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Abstract

Low-density parity-check (LDPC) codes are efficiently encoded and decoded due to the sparseness of
their parity-check matrices. Motivated by their remarkable performance and feasible complexity under
iterative message-passing decoding, we derive lower bounds on the density of parity-check matrices of binary
linear codes whose transmission takes place over a memoryless binary-input output-symmetric (MBIOS)
channel. The bounds are expressed in terms of the gap between the rate of these codes for which reliable
communications is achievable and the channel capacity; they are valid for every sequence of binary linear
block codes. For every MBIOS channel, we construct a sequence of ensembles of regular LDPC codes, so that
an upper bound on the asymptotic density of their parity-check matrices scales similarly to the lower bound.
The tightness of the lower bound is demonstrated for the binary erasure channel by analyzing a sequence
of ensembles of right-regular LDPC codes which was introduced by Shokrollahi, and which is known to
achieve the capacity of this channel. Under iterative message-passing decoding, we show that this sequence
of ensembles is asymptotically optimal (in a sense to be defined in this paper), strengthening a result of
Shokrollahi. Finally, we derive lower bounds on the bit error probability and on the gap to capacity for
binary linear block codes which are represented by bipartite graphs, and study their performance limitations
over MBIOS channels. The latter bounds provide a quantitative measure for the number of cycles of bipartite
graphs which represent good error-correction codes.
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1 Introduction

Low-density parity-check (LDPC) codes are well known capacity-approaching linear codes. Due to
the sparseness of their parity-check matrices, these codes are efficiently encoded and decoded (see
e.g. [14], [20] and [21]). We start our discussion by considering the following question: How sparse
can parity-check matrices of binary linear codes be, as a function of their gap to capacity ? (where
this gap depends in general on the channel and on the decoding algorithm). We derive information
theoretic lower bounds on the density of parity-check matrices for binary linear codes which are used
over memoryless binary-input output-symmetric (MBIOS) channels, and the bounds are expressed
in terms of the gap of the codes to the channel capacity. In order to assess the tightness of the latter
bounds, we construct sequences of ensembles of codes so that the asymptotic density of their parity-
check matrices behaves similarly to these bounds. We continue our discussion with a derivation of
information theoretic lower bounds on the bit error probability and on the gap to capacity of binary
linear codes which are represented by bipartite graphs, and study their performance limitations over
MBIOS channels. The latter bounds substantiate the statement that good error correction codes
should have cycles, and in particular the bounds are exemplified for the binary erasure channel
(BEC) and the binary symmetric channel (BSC). The discussion on the lower bounds here applies
to every binary linear code which is used over an MBIOS channel and maximum-likelihood (ML)
decoded (hence, the lower bounds are also valid under any sub-optimal decoding algorithm).

Using standard notation, an ensemble of (n, λ, ρ) LDPC codes is characterized by its length n,
and the polynomials λ(x) =

∑∞
i=2 λix

i−1 and ρ(x) =
∑∞

i=2 ρix
i−1, where λi (ρi) is equal to the

probability that a randomly chosen edge is connected to a variable (parity-check) node of degree i.
The variables (parity-check sets) are represented by the left (right) nodes of bipartite graphs which
represent LDPC codes. It is now well known (see e.g. [13], [18] and [25]) how to design ensembles
of LDPC codes which asymptotically, as the block length tends to infinity, approach the capacity
of the BEC within any desired gap. In [25], Shokrollahi proved that the growth rate of the average
right degree is at least logarithmic in terms of the gap to capacity. The statement in [25] is a
high probability result, and hence it is not necessarily satisfied for every particular code from this
ensemble. Further, it assumes a sub-optimal (iterative) decoding algorithm. In [11, 16], Khandekar
and McEliece have suggested to study the encoding/ decoding complexity of ensembles of turbo-
like codes as a function of their gap to capacity. They conjectured that if the achievable rate
under iterative message-passing decoding is a fraction 1 − ε of the channel capacity, then for a
wide class of channels, the encoding complexity scales like ln 1

ε and the decoding complexity scales
like 1

ε ln 1
ε . However, there is one exception: for a BEC, the decoding complexity behaves like ln 1

ε
(same as encoding complexity). This is true since for a BEC, the iterative message-passing decoding
algorithm can be modified so that each edge is only used once (due to the absolute reliability of
information which is not erased by the BEC). For a general MBIOS channel however, one has to
consider the average number of iterations which are required for successful decoding; under iterative
message-passing decoding, this number is conjectured to scale like 1

ε .

The inherent gap of binary linear codes to the capacity of a BSC was analyzed in [5, 15], and it
was based on the calculation of the composite capacity of a linear block encoder and the BSC. The
analysis in [5, 15] requires the knowledge of the coset weight distribution of the linear code whose
calculation is in general a hard task [3]. For ensembles of LDPC codes, it is possible (though not
easy) to calculate the average asymptotic coset weight distribution, but it is currently unknown
whether the coset weight distribution concentrates (as the block length tends to infinity). Therefore,
the typical gap for these ensembles cannot be derived yet, and even if concentration will be proved
in this case, it will only lead to a probabilistic statement which does not necessarily hold for every
binary linear code from this ensemble.
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Consider the number of ones in a parity-check matrix which represents a binary linear code, and
normalize it per information bit (i.e., with respect to the dimension of the code). This quantity
(which will be later defined as the density of the parity-check matrix) is equal to 1−R

R times the
average right degree of the bipartite graph that represents the code, where R is the rate of the code
in bits per channel use. In his thesis [8], Gallager proved that right-regular LDPC codes (i.e., LDPC
codes with a constant degree (aR) of the parity-check nodes) cannot achieve the channel capacity
on a BSC, even under optimal ML decoding. This inherent gap to capacity is well approximated
by an expression which decreases to zero exponentially fast in aR. Richardson et al. [20] have
extended this result, and proved that the same conclusion holds if aR designates the maximal right
degree. It is a simple observation, but has far reaching consequences, that the result still applies
if we consider the average right degree instead. Gallager’s bound [8, pp. 37–38] provides an upper
bound on the rate of right-regular LDPC codes which achieve reliable communications over the
BSC. Burshtein et al. have recently generalized Gallager’s bound for a general MBIOS channel
[4], and in this work we rely on their generalization. The bounds which are derived in this work
provide an operational meaning to the density of parity-check matrices of binary linear codes used
over an MBIOS channel, and relate the density with a lower bound on the gap of the code to the
channel capacity under ML decoding (or any other decoding algorithm).

For every MBIOS channel and for every sequence of binary linear codes which achieves a fraction
1 − ε (where 0 < ε < 1) of the channel capacity with vanishing bit error probability, we prove
that the asymptotic density of parity-check matrices which represent this sequence of codes is lower

bounded by
K1 + K2 ln 1

ε

1− ε
, where K1 and K2 are constants which only depend on the channel. The

tightness of this information theoretic lower bound is studied by suitable constructions of sequences
of ensembles of LDPC codes, so that the asymptotic density of their parity-check matrices behaves
similarly to the lower bound. For a general MBIOS channel, we construct a sequence of ensembles
of regular LDPC codes, and show that under ML decoding, an upper bound on the asymptotic
density of their parity-check matrices scales like the lower bound above. This indicates that the
latter bound reflects the correct behavior of the growth rate of the asymptotic density of parity-check
matrices (although there may be room to improve the coefficients of the lower bound). For the BEC,
the tightness of the information theoretic lower bound is emphasized by constructing a sequence
of ensembles of irregular LDPC codes which achieves this bound (up to a small constant) under
iterative message-passing decoding. For the BEC, the optimality (in a weaker sense) of this sequence
was proved by Shokrollahi [25] in the context of ensembles and iterative message-passing decoding;
we strengthen this result by showing that this sequence is asymptotically optimal in a sense to
be defined later. We note here that the requirement of achieving a certain fraction of capacity
with vanishing bit error probability is the milder requirement (or alternatively, yields the stronger
result) with respect to the information theoretic lower bound on the asymptotic density (this is
true since vanishing block error probability implies also vanishing bit error probability, so proving
a certain information theoretic bound on the asymptotic density under the assumption of vanishing
bit error probability makes the bound also valid under the stronger condition of vanishing block
error probability). On the other hand, the requirement of achieving the same fraction of capacity
with vanishing block error probability is stronger than the one with vanishing bit error probability if
one wishes to construct a sequence of ensembles which approaches the latter information theoretic
lower bound. In each case, we prove our statement with respect to the requirement which yields
the stronger result.

If a linear block code of length n can be represented by a factor graph without cycles (where it only
includes variable nodes and parity-check nodes, but does not include state nodes), then it is known
that ML soft-decision decoding can be achieved in time O(n2). However, the very poor minimum
distance of cycle-free codes (see [7, Theorem 5]) indicates that cycle-free bipartite graphs cannot
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support good error correction codes. The bounds in [7] refer to the minimum distance of cycle-free
codes,1 and in this work we derive lower bounds on their bit error probability and on their gap to
capacity. The results are easily extended to linear codes whose bipartite graphs have cycles, and in
fact, we first present the general results, and derive the results for cycle-free codes as a particular
case. We present in this paper information theoretic lower bounds on the bit error probability of a
binary linear code used over an MBIOS channel. The bounds are expressed in terms of the density
of an arbitrary parity-check matrix of a binary linear code, and they are valid for codes which are
represented by bipartite graphs with or without cycles. We introduce a quantitative measure for
the cycles in a bipartite graph which represents a binary linear code. The latter bounds provide an
information-theoretic interpretation for the tradeoff between the bit error probability or the gap
to capacity of an LDPC code (i.e., its performance limitations), and the density of an arbitrary
parity-check matrix which represents the code (where the latter affects the decoding complexity
per information bit and per iteration, under iterative message-passing decoding). We present here
quantitative results which indicate that in order to approach the channel capacity with vanishing
bit error probability, LDPC codes should not have too sparse parity-check matrices, as otherwise
their inherent gap to capacity becomes large. The latter lower bounds are tighter for a BEC.

The paper is organized as follows: the results are presented in Section 2 and proved in Section 3.
Numerical results are exemplified and explained in Section 4. Finally, in Section 5, we present
interesting open problems. Throughout this paper, h(x) = −x log(x)− (1−x) log(1−x) designates
the binary entropy function to the base 2. The rate of a code and the capacity of a channel are
expressed in units of bits per channel use. Though throughout the paper we use the terms of bit
error probability and block error probability for all MBIOS channels, we note that for the case of
a BEC, the latter terms have the meaning of bit erasure probability and block erasure probability,
respectively.

1According to Theorem 5 in [7], the minimum distance of a cycle-free code is upper bounded by 2
R

(which does
not depend on n).
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2 Main Results

Definition 2.1. Let {Cm} be a sequence of codes of rate Rm, and assume that for every m, the
codewords of the code Cm are transmitted with equal probability over a channel whose capacity is
C. This sequence is said to achieve a fraction 1−ε of the channel capacity with vanishing bit (block)
error probability if limm→∞Rm = (1 − ε)C, and if there exists a decoding algorithm under which
the average bit (block) error probability of the code Cm tends to zero in the limit where m →∞.

Definition 2.2. Let C be a binary linear code of rate R and block length n, which is represented by
a parity-check matrix H. We define the density of H, call it ∆ = ∆(H), as the normalized number
of ones in H per information bit. The total number of ones in H is therefore equal to nR∆.

Theorem 2.1. Let {Cm} be a sequence of binary linear codes achieving a fraction 1 − ε of the
capacity of an MBIOS channel with vanishing bit error probability. Then, the asymptotic density
(∆m) of their parity-check matrices satisfies

lim inf
m→∞ ∆m >

K1 + K2 ln 1
ε

1− ε
, (1)

where

K1 =
(1− C) · ln (

1
2 ln 2 · 1−C

C

)

2C · ln
(

1
1−2w

) , K2 =
1− C

2C · ln
(

1
1−2w

) , (2)

and where C is the channel capacity, w , 1
2

∫∞
−∞min (f(y), f(−y)) dy, and f(y) , p(y|x = 1)

designates the conditional pdf of the output of the MBIOS channel.2 For a BEC, the coefficients
in (2) can be improved to

K1 =
p · ln

(
p

1−p

)

(1− p) · ln
(

1
1−p

) , K2 =
p

(1− p) · ln
(

1
1−p

) , (3)

where p designates the probability of erasure.3

Note that a-fortiori the same statement holds if we require that the block error probability tends
asymptotically to zero.

Theorem 2.2. For any MBIOS channel, there exists a sequence of ensembles of regular LDPC
codes which achieves under ML decoding a fraction 1 − ε of the channel capacity with vanishing
block error probability, and the asymptotic density of their parity-check matrices satisfies

lim
n→∞∆n ≤

K3 + K4 ln 1
ε

1− ε
, (4)

where K3 and K4 are the following coefficients which only depend on the channel

K3 = max(ξ1, ξ2, ξ3, ξ4) +
1

(1− a) · e · ln
(

1
1−2δ

) +
2
C

, K4 =
1− C

(1− a) · C · ln
(

1
1−2δ

) . (5)

2 Under the mild condition that f(y) > f(−y) for y > 0, then w = Pr(Y < 0|X = 1)+ 1
2

Pr(Y = 0|X = 1), where
X and Y designate the input and the output, respectively, of an MBIOS channel. This condition is satisfied for e.g.
a BEC, a BSC with crossover probability less than 1

2
, a binary-input AWGN channel etc.

3The improvement for the BEC doubles the coefficient of the logarithmic growth rate (i.e., K2) of the lower bound
(1) as compared to (2), and it also increases the coefficient K1 by more than twice (since w = p

2
and C = 1 − p for

a BEC with erasure probability p). This indicates that the coefficients in (2) are not tight in general, but as will be
stated in Theorem 2.2, the logarithmic growth rate of the asymptotic density in the lower bound (1) reflects the real
behavior for any MBIOS channel.
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Here, C designates the channel capacity and

ξ1 =
ln

(
2

δ(1−2δ) ln( 1−δ
δ )

)

C ln
(

1
1−2δ

) (6)

ξ2 =
ln

(
2

δ(1−2δ) ln 2

(
1

C ln 2

) 1
1−a

)

C ln
(

1
1−2δ

) (7)

ξ3 =

ln


 2

δ(1−2δ) · 1

ln

[
1+ln 2·

(
1−C−h(δ)

) 1
1−a

]



C ln
(

1
1−2δ

) (8)

ξ4 =
1
C
·




√√√√√
ln

(
2

δ(1−2δ) ln 2

)

ln
(

1
1−2δ

) +


 1

2a ln
(

1
1−2δ

)



2

+
1

2a ln
(

1
1−2δ

)




2

(9)

δ = η · h−1(1− C) , (10)

where h−1 : [0, 1] → [0, 1
2 ] is the inverse of the binary entropy function, and 0 < η < 1, 0 < a < 1

are arbitrary numbers.4

Based on Theorems 2.1 and 2.2, we derive bounds on the ratio between the logarithmic growth
rates of the upper and lower bounds on the asymptotic density (i.e., K4

K2
where K2 and K4 are given

in (2) and (5), respectively).

