

Aspects of Convex Optimization

and Concentration in Coding

Ronen Eshel

Aspects of Convex Optimization

and Concentration in Coding

Research Thesis

Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science

in Electrical Engineering

Ronen Eshel

Submitted to the Senate of the Technion - Israel Institute of Technology

SHEBAT 5772 HAIFA FEBRUARY 2012

The Research Thesis Was Done Under the Supervision of Prof. Igal

Sason in the Electrical Engineering Department

ACKNOWLEDGMENTS

My sincere and wholehearted thanks go, first and foremost, to my

supervisor, Prof. Igal Sason. Without his meticulous and consistent

devotion to my guidance, this work would not be. He has also taught

me a great deal about the fine art of academic writing. Finally, I thank

my parents, for their moral support and never-ending patience

throughout this period. This thesis is devoted to them.

The Generous Financial Help Of The Technion Is Gratefully

Acknowledged.

To my parents, Ruth and Reuven.

Contents

Abstract 1

List of notation and abbreviations 3

1 Introduction 5

1.1 Convex optimization and LP decoding of linear codes 6

1.2 Concentration of measures in LDPC code ensembles 7

1.3 Thesis outline . 8

2 Complexity analysis of convex optimization problems solved using

interior-point method 11

2.1 Short overview . 11

2.2 Convex optimization and interior-point method 11

2.2.1 Minimization of un-constrained and equality-constrained con-

vex problems . 13

2.2.2 Inequality-constrained convex problems - interior-point methods 17

2.2.3 Complexity analysis using self-concordance property 18

2.3 Revision of the classical analysis of the convergence rate of Newton’s

method . 23

2.3.1 Damped Newton Phase . 24

2.3.2 Quadratic convergence phase 25

2.3.3 Final complexity bound . 26

2.4 Tightened complexity bounds on Newton’s method and interior-point

method . 28

iii

2.4.1 Theorem 4 - Complexity bound for ECSCM problems with pre-

determined step size . 28

2.4.2 Theorem 5 - Complexity bound for ECSCM problems with an

improved pre-determined step size 32

2.4.3 Theorem 6 - Complexity bound for ECSCM problems with

backtracking line-search . 33

2.4.4 Theorem 7 - Bounds’ extension to equality and inequality con-

strained minimization using interior-point methods 37

2.5 Proofs of Theorems . 37

2.5.1 Proof of Theorem 4 . 38

2.5.2 Proof of Theorem 5 . 39

2.5.3 Proof of Theorem 6 . 42

2.5.4 Proof of Theorem 7 . 46

2.6 Numerical results . 49

2.6.1 Predetermined step size t . 49

2.6.2 Backtracking line-search . 54

2.6.3 Comparison of backtracking line-search to predetermined step

size t . 58

2.6.4 Conclusions regarding the numerical analysis 60

3 Complexity analysis of IPM-based LP decoders for binary linear

block codes 63

3.1 Short overview . 63

3.2 LP decoding background . 63

3.2.1 Linear block codes . 64

3.2.2 The ML decoder . 66

3.2.3 Relaxed ML decoder . 67

3.3 Application of interior-point methods to LP decoding of binary linear

block codes . 69

3.3.1 IPM-based LP decoder . 70

3.3.2 Complexity analysis of an IPM-based LP decoder 72

3.3.3 Parameter-optimized complexity bound for LP decoder 73

3.3.4 Properties of the complexity bound for LP decoder 75

3.4 Comparison of the bounds . 77

4 Concentration of measures in LDPC code ensembles 79

4.1 Short overview . 79

4.2 Mathematical background about Martingales and Azuma’s inequality 80

4.2.1 Doob’s Martingales . 80

4.2.2 Azuma’s Inequality . 82

4.3 Some Applications of Azuma’s Inequality in Coding Theory 82

4.3.1 Minimum Distance of Binary Linear Block Codes 82

4.3.2 Performance of LDPC Codes under Iterative Message-Passing

Decoding . 84

4.4 A Tightened Large-Deviation Analysis for the Conditional Entropy of

LDPC Ensembles . 85

4.5 Concentration for channels with ISI 93

4.5.1 The ISI Channel and its message-passing decoding 94

4.5.2 Concentration results for channels with ISI 94

5 Summary and Conclusions 105

5.1 Contribution of the Thesis and conclusions 105

5.1.1 Complexity analysis of convex optimization 105

5.1.2 Complexity analysis of IPM-based LP decoders 106

5.1.3 Concentration of measures in LDPC code ensembles 108

5.2 Topics for further research . 109

A Proof of Lemma 2 113

B Proof of Lemma 5 117

References 118

Hebrew Abstract א

List of Figures

2.1 The geometric interpretation of an LP. The feasible set P , which is a

polyhedron, is shaded. The objective function cTx + d is affine, so its

level curves are hyper-planes orthogonal to c (shown as dashed lines).

The point x∗ is optimal and geometrically it is the point in P as far as

possible in the direction −c. 13

2.2 Backtracking line-search. The curve shows f , restricted to the line over

which we search. The lower dashed line shows the linear extrapolation

of f , and the upper dashed line has a slope a factor of α smaller. The

backtracking condition is that f lies below the upper dashed line, i.e.,

0 ≤ t ≤ t0. 16

2.3 The figure illustrates the two layers of the interior-point method. The

iterations along the central-path are called outer iterations. Within

each outer iteration, Newton’s method is applied to find the minimum

of tf0(x) +B(x), subject to Ax = b. The Newton iterations are called

inner iterations. 19

2.4 The coefficients c1 and c2 in the upper bound on the number of itera-

tions, as given in (2.21) and (2.22) for some values of the free parameter

η ∈ (0, 0.381). The additive constant c2 in (2.21) refers to ε = 10−10. . 30

2.5 The optimal value of η versus the initial error f(x(0)) − p∗ when the

bound in Theorem 4 is considered. 31

2.6 The term Nbound
Quad in (2.25) versus α for tolerance ε = 10−10. The

behavior of the bound can be classified into two cases depending on

the value of α. 35

vii

2.7 Improved (2.25) and original (2.19) bound for NDamped versus α. The

bounds are scaled by factor f(x(0)) − p∗ and shown for β = 1 and

ηmax = 0.38. 36

2.8 The function c(t = tpre, λ) and tpre Versus λ, as given in (2.24) and

(2.23) respectively. The line 1.6λ is also plotted to show it upper

bounds the function c(t = tpre, λ). 41

2.9 Bound on the number of iterations in the slow exponential decay sub

phase vs η. The bound on the number of iterations in this sub-phase

has to be calculated numerically by applying (2.32) recursively starting

from λ = η until λ = 0.55. 43

2.10 Consider Newton’s method with backtracking line-search. By observ-

ing the Newton decrement λ, we can trace the appearance of three

phenomena concerning the convergence of Newton’s method . From

a certain value (and below), it is assured that the backtracking line-

search chooses a full step. Similarly, below the value of ηmax, a double

exponential decay is assured. Next, below
√
ϵ it is assured that the

current iterate is at most ϵ sub-optimal compared to p∗. 46

2.11 Convergence of Newton’s method with pre-determined t as given in

Theorem 4 with parameter η = 0.35. The results are given for an un-

constrained minimization, as given in (2.43) and as given in Theorem 5

with parameter η = 0.8. The two choices of t show minor differences . 50

2.12 Convergence of Newton’s method with pre-determined t as given in

Theorem 4 with parameter η = 0.35. The results are given for an

un-constrained minimization, as given in (2.43). The figure plots the

distance from the infimum f(x)−p∗, the decrease in f at each iteration

∆f and half the square of the Newton decrement λ2/2. 51

2.13 Bounds for ∆f(x) normalized by the Numerically simulated ∆f(x).

The results are for a function of the form given in (2.43) with t = 1
1+λ

53

2.14 Convergence of Newton’s method with backtracking line-search. The

figure plots the distance from the infimum f(x) − p∗, the decrease in

f at each iteration ∆f and half the square of the Newton decrement

λ2/2. 54

2.15 Lower bounds for ∆f(x) normalized by the simulated ∆f(x). The

function is of the form given in (2.43) solved with backtracking line-

search . 55

2.16 Numerical results for t derived using backtracking line-search for a

function of the form given in (2.43). The plot includes the numerical

value of tbk, the bound on tbk using (2.36) and tbk = β⌈logβ(texit)⌉. For

reference, the function t = 1/λ is also plotted 57

2.17 Number of Newton iterations (N) versus the value of β in the back-

tracking line-search . 59

2.18 Convergence rate of f(x) − p∗ for a problem solved using Newton’s

method. It is evident that the usage of the backtracking line-search re-

sults in less Newton iterations compared to the usage of predetermined

step size t. 60

3.1 A high-level model of a communication link. The information word is

encoded into a codeword that contains redundant information. The

codeword is sent through the channel (transmission medium) where

it is being corrupted. The decoder applies an algorithm that tries to

recover the original information from the received word. 64

3.2 A graphical representation of a proper polytope. The relaxation of the

domain creates fractional vertices called pseudo-codewords. Since the

LP decoder does not differ between codewords and pseudo-codewords,

this fractional vertices are the main reason for decoding errors. . . . 68

3.3 The figure plots the function Q(δ) ≡ δ−ln (1+δ)+cγ/M
ln (1+δ)

, its approximation

Q(δ)Approximation ≡ δ2/2+cγ/M
δ

and its upper bound Q(δ)Upper bound =

2Q(δ)Approximation. The plot is given for c = 6, γ = 1/6,M = 100. . . 74

4.1 Message flow neighborhood of depth 1. The round, cubic, triangle

nodes denote the variable, check and trellis nodes respectively. In this

figure (I,W, dv, dc) = (1, 1, 2, 3). 95

Abstract

The thesis consists of three main parts. The first part of the work considers the com-

plexity of the interior-point method (IPM) for solving convex optimization problems.

We prove upper bounds on the number of Newton iterations needed to solve a con-

vex optimization problem whose objective function is self concordant (s.c.). Several

bounds are given for various step size algorithms: Newton’s method with backtrack-

ing line-search and two choices of pre-determined step size. Compared to previous

bounds, the new bounds are 10-100 times tighter. Using computer simulations, we

explore the properties of those new tightened bounds.

The second part of the thesis considers the problem of decoding linear block codes

(e.g., low-density parity-check codes (LDPC)) using Linear Programming (LP). We

apply the bounds derived earlier on an IPM-based LP decoder in order to obtain a

complexity bound on the number of iterations of the LP decoder. Next, we optimize

the bound in order to obtain an optimized set of IPM parameters based on the code

and channel parameters (i.e., block length, parity-check matrix row degree, noise

level, etc..). The bound derived gives an analytic insight on the decoding complexity

as a function of the code and channel parameters.

The third part of the work (which stands by itself) considers the concentration

of measures for LDPC code ensembles. The results derived in this thesis follow from

Azuma-Hoeffding inequality for Doob’s martingales with bounded differences. The

first result is a tightened concentration inequality for the conditional entropy (origi-

nally derived by Méasson et al.). Next, several concentration results on the number

of erroneous variable-to-check node messages for inter-symbol-interference (ISI) chan-

nels are proved. The analysis provides an explicit expression for the exponential decay

of the concentration inequalities given by Kavcić et al. It is shown that specializing

these results for memoryless channels provides tightened concentration inequalities

1

as compared to previous results by Luby et al. and Richardson & Urbanke.

2

List of notation and abbreviations

s.c. :self-concordant

IPM :interior-point method

UCSCM :Un-constrained s.c. minimization

ECSCM :Equality-constrained s.c. minimization

IECSCM :Inequality and equality constrained s.c. minimization

λ(n) :The Newton decrement at the n-th Newton iteration

KKT :Karush–Kuhn–Tucker (conditions or matrix)

∆xnt :The Newton step

α :backtracking line search parameter

β :backtracking line search parameter

µ :IPM search parameter

ϵ :minimization problem tolerance

p∗ :minimization problem’s solution

ISI :Inter-Symbol-Interference

MBIOS :Memoryless, Binary-Input and Output-Symmetric

AWGN :Additive White Gaussian Noise

BIAWGN :Binary Input Additive White Gaussian Noise

C :Capacity of the channel

SNR :Signal to Noise Ratio

BEC :Binary Erasure Channel

BSC :Binary Symmetric Channel

BER :Bit Error Rate

WER :Word Error Rate

i.i.d. :independent identically distributed

i.u.d. :independent uniformly distributed

3

LLR :Log Likelihood Ratio

ℓ(y) :LLR of received word y

gp :The pdf of the LLR at the output of an MBIOS channel

LDPC :Low-Density Parity-Check

ℓmax :Maximal absolute value of the log-likelihood-ratio vector

ML :Maximum Likelihood

MLD :Maximum Likelihood Decoder

yML :The Maximum likelihood word

LP :Linear Programming

dc :LDPC code’s check node degree

dv :LDPC variable node degree

P(H) :Fundamental polytope associated with parity check matrix H

Ω :Probability space

P(A) :Probability of event A

RV :Random Vector

h2(·) :Binary entropy function

H(X|Y) :The conditional entropy of vector X given Y

k :The dimension of a linear block code

n :The length of a block code

R :Code rate

C :Code-book

H :Parity check matrix of a linear code

G :Generator matrix of a linear code

G :The factor graph of a code

N (ℓ)
e⃗ :Neighborhood of depth ℓ of an edge e⃗

N
(ℓ)
c :Total number of check-nodes in the neighborhood N (ℓ)e⃗

N
(ℓ)
v :Total number of variable-nodes in the neighborhood N (ℓ)e⃗

N
(ℓ)
e :Total number of code related edges in the neighborhood N (ℓ)

e⃗

4

Chapter 1

Introduction

Low-density parity-check (LDPC) codes were discovered by Gallager in 1962 [42]. In

the 1990s, they were rediscovered by a number of researchers ([12],[34],[38]) and since

then, the subject has become a central research theme in coding theory. Research in

this field was followed by the adoption of those codes in commercial communication

systems. The performance of these codes is extraordinary and their complexity is

moderate, thus making them feasible for practical use. In 2001, Chung et al. [46]

have demonstrated a family of LDPC codes whose bit error rate vanishes at Eb

N0
that

is 0.0045 dB from the capacity of the binary-input AWGN channel, as the block length

tends to infinity. One of the challenges that face researchers in this field is analyzing

the behavior of these codes. Current analysis is usually based on a method called

density-evolution who predicts the asymptotic performance of LDPC code ensembles.

Though useful, this method is still limited, as analytic results are known only for

simple channels (e.g. BEC and BSC). Other channels require numerical calculations

which provide only numerical results with the ability to derive closed-form expressions

for capacity-approaching ensembles. The analysis is especially difficult when the

factor graph contains cycles or if short to moderate block lengths are considered.

