation of the lower bound on aR in Eq. (26) is similar to the derivation of
Shokrollahi for LDPC codes [8] (except for the modifications which are required to adapt the proof
to IRA1 codes; these modifications stem from the difference between Eqs. (7) and (8) and their
parallels for LDPC codes).

8



4.2 Proof of Theorem 2

The concept of the beginning of this proof is similar to the proof in Section 3.4.2 of [4]. However,
[4] refers to the right-regular ensemble of IRA1 codes whose encoding and decoding complexity on
the BEC behave like O

(
1
ε

)
(see Section 3.6 in [4]), and here we analyze the ensemble of IRA1 codes

with another pair of degree distributions. For the latter choice of degree distributions, we prove
that the encoding and decoding complexity of the IRA1 ensemble behave like O

(
ln 1

ε

)
. For the

derivation of the upper bound on the complexity of the IRA1 ensemble, we choose the right degree
distribution of the edges which connect between check nodes and information nodes in the Tanner
graph (see Fig. 1) to be

ρ(x) = eα(x−1) α > 0. (27)

The recursive equation (8) refers to the bit erasure probability of the ensemble of IRA1 codes which
are transmitted on a BEC and are iteratively decoded by an MPI decoding algorithm. In order to
achieve vanishing bit erasure probability as the number of iterations tends to infinity, we require
that the condition in Eq. (17) will be fulfilled. The latter condition is automatically fulfilled for
x ∈ (p, 1), so without any loss of generality, one can extend the validity of (17) for x ∈ (0, 1). Based
on Eqs. (6) and (27), the right degree distribution of the check nodes in the graph is

R(x) =
eα(x−1) − e−α

1− e−α
α > 0. (28)

Let us denote by fp(x) the argument of λ(·) in the left-hand side of Eq. (17). Based on Eqs. (17),
(27) and (28)

fp(x) = 1−
(

1− p

1− p
(

e−αx−e−α

1−e−α )

)2

e−αx (29)

and Eq. (17) gets the form
p λ (fp(x)) < x ∀ x ∈ (0, 1). (30)

In general, we would like to expand f−1
p (x) in a power series and to choose λ(x) to be a suitably

truncated version of this power series. For simplifying the analysis in the continuation, we define
an auxiliary function hp(x) as

hp(x) = 1−
(

1− p

1− p
(
1− z(x)

)
)2 (

1− z(x)
)

z(x) = 1− e−αx − e−α

1− e−α
. (31)

Since e−αx−e−α

1−e−α < e−αx for α > 0 and x > 0, then it follows that fp(x) < hp(x) for x ∈ (0, 1), so
the requirement in Eq. (30) is replaced by the stronger requirement

p λ (hp(x)) < x ∀ x ∈ (0, 1). (32)

Lemma 1. For every α > 0, the function gp(x) , h−1
p (x) has a power series expansion with

non-negative coefficients around x = 0.

Proof. See Appendix A.1.

Let gp(x) =
∑∞

i=1 gp,ix
i, and let us choose the left degree distribution of the IRA1 ensemble to be

λ(x) =
1
p

(
N−1∑

i=1

gp,ix
i + µxN

)
. (33)
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where based on Lemma 1, the coefficients gp,i for i ≥ 1 are positive. The parameters N and µ in
Eq. (33) are uniquely determined so that

N−1∑

i=1

gp,i + µ = p, 0 < µ < gp,N . (34)

For the choice of λ(·) in Eq. (33) we obtain from Lemma 1 that

pλ(x) < gp(x) = h−1
p (x) < f−1

p (x)

where the last inequality follows because fp(x) < hp(x) for x ∈ (0, 1). This implies that the
condition in Eq. (30) is fulfilled, so as the number of iterations tends to infinity, the IRA1 ensemble
achieves vanishing bit erasure probability under MPI decoding.