Corollary 2.1. For any MBIOS channel, there exists a sequence of ensembles of regular LDPC
codes so that under ML decoding, the minimal value of K4

K2
(with respect to a and η in Theorem 2.2)

satisfies

2 ≤ K4

K2
≤ 2 ln

(
1
C

)

ln
(

1
1−2h−1(1−C)

) . (11)

These lower and upper bounds on K4
K2

are achieved for the BSC and BEC, respectively.

However, we will see in Theorem 2.3 that for a BEC, the lower bound (1) with the improved
coefficients in (3) is tight by showing that up to a small additive constant, there is a sequence of
ensembles of right-regular LDPC codes which achieves this lower bound under iterative decoding.

From a point of view of code construction, the requirement of vanishing block error probability is
stronger than the same requirement on the bit error probability. Theorems 2.1 and 2.2 motivate
the following definition.

Definition 2.3. Let {Cm} be a sequence of binary linear codes which achieves for a corresponding
sequence of decoders {Πm} a fraction 1 − ε of the capacity of a BEC with vanishing block error
probability. The combined sequence {(Cm, Πm)} is said to be asymptotically optimal if the codes
Cm can be represented by parity-check matrices whose asymptotic density fulfills the condition

lim sup
m→∞

∆m ≤ K
′
1 + K2 ln 1

ε

1− ε
,

4The parameter δ equals a fraction of the normalized Gilbert-Varshamov minimum distance of a code of rate
R = C. If ε → 0 (i.e., the gap to capacity tends to zero), then the tightest upper bound (4) is achieved in the limit
where η → 1 and a → 0, since in the latter case the coefficient of ln 1

ε
(i.e., K4) is minimized.
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where K2 is the same coefficient as in (3), and K
′
1 is a constant which does not depend on ε (K

′
1

may only depend on the channel, and from Theorem 2.1, K
′
1 > K1).

Consider the sequence of ensembles of (n, λα,N , ρα) LDPC codes, introduced in [25]:

λα,N (x) =
α

∑N−1
k=1

(
α
k

)
(−1)k+1xk

α−N
(

α
N

)
(−1)N+1

, ρα(x) = x
1
α , 0 < α < 1 . (12)

Based on the proofs in [25], it can be verified that under iterative message-passing decoding and
a suitable choice of the parameters α and N , the sequence of ensembles of LDPC codes in (12)
achieves a fraction 1− ε of the capacity of a BEC with vanishing bit erasure probability. For this
purpose, it is possible to choose the parameters in (12) as follows

N , N1(ε, p) = max
(⌈

1− c1 · (1− p)(1− ε)
ε

⌉
,

⌈
1

(1− p)2

⌉)
, α =

ln
(

1
1−p

)

ln N
, (13)

where p designates the erasure probability of the BEC, c1 = 1
4 · e1− γ

2 ≈ 0.5092, and γ ≈ 0.5772 is
Euler’s constant. The following statement refines the analysis in the proofs of Proposition 1 and
Theorem 2 in [25],5 and it also demonstrates the tightness of the lower bound (1) for the BEC.

Theorem 2.3. For the sequence of ensembles of LDPC codes in (12) used over a BEC with erasure
probability p, let

N , N2(ε, p) = max
(⌈

1− c2(p) · (1− p)(1− ε)
ε

⌉
,
⌈
(1− p)−

1
p

⌉)
, α =

ln
(

1
1−p

)

ln N
, (14)

where c2(p) = (1− p)
π2

6 · e(π2

6
−γ)p (0 < p < 1).

This sequence of ensembles achieves a fraction 1−ε of the channel capacity with vanishing bit error
probability (as the block length tends to infinity) under iterative message-passing decoding.6 The
asymptotic density of its parity-check matrices satisfies the inequality7

lim
n→∞∆n ≤

K1 + K2 ln 1
ε + g(ε, p)

1− ε
, (15)

where K1,K2 are the coefficients in (3), and g(·, ·) is the positive function

g(ε, p) =

(
p

1−p + ε
)
· ln

(
ε·N2(ε,p)

p

)

ln
(

1
1−p

) +
ε(1− p)

p
·
(

K1 + K2 ln
1
ε

)
. (16)

The function g(·, p) is upper bounded by a function which only depends on p, and the increase in
(15) (as compared to the lower bound (1)) in the limit where capacity is achieved is

lim
ε→0+

g(ε, p) =
p · ln

(
1−c2(p)·(1−p)

p

)

(1− p) · ln
(

1
1−p

) , (17)

5The inequality derived in the proof of Theorem 2 in [25] refers to the average right degree (which is the normalized
number of ones in the parity-check matrix per parity bit). In our terminology, we normalize the number of ones in
this matrix per information bit, which implies the term 1 − ε in the denominators of (1) and (15), since the rate of
the codes tends to 1− ε times the channel capacity.

6Based on the proof of Shokrollahi in [25], this property can be proved for other settings of parameters, e.g. (13),
but the significance of (14) is connected with the properties of the function g(·, ·) in the continuation of this theorem.

7Inequality (15) becomes an equality when ε → 0 (i.e. for the asymptotic case where capacity is achieved).
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which is upper bounded for 0 < p < 1 by a constant (whose value is 0.5407).8

There also exists a sequence of ensembles of LDPC codes9 which under iterative message-passing
decoding achieves a fraction 1− ε of the capacity of the BEC with vanishing block error probability,
so that

lim
n→∞∆n ≤

K1 + K2 ln 1
ε′ + g(ε′, p) + 3

1−p

1− ε
, (18)

where ε′ < ε, and ε′ can be chosen to be arbitrarily close to ε.
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Figure 1: A comparison between the plots of the function g(ε, ·) in (16) for the settings of the
parameters in (13) and (14) (which refer to the left-hand side plot and the right-hand side plot,
respectively). These plots are compared for the same values of ε, and are depicted as a function of
the erasure probability (p) of the BEC (curves 1–4 are discontinuous because of the ceil operations
in (13) and (14)).

Corollary 2.2. On the BEC, the sequence of ensembles satisfying inequality (18) under iterative
message-passing decoding is asymptotically optimal in the sense of Definition 2.3.

Theorem 2.1 provides a lower bound on the asymptotic density of parity-check matrices for a
sequence of codes {Cm} whose average bit error probability tends to zero. The following theorem
can be used as a guidance for designing codes of a finite length over an MBIOS channel, where a
pre-determined block or bit error probability is desired.

Theorem 2.4. Let C be a binary linear code of length n and rate R, used over an MBIOS channel.
Let C designate the channel capacity, and assume that the codewords of the code C are transmitted
with equal probability. Let ε be a positive number so that R = (1 − ε)C, and let PB (Pb) be the

8Note that for the choice of parameters in (13), the limit limε→0+ g(ε, p) tends to infinity as p → 0 (as reflected
from curve 5 in the left-hand side plot of Fig. 1). This motivated the choice of the two parameters α and N in (14).
We note that the small constant above can be further reduced in the limit where ε → 0: by choosing the parameters

in (12) to be N = max
(⌈

1−c2(pm)·(1−p)(1−ε)
ε

⌉
,
⌈
(1− p)

− 1
pm

⌉)
(for an arbitrary positive value of m) and α =

ln
(

1
1−p

)

ln N

(this selection of parameters yields that the sequence of ensembles (12) achieves a fraction 1−ε of the channel capacity
with vanishing bit error probability), it can be verified that for large values of m, the limit limε→0+ g(ε, p) can be
made arbitrarily close to zero for all 0 < p < 1. However, for large values of m, the curves which refer to positive
values of ε become considerably worse as compared to those in the right-hand side plot of Fig. 1 (referring to m = 1).

9This sequence is specified in the proof of Theorem 2.3 (see Section 3.3.2).
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average block (bit) error probability of the code C under an arbitrary decoding algorithm.10 Then,
the density of every parity-check matrix which represents this code satisfies

∆ ≥ 1− (1− ε)C
2(1− ε)C

·
ln

(
1

2 ln 2 · 1−C+εC
δ1C+δ2

)

ln
(

1
1−2w

) , (19)

where w is defined in Theorem 2.1.
For the BEC with an erasure probability p, this lower bound can be improved to11

∆ ≥ p + ε(1− p)
(1− ε)(1− p)

·
ln

(
p+ε(1−p)

(1−p)δ1+δ2

)

ln
(

1
1−p

) . (20)

In the lower bounds above, for a block error probability (PB)

δ1 = ε + (1− ε)PB , δ2 =
h(PB)

n
, (21)

and for a bit error probability (Pb)

δ1 = ε , δ2 = h(Pb) . (22)

We note that Theorem 2.4 refers to particular codes (as opposed to Theorems 2.1, 2.2 and 2.3 which
refer to sequences of codes or to sequences of ensembles of codes). The reason for this difference
is that in the first three theorems we require vanishing bit/block error probability, whereas in
Theorem 2.4 we allow a fixed positive decoding error probability. Clearly, Theorem 2.4 can be
also stated for sequences of codes, and then it extends Theorem 2.1 to the case where achieving
a fixed positive bit error probability is sufficient. We see that if ε ¿ Pb, then the logarithmic
growth rate of the lower bound in Theorem 2.1 is replaced in Theorem 2.4 by a constant which
is dominated by Pb, the parameter w and the channel capacity (where the latter two parameters
depend on the channel). This phenomenon is attributed to the fact that in the latter case, there
is no need to increase the average right degree without limit (as opposed to the case where the bit
error probability should be arbitrarily small for sufficiently large values of the block length n).

The following theorem relies on Theorem 2.4, and presents lower bounds on the bit error probability
of binary linear codes which are represented by bipartite graphs with or without cycles. It refers
to the performance limitations of these codes over MBIOS channels (in terms of their bit error
probability and their gap to capacity). To this end, we define the normalized density of a parity-
check matrix and then express the following results in terms of the normalized density.

Lemma 2.1. Let C be a binary linear code of block length n and rate R, and assume that its factor
graph is a tree (where we only allow in this graph variable nodes and parity-check nodes). Then the
density of the parity-check matrix which represents this cycle-free code is equal to ∆ = 2−R

R − 1
nR ,

and it is therefore equal to 2−R
R in the limit where n →∞.

Definition 2.4. Let C be a binary linear code of rate R, which is represented by a parity-check
matrix H whose density is ∆. We define the normalized density of H, call it t = t(H), to be
t = R∆

2−R . This normalized density is therefore equal to the ratio of ∆ = ∆(H) and the density of a
parity-check matrix which corresponds to a cycle-free code of asymptotically infinite block length
and of the same rate R.

10PB (Pb) can also denote an upper bound on the block (bit) error probability.
11For the BEC, the improvement in the lower bound (20) as compared to the lower bound (19) (where the latter

is valid for a general MBIOS channel) is at least by a factor of two.
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Theorem 2.5. Let C be a binary linear block code of rate R which is used over an MBIOS
channel whose capacity is C. Assume that the codewords of the code C are transmitted with equal
probability. Let H be a parity-check matrix which represents the code C, and t be its normalized
density. Then under any decoding algorithm, the bit error probability (Pb) of the code C satisfies
the inequality

h(Pb) ≥ R− C +
1

2 ln 2
· (1−R) · (1− 2w)

2(2−R)t
1−R . (23)

where w is the same as in Theorem 2.1.
For a BEC with erasure probability p, the lower bound on Pb is improved to

h(Pb) ≥ R− (1− p) + (1−R) · (1− p)
(2−R)t
1−R . (24)

Let ε = 1− R
C for R < C. Then, the lower bounds (23) and (24) are meaningful (i.e., the right-hand

sides of (23) and (24) are positive) for ε < ε0 where

ε0 = 1− 1
C


1− 1

1
1−C −

(
1

2t ln(1−2w)

)
·W

(
t·ln(1−2w)·(1−2w)

2t(2−C)
1−C

ln 2·(1−C)

)


 , (25)

and W (·) in (25) designates the Lambert W-function [28].
For a BEC with erasure probability p, the value of ε0 is improved to

ε0 = 1− 1
1− p


1− 1

1
p −

(
1

t ln(1−p)

)
·W

(
t·ln(1−p)·(1−p)

t(1+ 1
p)

p

)


 . (26)

Corollary 2.3. Let {Cm} be a sequence of binary linear codes, achieving a fraction 1 − ε of the
capacity of an MBIOS channel with vanishing bit error probability. Then ε ≥ ε0 under ML decoding
(or any other decoding algorithm), where ε0 is introduced in (25) and improved for a BEC in (26).

We note that a direct consequence of Lemma 2.1, Definition 2.4 and Theorem 2.5 yields the following
result for cycle-free codes:

Corollary 2.4. By setting t = 1− 1
n(2−R) , the results in Theorem 2.5 are valid for cycle-free codes.

Similarly, by setting t = 1, the conclusion in Corollary 2.3 is valid for a sequence of cycle-free codes
with vanishing bit error probability (since the block length tends to infinity in the latter case).

Intuitively, the number of cycles in a bipartite graph is expected to increase with t (i.e., for a
bipartite graph which is cycle-free and connected, we obtain from Lemma 2.1 and Definition 2.4
that t = 1 − 1

n(2−R) . By increasing the value of t above this number, one would expect that the
increasing number of edges which connect variable nodes and parity-check nodes in the graph will
also increase its number of cycles). For a quantitative measure of this argument, we present here
relevant definitions from graph theory (see e.g. [9]).

Definition 2.5. Let G be an arbitrary graph with |VG| vertices, |EG| edges and C(G) components.12

The cycle rank of G, denoted by β(G), equals to the maximal number of edges which can be removed
from the graph without increasing its number of components (so that it remains to be C(G)).

12If G is a connected graph then C(G) = 1.
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From Definition 2.5, it is clear that the cycle rank is a measure of the edge redundancy with respect
to the connectedness of the graph G. It is easy (see [9, p. 154]) to verify that

β(G) = |EG| − |VG|+ C(G). (27)

Definition 2.6. Let G be an arbitrary graph. The full spanning forest F of the graph G is the
remaining part of G after removing the β(G) edges in Definition 2.5. Clearly, the number of
components of F and G is the same (i.e., C(F ) = C(G)).