5

1.1 Convex optimization and LP decoding of lin-

ear codes

The decoders most often used for LDPC codes are based on the belief-propagation al-

gorithm [43](e.g., sum-product algorithm), where messages are iteratively sent across

a factor graph of the code. In recent years, the idea of linear programming (LP) has

attracted the attention of many researchers. This alternative decoding algorithm is

based on the fact that Maximum-Likelihood Decoding (MLD) can be seen as a combi-

natorial optimization problem. In order to make the complexity feasible, a relaxation

technique is used. The idea is to relax the definition of the feasible set from a discrete

set to a continuous subset in Rn. The elimination of the constraint that a feasible

point is integral leads to a linear programming (LP) problem that can be efficiently

solved. The resulting optimization problem might have a different optima (e.g., a

non-integral solution called a pseudo-codeword) with respect to the original problem,

however its computational complexity is drastically reduced, thus providing a trade-

off between the decoding complexity and performance. The research conducted by

Feldman et al. ([21], [22]) was the first to apply the concept of relaxation to decoding

problems. Since then, numerous studies on LP decoding have been conducted ([2],

[10], [25], [30], [31], [40], [41]). An LP decoder for LDPC codes is an optimization

problem characterized with many constraints and variables. Therefore, in order to

make LP decoding feasible for codes with long block length, efficient LP solvers are

required. During the last twenty years, there has been a revolution in the methods

used to solve optimization problems. In the early 1980s, sequential quadratic pro-

gramming and augmented Lagrangian methods were favored for nonlinear problems,

while the simplex method was basically unchallenged for linear programming. Since

then, modern interior-point methods (IPMs) ([5], [9], [45]) have infused virtually ev-

ery area of continuous optimization, and have forced great improvements in the earlier

methods. In 1984, N. Karmarkar [37] discovered a polynomial interior-point method

that is practically more efficient than the ellipsoid method. He also claimed superior

performance compared to the simplex method. At the same time, Nesterov and Ne-

mirovski investigated the new methods from a more fundamental viewpoint: What

are the basic properties that lead to polynomial-time complexity? It turned out that

the key property is that the barrier function should be self-concordant. This seemed

6

to provide a clear, complexity-based criterion to delineate the class of optimization

problems that could be solved in a provably efficient way using the new methods. The

culmination of this work was the book by Nesterov and Nemirovski (1994) [52], whose

complexity emphasis contrasted with the classic text on barrier methods by Fiacco

and McCormick (1968). These advances in optimization theory made problems like

LP decoders computationally tractable. Using the self-concordant property, much

can be said about the complexity of the LP decoder (e.g., it can be shown that the

computational time grow moderately with accuracy and dimension of the problem).

In this thesis, we prove complexity bounds on self-concordant functions, and apply

those bounds to derive bounds on the complexity of the LP decoder.

1.2 Concentration of measures in LDPC code en-

sembles

The concentration of measures phenomenon was first put forward during the seventies

and eighties in geometric functional analysis, and has been subject to very nice devel-

opments in probability theory, mostly due to Ledoux [32] and Talagrand [35]. Very

roughly speaking, this phenomenon can be stated in the following simple way: “A

random variable that depends in a smooth way on many independent random vari-

ables (but not too much on any of them) is essentially constant”. The exact meaning

of such a statement clearly needs to be clarified rigorously, but it will often mean

that such a random variable X concentrates around a constant c (where c denotes

either the statistical expectation or median of X) in a way that the probability of

the event {|X − c| > t} decays exponentially in t (for t ≥ 0). This type of bound is

referred to as a concentration inequality. The mathematical foundations of concentra-

tion of measures are considered, e.g., in [7], [32] and [36, Chapter 7]. Concentration

of measures inequalities are also at the core of probabilistic analysis of randomized

algorithms (see, e.g., [4], [13], [44]). The concentration of measure phenomenon is a

principle that is applied in measure theory, probability and combinatorics, and it has

consequences in some other fields such as functional analysis (see, e.g., [13], [32] and

[35]). The basic concentration theorem of iterative message-passing decoding (see [49,

7

pp. 487–490]) asserts that all except an exponentially (in the block length) small frac-

tion of codes perform within an arbitrary small δ from the ensemble average (where

δ is a positive number that can be chosen arbitrarily small). Therefore, assuming a

sufficiently long block length, the ensemble average forms a good indicator for the

performance of individual codes. In general, all the concentration inequalities which

have been proved in the setting of iterative message-passing decoding so far are rather

loose, and much stronger concentration phenomena can be observed in practice for

moderate to long block lengths. Therefore, to date, these concentration inequalities

serve mostly to justify theoretically the ensemble approach, but they are not tight for

finite block lengths. In this thesis, we provide concentration of measures of LDPC

code ensemble and tighten some known results.

1.3 Thesis outline

The thesis is composed of three main chapters and a concluding chapter.

1. Chapter 2 [Complexity analysis of convex optimization problems solved

using interior-point method]

• We provide the reader with some background material about convex op-

timization. Classic algorithms such as Newton’s method and interior-

point method (IPM) are explained. Next, we define the property of self-

concordance which is used to analyze the convergence rate of Newton’s

method and the IPM.

• A convergence rate analysis of Newton’s method is conducted. New tight-

ened upper bounds on the number of Newton iterations are proved. These

bounds are given for the case of backtracking line-search and pre-determined

step size. Next, we extend the use of these bounds to the IPM.

• Numerical simulations are performed in order to explore the behavior of

the bounds derived.

2. Chapter 3 [Complexity analysis of IPM-based LP decoders]

• We provide the reader with some background material about LP decoding

of linear codes.

8

• An LP decoder which is based on the IPM is introduced. The conver-

gence rate analysis derived in the previous chapter is applied to the LP

decoder. These bounds are used to study the complexity of the IPM-based

LP decoder

• We compare the new tightened bounds derived to some previously reported

bounds.

3. Chapter 4 [Concentration of measures in LDPC code Ensembles]

• We present relevant mathematical background that is essential for the

analysis in this work, and also provide briefly some applications of these

mathematical tools in coding and communication theory.

• A large-deviation analysis of the conditional entropy is provided, and tight-

ened concentration inequalities are derived. The latter inequalities are

compared to the original bound by Méasson et al. [8, Theorem 4].

• Concentration results on the number of erroneous variable-to-check node

messages are derived for Inter-Symbol-Interference (ISI) channels. The

analysis provides explicit expression for the exponential rate that is related

to the concentration inequalities in [3, Theorems 1 and 2]. It is shown that

particularizing these results for memoryless channels provides tightened

concentration inequalities as compared to [29] and [48].

4. Chapter 5 [Summary, conclusions and future research directions] We

conclude our work in Section 5.1, where we summarize the main results and

conclusions of the thesis. Finally, in Section 5.2, a number of directions are

suggested for future research in this area.

9

10

Chapter 2

Complexity analysis of convex

optimization problems solved using

interior-point method

2.1 Short overview

In the following, we consider the interior-point method (IPM) for solving convex

optimization problems. The main purpose of this chapter is to provide a tightened

complexity analysis for this method. Since the IPM is an iterative algorithm, the

complexity of the solver is presented as a bound on the number of Newton iterations.

In Chapter 3, we shall use this analysis to provide bounds on the complexity of an

IPM-based LP decoder which is a relaxed version of the ML decoder.

2.2 Convex optimization and interior-point method

In this section, we provide some basic terminology and notation that is related to

convex optimization and the interior-point method.

11

Definition 1 [Convex optimization problem]

A convex optimization problem is an optimization problem of the form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m

Ax = b

(2.1)

where f0, ..., fm : Rn → R are convex functions, A ∈ Rm×n and b ∈ Rm×1,.

We note that the feasible set of a convex optimization problem is convex. We call

the problem feasible if an optimal solution x∗ exists, and denote p∗ as the optimal

value, p∗ = inf{f(x)| constraints} = f(x∗).

A particular example of a convex optimization problem is the family of Linear

Programming (LP) problems. The problem is called a linear program if the objective

and constraint functions are all affine.

Definition 2 [Linear programming optimization problem]

minimize cTx+ d

subject to Gx 4 h

Ax = b

(2.2)

Where A ∈ Rm×n, b ∈ Rm×1, G ∈ Rp×n, h ∈ Rp×1, c ∈ Rn×1 and d ∈ R.

The geometric interpretation of an LP is illustrated in Figure 2.1. The feasible

set of the LP problem is a polyhedron P. The objective is to minimize the affine

function cTx + d over P . The objective function cTx + d is affine, so its level curves

are hyper-planes orthogonal to c (shown as dashed lines). The point x∗ is the optimal

point, and geometrically it is the point in P as far as possible in the direction −c.

Remark 1 It can be shown that if a single solution exists, then it is a vertex of the

polyhedron x∗ ∈ V(P). Therefore, if the polyhedron P is the convex hull of a set C
(i.e.,P = Conv(C)), then if a single solution x∗ exist, then x∗ ∈ C

12

Figure 2.1: The geometric interpretation of an LP. The feasible set P , which is a
polyhedron, is shaded. The objective function cTx+ d is affine, so its level curves are
hyper-planes orthogonal to c (shown as dashed lines). The point x∗ is optimal and
geometrically it is the point in P as far as possible in the direction −c.

2.2.1 Minimization of un-constrained and equality-constrained

convex problems

Consider Definition 1 of a convex optimization problem. If m = 0 and p > 0 we

say the problem is equality-constrained, while if m = p = 0 we say the problem is

un-constrained. Next, we present Newton’s method, which is an efficient method for

solving general convex optimization problems.

Newton’s method for un-constrained minimization

Newton’s method is an iterative algorithm for solving convex optimization problems.

The idea behind the algorithm is to compute the minimizer of the second order

polynomial approximation of the objective function. The resulting minimizer is used

as a starting point for another iteration of the Newton’s method.

Definition 3 [The Newton’s method for un-constrained minimization prob-

lems]

Consider an un-constrained convex optimization problem. Given a starting point

x(0) ∈ dom(f), tolerance ϵ > 0, repeat

13

1. Compute the Newton step : ∆xnt = −∇2f(x)−1∇f(x).

2. Stopping criterion : Compute the Newton decrement λ2 = ∆xT
nt∇2f(x)∆xnt.

Quit if λ2/2 ≤ ϵ.

3. Line search : Choose step size t. (e.g., using backtracking line-search)

4. Update : x := x+ t∆xnt

Newton’s method, as outlined above, is sometimes called the damped Newton method

or guarded Newton method, to distinguish it from the pure Newton method, which

uses a fixed step size t = 1. In the algorithm described above, the search direction is

the vector ∆xnt, however the step size is scaled by factor t which is calculated using

a line-search algorithm. We shall consider the following line-search algorithms

1. Exact line-search : The optimal value tExact = argmin f(x + t∆xnt) is used.

This algorithm requires the lowest number of Newton iterations but it is com-

putationally complex because of the minimization required to calculate t.

2. Backtracking line-search : A low complexity line-search algorithm that approx-

imates the exact line-search. This algorithm is detailed later in this subsection.

3. Predetermined or fixed step size : The step size is a predetermined function of

the current state of variables (e.g.,λ(x), x, |∇f(x)|...). In general, it offers the

lowest complexity with the tradeoff of slower convergence rate.

The following are the main properties of the Newton’s method

1. Invariant to linear scaling : If we apply a non-singular linear transformation

y = Tx, then the iterates when minimizing f̃(y) = f(Tx) are related by the

same change of coordinates (i.e., Ty(k) = x(k)).

2. The tolerance can be approximated using the Newton decrement

f(x)− p∗ ≈ λ2/2.

This approximation is highly accurate for λ ≪ 1.

3. The number of Newton iterations increases slowly as the problem size n in-

creases.

14

Newton’s method for Equality-constrained minimization

Newton’s method described above, can be extended to include equality constraints.

The method is almost the same as the Newton’s method without constraints except

for two differences

1. The initial point must be feasible (i.e., satisfy x(0) ∈ dom(f) and Ax = b)

2. The definition of the Newton step is modified to take the equality constraints

into account. In particular, we make sure that the Newton step ∆xnt is a feasible

direction (i.e., A∆xnt = 0). The Newton step ∆xnt is computed by solving the

so called KKT equations[
∇2f(x) AT

A 0

][
∆xnt

ω

]
=

[
−∇f(x)

0

]
.

Besides those modifications, the algorithm is the same and has similar properties.

Backtracking line-search

As mentioned before, the exact line-search computes the optimal step size which in

turn yields the lowest possible number of Newton iterations. However computing

the exact line-search involves solving another optimization problem, thus it is usually

computationally complex. Therefore, most line-searches used in practice are non-

exact. The step length is chosen to approximately minimize f(x) along the ray

{x+ t∆x|t ≥ 0}, or even to just reduce f(x) enough.

One non-exact line-search method that is very simple and quite effective is called

backtracking line-search. It depends on two backtracking line-search parameters α ∈
(0, 0.5) and β ∈ (0, 1).

Definition 4 [The Backtracking line-search]

Given the line-search parameters α ∈ (0, 0.5), β ∈ (0, 1), and a descent direction ∆x

for f(x) at x ∈ dom(f), initialize t with t := 1 and preform the following iterative

algorithm :

1. If f(x+ t∆x) ≤ f(x) + αt∇f(x)T∆x, quit.

2. Update t := βt

15

Figure 2.2: Backtracking line-search. The curve shows f , restricted to the line over
which we search. The lower dashed line shows the linear extrapolation of f , and the
upper dashed line has a slope a factor of α smaller. The backtracking condition is
that f lies below the upper dashed line, i.e., 0 ≤ t ≤ t0.

The line-search is called backtracking because it starts with unit step size and

then reduces it by factor β until the stopping condition holds. Since ∆x is a descent

direction, we have ∇f(x)T∆x < 0, so for small enough t we have f(x + t∆x) ≈
f(x) + t∇f(x)T∆x < f(x) + αt∇f(x)T∆x , which shows that the backtracking line-

search eventually terminates. As illustrated in Figure 2.2, the constant α can be

interpreted as the fraction of the decrease in f predicted by linear extrapolation that

we will accept.

16

2.2.2 Inequality-constrained convex problems - interior-point

methods

In this subsection, we discuss interior-point methods for solving convex optimization

problems that include inequality constraints and affine equality constraints

minimize f0(x)

subject to fi ≤ 0, i = 1, ...,m

Ax = b

(2.3)

Where f0, ..., fm : Rn → R are convex and twice continuously differentiable, and

A ∈ Rp×n with rank(A) = p < n. We assume that an optimal solution x∗ exists and

denote p∗ = inf{f(x)|Ax = b} = f(x∗) as the optimal value.

The key concept of interior-point methods is to solve (2.3) by applying Newton’s

method to a sequence of equality-constrained problems. We will focus on a particular

interior-point algorithm called the logarithmic barrier method.

Our goal is to approximately formulate the inequality-constrained problem (2.3)

as an equality-constrained problem to which Newton’s method can be applied. The

first step is to rewrite problem (2.3), making the inequality constraints implicit in the

objective function:

minimize f0(x) +
m∑
i=1

I (fi(x))

subject to Ax = b
(2.4)

where I(x) is an indicator function, i.e.,

I(x) =

{
0 x ≤ 0

∞ x > 0.

The indicator function can be approximated by a logarithmic barrier function with

parameter t > 0

I(t)(x) = −(1/t) log(−x).

As t increases, the approximation becomes more accurate. We denote x∗(t) as the

minimizer of the equality-constrained problem with the logarithmic barrier function

I(t)(x) replacing the indicator function. It can be shown that this point is at most

m/t-suboptimal, i.e.,

f0(x
∗(t))− p∗ ≤ m/t.

17

The barrier method is based on solving a sequence of equality-constrained minimiza-

tion problems with increasing value of the parameter t. At each iteration the last point

found is used as a starting point for the next minimization problem. In other words,

we compute x∗(t) for a sequence of increasing values of t (this sequence is called the

central path), until t ≥ m/ϵ, which guarantees that we have an ϵ-suboptimal solution

of the original problem.

Definition 5 [The barrier method]

Consider the convex optimization problem given in (2.3) and define the barrier func-

tion B(x) = −
m∑
i=1

log (−fi(x)). Given a strictly feasible starting point x(0), search

parameters t := t(0)), µ > 1 and required tolerance ϵ > 0. Repeat the following steps

1. Centering step : Compute x∗(t) by minimizing tf0(x)+B(x), subject to Ax = b,

starting at x.