Based on Eqs. (7), (27) and (33), the rate of the considered ensemble of IRA1 codes is

RIRA1 =
1

1 +
p(1− e−α)

α

(
N−1∑

i=1

gp,i

i + 1
+

µ

N + 1

)−1 . (35)

Since
N−1∑

i=1

gp,i

i + 1
+

µ

N + 1
(a)
>

N−1∑

i=1

gp,i

i + 1

=
∞∑

i=1

gp,i

i + 1
−

∞∑

i=N

gp,i

i + 1

=
∫ 1

0
gp(x) dx−

∞∑

i=N

gp,i

i + 1
(b)

≥
∫ 1

0
gp(x) dx− 1

N + 1

∞∑

i=N

gp,i

(c)

≥
∫ 1

0
gp(x) dx− gp(1)

N + 1

(d)
=

∫ 1

0
gp(x) dx− 1

N + 1

where inequality (a) follows from Eq. (34), inequalities (b) and (c) follow from Lemma 1, and
equality (d) follows from Eq. (31) and since gp(·) is the inverse function of hp(·), and on the other
hand

N−1∑

i=1

gp,i

i + 1
+

µ

N + 1
(a)
<

N∑

i=1

gp,i

i + 1

(b)
<

∞∑

i=1

gp,i

i + 1

=
∫ 1

0
gp(x) dx

where inequalities (a) and (b) follow from the same reasoning as above, then we obtain from Eq. (35)
and the latter two chains of inequalities that

1

1 +
p(1− e−α)

α

(∫ 1

0
gp(x) dx− 1

N + 1

)−1 < RIRA1 <
1

1 +
p(1− e−α)

α

(∫ 1

0
gp(x) dx

)−1 . (36)
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For an arbitrary positive value of α, since the function gp(·) is the inverse of the function hp(·)
in Eq. (31) (and vice versa), these functions are monotonic increasing in the interval [0, 1], and
hp(0) = 0 and hp(1) = 1, then for α > 0

∫ 1

0
gp(x) dx = 1−

∫ 1

0
hp(x) dx

=
∫ 1

0


 1− p

1− p
(

e−αx−e−α

1−e−α

)



2

e−αx − e−α

1− e−α
dx

and the substitution u =
e−αx − e−α

1− e−α
gives the equality

∫ 1

0
gp(x) dx =

(1− p)2(1− e−α)
α

∫ 1

0

u

(1− pu)2
1

e−α + u(1− e−α)
du. (37)

Lemma 2. The parameter N in the left-hand side of Eq. (36) grows at least exponentially in α,
and in particular

N > ln
(p

x

)
· (eαx − 1) ∀ x ∈ (0, p). (38)

Proof. See Appendix A.2.

It is now easy to show that the ensemble of IRA1 codes with the degree distributions in Eqs. (27)
and (33) achieves the capacity of the BEC with vanishing bit erasure probability in the limit where
α →∞ and the block length tends to infinity. To show this, we first observe that based on Lemma 2,
N grows at least exponentially in α as α →∞, so we obtain from Eqs. (36) and (37) that

lim
α→∞RIRA1 = lim

α→∞
1

1 +
p(1− e−α)

α

(∫ 1

0
gp(x) dx

)−1

= lim
α→∞

1

1 +
p

(1− p)2

(∫ 1

0

u

(1− pu)2
1

e−α + u(1− e−α)
du

)−1

=
1

1 +
p

(1− p)2

(∫ 1

0

du

(1− pu)2

)−1

= 1− p.

For achieving a fraction 1− ε of the channel capacity with vanishing bit erasure probability under
MPI decoding, we need that the ensemble rate of the IRA1 codes will be at least (1 − ε)(1 − p).
From the left-hand side of Eq. (36) and the latter requirement, it follows that it is sufficient to
require that the lower bound on the rate of the IRA1 ensemble is at least (1−ε)(1−p), which gives
the inequality

α

p(1− e−α)

(∫ 1

0
gp(x) dx− 1

N + 1

)
≥

(
1

(1− ε)(1− p)
− 1

)−1

.

Since 1
1−ε > 1 + ε for 0 < ε < 1, then the latter inequality can be replaced by the stronger

requirement
α

p(1− e−α)

(∫ 1

0
gp(x) dx− 1

N + 1

)
>

1− p

p + ε
. (39)

In order to proceed in our analysis, we need the following lemma.
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Lemma 3. For any α > max
(

ln 2, ln
(

1
1−p

))

α

1− e−α

∫ 1

0
gp(x) dx > 1− p− 8

(
1− p

1 + p

)2

αe−α . (40)

Proof. See Appendix A.3.

From Eq. (40), it follows that the requirement in Eq. (39) can be strengthened to

1− p

p
− 8

p

(
1− p

1 + p

)2

αe−α − α

p(1− e−α)
1

N + 1
>

1− p

p + ε

which can be further strengthened to the requirement

8(1− p)
(1 + p)2

· αe−α +
2α

1− p

1
N + 1

<
ε

p + 1
(41)

since 1
1−e−α < 2 for α > ln 2, and also ε

p+1 < ε
ε+p for 0 < ε < 1.