Definition 2.7. Let F be a full spanning forest of a graph G, and let e be any edge in the relative
complement of F . The cycle in the subgraph F +e (whose existence and uniqueness are guaranteed
by Theorem 3.1.11 in [9]) is called a fundamental cycle of G (associated with F ).

Definition 2.8. The fundamental system of cycles of a graph G which is associated with a full
spanning forest F is the set of all fundamental cycles of G associated with F .

In our context, let G be a connected bipartite graph of a linear block code C of block length n and
rate R. Let t be the normalized density of the parity-check matrix which corresponds to G. Since
the number of edges in the graph G is |EG| = (2−R)tn, the number of vertices is |VG| = (2−R)n
(i.e., n variable nodes and (1−R)n parity-check nodes), and C(G) = 1 (since we assume that G is
a connected graph), then from Eq. (27), one calculates the cycle rank of G, which is also equal to
the cardinality of the set of the fundamental cycles of G. This leads to the following result

Corollary 2.5. Let C be a linear block code of length n and rate R which is represented by a
parity-check matrix whose normalized density is t. Then the cardinality of the fundamental cycles
in the corresponding bipartite graph (i.e., the cycle rank) is given by

β(G) = (2−R)(t− 1)n + 1. (28)

We note that for a cycle-free code (so that from Lemma 2.1 and Definition 2.4, t = 1 − 1
n(2−R)),

one obtains from Eq. (28) that β(G) = 0 (as could be expected). From Eq. (28), the cardinality of
the fundamental set of cycles increases linearly with the normalized density t, which agrees with
the intuition that the larger is the normalized density of a parity-check matrix, one would expect
an increased number of cycles in the corresponding bipartite graph which represents the code. In
this context, we also refer the reader to [7, Section 5-B].
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3 Proofs of the Theorems in Section 2

3.1 Proof of Theorem 2.1

The first part of this proof refers to a general MBIOS channel, and the second part refines the
bound on the asymptotic density for a BEC.
Let um = (u1, u2, · · · , unm) be a codeword of the code Cm which is transmitted over an MBIOS
channel, and let vm = (v1, v2, · · · , vnm) be the received sequence. Let k designate the degree of a
specific parity-check node in the representation of the code Cm by a bipartite graph, let dk,m be the
fraction of the parity-check nodes of degree k, and let Rm be the rate of the code Cm. Based on [4,
Theorems 1 and 2] (see [4, Eqs. (14) and (15)] for the right-regular case, where the transition to
the irregular case is immediate), one obtains that

H(um|vm)
nm

≥ 1− C − (1−Rm) ·
∑

k

{
dk,m · h

(
1− (1− 2w)k

2

)}
. (29)

Since the function f(x) = h
(

1−(1−2w)x

2

)
(for x ≥ 0) is concave for every 0 ≤ w ≤ 1

2 ,13 we obtain
by Jensen’s inequality that

H(um|vm)
nm

≥ 1− C − (1−Rm) · h
(

1− (1− 2w)aR(m)

2

)
, (30)

where aR(m) ,
∑

k kdk,m denotes the average right degree.
Since the sequence {Cm} achieves a fraction 1 − ε of the channel capacity with vanishing bit
error probability, then according to Definition 2.1, there exists a decoding algorithm (e.g., ML
decoding) so that the average bit error probability of the code Cm tends to zero as m gets large,
and limm→∞Rm = (1− ε)C. Let P

(i)
b (m) designate the bit error probability of the digit ui in the

code Cm (where 1 ≤ i ≤ nm), and Pb(m) =
∑nm

i=1 P
(i)
b (m)

nm
be the average bit error probability, then

H(um|vm)
nm

(a)
=

∑nm
i=1 H(ui|vm,u1,...,ui−1)

nm
(b)

≤
∑nm

i=1 H(ui|vm)
nm

(c)

≤
∑nm

i=1 h
(
P

(i)
b (m)

)

nm
(d)

≤ h(Pb(m)) ,

(31)

where equality (a) is based on the chain rule for the entropy, inequality (b) is since conditioning
reduces the entropy, inequality (c) follows from Fano’s inequality and since the code Cm is binary,
and inequality (d) is based on Jensen’s inequality. This implies that if the bit error probability of

a sequence of binary linear codes {Cm} tends to zero (as m → ∞), then limm→∞
H(um|vm)

nm
= 0.

By letting m tend to infinity, we obtain from Eq. (30) that

1− C −
(
1− (1− ε)C

)
· h

(
1− (1− 2w)aR(∞)

2

)
≤ 0, (32)

13If 0 ≤ w < 1
2
, the function f(·) is concave since f ′(x) =

(1− 2w)x

2 ln 2
· ln

(
1

1− 2w

)
· ln

(
1 + (1− 2w)x

1− (1− 2w)x

)
, is a

monotonically decreasing function on the interval [0,∞), and therefore f ′′(x) ≤ 0 for x ≥ 0. If w = 1
2
, f(·) is

constant.
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where aR(∞) , lim infm→∞ aR(m). For the continuation of the proof, we prove the following
lemma.

Lemma 3.1. h(x) ≤ 1− 2
ln 2 · (1

2 − x)2 for 0 ≤ x ≤ 1
2 .

Proof. Define the function m(x) = h(x) −
[
1− 2

ln 2 ·
(

1
2 − x

)2
]

for 0 ≤ x ≤ 1
2 . The first three

derivatives of m(·) are

m′(x) =
ln

(
1−x

x

)− 2(1− 2x)
ln 2

, m′′(x) =
4−

(
1
x + 1

1−x

)

ln 2
, m(3)(x) =

1
x2 − 1

(1−x)2

ln 2
.

The third derivative of m(·) is positive on the interval (0, 1
2) and vanishes at x = 1

2 , and therefore
the second derivative of m(·) is monotonically increasing on the interval (0, 1

2 ]. Since m′′(1
2) = 0,

then m′′(x) ≤ 0 for 0 < x ≤ 1
2 (with equality if and only if x = 1

2), which yields that the first
derivative of m(·) is a monotonically decreasing function on the interval (0, 1

2 ]. Since the derivative
of m(·) also vanishes at x = 1

2 , then it yields that m′(x) > 0 for 0 < x < 1
2 , and therefore m(·) is

a monotonically increasing function on the interval (0, 1
2 ]. Finally, since m(1

2) = 0, then it yields
that m(x) ≤ 0 for 0 ≤ x ≤ 1

2 .

Based on Lemma 3.1, it follows that h
(

1−(1−2w)aR(∞)

2

)
≤ 1− 1

2 ln 2 · (1− 2w)2aR(∞) for 0 ≤ w ≤ 1
2 .

The substitution of this upper bound on h(·) in the left-hand side of Eq. (32) yields that

aR(∞) ≥ ln
(

1
2 ln 2 ·

(
1 + 1−C

εC

))

2 ln
(

1
1−2w

) .

Since aR(m) and ∆m designate the normalized number of ones in a parity-check matrix which
represents the binary linear code Cm (where the normalization is per parity bit or per information
bit, respectively), then ∆m =

(
1−Rm

Rm

)
aR(m), and

lim inf
m→∞ ∆m =

(
1− (1− ε)C

(1− ε)C

)
aR(∞)

≥ (1− C) · aR(∞)
(1− ε)C

>
1− C

(1− ε)C
· ln

(
1

2 ln 2 · 1−C
εC

)

2 ln
(

1
1−2w

) ,

which yields the lower bound (1) with the coefficients K1, K2 in (2).

For the BEC, we will derive a lower bound on H(um|vm)
nm

in a different way. For the sake of notational
simplicity, we will replace um and vm by U and V, respectively. In the following derivation, let
K and E designate the random vectors which indicate the positions of the known and erased
digits in the received vector (V), respectively (note that knowing one of these two random vectors
implies the knowledge of the other vector). The random vector VK denotes the sub-vector of V
with the known digits of the received vector (i.e., those digits which are not erased by the BEC).
Note that there is a one-to-one correspondence between the received vector V and the pair of
vectors (VK,E). We designate by UE and UK the sub-vectors of the transmitted codeword U,
such that they correspond to digits of U in the erased and known positions of the received vector,
respectively (so that UK = VK). Finally, let HE denote the matrix of those columns of H (a
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parity-check matrix representing the code Cm) whose variables are indexed by E, and |e| denotes
the number of elements of a vector e. Then

H(U|V) = H(U|VK,E)
= H(UE,UK|VK,E)
= H(UE|VK,E)
=

∑
vk,e p(vk, e) ·H(UE|VK = vk,E = e)

=
∑

vk,e p(vk, e) · (|e| − rank(He))
=

∑
e p(e) · (|e| − rank(He))

= nmp−∑
e p(e) · rank(He) .

(33)

Note that the rank of He is upper bounded by the number of non-zero rows of He which is equal
to the number of parity-check nodes which involve erased bits (the summation

∑
e p(e) · rank(He)

is therefore upper bounded by the average number of parity-check sets which involve erased bits).
If a parity-check node is of degree k, then the probability that it involves at least one erased bit is
equal to 1−(1−p)k. The average number of the parity-check nodes which therefore involve at least
one erased bit is equal to nm(1−Rm)

∑
k dk,m

(
1− (1− p)k

)
(where as before, dk,m designates the

fraction of parity-check nodes of degree k), and therefore

∑
e

p(e) · rank(He) ≤ nm(1−Rm)

(
1−

∑

k

dk,m(1− p)k

)
. (34)

From Jensen’s inequality, it follows that
∑

k

dk,m(1− p)k ≥ (1− p)aR(m) (35)

where aR(m) ,
∑

k kdk,m is the average right degree. Eqs. (33), (34) and (35) yield that

H(um|vm)
nm

≥ p− (1−Rm) ·
(
1− (1− p)aR(m)

)
. (36)

If {Cm} is a sequence of codes which achieves a fraction 1−ε of the channel capacity with vanishing
bit error (erasure) probability (i.e., limm→∞Rm = (1−ε)(1−p) and the bit error probability of the
sequence of codes {Cm} tends asymptotically to zero), then from Eq. (31) limm→∞

H(um|vm)
nm

= 0.

From Eq. (36), this implies that aR(∞) , lim infm→∞ aR(m) ≥ ln
(
1+ p

ε(1−p)

)

ln
(

1
1−p

) >
ln

(
p

ε(1−p)

)

ln
(

1
1−p

) . Since

∆m =
(

1−Rm
Rm

)
· aR(m), it follows that lim infm→∞∆m ≥

(
p

(1−p)(1−ε)

)
aR(∞), which yields Eq. (1)

with the improved coefficients K1 and K2 in Eq. (3).

• A consequence of the proof of Theorem 2.1
Based on the proof of Theorem 2.1, we prove and discuss an upper bound on the asymptotic rate
of every sequence of binary linear codes for which reliable communication is achievable. The bound
refers to optimal ML decoding, and is therefore valid for any sub-optimal decoding algorithm.
Hence, the following result also provides an upper bound on the achievable rate of ensembles of
LDPC codes under iterative decoding, where the transmission takes place over an MBIOS channel.

Corollary 3.1. Let {Cm} be a sequence of binary linear codes whose codewords are transmitted
with equal probability over an MBIOS channel. Let dk,m be the fraction of the parity-check nodes of
degree k in a representation of the code Cm by a bipartite graph, and define w as in Theorem 2.1.14

14For a sequence of ensembles of binary linear codes {Cm}, we denote by dk,m the probability of picking (with a
uniform distribution) a parity-check node of degree k from a bipartite graph which represents a code in the ensemble
Cm.
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Then, a necessary condition on the achievable rate (R) for reliable communication is

R ≤ 1−max





1− C
∑

k dk,m h
(

1−(1−2w)k

2

) ,
2w

1−∑
k dk,m (1− 2w)k



 (37)

in the limit where m →∞. The necessary condition in Eq. (37) can be loosened to

R ≤ 1−max





1− C

h
(

1−(1−2w)aR(m)

2

) ,
2w

1− (1− 2w)aR(m)



 , (38)

where aR(m) ,
∑

k kdk,m denotes the average right degree of the bipartite graph of the code Cm.
Otherwise, under any decoding algorithm, the average bit error probability of the codes in the
sequence {Cm} is bounded away from zero by a constant which is independent of m.
For a BSC with crossover probability p (where p < 1

2) or a BEC with erasure probability p, Eq. (38)
is equivalent to

R ≤ 1− h(p)

h
(

1−(1−2p)aR(m)

2

) or R ≤ 1− p

1− (1− p)aR(m)
, (39)

respectively.

Proof. From Eqs. (29) and (31), one obtains that

h(Pb(m)) ≥ 1− C − (1−Rm) ·
∑

k

dk,m h

(
1− (1− 2w)k

2

)
. (40)

Under the assumption of vanishing bit error probability (i.e., limm→∞ Pb(m) = 0), it follows from
Eq. (40) that

R ≤ 1− 1− C
∑

k dk,m h
(

1−(1−2w)k

2

) (41)

where R , limm→∞Rm is the asymptotic rate of the sequence.
Based on the erasure decomposition lemma [20, Appendix B], an arbitrary MBIOS channel is
physically degraded with respect to a BEC whose erasure probability is p = 2w (according to the
notation in [20], the equality w = Pe(f) holds with the definitions of f(·) and w in Theorem 2.1
here). Let um designate a transmitted codeword in the code Cm, and let vm and zm designate the
received sequence at the output of the BEC above and at the output of the considered MBIOS
channel, respectively. Based on this notation, one obtains that I(um;vm) ≥ I(um; zm) where
we rely here on the erasure decomposition lemma and the data processing theorem. The latter
inequality implies that

H(um|vm) ≤ H(um|zm). (42)

Based on Eq. (31)
H(um|zm)

nm
≤ h(Pb(m)) (43)

where Pb(m) is the bit error probability of the code Cm at the output of the (original) MBIOS
channel, and nm is the length of the code Cm. Moreover, based on Eqs. (33) and (34)

H(um|vm)
nm

≥ 2w − (1−Rm) ·
(

1−
∑

k

dk,m (1− 2w)k

)
(44)
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where p = 2w is the erasure probability of the BEC in the erasure decomposition lemma. From
Eqs. (42), (43) and (44), it follows that

h(Pb(m)) ≥ 2w − (1−Rm) ·
(

1−
∑

k

dk,m (1− 2w)k

)
. (45)

The necessary condition for reliable communication with vanishing bit error probability which then
follows from Eq. (45) is

R ≤ 1− 2w

1−∑
k dk,m (1− 2w)k

. (46)

Finally, Eq. (37) follows immediately from the necessary conditions which are imposed in Eqs. (41)
and (46). Jensen’s inequality and the explanation in footnote 13 justify that the necessary condition
in Eq. (38) is loosened as compared to that one in Eq. (37).
The transition from Eq. (38) to Eq. (39) is based on the equalities w = min(p, 1−p) and C = 1−h(p)
for a BSC with crossover probability p. For a BEC with erasure probability p, the equalities w = p

2
and C = 1− p hold, and we also rely on the inequality h

(
1−x

2

)
> 1− x for 0 < x < 1.