2. Update starting point : x := x∗(t).

3. Stopping criterion : Quit if m/t < ϵ.

4. Increase t : t := µt.

As seen in Figure 2.3, the algorithm involves two layers of iterations. The itera-

tions along the central-path are called outer iterations. Within each outer iteration,

Newton’s method is applied to find the minimum of tf0(x)+B(x), subject to Ax = b.

The Newton iterations are called inner iterations.

Remark 2 The choice of the parameter µ involves a trade-off between the number

of inner and outer iterations. If µ is small, then many outer iterations are required.

However, each inner iteration will be shorter because the result from the last outer

iteration is a good starting point for the next one. If µ is large the opposite is true.

In practice for µ in the range 3 to 100 the two effects nearly cancel, making the choice

of µ not critical.

2.2.3 Complexity analysis using self-concordance property

When considering general convex problems, not much can be said about the com-

plexity of the solved problem. The classical convergence analysis of Newton’s method

18

Figure 2.3: The figure illustrates the two layers of the interior-point method. The
iterations along the central-path are called outer iterations. Within each outer itera-
tion, Newton’s method is applied to find the minimum of tf0(x) + B(x), subject to
Ax = b. The Newton iterations are called inner iterations.

19

depends on constants that characterize the minimized function. However, in practice

those constants are usually not known or hard to calculate. Nesterov and Nemirovski

[52] discovered that if we restrict ourselves to a family of convex functions called

’self-concordant’ functions, a simple and elegant complexity analysis can be obtained.

This family is important for several reasons

• The logarithmic barrier functions are included in this family.

• The complexity analysis of this family includes only known parameters.

• Like Newton’s method, the property of self-concordance is affine-invariant.

Definition 6 [Self-concordant function (s.c.)]

A convex function f : R → R is self-concordant (s.c.) if

|f (3)(x)| ≤ 2f ′′(x)3/2 (2.5)

for all x ∈ dom(f). A function f : Rn → R, with n > 1, is s.c. if it is s.c. along

every line in its domain (i.e., if the function f̃(t) = f(x+ tv) is a s.c function of t for

every point x ∈ dom(f) and v ∈ R such that x+ tv ∈ dom(f)).

Self-concordance calculus

The property of s.c. is maintained over some basic mathematical operations.

1. Scaling - If f is s.c. and a ≥ 1 then af is also s.c..

2. Sum - If f1(x), f2(x) are s.c. then f1(x) + f2(x) is also s.c..

3. Composition with affine function - If f is s.c. and T (x) = Ax + b is an affine

transformation then f(Ax+ b) is also s.c..

4. Composition with logarithm function - Let g : R → R be a convex function

with dom(g) = R++ and

|g′′′(x)| ≤ 3g′′(x)

x
.

Then f(x) = − log(−g(x))− log(x) is s.c. on {x|x > 0, g(x) < 0}.

20

Self-concordance related minimization problems

We define notations for some basic s.c. related optimization problems.

1. Definition 7 [Un-constrained s.c. minimization (UCSCM) problem)]

An un-constrained convex optimization problem

minimize f(x) (2.6)

Where f : Rn → R is an s.c. function. We assume that an optimal solution x∗

exists, and let p∗ denote the optimal value, p∗ = inf f(x) = f(x∗).

2. Definition 8 [Equality-constrained s.c. minimization (ECSCM) prob-

lem)]

A convex optimization problem with affine equality constraints

minimize f(x)

subject to Ax = b
(2.7)

Where f : Rn → R is an s.c. function, and A ∈ Rm×n with rankA = m < n.

We assume that an optimal solution x∗ exists, and let p∗ denote the optimal

value, p∗ = inf{f(x)|Ax = b} = f(x∗).

3. Definition 9 [Inequality and equality constrained s.c. minimization

(IECSCM) problem)]

A convex optimization problem with affine equality constraints and convex in-

equality constraints.

minimize f0(x)

subject to Ax = b

fi (x) ≤ 0 i = 1, ...,m

(2.8)

Where f0 : Rn → R is a s.c. function, A ∈ Rp×n has rank p < n and f0, ..., fm :

Rn → R are convex and twice differentiable.

Complexity and optimality bounds using the property of self-concordance

In this subsection, complexity and optimality bounds related to the s.c. property are

provided.

21

Theorem 1 [Bound on sub-optimality] Consider an ECSCM problem (or the de-

generated UCSCM problem), denote p∗ as the optimal value and λ(x) as the Newton’s

decrement. If λ(x) ≤ 0.68, then the following inequality holds

λ(x)2 ≥ f(x)− p∗

Proof: See Sections 9.6.3 and 10.2.3 in [45].

Remark 3 If ϵ < 0.682 is the required tolerance, we can use λ(x)2 < ϵ as the stopping

criterion to guarantee that on exit f(x)− p∗ ≤ ϵ.

Theorem 2 [Complexity bound for ECSCM problems] Consider an ECSCM

problem (or the degenerated UCSCM problem) solved using Newton’s method with

backtracking line-search. Denote p∗ as the optimal value, ϵ as the required tolerance,

β and α as the backtracking line-search parameters and x(0) as the starting point.

Then, the number of Newton iterations is bounded by

NTotal ≤
(

20− 8α

αβ(1− 2α)2

)(
f(x(0))− p∗

)
+ log2 log2

(1
ε

)
.

Proof: See Section 2.3 for an outline of the proof. The full proof is given in Sections

9.6.4 and 10.2.4 in [45].

Theorem 3 [Complexity bound for IECSCM problems] Consider an IECSCM

optimization problem. Let the problem be solved using the IPM with Newton’s

method and backtracking line-search. Set the parameters of the outer iterations to

t(0), µ, and the parameters of the backtracking line-search to α, β. Then, the total

number of Newton iteration (excluding the initial centering step) is upper bounded

by

N Inequality
Total ≤

⌈
log
(
m/(εt(0))

)
log µ

⌉((
20− 8α

αβ(1− 2α)2

)
(m (µ− 1− log µ)) + log2 log2

(1
ε

))

Proof: See Section 11.5.2 in [45].

22

2.3 Revision of the classical analysis of the conver-

gence rate of Newton’s method

The proofs of the Theorems given in Section 2.4 are highly related to the proof of

Theorem 2. Therefore, we revisit the classical analysis of Newton’s method with back-

tracking line-search when applied to an ECSCM problem. The analysis is given for

the un-constrained UCSCM problem and then shown to also apply for the constrained

problem. We assume that f is bounded below and a starting point x(0) is set for the

minimization of f with Newton’s method. The sub-level set S = {x|f(x) ≤ f(x(0))}
is also assumed to be closed. In the following, we show that there exist some positive

numbers η and γ, where 0 < η ≤ 1/4 depends only on the line-search parameters α

and β, such that the following holds:

• [Damped phase] - If λ(x(k)) > η, then for some γ > 0 (independent of k)

f(x(k+1))− f(x(k)) ≤ −γ (2.9)

• [Quadratic phase] - If λ(x(k)) ≤ η then the backtracking line-search selects

t = 1 and

2λ(x(k+1)) ≤
(
2λ(x(k))

)2
. (2.10)

Inequality (2.10) can be applied recursively, to conclude that

λ(x(l)) ≤ η, ∀ l ≥ k

and

2λ(x(k+1)) ≤ (2λ(x(k)))
2 ≤ (2η)2

l−k

≤
(
1

2

)2l−k

.

Using Theorem 1, the following inequality holds

f(x(l))− p∗ ≤ λ(x(l))
2
, λ ≤ 0.68.

As a consequence, for all l ≥ k

f
(
x(l)
)
− p∗ ≤ λ

(
x(l)
)2 ≤ 1

4

(
1

2

)2l−k+1

<

(
1

2

)2l−k+1

and hence f(x(k))− p∗ ≤ ε if l − k ≥ log2 log2(1/ε).

23

Inequality (2.9) implies that the damped Newton phase requires not more than

(f(x(0)) − p∗)/γ iterations. Thus, the total number of iterations that is required for

the calculation of the minimum of f with accuracy ε, starting at a point x(0), is upper

bounded by
f(x(0))− p∗

γ
+ log2 log2

1

ε
. (2.11)

2.3.1 Damped Newton Phase

If we let f̃(t) = f(x+ t∆xnt), then we have

f̃ ′(0) = −λ(x)2, f̃ ′′(0) = λ(x)2.

The property of s.c. can be expressed as∣∣∣∣ ddt (f̃ ′′(t)−1/2
)∣∣∣∣ ≤ 1. (2.12)

By integrating (2.12) between 0 and t ≥ 0, gives

f̃ ′′(0)(
1 + tf̃ ′′(0)1/2

)2 ≤ f̃ ′′(t) ≤ f̃ ′′(0)(
1− tf̃ ′′(0)1/2

)2 . (2.13)

The upper bound is valid if 0 ≤ t ≤ f̃ ′′(0)−1/2. By integrating twice the upper bound

in (2.13), we obtain an upper bound for f̃

f̃(t) ≤ f̃(0) + tf̃ ′(0)− tf̃ ′′(0)1/2 − log
(
1− tf̃ ′′(0)1/2

)
= f̃(0)− tλ(x)2 − tλ(x)− log (1− tλ(x)) . (2.14)

Where this bound on f̃(t) is valid for 0 ≤ t ≤ 1/λ(x).

Let tbk denote the first value of t which satisfies the condition of the backtracking

line-search

f̃(t̂)− f̃(0) ≤ −αλ2t̂ (2.15)

when an initial value of t = 1 is used, and consecutive multiplications of t by β ∈
(0, 1) are performed until the condition is satisfied. From (2.14), it follows that

tbk ≥ β/(1 + λ) since at the point

t̂ = 1/ (1 + λ(x))

24

the line-search condition is satisfied, i.e.,

f̃(t̂)− f̃(0) ≤ −t̂λ2 − t̂λ− log
(
1− t̂λ

)
= −λ+ log (1 + λ)

≤ −1

2

λ2

1 + λ

≤ −αλ2t̂

where the second inequality holds since

log (1 + x) ≤ x− x2

2

1

1 + x
, x > 0.

Since tbk ≥ β/(1 + λ) we have

f̃(tbk)− f̃(0) ≤ −αβ
λ2

1 + λ
≡ −γ

so for the n-th iteration we have

γ(n) = αβ

(
λ(n)2

1 + λ(n)

)
.

One can bound γ(n) for all the iterations of the damped Newton phase by lower bound-

ing the Newton decrement λ(n) with a certain constant η which is later determined

(i.e., λ(n) ≥ η). Thus the reduction in the value of f at each iteration during the

damped convergence phase is at least

γ = αβ
η2

1 + η
. (2.16)

This proves (2.9).

2.3.2 Quadratic convergence phase

Next, we show that we can use η = (1 − 2α)/4 to upper bound λ in the quadratic

convergence phase. Suppose λ ≤ (1− 2α) /2, then we have using (2.14) that

f̃(1)− f̃(0) ≤ −λ2 − λ− log (1− λ)

≤ −1

2
λ2 + λ3

≤ −αλ2.

25

Therefore, the backtracking condition (2.15) is satisfied with t = 1 (i.e., a full step).

The second inequality follows from the fact that −x − log (1− x) ≤ 1
2
x2 + x3 for

0 ≤ x ≤ 0.81.

Assuming that x(n+1) = x(n) − ∇2f(x(n))−1∇f(x(n)), it is shown in [45] that if

λ(x(n)) < 1 and a full step is taken (i.e., t = 1), the following bound holds

λ(x(n+1)) ≤ λ(x(n))
2

(1− λ(x(n)))
2 . (2.17)

Therefore, if λ(x(n)) ≤ 1/4, then λ(x(n+1)) ≤ 2λ(x(n))
2
which yields that (2.10)

holds when λ(x(n)) ≤ η. If we choose η = (1− 2α)/4, then λ(x(n)) ≤ η ≤ 1/4 implies

that λ(x(n+1)) ≤ 1/4. A substitution of η in (2.16) gives that

γ =
αβ(1− 2α)2

20− 8α
. (2.18)

2.3.3 Final complexity bound

Combining the results for the two phases, an upper bound on the number of Newton

iterations gets the form

N ≤ f(x(0))− p∗

γ
+ log2 log2

(1
ε

)
=

(
20− 8α

αβ(1− 2α)2

)(
f(x(0))− p∗

)
+ log2 log2

(1
ε

)
. (2.19)

This upper bound on the number of Newton iterations also holds for ECSCM

problems since it satisfies the following lemma.

Lemma 1 Consider an ECSCM problem and it’s degenerated UCSCM problem

(same problem, excluding the constraints). Assume the problems are solved using

Newton’s method. Any bound on the number of Newton iterations or the Newton’s

decrement for the un-constrained problem also hold for the equality-constrained prob-

lem if the bound’s dependence on the value of the objective function f and the equality

constrains Ax = b may be expressed in terms of f(x(0)), p∗ and λ(n). Where f(x(0))

denote the value of f at the first iteration, p∗ denote the optimal value and λ(n) denote

the the Newton decrement at the n-th iteration.

26

Proof: As shown in [45, Chapter 10], an ECSCM problem with variable x

minimize f(x)

subject to Ax = b

can be reduced into an un-constrained problem with variable z

minimize f̃(z) = f(Fz + x̂)

where AF = 0 and x̂ is any particular solution of Ax̂ = b. This problem is shown to

iterate the same as the original problem, having the same Newton’s decrement, step

direction and number of Newton iterations. The reduced problem is an un-constrained

s.c. minimization problem, therefore we can use bounds for un-constrained s.c. min-

imization problem. Since the Newton’s decrement, the number of Newton iterations,

the minimum of the objective function and the value of the objective function at the

first iteration are the same for the original and the reduced problem then the bound

will hold for both problems.

We note that the bound in (2.19) depends only on the backtracking line-search

parameters α and β, and the required tolerance ε in the minimization of the s.c. func-

tion f . Moreover, the term involving the repeated logarithm can be safely replaced

by a rather small constant (e.g., 6), so the bound essentially depends only on α, β

and the initial value x(0). For typical values of α and β, the constant that multiplies

f(x(0))−p∗ is on the order of several hundreds. For example, forα = 0.1 and β = 0.8,

the corresponding scaling factor in (2.19) is equal to 375. With tolerance ε = 10−10,

we obtain the following upper bound on the number of iterations used by Newton’s

method for an s.c. function f :

375
(
f(x(0))− p∗

)
+ 6.

For s.c. functions of the form f = −
m∑
i=1

log
(
bi − aTi x

)
, where the vectors a and b are

randomly generated, simulated results indicate that the number of iterations scales

like

c(f(x(0))− p∗) + 5 (2.20)

where the value of c is nearly 1. Comparing these numerical results to the above upper

bound, it follows that the bound is fairly conservative. However, it captures what

appears to be the general form of the worst-case number of Newton steps required.

27

2.4 Tightened complexity bounds on Newton’s method

and interior-point method

In this section, the convergence behavior of Newton’s method is further analyzed in

order to derive tightened upper bounds on the number of Newton iterations. The

tightening of the classical bound in Theorem 2 is done in two different approaches:

1. An analysis with pre-determined step size t (as opposed to the backtracking

line-search).

2. A refined analysis of the original bound for the backtracking line-search.

As in Section 2.3, we derive upper bounds on the number of iterations during

the damped and quadratic Newton phases, and then obtain an upper bound on the

overall number of iterations by adding these two particular bounds, i.e.,

NTotal ≤ Nbound
Total = Nbound

Damped +Nbound
Quad .

Where Nbound
Damped and Nbound

Quad designate the upper bound on the number of iterations

during the damped and quadratic Newton phases, respectively.