Based on Eq. (38), if we substitute x = p− η where 0 < η < p, then we obtain a lower bound on N

N > ln
(

p
p−η

)
· (eα(p−η) − 1

)

> eα(p−η)
(
1− 2−(p−η)

) · ln
(

p
p−η

) (42)

where the latter inequality is valid for α > ln 2. From Eq. (42), we replace the condition in (41) by
the stronger condition

8(1− p)
(1 + p)2

· αe−α +
2α

1− p

e−α(p−η)

ln
(

p
p−η

) (
1− 2−(p−η)

) <
ε

p + 1
. (43)

Let η be in the interval (0, p
2). It can be easily verified that for α > 0, the second term in the

left-hand side of Eq. (43) is bigger than the first term, and since both terms are positive for α > 0,
then we can replace the requirement in (43) by the stronger condition

α e−α(p−η) <
ε

c
(44)

where c is equal to

c , 4(1 + p)

(1− p) ln
(

p
p−η

) 1
1− 2−(p−η)

. (45)

Let α0 = α0(η) be the minimal positive number so that α < eαη for α > α0. It can be easily
verified that since η < 1

2 then 1
2η ln

(
1
η

)
< α0 < 2

η ln
(

1
η

)
.2 It follows that if α > 2

η ln
(

1
η

)
, then the

requirement in Eq. (44) can be replaced by the stronger condition e−α(p−2η) < ε
c which is valid for

α >
ln

(
c
ε

)

p− 2η
.

2For α = 1
2η

ln
(

1
η

)
and α = 2

η
ln

(
1
η

)
, we obtain that eαη = 1√

η
and 1

η2 , respectively. The lower bound on α0

follows since
√

η

2
< ln 2 < ln

(
1
η

)
for 0 < η < 1

2
, and the upper bound on α0 follows since 2η ln

(
1
η

)
≤ 2

e
< 1.

12



To conclude, the analysis above enables to choose α to be

α = max

(
ln

(
c
ε

)

p− 2η
,

2
η

ln
(

1
η

)
, ln 2 , ln

(
1

1− p

))
(46)

where η is chosen arbitrarily in the interval (0, p
2), and c is defined in Eq. (45). Then, the encoding

and the decoding complexity of the IRA1 ensemble are

(
1−RIRA1

RIRA1

) (
1∫ 1

0 ρα(x) dx
+ 2

)
≤ p + ε(1− p)

(1− p)(1− ε)

(
α

1− e−α
+ 2

)
(47)

where the latter inequality follows from Eq. (27) and since RIRA1 ≥ (1 − p)(1 − ε). Based on
Appendix A.4, it finally follows that if a fraction 1 − ε of the capacity of the BEC is achieved
with vanishing bit erasure probability (where 0 < ε < 1) under MPI decoding, then χE(ε, IRA1)
and χD(ε, IRA1) are both upper bounded by the right-hand side of Eq. (4) with K3 and K4 in
Appendix A.4.

4.3 Proof of Theorem 3

We start here with the derivation of a lower bound on the encoding and decoding complexity of
the IRA2 ensemble. By integrating both sides of Eq. (15) from u = 0 to u = 1− (1− p2)2, we have

∞∑

i=2

λi

i

[
1− (1− p2)2

]i
<

p2(1− p2)
p1

and the division of both side of this inequality by
∞∑

j=2

λj

j
gives

∞∑

i=2

Li

[
1− (1− p2)2

]i
<

p2(1− p2)
p1

· 1
∞∑

j=2

λj

j

, (48)

where Li =

λi

i
∞∑

j=2

λj

j

designates the probability that a left node (i.e., an information node) in the

Tanner graph of the IRA2 ensemble has degree i (see Fig. 1). Based on Jensen’s inequality

ξ
∑

i iLi ≤
∑

i

Liξ
i ∀ ξ ∈ (0, 1)

and since
∞∑

i=2

iLi =
1

∞∑

i=2

λi

i

, then it follows from Eq. (48) that

[
1− (1− p2)2

]x
<

p2(1− p2)x
p1

, (49)
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where
x , 1

∞∑

i=2

λi

i

. (50)

Suppose that the IRA2 ensemble achieves a fraction 1− ε of the capacity of the BEC under MPI
decoding. From Eqs. (9), (11) and (50), it follows that