Corollary 3.1 provides a generalization of the statement in [8, pp. 37–38] which was proved by
Gallager for right-regular LDPC codes used on a BSC, and was extended by Richardson et al.
[20] for the case where aR(m) designates the maximal right degree. Corollary 3.1 asserts that this
conclusion is also valid with respect to the average right degree, and not only that the block error
probability is bounded away from zero by a constant which does not depend on the block length n
(as was stated in [8] and [20]), but also the bit error probability has the same property. Eq. (37) in
Corollary 3.1 suggests an improved upper bound on the rates for which reliable communication is
achieved, where the improvement is with respect to Eq. (16) in [4] (this improvement is pronounced
for a BEC and is not useful for a BSC, see Eq. (39)). We note that under iterative message-passing
decoding, refined bounds on the achievable rates of LDPC codes used over a BEC were derived
in [1] (for a BEC, the bound in Corollary 3.1 coincides with the bound of Shokrollahi [25] and
with the zero-order bound in [1]). However, the bound in Corollary 3.1 differs from the bound of
Shokrollahi and the refined bounds in [1] in the sense that the latter bounds apply to the sub-
optimal iterative message-passing decoding algorithm, and they are high probability results which
rely on the density evolution over a BEC. We also note that in the limit where the sequence of
codes achieves the capacity of a BEC (which then yields that their average right degrees tend to
infinity), the refined bounds on the achievable rates in [1] and the bound presented in Corollary 3.1
asymptotically coincide, but the latter bound is stronger in the sense that it applies to ML decoding
(and not only to sub-optimal iterative decoding), and since it also applies to every sequence of binary
linear codes.

3.2 Proof of Theorem 2.2

The weight distribution of linear block codes plays a crucial role in their performance analysis
under ML decoding (see [24] and references therein). Gallager has derived an upper bound on the
average weight distribution of an ensemble of regular LDPC codes; the bound provides the correct
behavior of the exponential growth rate of their average weight distribution [8, pp. 14–16]. For
a given value of the code rate and an increasing right degree, the average weight distribution of
Gallager’s ensemble of regular LDPC codes approaches the binomial distribution (see [14], where
the latter distribution characterizes the average weight distribution of fully random block codes).
We provide here a quantitative measure of this observation (see Proposition 3.1), and apply it to the
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performance analysis of Gallager’s ensemble under ML decoding. For an arbitrary MBIOS channel,
an upper bound on the decoding error probability which combines the Shulman and Feder bound
[27] with the union bound provides for two ensembles of LDPC codes the same asymptotic behavior
as the lower bound (see [17]). Following Miller and Burshtein [17], and based on tight bounds on
the exponential growth rate of the average weight distribution of Gallager’s ensemble (which are
derived in subsection 3.2.1), we determine the parameters of a sequence of Gallager’s ensembles so
that it achieves a fraction 1 − ε of the channel capacity of an arbitrary MBIOS channel. Finally,
we verify that the asymptotic density of the parity-check matrices which represent this sequence
satisfies inequality (4), and therefore their asymptotic density behaves similarly to the information
theoretic lower bound (1). We note that for fully random block codes, the Shulman and Feder
bound [27] coincides with the random coding bound of Gallager, and therefore the former bound
achieves the channel capacity of an arbitrary MBIOS channel.15

3.2.1 Derivation of simple and tight bounds on the exponential growth rate of the
weight distribution

Consider Gallager’s ensemble of (n, j, k) LDPC codes (where j and k designate the number of ones
in every column or row, respectively, of a parity-check matrix which represents a code from this
ensemble) [8]. The rate R of this ensemble is at least 1− j

k , and it follows from the analysis in [8]
that the asymptotic exponential growth rate of the average weight distribution of this ensemble is

r(δ) = j

(
µk(s)

k
− sδ +

(
1− 1

k

)
ln 2

)
− (j − 1) he(δ), (47)

where δ (0 ≤ δ ≤ 1) is the normalized Hamming weight of the codewords with respect to their block
length n, r(·) is the exponential growth rate of the average weight distribution (i.e., the average
number of codewords of Hamming weight l = nδ is N(l) .= exp(n r(δ)) ), he(·) designates the
binary entropy function to the natural base, and

µk(s) = ln

[(
1 + es

2

)k

+
(

1− es

2

)k
]

. (48)

The parameter s (−∞ < s < ∞) in (47) is related to δ so that

µ
′
k(s) = kδ (49)

where µ
′
k(·) designates the derivative of µk(·) [8]. In order to proceed in our analysis, we will derive

in this subsection simple bounds on the exponential growth rate of the average weight distribution
r(·) which become very tight for large values of k. By the substitution u = 1−es

1+es (or equivalently

s = ln
(

1−u
1+u

)
where −1 < u < 1), Eq. (49) is converted to the polynomial equation

(1− 2δ)uk − uk−1 − u + (1− 2δ) = 0. (50)

We provide here three lemmas which we will rely on later in this subsection.
15The interested reader is referred to Appendix A in [24] which provides a generalization of the Shulman and

Feder bound [27], and considers its error exponent. We note that the latter bound is a particular case of the DS2
bound (a generalization of the second version of Duman and Salehi bounds) [24]. However, as will be clarified in the
continuation of this proof, the utilization of a combination of the Shulman and Feder bound and the union bound
provides a sufficiently tight bound for our purpose.

17



Lemma 3.2. Let k ≥ 2 be an integer and δ ∈ (0, 1
2). Then there exists a unique root u∗ = u∗(δ)

of the polynomial equation (50) which is in the interval (0, 1), and it satisfies the inequality

(1− 2δ)
[
1− 2(1− 2δ)k−2

]
< u∗ < 1− 2δ. (51)

The transformation s∗ = ln
(

1−u∗
1+u∗

)
yields that

ln
(

δ

1− δ

)
< s∗ < ln

(
δ

1− δ

)
+

2(1− 2δ)k−1

δ
. (52)

Proof. Define the function f(u) = (1− 2δ)uk − uk−1 − u + (1− 2δ) for u ∈ [0, 1].
If 0 < δ < 1

2 then f(0) = 1 − 2δ > 0 and f(1) = −4δ < 0, so there exists a root of the
polynomial equation (50) inside the interval (0, 1). The uniqueness of this root is proved by showing
that the function f(·) is monotonically decreasing in the interval [0, 1]: the derivative of f(·) is
f ′(u) = kuk−2

[
(1 − 2δ)u − 1

]
+ uk−2 − 1. For u ∈ [0, 1] and k ≥ 2, uk−2 − 1 ≤ 0, and also for

0 < δ < 1
2 and u ∈ [0, 1], kuk−2

[
(1− 2δ)u− 1

] ≤ 0. This yields that f ′(u) < 0 for u ∈ (0, 1), which
therefore implies the uniqueness of a root u∗ = u∗(δ) of equation (50) inside the interval (0, 1).
The polynomial equation (50) is equivalent to the equation [(1−2δ)u−1]uk−1 = u− (1−2δ). Since[
(1−2δ)u−1

]
uk−1 < 0 for δ ∈ (0, 1

2) and u ∈ (0, 1) (and in particular for u = u∗), then u∗ < 1−2δ
(thus proving the upper bound on u∗ in (51)). To derive the lower bound on u∗, lets assume that
u∗ = 1− 2δ − ε0 is the unique solution of (50) in the interval (0, 1− 2δ) (so that 0 < ε0 < 1− 2δ).
The substitution of u∗ in (50) gives

[
4δ(1− δ) + ε0(1− 2δ)

]
(1− 2δ)k−1

(
1− ε0

1− 2δ

)k−1

= ε0 . (53)

Since 0 <
(
1− ε0

1−2δ

)k−1
< 1 and 0 < 4δ(1 − δ) + ε0(1 − 2δ) < 2, then Eq. (53) implies that

ε0 < 2(1 − 2δ)k−1, which yields the lower bound on u∗ in (51). The function s = ln
(

1−u
1+u

)

is monotonically decreasing in the interval (−1, 1), so based on the upper bound on u∗ in (51),
s∗ > ln

(
1−(1−2δ)
1+(1−2δ)

)
= ln

(
δ

1−δ

)
. Since k ≥ 2 and 0 < δ < 1

2 , then from the lower bound on u∗ in
Eq. (51)

s∗ = ln
(

1−u∗
1+u∗

)

< ln
(

1−(1−2δ)(1−2(1−2δ)k−2)
1+(1−2δ)(1−2(1−2δ)k−2)

)

= ln
(

δ+(1−2δ)k−1

1−δ−(1−2δ)k−1

)

= ln
(

δ
1−δ

)
+ ln

(
1 + (1−2δ)k−1

δ

)
+ ln

(
1 +

(1−2δ)k−1

1−δ

1− (1−2δ)k−1

1−δ

)

< ln
(

δ
1−δ

)
+ (1−2δ)k−1

δ +
(1−2δ)k−1

1−δ

1− (1−2δ)k−1

1−δ

≤ ln
(

δ
1−δ

)
+ (1−2δ)k−1

δ +
(1−2δ)k−1

1−δ

1− 1−2δ
1−δ

= ln
(

δ
1−δ

)
+ 2(1−2δ)k−1

δ ,

which prove the bounds on the parameter s∗ in (52).

Lemma 3.3. Let k be an even number. Then r(·) is symmetric around δ = 1
2 , i.e., r(δ) = r(1− δ).
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Proof. Since k is even, the all-one word is a codeword, and therefore, by linearity, N(l) = N(n− l).
This implies that r(δ) = r(1− δ) where δ , l

n (0 ≤ δ ≤ 1).

Lemma 3.4. Let the function gk,v(s) = µk(s)
k − vs be a function of a real parameter s where k ≥ 1

is an integer, v is a real number, and the function µk(·) is defined in (48). Then the maximal value
of gk,v(·) in any closed interval is achieved at one of its endpoints.

Proof. By differentiating twice the function gk,v(·), one obtains that

g
′′
k,v(s) = k−1

4 · exp (µk−2(s)− µk(s) + 2s) ,

which is non-negative for −∞ < s < ∞. This yields that the function gk,v(·) is convex, and
therefore the maximal value of gk,v(·) in any closed interval is achieved at one of its endpoints.

At this stage, we are ready to derive simple and tight bounds on the exponential growth rate r(·)
of the average weight distribution of Gallager’s ensemble of LDPC codes.

Proposition 3.1. Consider Gallager’s ensemble of (n, j, k) regular LDPC codes, and let R = 1− j
k

be the asymptotic rate of this ensemble. Let δ0 ∈ (0, 1
2) be chosen arbitrarily, and suppose k ≥ 2 is

an even number satisfying k > z(δ0) (where z(u) ,
ln

(
2

u(1−2u) ln( 1−u
u )

)

ln( 1
1−2u) for 0 < u < 1

2).

If δ0 ≤ δ ≤ 1
2 , then the asymptotic exponential growth rate r(·) of the average weight distribution

of this ensemble satisfies

he(δ)− (1−R) ln 2 ≤ r(δ) ≤ he(δ) + (1−R)
[
ln

(
1+(1−2δ)k

2

)
+ kδ

(
exp

(
2(1−2δ)k−1

δ

)
− 1

)]
, (54)

where he(·) denotes the binary entropy function to the natural base. If 1
2 < δ ≤ 1 − δ0, then

r(δ) = r(1− δ).

Proof. The lower bound on r(·) is provided for completeness, as we only need the upper bound
in the next subsection. It is well known that the exponential growth rate of the average weight
distribution of Gallager’s ensemble of LDPC codes is not below the one which corresponds to fully
random codes (they coincide at δ = 1

2 , and otherwise (for other values of δ in the interval [0, 1]),
the former exponent is strictly bigger than the latter exponent).16 Since the weight distribution of
fully random codes is binomial, then this immediately implies the lower bound in (54).
We will now prove the upper bound in (54): Let sl and su be the lower and upper bounds on s∗

which are provided in (52), respectively. Based on (47), the bounds on s∗ in (52), and Lemma 3.4,
it follows that if δ0 ≤ δ ≤ 1

2 then

r(δ) ≤ j

[
max

(
µk(sl)

k
− slδ,

µk(su)
k

− suδ

)
+

(
1− 1

k

)
ln 2

]
− (j − 1) he(δ), (55)

where from (52), sl = ln
(

δ
1−δ

)
and su = ln

(
δ

1−δ

)
+ 2(1−2δ)k−1

δ .

Since R = 1− j
k is the asymptotic rate of Gallager’s ensemble, then a short calculation reveals that

j

(
µk(sl)

k
− slδ +

(
1− 1

k

)
ln 2

)
− (j − 1) he(δ) = he(δ) + (1−R) · ln

(
1 + (1− 2δ)k

2

)
. (56)

16This phenomenon is illustrated in Fig. 1 of [23], and it is also illustrated there that as the values of j and k are
increased so that j

k
= 1 − R, then the average weight distribution of Gallager’s ensemble of (n, j, k) regular LDPC

codes approaches more and more to the binomial distribution of fully random codes. The bounds in (54) provide a
quantitative meaning to the latter phenomenon.
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It can be verified that z(·) is a monotonically decreasing function in the interval (0, 1
2). Therefore,

if k > z(δ0) as assumed in this proposition, then it implies that k > z(δ) for δ ∈ [δ0,
1
2), which

is equivalent to fulfilling the condition δ
1−δ · exp

(
2(1−2δ)k−1

δ

)
< 1 for these values of δ (with an

equality if δ = 1
2). Calculations (which are presented in Appendix A) show that if δ ∈ [δ0,

1
2 ]

j

(
µk(su)

k − suδ +
(
1− 1

k

)
ln 2

)
− (j − 1) he(δ)

≤ he(δ) + (1−R) ln
(

1+(1−2δ)k

2

)
+ k(1−R)δ ·

(
exp

(
2(1−2δ)k−1

δ

)
− 1

)
.