The new bounds also scale like (2.20), but with a considerably smaller scaling

factor c for the initial error
(
f(x(0))− p∗

)
. Next, these improved bounds are used

to get an improved upper bound on the overall number of iterations that is required

for an interior-point method in conjunction with Newton’s method and logarithmic

barriers.

The motivation for deriving these new bounds lays in its application in commu-

nication theory. The use of interior-point methods for decoding low-density parity-

check codes on linear channels was recently introduced in [51]. In chapter 3, we apply

these new tightened bounds to an IPM-based LP decoder in order to provide better

estimates for the decoding complexity of such decoding algorithms.

2.4.1 Theorem 4 - Complexity bound for ECSCM problems

with pre-determined step size

In this subsection and in the following one, we focus on tightening the classical analysis

using a pre-determined step size t, as opposed to the backtracking line-search. These

28

tightened bounds reduce the scaling factor for the initial error
(
f(x(0))− p∗

)
by factor

of 10 to 100.

Theorem 4 [Parametric complexity bound for ECSCM problem solved us-

ing Newton’s method with a pre-determined step size t]

Consider an ECSCM problem solved using Newton’s method with the following pre-

determined choice of t(n) :

t(n) =

{
1

1+λ(n) λ(n) ≥ η Damped convergence phase

1 λ(n) < η Quadratic convergence phase

where 0 < η < 3−
√
5

2
≈ 0.3819 is a free parameter. Let x(0) be the initial point used for

Newton’s method. Then the number of iterations required to find p∗ with accuracy ε

is upper bounded by

NTotal ≤ c1
(
f(x(0))− p∗

)
+ c2 (2.21)

where

c1 =
1

η − log(1 + η)

c2 =

⌈
log2

(
log2(

√
ε/(1− η)2)

log2(η/(1− η)2)

)⌉
. (2.22)

Proof: See Section 2.5.1

By changing the bound parameter η ∈ (0, 0.381...), one obtains a tradeoff between

the two terms in (2.21) as is evidenced in Table 2.1 and Fig. 2.4.

While increasing the value of η towards 0.381, the scaling factor of the initial error,

c1, is decreased whereas the additive constant c2 is increased and tends to infinity.

In Fig. 2.5, the parameter η which optimizes the bound is plotted versus the initial

error f(x(0))−p∗ . It can be seen that for most of the values of f(x(0))−p∗, the optimal

value for η is between 0.378 to 0.38 (practically this graph is meaningful only after

applying the normalization scaling described in remark 5). This result is very narrow

and close to ηmax. This indicates that c1 is dominant compared to c2. Thus the use

of large values of η (e.g., η ∼= 0.378) are preferable.

29

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

100

200

300

400

η

c 1 (
η)

c
1
 Vs.η for ECSCM problem

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

η

c 2 (
η)

c
2
 Vs.η for ECSCM problem

Figure 2.4: The coefficients c1 and c2 in the upper bound on the number of iterations,
as given in (2.21) and (2.22) for some values of the free parameter η ∈ (0, 0.381). The
additive constant c2 in (2.21) refers to ε = 10−10.

30

0 5 10 15
0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

(f(x0)−p*)

O
pt

im
al

 η

Optimal η Vs. (f(x0)−p*) for ECSCM problem

Figure 2.5: The optimal value of η versus the initial error f(x(0))−p∗ when the bound
in Theorem 4 is considered.

31

η c1 c2
0.250 37.2 5
0.289 28.3 5
0.322 33.1 6
0.353 19.7 7
0.378 17.3 11
3−

√
5

2
17.1 ∞

Table 2.1: The coefficients c1 and c2 in the upper bound on the number of iterations,
as given in Theorem 4.

Remark 4 We note that a predetermined choice of t is a suboptimal choice compared

to exact line-search. Thus, the upper bounds derived also apply to exact line-search.

Remark 5 Scaling of the objective function f(x) and the desired tolerance ε by

a factor k > 1 results in an equivalent problem with identical number of Newton

iterations. However, the number of Newton iterations in the bound above scales

linearly with f(x) − p∗ rather then being invariant to scaling in f(x). This can be

resolved by applying a normalization scaling to f(x) (in a manner that conserves the

s.c. property) before applying the bound. For example, consider a function f(x) that

fulfills the inequality

|f (3)(x)| ≤ cf ′′(x)3/2.

Multiplying the function by the constant k = c2

4
results in the function f̃(x) = kf(x)

which complies with the s.c. inequality (6) with equality (see [45, p. 498]). In addition

a tighter bound is now obtained, since applying the bound on the normalized version

(i.e., f̃(x) = kf(x) and ε̃ = kε) of the original problem will tighten the first term of

the bound by a factor k with minor effect (if any) on the additive term.

2.4.2 Theorem 5 - Complexity bound for ECSCM problems

with an improved pre-determined step size

Theorem 5 [Parametric complexity bound for ECSCM problem solved us-

ing Newton’s method with an Improved pre-determined step size t] Con-

sider an ECSCM problem solved using Newton’s method. Let η ∈ (0, 1) be chosen

arbitrarily, and consider the following pre-determined choice of the step size t(n) :

32

• If λ(n) ≥ η, then t(n) = 1
1+λ(n) .

• Otherwise, if λ(n) < η, let

t(n) = arg min
t∈(0,1]

c(t, λ(n)) (2.23)

where

a(t, λ) = 1− t

1− λt

b(t, λ) = 1−
1−

(
1− λt

)3
3λ

c(t, λ) =
max(|a(t, λ)|, |b(t, λ)|)

1− λt
. (2.24)

Then the number of iterations required to find p∗ with accuracy ε is upper bounded

by

NTotal ≤ c1
(
f(x(0))− p∗

)
+ c̃2

where c1 is given in (2.22) for η ∈ (0, 1), and the additive term c̃2 (which is not

expressed in closed-form but calculated numerically) has the feature that it tends to

infinity as we let η → 1.

Proof: See Section 2.5.2.

By changing the parameter η, we perform a tradeoff between c1 and c̃2 as shown

in Table 2.2.

We note that with the improved choice of t, the parameter η can be chosen close

to one thus tightening the term c1 considerably. This property of the additive term

c̃2 as above is in contrast to c2 in Theorem 4 which tends to infinity as we let η tend

to 0.381 from below.

2.4.3 Theorem 6 - Complexity bound for ECSCM problems

with backtracking line-search

In this subsection, we provide a bound on the number of Newton iterations when

solving an ECSCM problem using Newton’s method and backtracking line-search.

33

η c1 c̃2
0.250 37.25 4
0.381 17.18 5
0.700 5.90 10
0.900 3.87 35
0.990 3.31 392
1.000 3.26 ∞

Table 2.2: The coefficients c1 and c̃2 in the upper bound of Theorem 5 for some values
of the free parameter η ∈ (0, 1). The calculation of the additive constant c̃2 is given
for an accuracy of ε = 10−10 in the calculation of p∗.

This Theorem is an improved version of the classical result given in Theorem 2. The

new Theorem tighten the scaling factor of f(x)− p∗ by factor 10-100 (Depending on

the backtracking line-search parameters) as compared to Theorem 2 .

Theorem 6 [Improved complexity bound for ECSCM problems solved with

Newton’s method and backtracking line-search]

Consider an ECSCM problem solved using Newton’s method and backtracking

line-search. Let α ∈ (0, 1/2) and β ∈ (0, 1) be the parameters of the backtracking line-

search. Let ηmax ∈ (0, 3−
√
5

2
) be a free parameter and define η ≡ min

(
1
2
1−2α
1−α

, ηmax

)
.

Then the number of Newton iterations is upper bounded by

Ntotal ≤ Nbound
Damped +Nbound

Quad (2.25)

where

Nbound
Damped =

f
(
x(0)
)
− p∗

αβη2

Nbound
Quad =

⌈
log2

(
log2(

√
ε/(1− η)2)

log2(η/(1− η)2)

)⌉
.

Proof: See Section 2.5.3.

The parameter ηmax is used to make Nbound
Quad be finite. If η was not bounded by

ηmax, then for α ≤ 3−
√
5

4
≈ 0.19 the value of η was larger then 3−

√
5

2
, this would cause

the bound for NQuad to diverge to infinity.

34

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

α

N
Q

ua
d

bo
un

d

N
Quad
bound Vs α

Case BCase A

Figure 2.6: The term Nbound
Quad in (2.25) versus α for tolerance ε = 10−10. The behavior

of the bound can be classified into two cases depending on the value of α.

As seen in Figures 2.6 and 2.7, the bound above can be classified into two cases

depending on the value of α.

• Case A -α < 1
2
1−2ηmax

1−ηmax
The value of η is bounded by ηmax in order to limit the

value of Nbound
Quad . In this case Nbound

Quad is invariant to changes in α. The value of

Nbound
Damped decreases as we increase the value of α.

• Case B -α ≥ 1
2
1−2ηmax

1−ηmax
The parameter ηmax does not affect the bound. In this

case η = 1
2
1−2α
1−α

and the value of Nbound
Damped increases as we increase the value of

α.

Figure 2.7 plots the term for the damped phase in the improved bound, as com-

pared to the original bound. The improved bound receives its minima of
Nbound

Damped

f(x(0))−p∗
=(√

17−1√
17−3

)2(
4

5−
√
17

)
∼= 35.27 at α = 5−

√
17

4
∼= 0.21. The original bound also shows a

minima around α ≈ 0.2, however it is almost 10 times looser compared to the im-

proved bound. If we let α → 1/2 or α → 0 the original bounds loosens much faster

then the improved bound. We note that the dependence of the improved bound on

α is very flat around its minima. This weak dependence on the value of α coincides

with simulated results that show small changes in the number of Newton iterations

35

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

300

350

400

α

N
D

am
pe

d
bo

un
d

 /
 (

f(
x)

−
p*)

Original and improved bounds for N
Damped

Improved bound
Original bound

Figure 2.7: Improved (2.25) and original (2.19) bound for NDamped versus α. The
bounds are scaled by factor f(x(0))− p∗ and shown for β = 1 and ηmax = 0.38.

36

when changing α.

2.4.4 Theorem 7 - Bounds’ extension to equality and in-

equality constrained minimization using interior-point

methods

In this subsection, we extend the results given in Theorems 4, 5 and 6 for an ECSCM

problem to the case of an IECSCM problem (i.e., problem with inequality constraints).

The theorem assumes that the problem is solved using interior-point methods with

logarithmic barrier.

Theorem 7 [Bounds’ extension to equality and inequality constrained min-

imization using interior-point methods]

Consider an IECSCM optimization problem. Assuming the problem is solved using

an interior-point method (IPM) with logarithmic barrier (where the parameters of

the outer iterations are set to t(0), µ, and the inner iterations are performed using

Newton’s method), then the number of Newton iterations is upper bounded by

N Inequality
Total = NouterNinner+Ninitial ≤

⌈
log
(
m/(εt(0))

)
log µ

⌉(
m (µ− 1− log µ)

γ
+ c

)
+Ninitial

The numbers γ and c are calculated by excluding the inequality constraints in the

original problem and applying the appropriate bound in Theorems 4, 5 or 6 depending

on the method t is calculated. The numbers γ and c are extracted by comparing the

bound to the form ”NTotal ≤ f(x(0))−p∗

γ
+ c”

Proof: See Section 2.5.4.

Remark 6 We note that the bound on Ninner is independent of t, suggesting that

the number of inner iterations does not change much from one outer iteration to the

next.

2.5 Proofs of Theorems

In this section, we provide proofs to the theorems introduced in Section 2.4. The

proofs of Theorems 4, 5 and 6 are given for UCSCM problem (disregarding the equality

37

constraints of the original problem). Using Lemma 1, the proofs can be extended to

an ECSCM problem without any change.

2.5.1 Proof of Theorem 4

The proof consists of an analysis of the damped and quadratic convergence phases of

the Newton method.

Damped convergence phase

Using (2.14), a bound on the reduction in the value of f at the n-th iteration is

obtained

∆f(t(n)) ≡ f(x(n))−f(x(n+1)) = f̃(0)−f̃(t(n)) ≥ t(n)
(
λ(n)

)2
+t(n)λ(n)+log

(
1− t(n)λ(n)

)
.

The maximization of the lower bound on ∆f(t(n)) is obtained by nulling the derivative

with respect to t(n). This gives the equality(
λ(n)

)2
+ λ(n) − λ(n)

1− t(n)λ(n)
= 0 ⇒ t(n) =

1

1 + λ(n)
.

Therefore

∆f
(
t(n)
)
≥ λ(n) − log

(
1 + λ(n)

)
. (2.26)

This justifies the choice t(n) = 1
1+λ(n) as a predetermined value of t(n). Since an

explicit expression of λ(n) for any iteration, in terms of the parameters of the Newton’s

method and the function f , is not available, then (similarly to the classic analysis)

we lower bound λ(n) in the damped convergence phase by a constant η which is later

determined. Since (2.26) is monotonically increasing with λ then

∆f
(
t(n)
)
≥ min

λ≥η

(
λ(n) − log

(
1 + λ(n)

))
= η − log (1 + η) .

Hence, the number of Newton iterations during the damped phase is at most

Ndamped ≤
f
(
x(0)
)
− p∗

η − log (1 + η)
.

This proves the expression for c1 in (2.22).

38

Quadratic convergence phase

We now show that once λ ≤ η, a choice of t = 1 yields a double exponential decay of

λ which results in a very fast convergence to the minimal value of f (denoted by p∗).

It is shown in [45] that if we choose t = 1, the following bound holds

λ(x(n+1)) ≤ λ(x(n))
2

(1− λ(x(n)))
2 for λ(x(n)) < 1 (2.27)

Using the bound in (2.27), we can ensure a decay if λ(x(n+1)) ≤ cλ(x(n)) where c < 1.

By taking the limit c → 1, we get λ2

(1−λ)2
= λ ⇒ ηmax = 3−

√
5

2
∼= 0.381. Increasing the

value of η tightens the bound on the number of iterations during the damped phase.

However, in the vicinity of 0.381, the bound for the quadratic phase becomes useless

because it doesn’t converge.

Denote a
.
= 1

(1−η)2
where η ∈ (0, 0.381). If λ(x) ≤ η, then using (2.27) we get that

λ(x(n+1)) ≤ λ(x(n))2

(1−η)2
, aλ(x(n))2. Applying this inequality recursively gives

aλ
(
x(l)
)
≤
(
aλ
(
x(k)
))2l−k

, l ≥ k. (2.28)

At the final iteration λ is very small (in the order of
√
ε), thus we may use the

following inequality (see [45, Eq. (9.49)]):

f(x(l))− p∗ ≤ λ(x(l))
2
, ∀λ ≤ 0.68. (2.29)

Combining (2.28) and (2.29) gives

√
ε =

√
f(x(l))− p∗ ≤ λ(x(l)) ≤

(
aλ(x(k))

)2l−k

a
≤

aλ≤aη

(aη)2
l−k

a
(2.30)

An upper bound on the number of iterations during the quadratic phase is obtained

by solving the inequality for Nquad = l − k, which gives that

Nquad = l − k ≤ log2

(
log2 (a

√
ε)

log2 (aη)

)
. (2.31)

Ceiling this expression and substituting a = 1
1−η2

proves the term for c2 in (4).

2.5.2 Proof of Theorem 5

Similarly to the classical analysis, we address in the following the two convergence

phases of the Newton method.