1− ε =
RIRA2

C
=

1
1− p1 + (1− p2)x

(51)

where C = 1 − p is the capacity of the BEC. Let p1 = f(ε, p), then it follows from Eq. (11) that

p ≤ f(ε, p) ≤ 1. From Eq. (51), we obtain that 1 − p2 =
1
x

(
f(ε, p) +

ε

1− ε

)
, and Eq. (49)

transforms to
[
1−

(
f(ε, p) + ε

1−ε

x

)2
]x

<

(
1 +

ε

(1− ε)f(ε, p)

)[
1− 1

x

(
f(ε, p) +

ε

1− ε

)]
. (52)

We wish now to determine the behavior of the solution x in Eq. (52) for small values of ε (i.e.,
for ε → 0, which corresponds to capacity-approaching IRA2 ensembles on the BEC). Now we take

the natural logarithms from both sides of Eq. (52) and substitute x =
1

cεb

(
f(ε, p) +

ε

1− ε

)
where

b is a real number and c > 0 (since c is an arbitrary positive number and p ≤ f(ε, p) ≤ 1, then
x = O

(
1
εb

)
). From the power series expansion

ln(1− x) = −x− x2

2
− x3

3
− . . . 0 ≤ x < 1

one obtains that in the limit where ε → 0

x ln

(
1−

(
f(ε, p) + ε

1−ε

x

)2
)
− ln

(
1 +

ε

(1− ε)f(ε, p)

)
− ln

(
1− 1

x

(
f(ε, p) +

ε

1− ε

))

=
(

f(ε, p) + ε
1−ε

cεb

)
ln(1− c2ε2b)− ln

(
1 +

ε

(1− ε)f(ε, p)

)
− ln(1− cεb)

=
(

f(ε, p) + ε
1−ε

cεb

) [
−c2ε2b − c4ε4b

2
− c6ε6b

3
− . . .

]
−

[
ε

(1− ε)f(ε, p)
− 1

2

(
ε

(1− ε)f(ε, p)

)2

+
1
3

(
ε

(1− ε)f(ε, p)

)3

− . . .

]
−

[
−cεb − c2ε2b

2
− c3ε3b

3
− . . .

]

= cεb

(
1− f(ε, p)− ε

1− ε

)
− ε

(1− ε)f(ε, p)
+

c2ε2b

2
+

c3ε3b

3

(
1− 3

2
f(ε, p)− 3

2
ε

1− ε

)
+ . . . .

Since p ≤ f(ε, p) ≤ 1 (where 0 < p < 1) and c > 0, we obtain that if b < 1
2 , then for small values

of ε, the above expression is dominated by cεb
(
1− f(ε, p)

)
+

c2ε2b

2
which is positive. This implies

that if b < 1
2 , any solution of the form x = O

(
1
εb

)
does not satisfy Eq. (52). Since on the BEC, the

encoding/ decoding complexity of IRA2 ensembles with MPI decoding is linearly proportional to the
average number of edges per information bit in their Tanner graphs (i.e., it is linearly proportional
to x), then it follows that the encoding and decoding complexity of capacity-approaching IRA2
ensembles cannot be reduced below O

(
1√
ε

)
for any choice of their degree distribution.
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The upper bound on the complexity is derived by choosing the degree distribution to be

λ(x) = K

q−1∑

i=1

(
2i

i

)(α

4

)i
xi (53)

where q denotes the maximal number of the repetitions of the information bits of codes from the
ensemble of IRA2 codes, 0 < α < 1, and K is a scaling factor so that

∑q
i=2 λi = 1. We note that the

degree distribution in Eq. (53) satisfies the condition in Eq. (16) which ensures vanishing bit erasure
probability under MPI decoding, as the number of iterations tends to infinity. The puncturing rates
of the information bits and of the parity bits, and the parameters α and q in Eq. (53) are chosen
to achieve a fraction 1 − ε of the channel capacity with vanishing bit erasure probability under
MPI decoding. Then, it can be proved that this choice of a degree distribution enables the IRA2
ensemble to achieve capacity, and the encoding/ decoding complexity with MPI decoding scales
like O

(
1
ε

)
. The upper bound on the complexity of the IRA2 ensemble is of secondary importance,

since we proved in Section 4.2 that the encoding and decoding complexity of the IRA1 ensemble
is superior as it behaves like O

(
ln 1

ε

)
. We wish to emphasize in this section that for the ensemble

of IRA2 codes which also achieves the capacity of the BEC with MPI decoding, the complexity
behaves at least like the inverse square root of the gap to capacity (and not like the negative
logarithm of the gap to capacity, as is the case with the ensemble of IRA1 codes).