(57)

The combination of the results in (55), (56) and (57) yields the upper bound on r(·) in (54).
The symmetry of r(·) around one-half is a direct consequence of the fact that k is even (see
Lemma 3.3).

3.2.2 Performance analysis under ML decoding

Following Miller and Burshtein [17, Theorem 1], our performance analysis under ML decoding
combines the union bound with the Shulman and Feder bound [27]:
Let U ⊆ {1, 2, · · · , n} and denote the complementary set by U c. The following upper bound on the
average block error probability under ML decoding was derived in [17] for a binary linear code (or
an ensemble of such codes) of block length n and a number of codewords M = 2nR which is used
over an MBIOS channel:

PB ≤
∑

l∈U

{
N(l)Dl

}
+ 2−nEr(R+ ln α

n ln 2
) , (58)

where

α = max
l∈Uc

N(l)
M − 1

· 2n

(
n
l

) , (59)

Er(·) is the random coding exponent, and D ,
∑

y

√
p(y|0)p(y|1).

For fully random codes, if we set U to be the empty set then the upper bound (58) coincides with
the random coding bound (and it therefore achieves the channel capacity).

Let δ0 ∈ (0, 1
2) be an arbitrary number (δ0 will be determined later in this proof), and define

U ,
{
l : 0 < l

n < δ0 or 1− δ0 < l
n ≤ 1

}
. Since N(l) .= enr(δ) and

(
n
l

) .= enhe(δ) where δ , l
n , then

lim
n→∞

lnα

n
= r(δ0)−

[
he(δ0)− (1−R) ln 2

]
, (60)

since the weight distribution of Gallager’s ensemble of LDPC codes deviates further from the
binomial distribution as δ moves away from 1

2 , and since from Lemma 3.3, the function r(·) (and
he(·)) are symmetric around one-half if k ≥ 2 is an even integer. Under the assumptions in
Proposition 3.1, by combining Eqs. (55), (56), (57) and (60), one obtains that

lim
n→∞

ln α

n
≤ (1−R)

[
ln

(
1 + (1− 2δ0)k

)
+ kδ0 ·

(
exp

(
2(1− 2δ0)k−1

δ0

)
− 1

)]
. (61)

As we are interested in constructing a sequence of ensembles so that it achieves a fraction 1− ε of
the channel capacity, then based on the error exponent of the second term in the upper bound (58)
and inequality (61), it suffices that

(1−R)
[
ln

(
1 + (1− 2δ0)k

)
+ kδ0 ·

(
exp

(
2(1− 2δ0)k−1

δ0

)
− 1

)]
< εC ln 2 , (62)
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where Eq. (62) follows from the fact that the random coding exponent Er(R) is positive for R < C.
Then we need to determine the parameter δ0 so that the first term (the union bound) in the upper
bound (58) will tend asymptotically to zero. It is shown in Appendix B that if k satisfies the
requirements in (B.3) and (B.6) (with the coefficients in (B.7)), then it also satisfies (62).

Let η ∈ (0, 1) be chosen arbitrarily, and define δ0 , η ·h−1(1−C). As δ0 was defined independently
of ε, and it is strictly smaller than the normalized Gilbert-Varshamov distance, the asymptotic
normalized minimum distance of a typical code in the ensemble of Gallager’s LDPC codes is above
δ0 for large values of k, and therefore r(δ) < 0 for δ ∈ (0, δ0]. Based on the upper bound on r(·) in
(54), in order to ensure the latter condition, we impose the following stronger requirement on k

he(δ0) + (1−R)
[
ln

(
1 + (1− 2δ0)k

2

)
+ kδ0

(
exp

(
2(1− 2δ0)k−1

δ0

)
− 1

)]
< 0. (63)

It is shown in Appendix B that if k satisfies (B.3) and (B.9), then it also satisfies (63).

So far we have derived conditions on the parameter k which ensure that the second term in the
upper bound (58) tends asymptotically to zero for all rates R which do not exceed a fraction 1− ε
of the channel capacity (and the convergence in this case is exponential in the block length n). We
need also to verify that the same is true for the first term in the upper bound (58):
Based on [8, Theorem 2.4], the minimum distance distribution function of Gallager’s ensemble
of (n, j, k) LDPC codes has the property that there exists a positive constant δj,k so that the
probability of having codewords whose normalized Hamming weight is below this constant converges
asymptotically to zero, and the asymptotic behavior of this convergence is upper bounded by
k−1

2nj−2 + o
(

1
nj−2

)
(if j ≥ 3, then the above probability tends asymptotically to zero). Since

∑

l∈U

N(l)Dl

≤ 2
∑

l: l
n

<δ0

N(l)Dl

≤ 2




∑

l: l
n

<δj,k

N(l)Dl +
∑

l: δj,k≤ l
n

<δ0

N(l)Dl




≤ k − 1
nj−2

+ o

(
1

nj−2

)
+ 2

∑

l: δj,k≤ l
n

<δ0

N(l)Dl

≤ k − 1
nj−2

+ o

(
1

nj−2

)
+ 2nδ0 · exp

(
n · max

δj,k≤δ≤δ0
r(δ)

)

where we used in the last transition the fact that D ≤ 1, and upper bounded
∑

l: δj,k≤ l
n

<δ0
N(l)Dl

by the expression nδ0 ·maxδj,k≤δ≤δ0 N(nδ).
Since maxδ∈[δj,k,δ0] r(δ) < 0 (from the construction of δ0), then it follows that also the first term in
the upper bound (58) indeed converges to zero as n → ∞, and therefore the same is true for the
overall upper bound on the block error probability in (58). However, we note the convergence of
the first and the second terms of the upper bound (58) are different: The convergence of the first
term is polynomial in the block length, and the convergence of the second term is exponential in
the block length, so the overall bounds tends to zero polynomially in the block length.

From the discussion so far, it follows that if k satisfies the requirements in Proposition 3.1, (B.3),
(B.6) and (B.9), and j ≥ 3 satisfies the requirement in Proposition 3.1 (i.e., R = 1− j

k or equivalently
j = (1−R)k), then the sequence of Gallager’s ensemble achieves the required fraction of the channel
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capacity, and the asymptotic degree of the parity-check nodes of this sequence of ensembles is k.
By choosing the minimal value of k which satisfies all these requirements, it can be verified that

k ≤ A ln
(

1
ε

)
+ C ·max(ξ1, ξ2, ξ3, ξ4) + 2,

where ξ1, ξ2, ξ3, ξ4 are defined in Theorem 2.2 and A is defined in (B.7), and the +2 in the last term
above results from the requirement in Proposition 3.1 that k is an even positive integer. Then, the
resulting asymptotic density of the parity-check matrices which represent the considered sequence
of ensembles is

limn→∞∆n = (1−R)k
R

= (1−(1−ε)C)k
(1−ε)C

= A(1−C)
(1−ε)C · ln (

1
ε

)
+ A

1−ε · ε ln
(

1
ε

)
+

[
C ·max(ξ1, ξ2, ξ3, ξ4) + 2

]
·
(

1−(1−ε)C
(1−ε)C

)

(a)

≤ A(1−C)
(1−ε)C · ln (

1
ε

)
+ A

(1−ε)·e + 1
(1−ε)C

[
C ·max(ξ1, ξ2, ξ3, ξ4) + 2

]

= 1
1−ε ·

(
A(1−C)

C · ln (
1
ε

)
+ max(ξ1, ξ2, ξ3, ξ4) + 2

C + A
e

)

(b)
= 1

1−ε ·
(
K4 ln 1

ε + K3

)
,

where inequality (a) follows from the inequality ε ln
(

1
ε

) ≤ 1
e for 0 < ε < 1, and equality (b) follows

from Eqs. (5) and (B.7). This completes the proof of Theorem 2.2.

Proof of Corollary 2.1
Since K2 and K4 are the coefficients of ln 1

ε in the lower bound (1) and the upper bound (4) on
the asymptotic density, respectively, then we are interested to obtain bounds on the ratio K4

K2
for

an arbitrary MBIOS channel. From Eqs. (2) and (5)

K4

K2
=

2 ln
(

1
1−2w

)

(1− a) ln
(

1
1−2δ

) . (64)

The minimal value of K4
K2

is achieved in the limit where a → 0 and η → 1 (see Eq. (10)). In order
to proceed in our proof, we will first prove the following lemma.

Lemma 3.5. For an arbitrary MBIOS channel, the channel capacity satisfies the inequality

1− h(w) ≤ C ≤ 1− 2w

where w is introduced in Theorem 2.1. Moreover, the upper and lower bounds on the channel
capacity are achieved for a BEC and for a BSC, respectively.

Proof. From the erasure decomposition lemma [20, Appendix B], an arbitrary MBIOS channel
can be decomposed to a BEC with erasure probability 2w which is followed by another MBIOS
channel. From the data processing theorem, it follows that C ≤ 1 − 2w, and clearly equality is
achieved if the MBIOS channel is a BEC. On the other hand, assume that an arbitrary MBIOS
channel (whose binary input is x, its output is y, its capacity is C, and its conditional probability
distribution is p(y|x)) is followed by a channel whose output is +1 or −1 if p(y|x = 1) > p(y|x = 0)
or p(y|x = 1) < p(y|x = 0), respectively, and whose output is equally likely +1 or −1 if the equality
p(y|x = 1) = p(y|x = 0) holds. Then, from the symmetry property of the former channel (i.e., since
the equality p(y|x = 1) = p(−y|x = 0) holds for all y), it follows that the equivalent channel is a
BSC whose crossover probability is equal to w (and whose channel capacity is equal to 1 − h(w)
bits per channel use). From the data processing theorem, one obtains that C ≥ 1 − h(w), and
equality is clearly achieved if the MBIOS channel is a BSC.
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From Lemma 3.5, since C ≥ 1−h(w), then Eq. (10) implies that w ≥ δ (which becomes an equality
for a BSC). Eq. (64) then yields that K4

K2
≥ 2 (with an equality for a BSC where also a → 0).

On the other hand, from Lemma 3.5, the inequality C ≤ 1 − 2w holds for an arbitrary MBIOS
channel (with equality for a BEC). The maximal value of the right-hand side of Eq. (64) is therefore
achieved for a BEC in the limit where a → 0 and η → 1. In the latter case, C = 1 − 2w, and it
follows from Eq. (10) that δ = h−1(1−C). The right-hand side of Eq. (64) then achieves the upper
bound on K4

K2
. It is clear from this proof that the upper and lower bounds on K4

K2
are achieved for

a BEC and a BSC, respectively. As we will see in Theorem 2.3, for a BEC, the maximal value
of K4

K2
can be reduced to unity by considering another sequence of ensembles of LDPC codes; the

bounds in Eq. (11) refer to the sequence of ensembles of regular LDPC codes which is considered
in Theorem 2.2.

3.3 Proof of Theorem 2.3

3.3.1 Proof of the statement on the bit error probability (Eqs. (13)–(17))

Based on the asymptotic analysis of iterative message-passing decoding for the BEC, sequences of
capacity-approaching ensembles of LDPC codes are constructed so that one first chooses functions
λ̂α(·) and ρα(·) which satisfy the equality λ̂α(1− ρα(1− x)) ≡ x, and so that all the coefficients in
the power series expansions of λ̂α(·) and ρα(·) around zero are non-negative, and ρα(1) = 1. The
choice of the sequence of ensembles of LDPC in (12) was initiated by the choice λ̂α(x) = 1−(1−x)α

and ρα(x) = x
1
α where 0 < α < 1. In this case

λ̂α(x) =
∞∑

k=1

(−1)k+1

(
α

k

)
xk , |x| < 1 ,

so that all the coefficients in the power series expansion of λ̂α(x) are positive for 0 < α < 1. The
polynomial λ̂α,N (x) is defined to be the truncated power series of λ̂α(x) (by taking the first N − 1

non-zero terms (up to xN−1) in this expansion), and λα,N (x) is defined so that λα,N (x) , λ̂α,N (x)

λ̂α,N (1)
.

This approach yields the construction of the sequence of ensembles of LDPC codes in (12) (see [25]).
Further, for a finite value of N , the sequence of ensembles of (n, λα,N , ρα) LDPC codes achieves
asymptotically (as n →∞) a fraction 1− εα,N of the capacity of the BEC where

εα,N ≤ 1− λ̂α,N (1)− r(α, N)

1− λ̂α,N (1)
, (65)

and r(α, N) is the rate of this sequence of ensembles. In order to construct sequences of capacity-
achieving ensembles of LDPC codes with vanishing bit error probability on the BEC, it is suffi-
cient to choose the functions λ̂α(·) and ρα(·) so that in addition to the requirements above, also

limN→∞
1−λ̂α,N (1)−r(α,N)

1−λ̂α,N (1)
= 0.

For the sequence of ensembles of LDPC codes in (12)

r(α, N) = 1−
∫ 1
0 ρα(x) dx∫ 1

0 λα,N (x) dx

= 1− α−N(α
N)(−1)N+1

α−(α
N)(−1)N+1

,
(66)

where the latter equality relies on the the following equalities (which can be easily proved by
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mathematical induction)

N−1∑

k=1

(−1)k+1

k + 1

(
α

k

)
=

α− (
α
N

)
(−1)N+1

α + 1
,

N−1∑

k=1

(−1)k+1

(
α

k

)
= 1− N

α

(
α

N

)
(−1)N+1 , N ≥ 2.

A slight refinement of the derivation of Proposition 1 in [25] yields that for 0 < α < 1 and for an
integer N ≥ 1

α · c(α, N)
Nα+1

< (−1)N+1

(
α

N

)
≤ α

Nα+1
, (67)

where c(α, N) = (1−α)
π2

6 · eα(π2

6
−γ+ 1

2N
), and γ is Euler’s constant (see Appendix C for a proof).17

Based on (66) and (67), it can be shown that

c(α,N)
Nα − 1

Nα+1

1− 1
Nα+1

< r(α, N) <
1

Nα − c(α,N)
Nα+1

1− c(α,N)
Nα+1

,

and therefore a choice of α and N so that 1
Nα = 1− p yields the inequality

(1− p)
(
c(α, N)− 1

N

)

1− 1−p
N

< r(α, N) <
(1− p)

(
1− c(α,N)

N

)

1− (1−p) c(α,N)
N

.