39

Damped convergence phase

As before t(n) = 1
1+λ(n) maximizes the bound for ∆f

(
t(n)

∗)
which results in ∆f

(
t(n)

∗) ≤
λ(n) − log

(
1 + λ(n)

)
. Using λ(n) ≥ η for the damped phase we get γ(n) ≤ γ ≤

η − log (1 + η)

Quadratic convergence phase

The proof relies on the following lemma:

Lemma 2 Let f : Rn → R be a strictly convex s.c. function. Suppose that λ(x)t < 1

and define x+ = x+ t
(
−∇2f(x)−1∇f(x)

)
= x+ t∆xnt. Then the following inequality

holds

λ(x+)

λ(x)
≤ c(t, λ(x)) λ(x)t ≤ 1. (2.32)

where

a(t, λ) = 1− t

1− λt

b(t, λ) = 1−
1−

(
1− λt

)3
3λ

c(t, λ) =
max(|a(t, λ)|, |b(t, λ)|)

1− λt
. (2.33)

Proof: See proof of Lemma 2 in Appendix A.

Since minimizing c(t, λ(x)) maximizes the decay rate, the best predetermined choice

for t(n) using this bound is to use t(n) = tpre(λ) = argmint∈(0,1] c(t, λ). Figure 2.8

plots the decay rate c(tpre, λ) and tpre Versus λ, as given in (2.24) and (2.23) respec-

tively. The figure shows that the condition for decay, c(tpre, λ) < 1, holds for λ < 1.

Therefore the improved choice of tpre results in a bound that converges for values of

η approaching one.

In order to compute the bound on the number of Newton iterations in the quadratic

phase using this choice of t(n), one needs to count numerically the number of iterations

required to apply inequality (2.32) recursively starting from λ = η until λ ≤
√
ε. This

40

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

The term c(t=t
pre

,λ) and t
pre

 versus λ

c(t=t
pre

,λ)

t
pre

1.6λ

Figure 2.8: The function c(t = tpre, λ) and tpre Versus λ, as given in (2.24) and
(2.23) respectively. The line 1.6λ is also plotted to show it upper bounds the function
c(t = tpre, λ).

41

method can be simplified by performing most of the counting analytically. Figure 2.8

shows that the quadratic phase has two convergence sub-phases:

1. Double exponential decay (i.e., λ ≤ 0.55) - For small values of λ , tpre ≈ 1

and c(tpre, λ) is tightly upper bounded by the line 1.6λ. Therefore λ(x(n+1)) ≤
1.6λ(x(n))2 and as in the proof given in Theorem 4, we have a double exponential

decay. We can use (2.30) with a = 1.6 to bound the number of iterations in

this sub-phase

NDouble exponential (a = 1.6) ≤
⌈
log2

(
log2 (1.6

√
ε)

log2 (1.6min(η, 0.55)))

)⌉
. (2.34)

I.e., for η > 0.55 and ε = 10−10 the bound is NDouble exponential ≤ 7.

2. Slow exponential decay - For higher values of λ, tpre approaches zero and

c(tpre, λ) is rather constant (but approaching 1). Therefore the decay rate is

much slower. This can be seen as a transition phase between the damped phase

and the double exponential phase. The bound on the number of iterations in

this sub-phase has to be calculated numerically by applying (2.32) recursively

starting from λ = η until λ = 0.55. The numerical result for this calculation is

given in Figure 2.9

The term c̃2 is the sum of the results from the two sub-phases c̃2 = NDouble exponential+

Nslow exponential

2.5.3 Proof of Theorem 6

Similarly to previous proofs, we address in the following the two convergence phases

of the Newton method.

Damped convergence phase

Let tbk ∈ (0, 1] denote the first value of t which satisfies the backtracking line-search

exit condition (2.15), where an initial value of t = 1 is used and consecutive multipli-

cations of t by β ∈ (0, 1) are performed until condition (2.15) is satisfied. Since the

backtracking condition is satisfied at t = tbk, then ∆f(t(n)) is lower bounded by

∆f(t(n)) ≡ f(x(n))− f(x(n+1)) = f̃(0)− f̃(t(n)) ≥ αλ2t
(n)
bk . (2.35)

42

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

5

10

15

20

25

30

η

N
sl

ow
 e

xp
on

en
tia

l

Bound on the number of iterations required for ε <10−10

Figure 2.9: Bound on the number of iterations in the slow exponential decay sub phase
vs η. The bound on the number of iterations in this sub-phase has to be calculated
numerically by applying (2.32) recursively starting from λ = η until λ = 0.55.

43

In order to lower bound the value of tbk we shall use the following lemma:

Lemma 3 Let f be a s.c function minimized using Newton’s method and backtracking-

line-search. Let texit ∈ (0, 1] denote the largest value of t which satisfies the back-

tracking exit condition in (2.15). Then texit is lower bounded by

texit ≥ min

(
1,

G(α)

1 + λG(α)

)
(2.36)

Where G(α) ≡ 2(1− α) and λ denotes the Newton decrement.

Proof: First, we show that t̂ = G(α)
1+λG(α)

satisfies the backtracking exit condition

in (2.15).

f̃(t̂)− f̃(0)
(a)

≤ −t̂λ2 − t̂λ− log(1− t̂λ)

(b)
= −t̂λ2 − t̂λ− log

(
1 +

t̂λ

1− t̂λ

)
(c)

≤ t̂λ

[
−λ− 1 +

1− t̂λ/2

1− t̂λ

]
(d)
= −αλ2t̂

where (a) follows from (2.14), (b) holds using the equality − log(1−x) = log
(
1 + x

1−x

)
with x = λt̂, (c) follows from the inequality log(1 + x) ≤ x− x2

2
1

1+x
(Valid for x ≥ 0)

with x = t̂λ
1−t̂λ

and (d) follows by substitution t̂ = G(α)
1+λG(α)

. Hence t̂ satisfies the exit

condition in (2.15).

Define g(t) ≡ f̃(0)− f̃(t)− αλ2t . Since g(0) = 0, g(t̂) ≥ 0 and g(t) is a concave

function (as a sum of two concave functions), then if t ∈ [0, t̂], then g(t) ≥ 0 which

implies that t satisfies the backtracking exit condition. Therefore if t̂ ≥ 1 then the

exit condition is satisfied for t = 1 as well. We conclude that min(1, t̂) ∈ (0, 1] satisfies

the exit condition and therefore it is a lower bound on texit.

Since texit is the largest value of t that satisfies the backtracking line-search exit

condition, and the condition is checked only at values of the form t = βk (k ∈ Z+),

then tbk = β⌈logβ(texit)⌉. This result can be lower bounded as follows

tbk = β⌈logβ(texit)⌉ ≥ β1+logβ(texit) = βtexit. (2.37)

44

Using equations (2.35), (2.37), Lemma 3 and λ(n) ≥ η ≡ min
(

1
2
1−2α
1−α

, 1− 1√
amax

)
we get

f̃(0)− f̃(t
(n)
bk) ≥ α

(
λ(n)

)2
t
(n)
bk

≥ α
(
λ(n)

)2
βt

(n)
exit

≥ αβ
(
λ(n)

)2
min

(
1,

G(α)

1 + λ(n)G(α)

)
≥ αβη2 min

(
1,

G(α)

1 + ηG(α)

)
.

However, since η ≤ 1
2
1−2α
1−α

then G(α)
1+ηG(α)

≤ 1 and min
(
1, G(α)

1+ηG(α)

)
= 1. Therefore

f
(
x(k+1)

)
− f

(
x(k)
)
≤ −γ ≡ −αβη2 which means that the number of iterations in

the damped phase is upper bounded by

NDamped ≤ f(x(0))− p∗

αβη2
. (2.38)

Quadratic convergence phase

Since λ ≤ η ≤ 1
2
1−2α
1−α

then inequality (2.36) becomes texit ≥ 1. This means that a

full Newton step is taken (i.e., t = 1). Since in addition λ ≤ η < 1, then inequal-

ity (2.27) holds. As shown in the proof of Theorem 4, it follows that the number

of Newton iterations during the quadratic phase satisfies the bound in (2.31). This

bound diverges to infinity as η → 3−
√
5

2
. Therefore, in order to make the bound finite,

the expression for η contains a minimization with ηmax ∈ (0, 3−
√
5

2
). Combining this

bound with (2.38) results in a bound on the total number of Newton iterations as

argued in (2.25).

Remark 7 As shown in Figure 2.10, by observing the Newton decrement λ, we can

trace the appearance of three phenomena concerning the convergence of the Newton

method:

1. λ ≤ λa ≡ 1
2
1−2α
1−α

: From this point on, a full Newton step (i.e., t = 1) is assured.

2. λ ≤ ηmax : From this point on, a double exponential decay (i.e., λ(n+1) ≤(
λ(n)

1−ηmax

)2
) is assured.

45

Figure 2.10: Consider Newton’s method with backtracking line-search. By observing
the Newton decrement λ, we can trace the appearance of three phenomena concerning
the convergence of Newton’s method . From a certain value (and below), it is assured
that the backtracking line-search chooses a full step. Similarly, below the value of
ηmax, a double exponential decay is assured. Next, below

√
ϵ it is assured that the

current iterate is at most ϵ sub-optimal compared to p∗.

3. λ ≤ λε ≡
√
ε : From this point on, tolerance smaller then ε is assured.

The transition between the damped to the quadratic convergence phases occurs when

the first two conditions are satisfied.

2.5.4 Proof of Theorem 7

The following proof is similar to a proof given in [45]. It is repeated to show that it

still holds as an extension for the newly derived bounds.

Consider an optimization problem as described in Theorem 7. Solving the prob-

lem using interior-point methods (IPM) requires solving a series of un-constrained

problems with parameter t :

minimize tf(x) +B(x)

subject to Ax = b
(2.39)

where

B(x) =
m∑
i=1

− log (−fi(x)) .

46

It can be shown that the solution to this problem x∗(t) is m/t sub-optimal. Therefore,

it becomes more accurate as t grows. If the parameter t is increased by factor µ at

each outer iteration, then, the desired tolerance ε is achieved after exactly

Nouter =

⌈
log
(
m/εt(0)

)
log µ

⌉
(2.40)

centering steps, plus the initial centering step. Each outer iteration involves solving an

equality-constrained optimization problem with objective function f̃(x) = µt · f(x)+
B(x). As a starting point, we use the solution from the previous outer iteration x∗(t).

To lighten the notation, we use x to denote x∗(t) at the current outer iteration, and

x+ to denote x∗(µt) at the next iteration. We use λ and ν to denote λ∗(t) and ν∗(t),

respectively. The self-concordance assumption implies that the number of Newton

inner iterations required to compute x+ ≡ x∗(µt) starting at x ≡ x∗(t) is bounded by

Ninner ≤
f̃(x)− f̃(x+)

γ
+ c =

µtf0(x) +B(x)− µtf0(x
+)−B(x+)

γ
+ c (2.41)

where γ and c are derived from the bound for the ECSCM problems which result by

excluding the inequality constraints. We can bound this expression in terms of m

and µ.

47

µtf0(x) +B(x)− µtf0(x
+)−B(x+)

(a)
= µtf0(x)− µtf0(x

+) +
m∑
i=1

log
(
−fi(x

+)
)
−

m∑
i=1

log (−fi(x))

(b)
= µtf0(x)− µtf0(x

+) +
m∑
i=1

log
(
−fi(x

+)
)
−

m∑
i=1

log (1/ (λit))

(c)
= µtf0(x)− µtf0(x

+) +
m∑
i=1

log
(
−µλitfi(x

+)
)
−m log µ

(d)

≤ µtf0(x)− µtf0(x
+) + µt

m∑
i=1

λifi(x
+)−m−m log µ

(e)
= µtf0(x)− µt

(
f0(x

+) +
m∑
i=1

λifi(x
+) + νT

(
Ax+ − b

))
−m−m log µ

(f)

≤µtf0(x)− µtg (λ, ν)−m−m log µ
(g)
=m(µ− 1− log µ)

where (a) follows from the expression for the logarithmic barrierB(x) ≡ −
m∑
i=1

log (−fi(x)),

(b) follows from the equalities λi = −1/ (tfi (x)) shown in [45], (c) follows from loga-

rithm rules , (d) follows from the inequality log(a) ≤ a− 1 for a > 0, (e) holds since

Ax+ = b, (f) follows from the definition of the dual function given in [45]

g (λ, ν) = inf
z

(
f0(z) +

m∑
i=1

λifi (z) + νT (Az − b)

)
≤ f0(x

+)+
m∑
i=1

λifi(x
+) + νT

(
Ax+ − b

)
, and (g) follows from the equality g (λ, ν) = f0(x)−m/t. The conclusion is that

Ninner ≤
m (µ− 1− log µ)

γ
+ c. (2.42)

Combining (2.40) and (2.42) results in the following bound on the total number

of iterations :

Ntotal = NouterNinner +Ninitial

≤

⌈
log
(
m/εt(0)

)
log µ

⌉(
m (µ− 1− log µ)

γ
+ c

)
+Ninitial

48

2.6 Numerical results

In this section, we provide numerical results concerning the convergence of Newton’s

method. It is shown that although the improved bounds on the number of Newton

iterations are 1-2 orders tighter compared to the original bounds, they are still very

loose, especially in the damped phase. Using the empirical results, we point out what

steps in the derivation should be improved in order to further tighten the bounds. The

numerical results are shown for an un-constrained minimization of an s.c. function

f : Rn → R of the form

f(x) = cTx−
m∑
i=1

log(bi − aTi x) (2.43)

solved using Newton’s method with tolerance ε = 10−10. The problem parameters ai

and bi were randomly generated and the problem’s size was (m,n) = (1200, 450).

2.6.1 Predetermined step size t

The optimization problem described above was solved using Newton’s method with

a pre-determined choice of t, as given in Theorem 4 with parameter η = 0.35 and as

given in Theorem 5 with parameter η = 0.8.

As seen in Figure 2.11, the two methods show similar behavior (with minor dif-

ferences at the quadratic phase). The reason is that Newton’s method iterates most

of the time in the damped phase. In this phase the choice of t is exactly the same

for both choices of pre-determined t. We conclude that the improved choice of t is

mainly useful for tightening the bound on the number of iterations. Since the two

choices iterate almost the same, in the following we shall only analyze the numerical

behavior of Theorem 4 with parameter η = 0.35. Figure 2.12 plots the convergence

of a randomly generated problem (A single trial is shown that represents the gen-

eral behavior of the randomly generated problems). The problem was solved after

46 Newton iterations, of which the first 42 iterations are included in the damped

phase (i.e. λ > η = 0.35) and the last 4 iterations are included in the quadratic

phase (i.e. λ < η = 0.35). As expected, the damped phase is characterized with slow

convergence, while the convergence in the quadratic phase is very rapid.

49

0 10 20 30 40 50
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Newton iterations

f(
x)

−
p*

Predetemined t
Improved predetemined t

Figure 2.11: Convergence of Newton’s method with pre-determined t as given in
Theorem 4 with parameter η = 0.35. The results are given for an un-constrained
minimization, as given in (2.43) and as given in Theorem 5 with parameter η = 0.8.
The two choices of t show minor differences

50

0 5 10 15 20 25 30 35 40 45

10
−4

10
−2

10
0

10
2

Newton iterations

f(x)−p*

∆ f(x)

λ2/2

Figure 2.12: Convergence of Newton’s method with pre-determined t as given in
Theorem 4 with parameter η = 0.35. The results are given for an un-constrained
minimization, as given in (2.43). The figure plots the distance from the infimum
f(x)− p∗, the decrease in f at each iteration ∆f and half the square of the Newton
decrement λ2/2.

51

Applying the bound in (2.21) for the simulated problem results in the following

bound :

Ntotal = NDamped +Nquad ≤ 20(530) + 7 = 10607.

The bound for NQuad is relatively tight (7 iterations as opposed to 4), however the

bound for NDamped is still very loose.