5 Numerical Results

In this section, we present numerical results for the upper and lower bounds on the complexity of
IRA1 (i.e., systematic IRA) codes whose transmission takes place over a BEC and the codes are
iteratively decoded with the MPI decoding algorithm (see Theorems 1 and 2 in Section 2).
The left plot of Fig. 2 shows the coefficients K3 and K4 of the upper bound (4) on the complexity
of IRA1 codes. Though these coefficients can be made in general to be independent of the gap ε
to capacity (see Eq. (A.6) in Appendix A.4), we show in the left plot of Fig. 2 the tighter version
of K3 in (A.7) which corresponds to the case of vanishing gap between the channel capacity and
the achievable rate (i.e., K3 refers to the case where ε → 0). The left plot of Fig. 2 refers to
Eqs. (A.6) and (A.7) where we determine η in Eq. (A.6) to be η = p3

2 , and p designates the bit-
erasure probability of the BEC. In the left plot of Fig. 2, the latter choice for η appears to suggest a
good tradeoff between the coefficients K3 and K4 in the upper bound (4). We note that in the first
extreme case where we let η tend to zero, the positive logarithmic coefficient K4 in (4) is minimized,
but the coefficient K3 in this upper bound tends to infinity (so this upper bound on the complexity
tends to infinity if η → 0). On the other hand, in the second extreme case where we choose η to
be close to p

2 (since η in Eq. (A.6) should be in the interval (0, p
2)), then the coefficient K4 in the

upper bound (4) tends to infinity and K3 is minimized, so also in this case, the upper bound (4)
tends to infinity. For values of ε which are close to zero (i.e., for capacity-approaching ensembles of
IRA1 codes under MPI decoding), the choice η = p3

2 in (A.7) yields a reasonable balance between
the two coefficients in (4). The right plot in Fig. 2 shows the ratio K4

K2
where K2 and K4 are

the coefficients of the logarithms in the lower and upper bounds on the complexity of the IRA1
ensemble, respectively (see Eqs. (1), (2), (4), and (A.6)). The coefficients K2 and K4 dominate
the behavior of these bounds in the limit where the IRA1 ensemble achieves the capacity of the
BEC (i.e., if ε → 0). The right plot corresponds to the same case where η = p3

2 in Eq. (A.6). It is
shown in the right plot that the ratio K4

K2
gets moderate values unless p is close to unity (referring

to the catastrophic case where the probability of bit-erasure of the BEC is very high, and hence
the capacity of the BEC is approximately zero).
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Figure 2: Numerical results for the coefficients of the bounds in Theorems 1 and 2 which correspond
to IRA1 (i.e., systematic IRA) codes.

6 Discussion

• The encoding and the decoding complexity of systematic IRA codes scales like O
(
ln 1

ε

)
. This is

in contrast to the complexity of the ensemble of IRA2 codes which for every choice of the degree
distribution, it grows at least like the inverse square root of the gap to capacity, and at most like
the inverse of the gap to capacity. The former result proves Conjecture 1 in [3], and the latter
finding shows the existence of capacity-achieving ensembles of IRA codes whose complexity under
MPI decoding is worse than a logarithmic behavior in ε (for any choice of the degree distribution.)

• On the BEC, a right-regular ensemble of LDPC codes yields asymptotically (in the limit where the
block length tends to infinity) the optimal choice under MPI decoding with respect to the tradeoff
between performance and complexity (see [6, 7, 8]). However, right-regular ensembles of systematic
IRA codes may not be optimal, since their provable encoding and decoding complexity behave
like O

(
1
ε

)
(see Sections 3.4.2 and 3.6 in [4]), whereas this complexity behaves like O

(
ln 1

ε

)
for the

general IRA1 ensemble with the pair of degree distributions introduced in the proof of Theorem 2
(see Section 4.2).