These bounds on the rate yield that limN→∞ r(α, N) = 1− p (if N →∞ then α =
ln

(
1

1−p

)

ln N → 0 for
0 < p < 1, and limα→0 c(α, N) = 1), which implies that in the limit where N →∞ (in addition to
the assumption of the asymptotic analysis where the block length tends to infinity, i.e. n →∞), the
sequence of ensembles of LDPC codes in (12) achieves asymptotically the capacity of a BEC with
an erasure probability p. Therefore, α and N are chosen to be related according to (14). In order
to choose α and N so that this sequence of ensembles achieves asymptotically a fraction 1−ε of the
capacity of the BEC with vanishing bit error probability, then based on (65), it is sufficient to find

an integer N so that 1−λ̂α,N (1)−r(α,N)

1−λ̂α,N (1)
≤ ε, where λ̂α,N (1) =

∑N−1
k=1 (−1)k+1

(
α
k

)
= 1− N

α

(
α
N

)
(−1)N+1

and r(α,N) is introduced in (66). A short calculation yields that the last inequality is equivalent
to

1− 1
N

1− 1
α

(
α
N

)
(−1)N+1

≥ 1− ε. (68)

The main difference in the choice of the parameters in (14) as compared to (13) is based on the
following step: Let f(·) be a function which satisfies the condition 0 < f(p) < 1 for 0 < p < 1.
For 0 < α ≤ f(p) and N ≥ 1, it can be verified that c(α,N) ≥ c2(f(p)), where c2(·) is introduced
in (14) (we note that c2(f(p)) is the value of c(α, N) for α = f(p) and N → ∞). Based on (67),

inequality (68) can be replaced by the stronger condition 1− 1
N

1− c2(f(p))

Nα+1

≥ 1−ε. Since α, N were chosen

so that 1
Nα = 1 − p, then the solution of the last inequality is N ≥ 1−c2(f(p))·(1−p)(1−ε)

ε . The
assumption of the analysis where 0 < α ≤ f(p) and the relation between α and N in (14) also
requires that N ≥ (1− p)−

1
f(p) . These two requirements on the integer N imply that

N ≥ max
(⌈

1− c2(f(p)) · (1− p)(1− ε)
ε

⌉
,
⌈
(1− p)−

1
f(p)

⌉)
, N3(ε, p, f(·)) . (69)

17Proposition 1 in [25] states the existence of a constant c (instead of the function c(·, ·) in the lower bound in (67))
which is independent of α and N for 0 < α ≤ 1

2
. The stronger version of the lower bound in (67) is required here,

and in particular we make use of the equality limα→0 c(α, N) = 1.
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As will be clarified shortly, in order to obtain a function g(·, ·) which does not add too much to the
upper bound on asymptotic density (15) (as compared to (1)), we need to choose N to be as small
as possible, and therefore N will be determined such that (69) is satisfied with equality. The choice
of the function f(p) = p (0 < p < 1) and the connection above between N and α yields the setting
of the parameters in (14) (i.e., in this case N3(ε, p, f(·)) ≡ N2(ε, p)). We note that for small values
of ε (i.e., for the most appealing case where the gap to capacity is small enough), the alternative
choice of f(·) ≈ 0.5295 yields (13) (since in the latter case N3(ε, p, f(·)) ≡ N1(ε, p)), and Eq. (13)
could be derived as a consequence of the proof of Proposition 1 in [25].18

For the sequence of ensembles in (12) and (14), the asymptotic right degree of the LDPC codes is

lim
n→∞ aR(n) =

1
α

+ 1

=
ln N2(ε, p)

ln
(

1
1−p

) + 1

=
ln

(
1
ε

)

ln
(

1
1−p

) +
ln

(
p

1−p

)

ln
(

1
1−p

) +
ln

(
εN2(ε,p)

p

)

ln
(

1
1−p

) ,

which implies the following for the asymptotic density per information bit of the parity-check
matrices which represent this sequence of ensembles (since the sequence achieves asymptotically a
fraction 1− ε of the capacity of a BEC (which is 1− p) with vanishing bit error probability)

limn→∞∆n = 1−r(α,N)
r(α,N) · limn→∞ aR(n)

≤ 1−(1−p)(1−ε)
(1−p)(1−ε) · limn→∞ aR(n)

=
1+

ε(1−p)
p

1−ε · p
1−p ·

(
ln( 1

ε)
ln

(
1

1−p

) +
ln

(
p

1−p

)

ln
(

1
1−p

) +
ln

(
εN2(ε,p)

p

)

ln
(

1
1−p

)
)

= K1+K2 ln 1
ε
+g(ε,p)

1−ε ,

(70)

where K1 and K2 are given in (3), and g(·, ·) is introduced in (16) (which completes the proof
of (15) and (16)). Eq. (17) is derived from (16) as a result of the equality limε→0 ε ln

(
1
ε

)
= 0,

and because the coefficients K1 and K2 in (3) only depend on p, and x ≤ dxe < x + 1. The last
inequality and the inequality 0 < ε ln

(
1
ε

) ≤ 1
e for 0 < ε < 1, enables to prove that g(·, p) is bounded

between two functions which only depend on p. The function g(·, ·) is clearly positive, as is reflected
from a comparison between the lower bound (1) (which applies to all binary linear codes) and the
upper bound (15) (see also Fig. 1). It can be verified numerically that the maximal value of the
right-hand side of Eq. (17) is achieved at p∗ ≈ 0.5009. Hence, for 0 < p < 1

lim
ε→0

g(ε, p) ≤
p∗ · ln

(
1−c2(p∗)·(1−p∗)

p∗

)

(1− p∗) · ln
(

1
1−p∗

) ≈ 0.5407

where c2(·) is introduced in (14), and γ ≈ 0.5772 designates Euler’s constant in (17). The latter
result is also reflected in curve 5 in the right-hand side plot of Fig. 1.

18Proposition 1 in [25] restricts the observation to the interval α ∈ [0, 1
2
], since this is sufficient for the proof

that the sequence of ensembles of LDPC codes achieves asymptotically the capacity of the BEC, while the degree
of freedom which was introduced here for the function f(·) serves to reduce the value of the function g(·, ·) in (16)
(see the improvement in the right-hand side plot as compared to the left-hand side plot of Fig. 1), and enhances the
tightness of the lower bound (1) on the asymptotic density.
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3.3.2 Proof of the statement on the block error probability (Eq. (18))

For constructing a sequence of ensembles achieving a fraction 1− ε of the capacity of a BEC with
vanishing block error probability, we rely on subsection 3.3.1 which yields the existence of such a
sequence with vanishing bit error probability, and we follow Luby et al. [13, p. 577].
Let η be an arbitrary positive number, and construct a sequence of ensembles of irregular LDPC
codes, based on (12) and (14), where ε in the definition of N2(ε, p) in (14) is replaced by ε′ , ε

1+η .
Based on the proof in subsection 3.3.1, this sequence of ensembles achieves a fraction 1− ε′ of the
capacity of a BEC with vanishing bit error probability. In order to obtain vanishing block error
probability, we will add a second set of parity-check nodes (whose role is similar to the concept
in Lemma 3 of [13]), which typically adds to the code a small number of parity-check nodes, and
therefore yields a slight reduction in the asymptotic rate of this sequence (i.e., a proper design
yields that the reduction in the code rate is by a factor which is not below 1−ε

1−ε′ . This scaling
factor becomes very close to unity (but is still below unity) for small positive values of η). The
second set of parity-check nodes is characterized by the property that together with the variable
nodes of this sequence of ensembles, we construct an ensemble of regular LDPC codes, with left and
right degrees of 3 and dr, respectively.19 To summarize, we construct a sequence of ensembles of
LDPC codes which are characterized by two sets of parity-check nodes: the first set of parity-check
nodes are connected to the variable nodes by edges according to (12) and (14) with ε′ replacing ε
(characterizing sequence of ensembles of irregular LDPC codes), and the second set of parity-check
nodes are connected to the variable nodes so that it specify a sequence of ensembles of regular
LDPC codes. The asymptotic (total) rate of this sequence of ensembles is not below a fraction
1− ε of the channel capacity (i.e., it is at least (1− ε)(1− p)).

On a BEC, an iterative message-passing decoder fails to reveal part of the bits which are erased by
the channel if a subset of these bits contains a non-empty stopping set, and the set of variable nodes
which are not revealed at the end of this decoding process coincides with the maximal stopping
set (the reader is referred to Section 1 in [6] for more details). For the ensemble of regular LDPC
codes of block length n, left degree dl and right degree dr, it follows from the analysis in [22] that
there exists a positive number ω(dl, dr) such that at most a fraction O

(
1
n

)
of the codes from this

ensemble contain stopping sets of size ω(dl, dr)n or less [22, Lemma 4.1].

The decoding of this sequence of ensembles for the BEC will be performed as follows: iterative
message-passing decoding is first used for the sequence of codes which are induced by the variable
nodes and the first set of the parity-check nodes. According to the proof in the previous section,
vanishing bit erasure probability will be asymptotically achieved (as the block length tends to
infinity). That implies that at the end of this message-passing decoding, the fraction of the variable
nodes which remain unknown tends asymptotically to zero. It yields that in the second stage, an
iterative message-passing decoder which relies on the output of the decoder from the first stage,
and also relies on the connections between the variable nodes and the second set of parity-check
nodes (representing codes from the ensemble of regular LDPC codes with left degree dl = 3 and
right degree dr) will finally succeed to decode successfully all the block. Otherwise, at the end of
the second stage, the decoder would end with a stopping set whose size is more than ω(dl, dr)n, but
we already obtain after the first decoding stage a fraction of unknown variable nodes which tends
asymptotically to zero, and this forms a sufficiently good starting point for the second decoding

19The rate of a code from the sequence of ensembles of regular LDPC codes with left and right degrees of 3 and
dr, respectively, is not below 1 − 3

dr
. Therefore, one can choose a sufficiently large value of dr, so that the rate of

the overall code will be reduced by a factor which is not below 1−ε
1−ε′ (as a consequence of adding the small set of

parity-check nodes, as described above). It can be verified that for this purpose, a right degree of dr =
⌈

3(1+η)
εηC

⌉
is

sufficiently large.
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stage to ensure that with probability 1, the decoder successfully decodes all the block. This approach
suggests therefore a sequence of ensembles of codes which achieves a fraction 1− ε of the capacity
of the BEC with vanishing block error probability. Based on Eq. (70), we obtain the following
inequality for the asymptotic density of the parity-check matrices which represent this sequence

lim
n→∞∆n ≤ 1− ε′

1− ε
· K1 + K2 ln 1

ε′ + g(ε′, p)
1− ε′

+
3

(1− p)(1− ε)
,

where the factor 1−ε′
1−ε in the first term is a consequence of the slight reduction in the rate of this

sequence by adding the second set of parity-check nodes, and the second term is the contribution
to the asymptotic density (per information bit) which is made by the regular LDPC codes whose
left degree is three. Since η > 0 is a parameter in the construction of this sequence of ensembles
which can be chosen arbitrarily small (yielding that ε′ can be made as close as desired to ε, though
ε′ < ε), then the last inequality coincides with (18).

3.4 Proof of Theorem 2.4

We start in proving the first part of Theorem 2.4 which refers to the block error probability. Let
u and v be the transmitted codeword in the code C and the received sequence, respectively (both
are vectors of length n). From Fano’s inequality

H(u|v)
n

≤ h(PB)
n

+ RPB , (71)

where PB is the average block error probability of the code C under an arbitrary decoding algorithm
(or an upper bound on the decoding error probability). If the transmission takes place over an
MBIOS channel, then the combination of (30)20 and (71) yields that

1− C − (1−R) · h
(

1− (1− 2w)aR

2

)
≤ h(PB)

n
+ RPB.

Since h(x) ≤ 1− 2
ln 2 · (1

2 − x)2 for 0 ≤ x ≤ 1
2 (see Lemma 3.1), then

1− C − (1−R)
(

1− 1
2 ln 2

· (1− 2w)2aR

)
≤ h(PB)

n
+ RPB .

Since R = (1− ε)C, the last inequality yields that

aR ≥
ln

(
1

2 ln 2 · 1−R

C−(1−PB)R+
h(PB)

n

)

2 ln
(

1
1−2w

)

=
ln

(
1

2 ln 2 · 1−C+εC
δ1C+δ2

)

2 ln
(

1
1−2w

)

where δ1, δ2 are introduced in (21). Since ∆ and aR designate the normalized number of ones in
a parity-check matrix which represent the binary linear block code C, normalized per information
bit and per parity bit, respectively, then clearly ∆ =

(
1−R

R

)
aR, which yields that

∆ ≥ 1− (1− ε)C
(1− ε)C

·
ln

(
1

2 ln 2 · 1−C+εC
δ1C+δ2

)

2 ln
(

1
1−2w

) ,

20The subscript m in (30) is irrelevant here, and it only serves in the continuation of the proof of Theorem 2.1,
where we let m tend to infinity. Here we consider a code and not a sequence of codes as in Theorem 2.1.
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which coincides with (19). The proof of the lower bound for the BEC with respect to the block
error probability is similar, except for the beginning of the proof which combines Fano’s inequality
with (36) (the subscript m in (36) is again irrelevant here).

The proof on the lower bounds on ∆ with respect to the bit error probability (i.e., the derivation of
(19) and (20) with the parameters δ1, δ2 in (22)) is based on the same way, except for replacing the
upper bound (71) on H(u|v)

n (which is given in terms of the block error probability) by inequality
(31) (i.e., H(u|v)

n ≤ h(Pb) where Pb designates the bit error probability of the code C).

3.5 Proof of Theorem 2.5

Before proving Theorem 2.5, we will first verify the statement in Lemma 2.1: Consider a code
whose factor graph is a tree. If the code has block length n and rate R, then this factor graph has
exactly n variable nodes and (1 − R)n parity-check nodes. Since the factor graph is a tree, there
are exactly (2−R)n− 1 edges in the graph. Consider now the parity-check matrix. Note that the
number of ones in the matrix is equal to the number of edges in the graph. Therefore the density
of the parity-check matrix of a cycle-free code is ∆ = 2−R

R − 1
nR , and according to Definition 2.4,

its normalized density is therefore t = 1− 1
n(2−R) .

Inequality (23) follows easily from Theorem 2.4. More specifically, it follows from inequality (19),
Eq. (22) (where in this case ε = 1− R

C ), and the equality ∆ =
(

2−R
R

)
t (see Definition 2.4). Similarly,

inequality (24) follows from inequality (20), Eq. (22) and Definition 2.4.