From the numerical results of f(x)− p∗ compared to its lower bound λ2/2 used in

the derivation of the Theorem. It turns out that this bound is relatively tight. The

bound tightens as iterations increase and we enter the quadratic phase. This bound

was used in the derivation of the bound for the quadratic phase. The tightness in

this phase agrees with the overall tightness of the bound on the number of Newton

iterations in the quadratic phase.

In the following, the reasons for the loose bound for the damped phase are inves-

tigated. In the proof of Theorem 4, the number of Newton iterations in the damped

phase was bounded by division of f(x) − p∗ by a bound for the convergence rate

at each iteration ∆f(x(n)) > λ(x(n)) − log(1 + λ(x(n))) (where λ(x(n)) was globally

bounded by λ(x(n)) > η). Figure 2.13 plots this bound normalized by the numerical

result for ∆f(x(n)). It is evident that the bound is extremely loose, which explains

why the bound on the number of iterations is loose. Also shown in the figure is the

same bound only this time λ(x(n)) was not globally bounded with λ(x(n)) > η but

extracted from the numerical results. With λ(x(n)) not globally bounded, the bound

on ∆f(x(n)) is relatively tight.

We conclude that the bound on the number of Newton iterations during the

damped phase is loose, mainly because of the usage of a global bound on λ(x(n)) < η.

We can assume that if a tight bound on λ(x(n)) at each iteration was used, then the

bound on the number of iteration would be only 10 to 20 percent larger than the

numerical results.

Also shown in Figure 2.13 is the Taylor approximation for the rate of convergence

∆f̃(t) = f(x)− f(x+ t∆xnt) ∼= t(1− t/2)λ2 . For t = 1
1+λ

this approximation proved

to be extremely accurate, with error < 0.05%. The important thing to notice is

that it has the same general behavior as our bounds for ∆f̃(t). This shows that the

worse-case behavior is similar to the average case behavior, thus our bounds predict

the general behavior of the convergence rate. This approximation can be used in an

average case analysis of the convergence rate of the Newton method.

52

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Newton iterations

∆
 f

b
o
u
n
d
/∆

 f
N

u
m

e
ri
c

∆ f
approximation

 =(1−t/2)tλ
 2

∆ f
bound

(λ
(n)

)>λ−log(1+λ)

∆ f
bound

(η) >η−log(1+η)

Figure 2.13: Bounds for ∆f(x) normalized by the Numerically simulated ∆f(x). The
results are for a function of the form given in (2.43) with t = 1

1+λ

53

1 2 3 4 5 6 7 8
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Newton iterations

f(x)−p*

∆ f(x)

λ2/2

Figure 2.14: Convergence of Newton’s method with backtracking line-search. The
figure plots the distance from the infimum f(x) − p∗, the decrease in f at each
iteration ∆f and half the square of the Newton decrement λ2/2.

2.6.2 Backtracking line-search

We now examine the bound on the number of Newton iterations in Theorem 6 when

using backtracking line-search with line-search parameters α = 0.2 and β = 0.8.

Figure 2.14 plots the convergence of a randomly generated problem (for comparison

the same problem simulated in the subsection about predetermined t is simulated

here). The problem is solved after 8 Newton iterations, of which the first 4 iterations

are included in the damped phase (i.e. λ > η = 0.35) and the last 4 iterations are

included in the quadratic phase (i.e. λ < η = 0.35). Applying the bound in (2.25) for

the simulated problem results in Ntotal = NDamped +Nquad ≤ 37 ∗ (530) + 11 = 19621.

The bound for NQuad is relatively tight (11 iterations as opposed to 4), however the

bound for NDamped is still very loose. In the following, the reasons for the loose bound

for the damped phase are investigated. In order to bound the number of iterations

in the damped phase, we used the backtracking exit condition as a bound on the

convergence rate at each iteration ∆f(x) > tαλ2. We note that in the proof, the

54

10
−4

10
−2

10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

λ

∆
 f

(x
) b

o
u
n
d
 /

∆
 f

(x
)

∆ f(x)
analitic approximation

=t(1−t/2)λ
2

∆ f(x)
s.c. definition bound

=tλ+tλ
2
+log(1−tλ)

∆ f(x)
backtraking exit condition bound

=tαλ
2

Figure 2.15: Lower bounds for ∆f(x) normalized by the simulated ∆f(x). The
function is of the form given in (2.43) solved with backtracking line-search

values of λ and t were globally bounded.

Figure 2.15 plots several bounds on ∆f(x), normalized by the numerical result for

∆f(x). Similarly to the case of predetermined t, the use of global bounds for λ and

t is the main reason for the bound being loose. In order to investigate other reasons,

the bounds plotted in the figure are given with λ and t extracted from the numerical

results. The figure suggests that the backtracking exit condition bound has the same

general behavior as the numeric ∆f(x), but it is approximately α/0.5 times looser.

We conclude that in practice as shown later, the exit condition is usually satisfied

even without multiplying t by β which results in t ≈ 1. Another potential reason

why the bound might be loose is the case that the minimized function is not minimal

s.c.. The bound on ∆f(x) which follows from the s.c. definition is also plotted. It

can be seen that for small λ the s.c. definition bound predicts ∆f(x) with great

accuracy. This means that at the vicinity of x∗, the function f(x) is a minimal s.c.

function. Thus the bound can not be improved by simply multiplying the function

with a normalization constant as described in remark 5.

55

Since the backtracking exit condition bound ∆f(x) > tαλ2 is proportional to t,

it is important that the bound on t is tight. Figure 2.16 plots the numerical result

for t and the bound on tbk using (2.36) and tbk = β⌈logβ(texit)⌉. As mentioned before,

numerically, the backtracking line-search algorithm usually terminates at the first

iteration resulting in t ≈ 1. However, the lower bound is much lower, predicting

multiple multiplication by β. We note that this bound was derived almost directly

from the s.c. definition, thus it is surprising it is not tight. The reason lies in the

domain of the s.c. inequality in terms of ∆f(x) ≥ tλ+tλ2+log(1−tλ) which is tλ < 1.

As t → 1/λ the right hand side of the inequality tends to minus infinity making the

inequality useless. This tendency to infinity causes the bound to choose values of t

which comply to the artificial constraint of t < 1/λ, whereas in practice larger values

of t also satisfy the backtracking condition and therefore are favorable. This means

that any bound derived from the s.c. inequality cannot by tight for λ > 1. Since this

is the case during the damped phase, the bounds get loosen. If in the future better

bounds on λ(n) at each iteration are found then the fact that the bound for t is not

tight for λ > 1 might be problematic because the overall bound will still be loose. In

this case, only a combined improvement (i.e., a tight bound on λ(n) at each iteration

and a bound on t that does no suffer from the artificial constraint of t < 1/λ) will

yield a bound on the number of iterations in the damped phase that is tight.

Number of Newton iteration vs. α and β

In the following, we explore the behavior of the improved bound on the number of

Newton iterations when changing the parameters α and β.

• Dependence on α : Numerical results show little, if any dependence of α on

the number of Newton iterations. On the other hand the bound suggests that

the number of iterations has a minimum around α = 0.2 (See Figure 2.7).

This can be explained by the empiric fact that ∆f(x) ≈ 0.5λ2 even for t =

1. This means that for most cases the backtracking exit condition is satisfied

regardless the value of α. The bound shows stronger dependency upon α because

it assumes multiplications by β are required in order to satisfy the backtracking

exit condition.

• Dependence on β : The analytic bound suggests that the number of Newton

56

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Newton iterations

t
bk

t
bk

 lower bound

tλ=1

Figure 2.16: Numerical results for t derived using backtracking line-search for a func-
tion of the form given in (2.43). The plot includes the numerical value of tbk, the

bound on tbk using (2.36) and tbk = β⌈logβ(texit)⌉. For reference, the function t = 1/λ
is also plotted

57

iterations scales like 1
β
. Therefore the number of iteration decrease as β → 1.

As seen in Figure 2.17, in practice the behavior is more complex and has the

following properties

– Weak dependence on β for most values of β. This can be explained by the

fact that usually t = 1 is chosen and no multiplications by β are required.

In those cases, the value of β is meaningless.

– β → 0 : The number of iterations increases rapidly (as the analytic bounds

suggests). This is because if a multiplications by β occurs, the value of t is

reduced dramatically. Therefore a very small Newton step is taken. This

in turn slows down the convergence.

– β → 1 : The number of iterations increases slightly. This behavior is not

intuitive, since β → 1 will follow in a very fine reduction in the value of t

until the backtracking condition is satisfied. Therefore, the largest possible

step is taken and a fast convergence is expected. However, t might be

multiplied by β in order to get inside the domain of f(x). In this case

β → 1 will result in a step size that will lead us to the boundary of the

domain. Since near the boundary of the domain, f(x) is ill conditioned we

can expect slow convergence.

2.6.3 Comparison of backtracking line-search to predeter-

mined step size t

Comparing the bound on the number of Newton iterations with predetermined t to

the bound with backtracking line-search, one could think that the solver using prede-

termined t will converge 10 times faster. Numerical results given in Figure 2.18 show

the exact opposite. The backtracking line-search proves to be more efficient numeri-

cally. We conclude that optimizing t in order to minimize the bound on the number

of Newton iterations (as done in the case of predetermined t) does not necessarily

means that this is an optimal choice. The optimization was artificial because the

bound on the number of iterations does not reflect the full behavior of the number of

Newton iteration. The reason for this is that the bounds used, does not allow t > 1/λ,

where in practice tλ >> 1 gives better results in the damped phase. In practice the

58

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

β

N
ew

to
n

ite
ra

tio
ns

N vs β

Figure 2.17: Number of Newton iterations (N) versus the value of β in the backtrack-
ing line-search

59

0 10 20 30 40 50
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Newton iterations

f(
x)

−
p*

Predetemined t
Backtracking line search

Figure 2.18: Convergence rate of f(x) − p∗ for a problem solved using Newton’s
method. It is evident that the usage of the backtracking line-search results in less
Newton iterations compared to the usage of predetermined step size t.

backtracking algorithm does not suffer from this artificial constraint, thus it converge

faster during the damped phase. s

2.6.4 Conclusions regarding the numerical analysis

In the following, we summarize some of the main results and conclusions derived

throughout the numerical analysis.

• Although tighter compared to previous bounds, the numerical results show that

the improved bounds are still very conservative. Using a numerical analysis, we

point out the two main reasons that keep the bound from being tight

1. Global bound for λ : The improved bounds use λ > η in order to bound λ

for all the iterations during the damped phase. The lack of a tight bound

for λ(n) at each iteration is the main reason why the bounds are not tight

at the damped phase.

60

2. Domain of bounds : The bounds used have a domain of tλ < 1 whereas

in practice it is preferable to choose tλ > 1 in the damped phase. This

artificial constraint on t causes the choice of the predetermined t to be

relatively far from optimal. As a result the backtracking bound for tbk is

very loose for large values of λ, thus causing the bound on the convergence

rate ∆f(x) > tαλ2 to be loose.

• The predetermined choice of t results in a tighter bound as compared to the

backtracking bound, however numerically, the algorithm is less efficient. We

conclude that the predetermined choice optimizes the bound on the number

of Newton iterations but not necessarily the practical efficiency of the solver.

Thus, the optimized value of t is an artifact of the bounding method used. It

is last as an open question whether this bound is also valid for backtracking

line-search.

• It was shown empirically that for functions of the form (2.43) the Taylor series

approximation ∆f(t) ∼= t(1 − t/2)λ2 predicts the convergence rate with great

accuracy. This expression has similar behavior compared to our bounds for

∆f̃(t). This shows that the worse-case behavior is similar to the average case

behavior, thus our bounds predict the general behavior of the convergence rate.

This approximation can be used in an average case analysis of the convergence

rate of the Newton method.

61

62

Chapter 3

Complexity analysis of IPM-based

LP decoders for binary linear block

codes

3.1 Short overview

In recent years, the idea of using Linear Programming (LP) as a decoder for linear

codes has attracted the attention of many researchers. This alternative decoding al-

gorithm is based on the fact that Maximum-Likelihood Decoding (MLD) can be seen

as a combinatorial optimization problem. In the following, we give some background

on the field of decoding binary linear block codes using Linear Programming. The

decoder presented is based on interior-point methods described in the previous chap-

ter. Using the tightened bounds on the number of Newton iterations, we provide

complexity bounds on the IPM-based LP decoder.

3.2 LP decoding background

In this section, we review the basics of LP decoding. The background provides basic

notations and major theorems that are essential for the analysis in this work.

63

Figure 3.1: A high-level model of a communication link. The information word is
encoded into a codeword that contains redundant information. The codeword is sent
through the channel (transmission medium) where it is being corrupted. The decoder
applies an algorithm that tries to recover the original information from the received
word.

3.2.1 Linear block codes

In this thesis, we shall focus on binary linear block codes. A binary code C of length

n is a linear block code if C is a linear subspace of the vector space {0, 1}n. Recall

that a linear subspace of a vector space is any subspace closed under addition and

scalar multiplication, so a binary code C is linear if the following conditions hold

• All-zero codeword : 0n ∈ C, i.e., the all-zero word belongs to the code.

• Linear property : For all pairs of codewords, if x′,x ∈ C, then (x′ + x)mod2 ∈ C
where the mod 2 addition is done bit-wise.

Therefore, the code is a linear subspace of a vector space. This subspace can

be specified by the basis of the subspace. For our purposes, the basis is a linearly

independent set of codewords B = x(1), ...,x(k), each of length n, such that every

codeword in C can be expressed as the sum of a subset of codewords in that set.

The generator matrix G of a binary linear code is an n × k binary matrix whose

columns are the basis vectors. The encoder for a binary code simply multiplies the

64

information word by the generator matrix G. Therefore,

C =
{
Gx̃T : x̃ ∈ {0, 1}k

}
.

Every linear subspace C of dimension k has an orthogonal linear subspace C⊥ of

dimension n− k. This new subspace C⊥ can be though of as a new code, and is often

called the dual code to C. This dual code also has a basis, and so we can write down

a generator matrix H for this code as well. Since we have < x,x⊥ >= 0 for all x ∈ C
and x⊥ ∈ C⊥ , it must be the case that for all x ∈ C, we have

Hx = 0,

and so we have

HGT = 0.

The matrix H is called the parity-check matrix of the code C, and has the property

that a word x is in the code if and only if x is orthogonal to every row of H. The

matrix H is called the parity-check matrix because every row induces a parity-check

on the codeword.

LDPC codes

Low-density parity-check (LDPC) codes are a family of linear codes with a sparse

parity-check matrix. Mathematically, a family of codes (parameterized by their block

length n) is considered to be a family of LDPC codes if the maximal Hamming weight

of the rows and columns of the parity-check matrix stay constant as n grows.

We say a code is a regular LDPC(n, dv, dc), if the rows have a constant Hamming

weight denoted by dc and the columns have a constant Hamming weight denoted by

dv. The parameters dc, dv are also called the check-node and variable-node degree

respectfully. A more general family of LDPC codes is the (n, λ(x) ,
∑

i λix
i−1, ρ(x) ,∑

i ρix
i−1) irregular LDPC family, where the rows’ and columns’ weights are not

constant. Considering the factor graph G of the code, λi and ρi denote the fraction

of edges attached, respectively, to variable and parity-check nodes of degree i.