• The probabilistic lower bound in Theorem 1 is similar to the information-theoretic bound which
was presented in [7, Theorem 1]. In [7], Sason and Urbanke considered the question of how sparse
can parity-check matrices of binary linear codes be, as a function of their gap (in rate) to capacity
(where this gap depends on the channel and the decoding algorithm). If the code is represented
by a standard Tanner graph without state nodes, the decoding complexity under MPI decoding is
strongly linked to the density of the corresponding parity-check matrix (or alternatively, to the
normalized number of edges in the graph per information bit). Consider a sequence of binary
linear codes whose transmission takes place over a memoryless symmetric channel, and assume
that it achieves a fraction 1 − ε of the channel capacity with vanishing bit error probability. By
information-theoretic tools, it was proved in [7, Theorem 1] that for every such sequence of codes
and for every sequence of parity-check matrices which represent these codes, the asymptotic density

of these parity-check matrices grows at least like K1+K2 ln 1
ε

1−ε where the coefficients K1 and K2 only
depend on the channel (this information-theoretic bound is valid under ML decoding, and hence, it
is valid under every sub-optimal decoding algorithm). The information nodes and the parity nodes
of systematic IRA codes can be clearly viewed as the variable nodes in the representation of this
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ensemble by a bipartite graph (see Fig. 1). It then follows from the proof in Section 4.1 that the
density evolution equation (8) for systematic IRA codes does not yield any inherent degradation in
the tradeoff between performance and complexity as compared to the information-theoretic lower
bound in [7, Theorem 1] (since the coefficients K1 and K2 in Section 4.1 coincide in both cases).

• A recent work of Pfister, Sason and Urbanke [9] presents two sequences of ensembles of non-
systematic IRA codes which asymptotically (as the block length tends to infinity) achieve capacity
on the BEC with bounded complexity. The new bounded complexity result is achieved by allowing
a sufficient number of state nodes in the Tanner graph representing the codes. This observation
indicates the significance of state nodes in a Tanner graph which can considerably reduce the
complexity of capacity-achieving ensembles of codes on graphs under MPI decoding.
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Appendix A
Proofs of Lemmas 1–3 in Section 4.2

A.1 Proof of Lemma 1

Based on Eq. (31), it is sufficient to show that the inverse of the function

y(z) = 1−
(

1− p

1− p(1− z)

)2

(1− z)

has a power series expansion with non-negative coefficients around y = 0, and the inverse of the
function

z(x) = 1− e−αx − e−α

1− e−α
(A.1)

has a power series expansion with non-negative coefficients around z = 0. The former statement
was proved in Appendix B of [4] (see Theorem B.2 in pp. 94–96), and the latter statement follows
from Eq. (A.1) since

x = − 1
α

ln
(
1− z(1− e−α)

)

=
∞∑

n=1

(1− e−α)n zn

nα

so for α > 0, the latter power series expansion has positive coefficients around z = 0. It follows
therefore that the power series expansion of

gp(x) = z−1
(
y−1(x)

)

has non-negative coefficients around x = 0. Since it was shown in [4] that the coefficients of the
power series of the inverse of y(·) are positive around y = 0 (except of the free coefficient of this
power series expansion which is zero), then the coefficients of the power series expansion of the
function gp(x) around x = 0 are also positive (except of the free coefficient of the power series
expansion of gp(·) which is zero).

A.2 Proof of Lemma 2

For x ∈ (0, 1)

gp(x) =
∞∑

i=1

gp,ix
i

>

N∑

i=1

gp,ix
i

≥
N∑

i=1

gp,i xN > pxN

where the last transition follows from Eq. (34), so N >
ln

(
p

gp(x)

)

ln( 1
x) . Substituting hp(x) for x in the

latter inequality gives

N >
ln

( p
x

)

ln
(

1
hp(x)

) . (A.2)
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Since α > 0 and x ∈ (0, 1), then e−αx−e−α

1−e−α < 1. From Eq. (31) and the latter inequality, it follows

that hp(x) > 1− e−αx−e−α

1−e−α , and for α > 0 and x ∈ (0, 1)

ln
(

1
hp(x)

)
< − ln

(
1− e−αx−e−α

1−e−α

)

=
∞∑

n=1

1
n

(
e−αx − e−α

1− e−α

)n

<

∞∑

n=1

(
e−αx − e−α

1− e−α

)n

= 1−e−α(1−x)

eαx−1

< 1
eαx−1 .

Eq. (38) follows from Eq. (A.2) and the latter result, so if we choose x ∈ (0, p), then we obtain that
N grows faster than a positive constant times eαx.