From inequality (23), the lower bound on the bit error probability (Pb) is meaningful if the right-
hand side of this inequality is positive, i.e.,

R− C +
1

2 ln 2
· (1−R)(1− 2w)

2t(2−R)
1−R > 0.

Let the code rate be a fraction 1− ε of the channel capacity, i.e., R = (1− ε)C. The substitution
of R in the last inequality gives

−Cε +
1

2 ln 2
· (1− (1− ε)C

)
(1− 2w)

2t(2−(1−ε)C)
1−(1−ε)C > 0. (72)

The solution of (72) is ε < ε0, where ε∗ = ε0 is the value which sets the left-hand side of (72) to
zero, i.e.,

1
2 ln 2

·
(

1 +
1− C

ε0C

)
=

(
1

1− 2w

)2t
(
1+ 1

1−(1−ε0)C

)

. (73)

By doing the substitutions

x =
1

1− (1− ε0)C
, u = 1− (1− C)x , z =

2ut · ln(1− 2w)
1− C

, (74)

Eq. (73) transforms to the equation

zez =
t · ln(1− 2w) · (1− 2w)

2t(2−C)
1−C

ln 2 · (1− C)
. (75)

The solution of Eq. (75) is

z = W


 t · ln(1− 2w) · (1− 2w)

2t(2−C)
1−C

ln 2 · (1− C)


 , (76)
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where the function W (·) is the Lambert W-function [28]. Finally, the reverse substitutions of those
in (74) transform the value of z in (76) to the value of ε0 in (25), where 1 − ε0 is the achievable
fraction of the channel capacity.

For the model of a BEC, the improved lower bound (24) on the bit erasure probability (as compared
to (23) with w = p

2) yields to a wider range of values of ε for which the former lower bound is
meaningful. The lower bound on the bit erasure probability (24) is useful if its right-hand side is
positive. By setting R = (1− ε)(1− p) in the right-hand side of (24), one obtains the condition

−(1− p)ε +
(
1− (1− p)(1− ε)

) · (1− p)
(2−(1−p)(1−ε))t
1−(1−p)(1−ε) > 0 (77)

whose solution is ε < ε0, where ε∗ = ε0 sets the left-hand side of (77) to zero, i.e.,

1 +
p

ε0(1− p)
=

(
1

1− p

)(
1+ 1

1−(1−ε0)(1−p)

)
t

. (78)

By doing sequentially the substitutions

x =
1

1− (1− ε0)(1− p)
, u = 1− px , z =

ut · ln(1− p)
p

, (79)

Eq. (78) transforms to the equation

zez =
t · ln(1− p) · (1− p)

(
1+ 1

p

)
t

p
. (80)

The solution of Eq. (80) is

z = W


 t · ln(1− p) · (1− p)

(
1+ 1

p

)
t

p


 , (81)

and then, the reverse substitutions of those in Eq. (79) transform the value of z in Eq. (81) to the
value of ε0 in Eq. (26).

• A consequence of Theorem 2.5
The lower bounds on the bit error probability in Eqs. (23) and (24) can be easily applied to
ensembles of binary linear block codes of a given rate, where the bit error probability of a code
(Pb) is replaced with the average bit error probability over the ensemble (Pb), and the normalized
density (t) of a parity-check matrix which represents a code is replaced with the average normalized
density (t). This is readily justified by applying Jensen’s inequality to both sides of Eqs. (23) and
(24), i.e.,

E [h(Pb)] ≤ h
(
Pb

)
, E

[
(1− 2w)βt

]
≥ (1− 2w)βt ∀ β ∈ R.

Based on the proof of Theorem 2.5, it follows that the expression of ε0 in Eqs. (25) and (26) is
valid for an arbitrary ensemble of binary linear block codes of a given rate (R); to this end, one
replaces t in Eqs. (25) and (26) with t. Corollary 2.3 and the discussion above suggests the following
interpretation to ε0 in Eqs. (25) and (26); it is a lower bound on the gap to capacity for an arbitrary
sequence of binary linear block codes (or a sequence of ensembles of these codes) under optimal
decoding (and hence, under an arbitrary sub-optimal decoding algorithm).

Consider a sequence of ensembles of (n, λ, ρ) LDPC codes, whose block length (n) tends to infinity.
Since the asymptotic rate and the normalized density are calculable in terms of the polynomials
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λ(·) and ρ(·), then we will show that it is possible to compute a lower bound on the asymptotic
gap to capacity for this sequence of ensembles; the bound is valid under ML decoding (and also
under an arbitrary iterative decoding algorithm). The asymptotic rate of the considered sequence
of ensembles is

R = 1−
∫ 1
0 ρ(x) dx∫ 1
0 λ(x) dx

. (82)

Since the average number of ones in a parity-check matrix of a code from an ensemble of (n, λ, ρ)
LDPC codes is equal to

n∫ 1
0 λ(x) dx

and (by Definitions 2.2 and 2.4), it is also equal to n(2−R)t, then a short calculation shows that
the average value of the asymptotic normalized density is equal to

t =
1∫ 1

0 λ(x) dx +
∫ 1
0 ρ(x) dx

. (83)

From Theorem 2.5 and the discussion above, a lower bound on the inherent gap to capacity (ε0)
of a sequence of ensembles of LDPC codes can be calculated by solving numerically the equation
1− R

C = ε0, where ε0 is given in Eq. (25) for a general MBIOS channel and is improved in Eq. (26)
for a BEC, the asymptotic rate (R) is given in Eq. (82), and C designates the channel capacity (in
bits per channel use). For an arbitrary sequence of ensembles of LDPC codes whose transmission
takes place over an MBIOS channel, a lower bound on the gap to the channel capacity is therefore
calculated numerically by solving the equation

∫ 1
0 λ(x) dx∫ 1
0 ρ(x) dx

=
1

1− C
−

(
1

2t ln(1− 2w)

)
·W

( t · ln(1− 2w) · (1− 2w)
2t(2−C)

1−C

ln 2 · (1− C)

)
(84)

where C and w depend on the channel, t is given in Eq. (83), the function W (·) designates the
Lambert W-function [28], and Eq. (84) follows from Eqs. (25) and (82).

For a BEC with an erasure probability p, an improved lower bound on the gap to capacity can be
calculated numerically by solving the equation

∫ 1
0 λ(x) dx∫ 1
0 ρ(x) dx

=
1
p
−

(
1

t ln(1− p)

)
·W

( t · ln(1− p) · (1− p)t
(
1+ 1

p

)

p

)
(85)

where Eq. (85) is equivalent to the original equation (i.e., 1 − R
C = ε0), and it is based on the

improved value of ε0 for a BEC in Eq. (26) (as compared to the value of ε0 in Eq. (25) which refers
to an arbitrary MBIOS channel). To conclude, this discussion leads to the following result

Corollary 3.2. Consider an arbitrary sequence of ensembles of (n, λ, ρ) binary LDPC codes whose
transmission takes place over an MBIOS channel. A lower bound on the asymptotic gap to capacity
under optimal decoding (i.e., ML decoding) can be calculated numerically by solving Eq. (84). This
lower bound can be improved for a BEC by solving Eq. (85).

4 Numerical Results

Our goal here is to show numerical results for the information theoretic bounds on the limitations
of capacity-approaching binary linear codes over MBIOS channels. These numerical results mainly
refer to Theorem 2.5 and Corollary 3.1.
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Tables 1–3 present numerical results for thresholds of ensembles of LDPC codes whose transmission
takes place over a BEC, a BSC or a binary-input AWGN channel. Following Burshtein et al. [4],
the ultimate Shannon capacity limit of the channel is compared with bounds on their thresholds
under ML decoding and iterative message-passing decoding. The numerical calculation of the latter
threshold (the RU threshold) is based on the density evolution analysis [19]. The difference between
[4, Theorem 1, Eq. (16)] and Eq. (37) here provides an improved upper bound on the maximal
achievable rate for reliable communications over a BEC, and also suggests a certain improvement on
the maximal achievable rate under ML decoding for a general MBIOS channel (with the exception
of a BSC, where [4, Theorem 1] and Eq. (37) coincide). We note that for a BEC and a BSC,
Corollary 3.1 provides an upper bound on the threshold under ML decoding, and it also provides a
lower bound on the Eb

No
–threshold for a binary-input AWGN channel (since if the erasure (crossover)

probability of a BEC (BSC) is increased, then the channel is degraded; similarly, the same happens
if the value of Eb

No
for a binary-input AWGN channel is decreased). It also follows from Theorem 2.1

that the value of w in Corollary 3.1 is equal to w = p
2 for a BEC with erasure probability p,

w = min(p, 1 − p) for a BSC with crossover probability p, and w = Q
(√

2REb
No

)
for a binary-

input AWGN channel with antipodal signaling (where Q(·) stands for the complementary Gaussian
cumulative distribution function).
From Table 3, it can be verified that even for ensembles of LDPC codes which achieve near-Shannon
capacity limit performance under iterative message-passing decoding, there exists an inherent gap
between the channel capacity and the calculated bounds on the thresholds under optimal ML
decoding; the gap is attributed to the moderate values of the average normalized density (t) of
the parity-check matrices of these ensembles (according to Theorem 2.1 and Definition 2.4, the
normalized density scales at least like ln 1

ε where ε designates the gap to capacity, and it therefore
tends to infinity as this gap vanishes). A comparison of bounds on the thresholds under ML
decoding with the RU thresholds provides an upper bound on the inherent loss in performance of
the sub-optimal message-passing decoder (as compared to optimal ML decoding). For example,
from Table 2, it follows that for a binary-input AWGN channel and an ensemble of (3, 6) regular
LDPC codes (whose asymptotic rate is one-half), the gap between the threshold under ML decoding
and the capacity limit is between 0.062 and 0.486 dB, and the loss in Eb

No
due to the sub-optimality

of the iterative message-passing decoding (as compared to the ML decoding algorithm) is between
0.437 and 0.861 dB.

Code Ensemble Channel Rate Capacity Upper Bound Lower Bound RU Threshold

(3,6) LDPC BEC 1
2 0.5000 0.4913 0.483 0.429

(4,6) LDPC BEC 1
3 0.6667 0.6657 0.665 0.506

(3,4) LDPC BEC 1
4 0.7500 0.7469 0.744 0.647

(3,6) LDPC BSC 1
2 0.1100 0.1025 0.092 0.084

(4,6) LDPC BSC 1
3 0.1740 0.1726 0.170 0.116

(3,4) LDPC BSC 1
4 0.2145 0.2109 0.205 0.167

Table 1: Comparison of thresholds for a BEC/ BSC and ensembles of regular LDPC codes. The
upper bound on the threshold for the erasure/ crossover probability (p) refers to ML decoding and
is based on Eq. (37) in Corollary 3.1. The lower bound on the threshold under ML decoding is based
on an upper bound on the error performance under ’typical pairs’ decoding (see [12, Table 2.1]),
and the RU threshold is under iterative message-passing decoding [19].
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Code Ensemble Rate Capacity Lower Bound Upper Bound RU Threshold

(3,6) LDPC 1
2 +0.187 dB +0.249 dB +0.673 dB +1.110 dB

(4,6) LDPC 1
3 −0.495 dB −0.488 dB −0.423 dB +1.674 dB

(3,4) LDPC 1
4 −0.794 dB −0.761 dB −0.510 dB +1.003 dB

Table 2: Comparison of thresholds for a binary-input AWGN channel and ensembles of regular
LDPC codes. The lower bound on the threshold of Eb

No
refers to ML decoding and is based on

Eq. (37) in Corollary 3.1. The upper bound on the threshold of Eb
No

under ML decoding is based on
an upper bound on the error performance under ’typical pairs’ decoding [10], and the RU threshold
is under iterative message-passing decoding [19].

The upper plots of Figs. 2 and 3 present lower bounds on the bit erasure/ error probability of
binary linear codes which are transmitted over a BEC or a BSC, respectively. The bounds rely on
Theorem 2.5, and are plotted as a function of the normalized density of an arbitrary parity-check
matrix which represents such a binary linear code. We note that the values of p in Figs. 2 and 3
were chosen so that the capacity (C) of the BEC and the BSC is equal to 1

2 bit per channel use (so
the probability of erasure of the BEC is p = 1− C = 1

2 , and the crossover probability of the BSC
is p = h−1(1−C) = 0.110). The bounds in the upper plot of Fig. 2 are based on Eq. (24), and are
depicted for binary linear codes whose rate is a fraction 1− ε of the channel capacity. For example,
assume that one wishes to design a binary LDPC code which achieves a bit erasure probability
of 10−6 at a rate which is 99.9% of the capacity of a BEC whose erasure probability is 1

2 . Then
curve 3 in the upper plot of Fig. 2 implies that the normalized density of every parity-check matrix
of such an LDPC code should be at least tmin = 3.325. Since the designed rate of the code is
nearly one-half (i.e., R = 0.999C = 0.4995 bits per channel use), then it yields that the density
of every parity-check matrix of such an LDPC code should be at least ∆min = (2−R)tmin

R = 9.987.
Similarly, the upper plot in Fig. 3 refers to a BSC, and is based on Eq. (23). It is reflected from
the upper plots of Figs. 2 and 3 that the lower bounds on the normalized density of an arbitrary
parity-check matrix (t) which represents a binary linear code whose bit erasure/ error probability is
low, grow significantly as the accepted gap to capacity (εC) tends to zero. This observation agrees
with the statement in Theorem 2.1 which implies that the minimal value of the normalized density
(t) behaves like ln

(
1
ε

)
.21 It also explains why curves 2–10 in the upper plots of Figs. 2 and 3 have

infinite slope as Pb goes to zero (the reason is that if ε > 0 and Pb → 0, the lower bounds on the
density (∆) in Eqs. (19) and (20) tend to finite numbers, and therefore from Definition 2.4, the
corresponding values of t also tend to finite numbers (i.e., C

2−C times the limit of the density (∆)).
Since the lower bounds on t are finite in the latter case, then curves 2–10 in the upper plots of
Figs. 2 and 3 should have an infinite slope as Pb → 0). If ε → 0 (i.e., the code achieves the channel
capacity), then the normalized density of an arbitrary parity-check matrix which represents this
code tends to infinity (as is also reflected in curve 1 of Figs. 2 and 3).