65

3.2.2 The ML decoder

The design of a decoder is perhaps the most difficult task in the design of an error-

correcting code, especially those that approach the theoretical limits. Given a partic-

ular code C, a natural question to ask is: what is the best possible decoder, if our goal

is to minimize the word error probability (WER)? The maximum-a-posteriori (MAP)

codeword xMAP is the one that was most probably transmitted, given the received

vector y:

xMAP = argmax
x∈C

Pr [x transmitted|y received]

Using Bayes’ rule, and the assumption that all information words have equal proba-

bility, the MAP codeword is the same codeword x that maximizes the probability y

was received, given that x was sent:

xML = argmax
x∈C

Pr [y received|x transmitted]

An ML decoder is a decoder that always finds the ML codeword. This is also often

called optimal decoding. For most codes, there is no known polynomial-time ML

decoding algorithm. In fact, the problem is in general NP-hard, and it remains NP-

hard for many families of codes used in practice. Therefore in most cases, one would

look for a sub-optimal (but efficient) decoder. The goal then is to show that the WER

of that decoder is still low. For example, the decoders most often used for LDPC codes

are based on belief-propagation algorithms (e.g., sum-product algorithm) [43], where

messages are iteratively sent across the edges of the factor graph of the code. This

decoder finds the ML codeword provided that the Tanner graph of the code contains

no cycles. However, cycle-free block codes are known to have bad performance [47],

thus when using this algorithm for LDPC codes with cycles, we search for a sub-

optimal (but efficient) decoder.

The ML decoder as a min-sum optimization problem

Given a particular received word y, we define the log-likelihood ratio ℓi of a code bit

xi to be:

ℓi(yi) = ln

(
Pr[yi|xi = 0]

Pr[yi|xi = 1]

)
.

66

The sign of the log-likelihood ratio determines whether the transmitted bit xi is more

likely to be a 0 or a 1. If xi is more likely to be a 1 then ℓi will be negative. If xi is

more likely to be a 0 then ℓi will be positive.

Theorem 8 [ML decoder as a min-sum optimization problem] For any

binary-input memoryless channel, the codeword of minimum cost is the Maximum-

Likelihood codeword.

xML = argmax
x∈C

Pr [y|x] = argmin
x∈C

(
n∑

i=1

ℓixi

)

Proof: See Section 2.5 in [21].

This shows that the ML decoder can be written as an optimization problem.

However, since the feasible set is integer, in general no efficient search methods exist

and the decoder needs to calculate the cost function for all 2k possible codewords.

3.2.3 Relaxed ML decoder

As stated before, the ML decoder can be written as an optimization problem. How-

ever, in general its complexity is practically infeasible. In order to reduce the com-

plexity of decoding, a technique called relaxation is applied. The basic concept of

relaxation is to relax the definition of the feasible set from a discrete set to a subset

of an n-dimensional real space Rn. For example, for a combinatorial optimization

problem written in the form of integer linear programming, elimination of the con-

straint that “a feasible point is integral” leads to a linear programming (LP) problem

that can be efficiently solved by a simplex method or an interior point method.

In our relaxation, we first let the set of feasible values to be between zero and one,

instead of binary. We will define some additional linear constraints on the variables

that are a function of the structure of the code itself, and obtain a feasible set which is

a polytope P ⊆ [0, 1]n. It is shown in [21], that the minimum of an LP problem with

a feasible set is a vertex of P . An extreme would be to choose P such that V(P) = C.
In this case, the relaxed LP decoder will output the codeword with minimum cost

codeword which is the ML codeword. Due optimal, this polytope is too complex to

represent for any code for which ML decoding is NP-hard. In order to reduce the

67

Figure 3.2: A graphical representation of a proper polytope. The relaxation of the
domain creates fractional vertices called pseudo-codewords. Since the LP decoder
does not differ between codewords and pseudo-codewords, this fractional vertices are
the main reason for decoding errors.

computational complexity, we can choose a structured polytope that approximate the

optimal polytope. The choice of the polytope is now a tradeoff between performance

and complexity. An indicator for a good polytope is the property of properness.

Definition 10 [Proper polytope]We call a polytope P proper, if the set of integral

points in P is exactly the set C of codewords.; i.e.,

P ∩ {0, 1}n = C.

Since the integer vertices of a proper cone are the codewords, then if an LP decoder

outputs an integer solution (codeword) then we know it outputs the ML codeword.

This property is called the ML certificate property. It is one of the unique advantages

of LP decoding.

As illustrated in Figure 3.2 , not all vertices are integers, therefore the decoder

might output a fractional solution. This fractional solutions are called pseudo-

codewords and are obviously not codewords. Since the LP decoder does not differ

between codewords and pseudo-codewords, this fractional vertices are the main reason

for decoding errors.

A popular choice for a proper cone for LDPC codes is a relaxed polytope of the con-

vex hull of C. We refer to the following choice as the fundamental polytope [21],[51].

Definition 11 [The fundamental polytope] Consider a code with parity-check

matrix H, and let

Ai = {j ∈ [1, n] : hij = 1}

68

for i ∈ [1,m], where hij is the (i, j)-element of H. The set Ti(i ∈ [1,m]) is the set of

all subsets of odd size in Ai, namely

Ti = {S ⊂ Ai : |S| is odd}.

The constraints for x = (x1, x2, ..., xn) ∈ Rn,

∀i ∈ [1,m], ∀S ∈ Ti, 1 +
∑
t∈S

(xt − 1)−
∑

t∈AirS

xt ≤ 0 (3.1)

and

∀j ∈ [1, n], 0 ≤ xj ≤ 1 (3.2)

are referred to as the parity constraints and the box constraints, respectively. The

fundamental polytope P(H) is the polytope defined by

P(H) = {x ∈ Rn : x satisfies constraints (3.2),(3.1)}

For each one of the m parity-check equations that a codeword must hold a set of 2dc−1

inequalities constraints are set. This parity constraints basically forbid words with

odd Hamming weight at the indexes where hij = 1. The fundamental polytope can

be shown to be a proper polytope, therefore the ML certificate property holds.

3.3 Application of interior-point methods to LP

decoding of binary linear block codes

Here, we apply the interior-point method based on log-barrier functions to the relaxed

MLD problem. We provide an IPM-based LP decoder similar to the decoder given

in [50],[51]. Based on the complexity bounds derived in previous sections, we derive

an upper bound on the number of Newton iterations for the LP decoder. Similar

analysis with loosened bounds was presented in [50]. This analysis was valid only

for regular LDPC codes using the backtracking line-search whereas this analysis uses

tightened bounds, and it applies to general non-regular codes with backtracking, exact

or predetermined line-search. Next, we discuss the properties of the derived bound

in the context of LDPC codes.

69

3.3.1 IPM-based LP decoder

Consider a received word y, denote ℓi(yi) = ln
(

Pr[yi|xi=0]
Pr[yi|xi=1]

)
as the log-likelihood ratio

(LLR) with respect to codeword bit xi. Using Theorem 8, the LP decoder objective

function is given by

f(x) =
n∑

i=1

ℓi(yi)xi. (3.3)

If we use the fundamental polytope as in definition 11, the resulting log-barrier

function B(x) includes parity-check constraints and box constraints and is given by

B(x) =
∑

i∈[1,m]

∑
S⊂Ti

ln

−
1 +

∑
t∈S

xt − 1−
∑

t∈Ai\S

xt

 (3.4)

−
∑

j∈[1,n]

ln [xj]−
∑

j∈[1,n]

ln [−(xj − 1)].

Therefore, in order to perform decoding of the received value, the IPM-based decoder

computes a sequence of points on the central path x∗(t). Each point is computed by

applying Newton’s method to the following un-constrained problem

x∗(t) = argmin{tf(x) +B(x)}.

Denote M as the number of inequality constraints. The stopping criterion is satisfied

when M
t
< ϵ. The box constraints contribute n inequalities, while each parity-check

equation contributes 2dc−1 inequalities. Therefore, for a general linear code with

distribution ρ(x), the total number of inequalities is

M = 2n+

 m
1∫
0

ρ(x)dx


dmax
c∑
i=1

ρi2
i−1

i
= 2n+mdavgc

dmax
c∑
i=1

ρi2
i−1

i
. (3.5)

As a starting point for the initial centering, a word close to the final solution will

help the convergence of the optimization algorithm. An example for such a word

is the received word y. However, this word is not necessarily a feasible starting

point. Therefore, we use the choice x(0) = (1/2, 1/2, ..., 1/2) as starting point. The

70

following lemma justify this choice as a feasible starting point. It is a straightforward

generalization of the lemma from [51] to non-regular codes.

Lemma 4 Consider a binary linear block code with parity-check matrix H. If the

row distribution ρ(x) satisfies ρ2 = 0 (i.e., the minimum row degree dmin
c is greater

then 2), then the point x(0) = (1/2, 1/2, ..., 1/2) is a feasible initial search point (i.e.,

x ∈ P(H)).

Proof: Clearly, x satisfies the box constraints (3.2). Therefore, we only need to prove

the lemma for the parity constraints (3.1). For any i ∈ [1,m], S ∈ Ti we have

1 +
∑
t∈S

(
1

2
− 1)−

∑
t∈Ai\S

1

2
= 1− |Ai|

2
≤ 1− dmin

c

2
≤ 1− 3

2
< 0.

The last inequality follows from the assumption that ρ2 = 0, since it implies that

|Ai| ≥ 3.

We summarize the IPM-based LP decoding algorithm as following

Definition 12 [IPM-based LP decoding algorithm] Consider a binary linear

block code with parity-check matrix H ∈ Rm×n with check node distribution ρ(x).

Given a received word y, compute the objective function f(x) using (3.3) and the

barrier function B(x) using (3.4). Let t := t(0), µ > 1, ϵ > 0, M = 2n+mdavgc

dmax
c∑
i=1

ρi2
i−1

i

and x(0) = (1/2, 1/2, ..., 1/2) as the initial starting point.

Repeat the following steps (Outer loop)

1. Centering step : Compute x∗(t) by minimizing Ψt(x) = tf(x) +B(x), starting

at x =: x(0).

Repeat the following steps (Inner loop)

(a) Compute the Newton step : ∆xnt = −∇2Ψt(x)
−1∇Ψt(x).

(b) Stopping criterion : Compute the Newton decrement λ2 = ∆xT
nt∇2Ψt(x)∆xnt.

If λ2/2 ≤ ϵ, set x∗(t) = x and quit.

(c) Line search : Choose step-size tline (e.g., backtracking line).

(d) Update : x := x+ tline∆xnt.

71

2. Update starting point : x(0) := x∗(t).

3. Stopping criterion : Quit if M/t < ϵ

4. Increase t : t := µt.

If x∗(t) is an integer then xLP = x∗(t), else report an error.

3.3.2 Complexity analysis of an IPM-based LP decoder

We note that the solved problem is an IECSCM problem, therefore we can apply the

complexity bounds we developed earlier in order to derive a bound on the number of

Newton iterations.

Theorem 9 [Bound on the number of Newton iteration for an IPM-based

LP decoding algorithm] Consider the IPM-based LP decoding algorithm in defini-

tion 12. Denote ℓmax as an upper bound on |ℓi(yi)|. The number of Newton iterations

is upper bounded by

NLP decoder
Total = NouterNinner +Ninitial

≤

⌈
log
(
M/(εt(0))

)
log µ

⌉(
M (µ− 1− log µ)

γ
+ c

)
+

1/2t(0)ℓmaxn

γ
+ c

The numbers γ and c are calculated by excluding the inequality constraints in the

original problem and applying the bound in Theorems 4, 5 or 6 depending on the

line-search method chosen. The numbers γ and c are extracted by comparing the

bound to the form ”NTotal ≤ f(x(0))−p∗

γ
+ c”.

Proof: The proof follows closely the proof given in [50] for a regular LDPC code

using loosened bounds for the number of Newton iterations. We note that the LP

decoding algorithm applies to the barrier method of an IECSCM problem. Applying

Theorem 7 proves the first part of the bound. Next, we consider the second term of

the bound that refers to the number of Newton iterations during the initial centering

step, i.e., from x(0) = {1/2, 1/2, ..., 1/2} to x∗(t(0)).

72

This problem is an UCSCM problem, therefore, depending on the line-search

method, Theorem 5, 4 or 6 can be applied.

Ninitial ≤
Ψt(0)(x

(0))−Ψt(0)(x
∗(t(0)))

γ
+ c (3.6)

The numerator can be upper bounded by

Ψt(0)(x
(0))−Ψt(0)(x

∗) = t(0)f(x(0)) +B(x(0))− t(0)f(x∗)−B(x∗)
(a)

≤ t(0)f(x(0)) +B(x∗)− t(0)f(x∗)−B(x∗)

= t(0)
n∑

i=1

ℓi(1/2− x∗
i)

(b)

≤ t(0)

2

n∑
i=1

|ℓi|

(c)

≤ t(0)

2
ℓmaxn

where (a) follows from the fact that x(0) = {1/2, 1/2, ..., 1/2} is the minimizer of

B(x) (i.e., ∇B(x(0)) = 0), (b) follows from |xi − 1/2| ≤ 1/2 and (c) follows from the

definition of ℓmax as an upper bound for |ℓi|. This result combined with 3.6 proves

the required bound on Ninitial.

Remark 8 For regular LDPC codes with check node degree dc, the expression for

the total number of inequalities in (3.5), can be degenerated to

M = 2n+m2dc−1 = n(2 + (1−R)2dc−1).

3.3.3 Parameter-optimized complexity bound for LP decoder

In this subsection, we use the bound on the number of Newton iterations derived in

Theorem 9 and optimize the search parameters µ and t(0). It turns out we can reduce

the complexity of the bound with respect for M if we by make µ and t(0) a function

of M .

73

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ

Q(δ)
Q(δ)

Approx

Q(δ)
Upper bound

Figure 3.3: The figure plots the function Q(δ) ≡ δ−ln (1+δ)+cγ/M
ln (1+δ)

, its approximation

Q(δ)Approximation ≡ δ2/2+cγ/M
δ

and its upper bound Q(δ)Upper bound = 2Q(δ)Approximation.
The plot is given for c = 6, γ = 1/6,M = 100.

Theorem 10 [Parameter-optimized complexity bound for LP decoder]

Consider the bound in Theorem 9, for a code with M ≥ cγ
20
. Then, the bound is

minimized (approximately) for the search parameters

µ∗ = 1 +

√
2cγ

M
(3.7)

t(0)∗ =

√
32Mcγ

nℓmax

.

Using this optimized search parameters, the number of iterations is bounded by

N∗
total ≤

√
8cM

γ

[
ln

(√
M

32cγ

ℓmaxn

ϵ

)
+ 1

]
+ c (3.8)

Proof: Consider the bound in Theorem 9. It can be verified numerically that for

M ≫ cγ, the bound is minimized for values of µ near the value 1.

74

Therefore, if we set µ = 1 + δ, then we can simplify the bound with very good

accuracy by replacing ln(1 + δ) with polynomial expressions, i.e., δ−ln (1+δ)+cγ/M
ln (1+δ)

∼=
δ2/2+cγ/M

δ
. Unfortunately, as shown in Figure 3.3 the approximation lower bounds the

original expression. By multiplying it by 2, it can be shown that we get an upper

bound that holds for cγ
M

≤ 20. This results in a slightly loosen version of the original

bound (by factor 2)

NLP decoder
Total ≤

⌈
log
(
M/(εt(0))

)
log µ

⌉(
M (µ− 1− log µ)

γ
+ c

)
+

1/2t(0)ℓmaxn

γ
+ c

≤ 2

(
log
(
M/(εt(0))

)
δ

)M
(
+ δ2

2

)
γ

+ c

+
1/2t(0)ℓmaxn

γ
+ c.

To get the optimized values presented in 3.7, we nullify the derivative of the loosen

bound with respect to t(0) and δ. Using this optimized search parameters, the number

of iterations is bounded by (3.8).