A.3 Proof of Lemma 3

Based on Eq. (37)

α

1− e−α

∫ 1

0
gp(x) dx = (1− p)2

∫ 1

0

1
(1− pu)2

u

e−α + u(1− e−α)
du

= (1− p)2
∫ 1

0

1
(1− pu)2

(
1− e−α(1− u)

e−α + u(1− e−α)

)
du

= (1− p)2
∫ 1

0

du

(1− pu)2
− (1− p)2e−α

∫ 1

0

1− u

e−α + u(1− e−α)
du

(1− pu)2

= 1− p− (1− p)2e−α

∫ 1

0

1− u

e−α + u(1− e−α)
du

(1− pu)2
(A.3)

Straightforward calculation shows that

∫ 1

0

1− u

e−α + u(1− e−α)
du

(1− pu)2
=

α− 1 + (1− p)e−α + ln
(

1
1−p

)

(
1− (1− p)e−α

)2

so for α > max
(

ln 2, ln
(

1
1−p

))
we obtain that

∫ 1

0

1− u

e−α + u(1− e−α)
du

(1− pu)2
<

α + ln
(

1
1−p

)

(
1− (1− p)e−α

)2

<
α + ln

(
1

1−p

)

(
1− 1−p

2

)2

<
8α

(1 + p)2
.

Eq. (40) follows from Eq. (A.3) and the latter result.
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A.4 Derivation of the coefficients K3 and K4 in Eq. (4)

From Eq. (46), it follows that

ln
(c

ε

)
< α <

ln
(c

ε

)

p− 2η
+ m (A.4)

where m is defined to be

m , max
(

2
η

ln
(

1
η

)
, ln

(
1

1− p

)
, ln 2

)
(A.5)

and the upper bound on α in Eq. (A.4) follows from Eq. (46) since the maximal value of some
positive numbers is smaller than their sum (we note that from Eq. (45), it follows that c > 1 and
since 0 < ε < 1, then α in (46) is expressed as a maximum of positive numbers).
If a fraction 1−ε of the capacity of a BEC (whose erasure probability is p) is achieved for the IRA1
ensemble with vanishing bit erasure probability under MPI decoding, then from Eq. (47)

χE(ε, IRA1), χD(ε, IRA1) =
p + ε(1− p)

(1− p)(1− ε)

(
α

1− e−α
+ 2

)

<
p + ε(1− p)

(1− p)(1− ε)




1
p− 2η

ln
(c

ε

)
+ m

1− ε

c

+ 2




=
p + ε(1− p)

(1− p)(1− ε)




ln
(c

ε

)

p− 2η
+ m +

1
p− 2η

1

1− ε

c

ε

c
ln

(c

ε

)
+

mε

c− ε
+ 2




(a)

≤ p + ε(1− p)
(1− p)(1− ε)




ln
(c

ε

)

p− 2η
+ m +

1
p− 2η

1
e

1

1− ε

c

+
mε

c− ε
+ 2




(b)
<

p + ε(1− p)
(1− p)(1− ε)




ln
(c

ε

)

p− 2η
+ m +

1
p− 2η

c

e
+ m

c− 1
+ 2




(c)

≤
p ln

(c

ε

)
+ (1− p)(ε ln c + 1

e )

(p− 2η)(1− p)(1− ε)
+

p + ε(1− p)
(1− p)(1− ε)


m +

c

e(p− 2η)
+ m

c− 1
+ 2


 .

We note that inequalities (a) and (c) are based on the inequality x ln( 1
x) ≤ 1

e for 0 < x < 1 (equality
is achieved for x = 1

e ). Inequality (b) follows from Eq. (45) which yields that c > 4
ln 2 (and therefore

c > 1). Based on the calculations above, it is possible to choose K3 and K4 in Eq. (4) to be
independent of ε, e.g.,

K3 =
ln c

1− p

p

p− 2η
+

ln c + 1
e

p− 2η
+

1
1− p

(
mc

c− 1
+

1
e(p− 2η)

c

c− 1
+ 2

)
, K4 =

1
1− p

p

p− 2η
(A.6)

where η ∈ (0, p
2) is arbitrary, and c and m are defined in Eqs. (45) and (A.5), respectively. From

the calculations above, it is also clear that in the limit where the gap to capacity vanishes (i.e.,
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ε → 0), one can improve K3 in (A.6) by reducing its value to

K3 =
ln c

1− p

p

p− 2η
+

2p

1− p
. (A.7)
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