The lower plots in Figs. 2 and 3 depict information theoretic lower bounds on the achievable gap
to capacity with vanishing bit erasure/ error probability (where this gap is normalized w.r.t. the
channel capacity). These bounds refer to the BEC and BSC, respectively, and are valid for any
sequence of codes and for optimal ML decoding (and hence, are valid for any sub-optimal decoding
algorithm). These lower bounds on the normalized gap to capacity are plotted for a BEC and a
BSC as a function of the channel parameter p (which designates the erasure probability or the
crossover probability, respectively). Every curve in the lower plots of Figs. 2 and 3 refers to a fixed

21From Definition 2.4, limε→0
t
∆

= C
2−C

. Theorem 2.1 yields therefore that as ε → 0, both t and ∆ grow at least

like ln
(

1
ε

)
.
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λ(x) ρ(x) t Lower Bound RU Threshold
0.38354x + 0.04237x2 +
0.57409x3 0.24123x4 + 0.75877x5 1.908 +0.269 dB +0.809 dB

0.23802x + 0.20997x2 +
0.03492x3 +0.12015x4 +
0.01587x6+0.00480x13+
0.37627x14

0.98013x7 + 0.01987x8 2.673 +0.201 dB +0.335 dB

0.21991x + 0.23328x2 +
0.02058x3 +0.08543x5 +
0.06540x6 +0.04767x7 +
0.01912x8+0.08064x18+
0.22798x19

0.64854x7+0.34747x8+
0.00399x9

2.776 +0.198 dB +0.310 dB

0.19606x + 0.24039x2 +
0.00228x5 +0.05516x6 +
0.16602x7 +0.04088x8 +
0.01064x9+0.00221x27+
0.28636x29

0.00749x7+0.99101x8+
0.00150x9 2.998 +0.194 dB +0.274 dB

Table 3: Comparison of thresholds for the binary-input AWGN channel and ensembles of irregular
LDPC codes with good degree distribution pairs of rate one-half. The Shannon capacity limit
corresponds to Eb

No
= +0.187 dB. The lower bound on the threshold of Eb

No
refers to ML decoding

and is based on Eq. (37) in Corollary 3.1, and the RU threshold is under iterative message-passing
decoding [19]. The degree distributions of the ensembles and their RU thresholds are taken from
[20, Tables 1 and 2]. The average normalized densities (t) of the parity-check matrices of these
ensembles are also provided based on (83).

value of the normalized density of the parity-check matrix (t), which is depicted for values between
1 and 4.5 in increments of 0.25 (the greater the value of t is, the smaller is the lower bound on
the achievable gap to capacity for all values of p). These lower bounds on the achievable gap to
capacity for a BEC or a BSC are based on Eqs. (26) and (25), respectively. We note that if p = 0
(i.e., the channel is noiseless), then the capacity of the channel (which is clearly 1 bit per channel
use) is achieved without any channel coding, and therefore it is clear why the lower bound on ε
in this case is zero. On the other hand, if p = 1 for the BEC or if p = 0.5 for the BSC, then
the channel capacity is zero (C = 0), and again it explains why the lower bound on ε is also zero
in the latter case. Therefore, the fact that the lower bound on the achievable gap to capacity is
not a monotonic function of p is not surprising, and this is indeed reflected in curves 1–15 which
depict the lower plots of Figs. 2 and 3. For example, it follows from curves 1–13 in the lower plot of
Fig. 2 that if there exists a parity-check matrix which represents a binary LDPC code and whose
normalized density does not exceed 4, then the normalized gap to capacity of this LDPC code
cannot be below 0.1% of the channel capacity if the probability of erasure of the BEC lies in the
range 0.08 ≤ p ≤ 0.26 (even if this code is ML decoded). It is also reflected from a comparison of
the lower bounds on the achievable gap to capacity for the BEC and BSC (see the lower plots of
Figs. 2 and 3, respectively) that the lower bounds on the gap to capacity for the BSC are more
pessimistic than those for the BEC. This may be a result of the provable tightness of the bounds for
the BEC, while for the BSC these bounds reflect the correct behavior but are seemingly somewhat
less tight than those for the BEC (see Corollary 2.1 and Theorem 2.3). We finally note that the
reason that we present in Figs. 2 and 3 curves corresponding to normalized densities (t) which
are at least equal to unity is because cycle-free codes have parity-check matrices whose density is
t = 1 − 1

(2−R)n ≥ 1 − 1
n (this readily results in from Lemma 2.1 and Definition 2.4), and hence
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since the block length n is typically much larger than 1, then for cycle-free codes t ≈ 1 (and in
the limit where the block length tends to infinity, the corresponding density for cycle-free codes
goes to unity). Clearly, if a binary code is represented by a bipartite graph with cycles, then the
normalized density (t) of its corresponding parity-check matrix should increase as compared to the
cycle-free case (see Corollary 2.5), which justifies our interest on values of t above unity.
Figs. 2 and 3 (which are based on Theorem 2.5) and the result in Corollary 2.5 which connects the
normalized density of a parity-check matrix with the cardinality of the set of fundamental cycles
in the corresponding bipartite graph of a binary linear block code, illustrate that bipartite graphs
which represent good error correction codes should have cycles (see also [7]).
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Figure 2: Upper plot: lower bounds on the bit
erasure probability for any binary linear code
which is transmitted over a BEC. The bounds
are depicted in terms of the normalized density
of an arbitrary parity-check matrix which rep-
resents the code, and the curves correspond to
code rates which are a fraction 1−ε of the chan-
nel capacity (for different values of ε). The era-
sure probability of the BEC is p = 0.500 (which
yields a capacity of one-half bits per channel
use). Lower plot: lower bounds on the achiev-
able gap to capacity with vanishing bit erasure
probability (where this gap is normalized w.r.t.
the channel capacity) for any sequence of codes
operating over a BEC. The bounds are depicted
as a function of the probability of erasure of the
channel, and every single curve corresponds to a
fixed value of the asymptotic normalized den-
sity of the parity-check matrices which repre-
sent this sequence of codes: curve no. i (where
i = 1, 2, · · · , 15) corresponds to a normalized
density which is equal to ti = 1 + 0.25(i− 1).
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Figure 3: Upper plot: lower bounds on the bit
error probability for any binary linear code which
is transmitted over a BSC. The bounds are de-
picted in terms of the normalized density of an
arbitrary parity-check matrix which represents
the code, and the curves correspond to code rates
which are a fraction 1 − ε of the channel ca-
pacity (for different values of ε). The crossover
probability of the BSC is p = 0.110 (which
yields a capacity of one-half bits per channel
use). Lower plot: lower bounds on the achiev-
able gap to capacity with vanishing bit error
probability (where this gap is normalized w.r.t.
the channel capacity) for any sequence of codes
operating over a BSC. The bounds are depicted
as a function of the crossover probability of the
channel, and every single curve corresponds to a
fixed value of the asymptotic normalized density
of the parity-check matrices which represent this
sequence of codes: curve no. i (i = 1, 2, · · · , 15)
corresponds to a normalized density which is
equal to ti = 1 + 0.25(i− 1).
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5 Outlook

We gather here what we consider to be the most interesting open problems in this research.

1. Theorems 2.1 and 2.3 show that for any iterative decoder which is based on the standard Tanner
graph, there is a tradeoff between performance and complexity which cannot be surpassed. For
the BEC, it can be achieved up to a small constant. This begs the question if better tradeoffs can
be achieved by allowing more complicated graphical models (e.g., graphs which also involve state
nodes, in addition to variable nodes and parity-check nodes used for representing codes by bipartite
graphs). More generally, is it true that for any sequence of codes which under an arbitrary decoding
algorithm (iterative or not) achieves a certain fraction of capacity with vanishing bit or block error
probability, the encoding/decoding complexity can be linked to the density of the parity-check
matrices which represent these codes (or to their gap to capacity) ?

2. Is it possible to improve the tightness of the lower bound (1) for general MBIOS channels ? From
Theorem 2.2, it is clear that the logarithmic growth rate of the lower bound (1) reflects (up to
a scaling factor) the real behavior of the best possible asymptotic density, but there may be a
possibility to increase the coefficient K2 in (2) (i.e., to increase the coefficient of the logarithm in
the lower bound (1)) so that it will coincide with the logarithmic growth rate of the asymptotic
density for a certain capacity-achieving sequence of ensembles (as was demonstrated for the BEC
in Theorem 2.3). However, we note on the large gap between the current understanding of iterative
message-passing decoding over a BEC and other types of channels (for a general MBIOS channel,
it is not even known whether capacity can be achieved under iterative decoding).

3. Based on Theorem 2.2, it was noted in Section 2 that for the BSC, the coefficient of the logarithm in
the upper bound (4) can be made as close as desired to twice the coefficient of the logarithm in the
lower bound (1). For the BEC, the tightness of the lower bound (1) with the improved coefficients
in (3) was demonstrated in Theorem 2.3 even under a sub-optimal decoding algorithm (the iterative
message-passing decoding). It will be interesting to see if expander codes which attain the capacity
of the BSC under iterative decoding [2], enable one to approach the information theoretic lower
bound (1) with the coefficients in (2) for the BSC.

4. Extensions of the results in this paper to channels with memory (e.g., channels with ISI), and to
non-binary linear block codes.

36



Appendix A
Derivation of inequality (57)

For δ ∈ (0, 1
2) and an integer k ≥ 2, one obtains

j
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µk(su)
k − suδ +
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k

)
ln 2

)
− (j − 1) he(δ)

(a)
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k · ln
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where equalities (a), (b) and (c) are based on Eqs. (48) and (52) (su is the upper bound on s∗

in Eq. (52)), and on the equality R = 1 − j
k for the asymptotic rate of Gallager’s ensemble,

respectively. Inequality (d) is based on the inequality ln(1 + x) ≤ x for x ≥ 0 and by neglecting
the last term before transition (d) (which is non-positive). For transition (d) we also rely on the
fact that f(u) = ln

(
1−u
1+u

)
is a monotonically decreasing function on the interval (−1, 1), and that

δ
1−δ < δ

1−δ · exp
(

2(1−2δ)k−1

δ

)
< 1; the right-hand side of the latter inequality is fulfilled according

to the assumption in Proposition 3.1 (see the explanation before Eq. (57)).
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Appendix B
Derivation of sufficient conditions for the fulfillment of

inequalities (62) and (63)

A sufficient condition for the fulfillment of inequality (62): Since the left side of (62) tends
to zero as k → ∞, then there is a hope to find a value of k in terms of ε which satisfies this
inequality. Unfortunately, since inequality (62) does not lend itself to an analytical solution of k
in terms of δ0 and ε, then we will replace the left side of (62) by an upper bound, so that the new
inequality which implies a stronger requirement on k can be solved analytically. First we have for
δ0 ∈ (0, 1

2)
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Suppose that k is chosen so that 2(1−2δ0)k−1
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≤ ln 2, or equivalently
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Since exp(x) ≤ 1 + x
ln 2 for 0 ≤ x ≤ ln 2, then exp
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requirement in (B.2).
Let a be a parameter so that 0 < a < 1, and suppose that k also satisfies the inequality
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.

By taking the logarithms of both sides of this inequality, and utilizing the inequality ln(k+1) <
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k
for k ≥ 1, one can impose the following stronger requirement on k
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It is easy to see that that the requirement on k in (B.3) yields the requirement in (B.2), and
therefore one can ignore the condition on k in (B.2). The requirement (B.3) on k yields that

(k + 1) ·
(
exp

(
2(1−2δ0)k−1

δ0

)
− 1

)

(a)

≤
(

2(1−2δ0)k−1

δ0 ln 2

)−a
·
(
exp

(
2(1−2δ0)k−1

δ0

)
− 1

)

(b)

≤
(
exp

(
2(1−2δ0)k−1

δ0

)
− 1

)1−a

(B.4)
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where inequality (a) relies on the requirement on k which led to the derivation of (B.3), and
inequality (b) is based on the inequality x ≥ ln 2 · (exp(x)− 1) for 0 ≤ x ≤ ln 2, and by taking
x = 2(1−2δ0)k−1

δ0
(which is not above ln 2 under the requirement in (B.3)). We note that inequality

(b) also relies on the fact that a > 0, which therefore yields from (B.3) that
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δ0 ln 2

)−a

≤
(

exp
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δ0

)
− 1

)−a

.

Under the requirement on k in (B.3), then the combination of inequalities (B.1) and (B.4) yields
that inequality (62) can be replaced by the stronger requirement

(
exp
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− 1
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≤ εC ln 2,

which is equivalent (since 0 < a < 1) to the inequality
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)
. (B.5)

Since the channel capacity (C) is not above one bit per channel use (as it is a binary-input channel)
and 0 < ε < 1, then based on the inequality ln(1 + x) > ln 2 · x for 0 < x < 1, one can replace
inequality (B.5) by the following stronger requirement on k

(1− 2δ0)k ≤
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To conclude, for the fulfillment of inequality (62), it is sufficient to determine k as the minimal
integer which satisfies the two conditions in (B.3) and (B.6). This suggests a closed form expression
of k in terms of ε and δ0 which satisfies inequality (62), so that k behaves like ln 1

ε (since δ0 was
appropriately determined in subsection 3.2.2 to be a positive number which does not depend on ε).

A sufficient condition for the fulfillment of inequality (63): Under the requirement in (B.3),
it follows immediately from (B.1) and (B.4) (with the slight difference that we do not upper bound
1−R in (B.1) by unity) that inequality (63) can be replaced by the stronger requirement
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where 0 < a < 1 is arbitrary, and the requirement on k in Eq. (B.3) depends on a.
Since R < C, the latter inequality could be replaced by the following inequality which imposes a
stronger requirement on k
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whose solution is
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Appendix C
Derivation of inequality (67)

For 0 < α < 1 and N ≥ 2, Shokrollahi has derived the equality (see [25], Eq. (7))
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For the derivation of an improved lower bound on (−1)N+1
(

α
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)
(as compared to the one which was

derived in [25]), we rely on the equality
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From Eqs. (C.1) and (C.2), one obtains the inequality
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By the exponentiation of both sides of inequality (C.3), and based on the inequality

ln(N) + γ <
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2N
(C.4)

where γ designates Euler’s constant, one obtains that for 0 < α < 1 and N ≥ 2
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where c(·, ·) is defined in Eq. (67).

For an upper bound on (−1)N+1
(

α
N

)
, Shokrollahi [25] has lower bounded the sums

∑N−1
k=1

1
kp (where

N ≥ 2 and p ≥ 2 are integers) by unity (i.e., by the first term of these series). Then, from (C.1),
(C.4), and the inequality (1− α) · exp(α) < 1 for 0 < α < 1, the right-hand side of inequality (67)
follows directly.
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