Remark 9 Practically, good values of the parameter µ lie in the range 2-100. We

would not use the value µ∗ = 1 +
√

2cγ
M

, which is far too small. Our main interest

in this value of µ is that it (approximately) minimizes our (very conservative) upper

bound on the number of Newton steps, and yields an overall estimate that grows as√
M , instead of M . This result is an artifact of the bounding method. Even with the

improved values for c, γ, the bound on the inner iterations is very loose and increases

very fast with respect to f(x) − p∗. By setting µ very close to 1, the starting point

for each inner iteration is very close to the solution on the central path, thus lowering

the number of internal iterations required.

3.3.4 Properties of the complexity bound for LP decoder

We are now ready to discuss the behavior of our complexity bound. We will refer

to the bound in Theorem 9, and also to its optimized version in Theorem 10. When

comparing the two bounds, it is evident that the optimized bound in Theorem 10

increases much slower with respect to the code’s parameters.

• [Number of Inequalities - M] : The number of inequalities is a measure

of the complexity of the fundamental polytope. As the number of inequalities

75

is increased, the polytope is getting more complex, and better decoding per-

formance can be maintained. The bound in Theorem 9 scales like O(M lnM),

whereas in Theorem 10 the bound scales only like O(
√
M lnM). Both bounds

show that there exist a trade-off between the decoding performance (represented

by the number of inequalities) and the decoding complexity (represented by the

number of Newton iterations times the complexity per iteration).

• [Noise level - ℓmax] : The level of noise in the channel is represented by

the value of ℓmax. The bound in Theorem 9 scales like O(ℓmax), whereas in

Theorem 10 the bound scales like O(ln ℓmax).

Next, for the simplicity of the analysis, we shall assume the code is regular with

check node degree dc. In this case the expression for the number of inequality degen-

erates to

M = 2n+m2dc−1 = n(2 + (1−R)2dc−1).

Next, we substitute this expression in the optimized bound of Theorem 10, and explore

its dependence on dc and n.

• [Block length - n] : Error-correcting codes that operate reliably at rates close

to the channel capacity suffer from the drawback of having large block-lengths

(due to sphere-packing bounds). It is therefore important that the decoding

complexity would have a reasonable scaling as a function of the block length n.

For general linear codes dc scales like O(n). Since M scales like O(2dc), then in

general the complexity is exponential in n. For LDPC codes dc is fixed (i.e., it

stays fixed irrespectively of n) thus M scales like O(n). Therefore, the bound

on the number of iterations scales like O(
√
n lnn). However, in each Newton

iteration we need to calculate the inverse of the Hessian matrix∇2Ψt(x) ∈ Rn×n.

For a general code this matrix has no structure, thus the computation requires

O(n3) operations. Fortunately, for LDPC codes, this matrix is sparse, therefore

computing its inverse usually requires only O(n) operations [45]. Therefore, the

total time complexity scales like O(n1.5 lnn), which is relatively low. We note

that this result is higher compared to a result by D. Burshtein [11] that provides

an LP decoder with number of iterations that scales like O(n).

76

• [Check node degree - dc] : We note that M scales like O(2dc). This alone

makes the number of iterations to be exponential in dc. Therefore, the bound

suggests that the proposed LP decoder has long running times for codes with

high check-node degree.

Remark 10 We note that there exist alternative polytopes (see [21],[25]) that are

more suitable for high-density codes. For these polytopes, the number of inequalities

scales like O(nm+md2c + dcdv). Since M scales like O(n3), the bound on the number

of iterations scales like O(n1.5 lnn). Computing the inverse of the hessian matrix

requires O(n3) operations, thus the bound on complexity scales like O(n4.5 lnn). In a

similar manner, since M scales like O(d2c) then the bound on the number of iterations

scales like O(dc ln dc).

Remark 11 We note that the time complexity of the IPM-based LP decoder depends

not only on the number of Newton iterations but also on the complexity per iteration.

At each Newton iteration, we need to calculate the inverse of the Hessian matrix (i.e.,

inverting the matrix ∇2Ψt(x) ∈ Rn×n). In order to bound the overall complexity of

the decoder, one needs to bound the complexity involved in that inversion.

3.4 Comparison of the bounds

In the following, we compare the original bound by Wadayama given in [50] to the im-

proved bound given in this thesis. We consider an LDPC(1008,3,6) code transmitted

through an AWGN channel with Eb

N0
=2.0 dB. Moreover, for the IPM, the following

parameters are assumed : ϵInner iterations = 10−3, ϵOuter iterations = 10−3, α = 0.3, β =

0.5, t(0) = 20 and µ = 20.

Applying the original bound by Wadayama gives an upper bound of about 108

Newton iterations, as compared to about 107 Newton iterations when applying the

tightened bound for backtracking line-search. In practice, numerical simulations us-

ing the backtracking line-search show convergence after about 102 Newton iterations.

Since in practice, we know that the predetermined step size and the optimized pa-

rameters µ∗ and t(0)∗ only increase the number of Newton iterations, then we can

use the bound derived for predetermined step size with optimized µ∗ and t(0)∗ as a

bound for backtracking line-search. As seen in Table 3.1, applying the bound for the

77

improved predetermined step size with t(0) = 20 and µ = 20 gives a bound of about

106 Newton iterations. Applying the bound for the improved predetermined step size

with the optimized IPM µ∗ and t(0)∗ gives a much tighter bound of about 104 New-

ton iterations. We conclude that the improved bound for backtracking line-search

tighten the bound by factor of 10 and the bound for predetermined step size results

in further improvement of factor 10. However, even with these improved bounds, the

upper bounds give a very conservative estimate of the number of Newton iterations

that does not reflect average case behaviors. In practice, the centering step requires

much fewer iterations to achieve reasonable convergence. However, these bounds can

be used as a theoretical basis to justify the low complexity of the LP decoder when

used to decode LDPC codes. Moreover, although not recommended practically, the

optimized parameters µ∗ and t(0)∗ tighten the bound considerably, closing some of

the gap between the conservative theoretical bounds and the practical results for the

number of Newton iterations.

Source IPM parameters Search method Iterations

Simulations (µ, t(0)) = (20, 20) (α, β) = (0.3, 0.5) 102

Original bound [50] (µ, t(0)) = (20, 20) (α, β) = (0.3, 0.5) 108

Tightened bound (µ, t(0)) = (20, 20) (α, β) = (0.3, 0.5) 107

Tightened bound (µ, t(0)) = (20, 20) Pre-determined t 106

Tightened bound Optimized Pre-determined t 104

Table 3.1: Numerical comparison of different bounds on the number of iterations for
an IPM-based decoder. We consider an LDPC(1008,3,6) code transmitted through
an AWGN channel with SNR 2.0 dB.

78

Chapter 4

Concentration of measures in

LDPC code ensembles

4.1 Short overview

This chapter considers concentration phenomena of LDPC code ensembles. The basic

concentration theorem of iterative message-passing decoding asserts that all except an

exponentially (in the block length) small fraction of codes perform within an arbitrary

small δ from the ensemble average (where δ is a positive number that can be chosen

arbitrarily small). Therefore, assuming a sufficiently large block length, the ensemble

average forms a good indicator for the performance of individual codes.

In Section 4.2, we provide some mathematical background about Martingales and

Azuma’s inequality. These mathematical tools will help us to derive concentration

results for ensembles of LDPC codes. Next, in Section 4.3, we provide briefly some

applications in coding and communication theory of the mathematical tools presented

in the previous section. Using Azuma’s inequality, we analyze the concentration of

measures in LDPC code ensembles.

• Section 4.4 provides a large-deviation analysis of the conditional entropy, and

it derives tightened inequalities as compared to the original bound by Méasson

et al. [8, Theorem 4].

• Section 4.5 shows concentration results on the number of erroneous variable-

to-check messages for Inter-Symbol-interference (ISI) channels. The analysis

79

provides explicit expression for the exponential rate that is related to the con-

centration inequalities given in [3, Theorems 1 and 2]. It is shown that particu-

larizing these results for memoryless channels provides tightened concentration

inequalities as compared to [29] and [48].

4.2 Mathematical background about Martingales

and Azuma’s inequality

In this section, we present relevant mathematical background that is essential for the

analysis in this work.

4.2.1 Doob’s Martingales

This sub-section provides a short background on martingales to set definitions and

notation.

Definition 13 [Doob’s Martingale] Let (Ω,F ,P) be a probability space. A Doob’s

martingale sequence is a sequence X0, X1, . . . of random variables (RVs) and corre-

sponding sub σ-algebras F0,F1, . . . that satisfy the following conditions:

1. Xi ∈ L1(Ω,Fi,P) for every i, i.e., each Xi is defined on the same sample space

Ω, it is measurable with respect to the corresponding σ-algebra Fi (i.e., Xi is

Fi-measurable) and E[|Xi|] =
∫
Ω
|Xi(ω)|dP(ω) < ∞.

2. F0 ⊆ F1 ⊆ . . . (where this sequence of σ-algebras is called a filtration).

3. The equality Xi = E[Xi+1|Fi] holds almost surely (a.s.) for every i.

In this case, it is said that the martingale sequence {Xi}ni=0 is adapted to the filtration

{Fi}ni=0.

Remark 12 For every i

E[Xi+1] = E
[
E[Xi+1|Fi]

]
= E[Xi]

so the expectation of a martingale stays constant.

80

Remark 13 One can generate martingale sequences by the following procedure:

Given a RV X ∈ L1(Ω,F ,P) and an arbitrary filtration of sub σ-algebras {Fi},
let

Xi = E[X|Fi] i = 0, 1,

Then, the sequence X0, X1, . . . forms a martingale since

1. The RV Xi = E[X|Fi] is Fi-measurable, and also E[|Xi|] ≤ E[|X|] < ∞ (since

conditioning reduces the expectation of the absolute value).

2. By construction {Fi} is a filtration.

3. For every i

E[Xi+1|Fi]

= E
[
E[X|Fi+1]|Fi

]
= E[X|Fi] (sinceFi ⊆ Fi+1)

= Xi a.s.

Remark 14 In continuation to Remark 13, one can choose

F0 = {Ω, ∅} , Fn = F

so that X0, X1, . . . , Xn is a martingale sequence where

X0 = E[X|F0] = E[X] (since X is independent of F0)

Xn = E[X|Fn] = X a.s. (since X is F -measurable).

In this case, one gets a martingale sequence where the first element is the expected

value of X, and the last element of the sequence is X itself (a.s.). This has the

following interpretation: At the beginning, we don’t know anything about X, so it

is initially estimated by its expectation. We then reveal at each step more and more

information about X until we can specify it exactly (a.s.).

81

4.2.2 Azuma’s Inequality

Definition 14 [Bounded-difference martingales] Let a sequence of random variables

{Xi}ni=0 be a martingale. This sequence is said to be a bounded-difference martingale

if there exists a fixed vector d = (d1, . . . , dn) of non-negative entries such that the

condition

|Xi −Xi−1| ≤ di

is satisfied a.s. for every i ∈ {1, 2, . . . , n}.

Azuma’s inequality forms a useful concentration inequality for bounded-difference

martingales [24]. In the following, this inequality is introduced.

Theorem 11 [Azuma’s inequality] Let X0, . . . , Xn be a bounded-difference martin-

gale with the associated vector d in Definition 14, then

P(|Xn −X0| ≥ r) ≤ 2 exp

(
− r2

2
∑n

i=1 d
2
i

)
, ∀ r > 0.

4.3 Some Applications of Azuma’s Inequality in

Coding Theory

In the following, we shortly provide some examples of the use of Azuma’s inequality

for coding and communication theory.

4.3.1 Minimum Distance of Binary Linear Block Codes

Consider the ensemble of binary linear block codes of length n and rate R. The

average value of the normalized minimum distance is equal to

E[dmin(C)]
n

= h−1
2 (1−R)

where h−1
2 designates the inverse of the binary entropy function to the base 2, and

the expectation is with respect to the ensemble where the codes are chosen uniformly

at random (see [1]).

82

Let H designate an n(1−R)×n parity-check matrix of a linear block code C from

this ensemble. The minimum distance of the code is equal to the minimal number

of columns in H that are linearly dependent. Note that the minimum distance is a

property of the code, and it does not depend on the choice of the particular parity-

check matrix which represents the code.

Let us construct a martingale sequence X0, . . . , Xn where Xi (for i = 0, 1, . . . , n)

is a RV that denotes the minimal number of linearly dependent columns of a parity-

check matrix that is chosen uniformly at random from the ensemble, given that we

already revealed its first i columns. Based on Remarks 13 and 14, this sequence

forms indeed a martingale sequence where the associated filtration of the σ-algebras

F0 ⊆ F1 ⊆ . . . ⊆ Fn is defined so that Fi (for i = 0, 1, . . . , n) is the σ-algebra that is

generated by all the sub-sets of n(1−R)×n binary parity-check matrices whose first i

columns are fixed. This martingale sequence satisfies |Xi −Xi−1| ≤ 1 for i = 1, . . . , n

(since if we reveal a new column of H, then the minimal number of linearly dependent

columns can change by at most 1). Note that the RV X0 is the expected minimum

Hamming distance of the ensemble, and Xn is the minimum distance of a particular

code from the ensemble (since once we revealed all the n columns of H, then the code

is known exactly). Hence, by Azuma’s inequality

P(|dmin(C)− E[dmin(C)]| ≥ α
√
n) ≤ 2 exp

(
−α2

2

)
, ∀α > 0.

This leads to the following theorem:

Theorem 12 [The minimum distance of binary linear block codes]

Let C be chosen uniformly at random from the ensemble of binary linear block

codes of length n and rate R. Then for every α > 0, with probability at least

1− 2 exp
(
−α2

2

)
, the minimum distance of C is in the interval

[nh−1
2 (1−R)− α

√
n, n h−1

2 (1−R) + α
√
n]

and it therefore concentrates around its expected value.

Note, however, that some well-known capacity-approaching families of binary lin-

ear block codes possess a minimum Hamming distance which grows sub-linearly with

the block length n. For example, the class of parallel concatenated convolutional

(turbo) codes was proved to have a minimum distance which grows at most like the

logarithm of the interleaver length [26].

83

4.3.2 Performance of LDPC Codes under Iterative Message-

Passing Decoding

In the following, we consider ensembles of binary LDPC codes. Following standard

notation, let λi and ρi denote the fraction of edges attached, respectively, to variable

and parity-check nodes of degree i. The LDPC code ensemble that is denoted by

LDPC(n, λ, ρ) is characterized by the block length n of the codes, and the pair λ(x) ,∑
i λix

i−1 and ρ(x) ,
∑

i ρix
i−1 which represent, respectively, the left and right degree

distributions from the edge perspective.

The following theorem was proved in [49, Appendix C] based on Azuma’s inequal-

ity:

Theorem 13 [Concentration of the bit error probability around the ensem-

ble average]

Let C, a code chosen uniformly at random from the ensemble LDPC(n, λ, ρ), be

used for transmission over a memoryless binary-input output-symmetric (MBIOS)

channel characterized by its L-density aMBIOS. Assume that the decoder performs l

iterations of message-passing decoding, and let Pb(C, aMBIOS, l) denote the resulting

bit error probability. Then, for every δ > 0, there exists an α > 0 where α =

α(λ, ρ, δ, l) (independent of the block length n) such that

P
(
|Pb(C, aMBIOS, l)− ELDPC(n,λ,ρ)[Pb(C, aMBIOS, l)]| ≥ δ

)
≤ exp(−αn)

This theorem asserts that all except an exponentially (in the block length) small

fraction of codes behave within an arbitrary small δ from the ensemble average (where

δ is a positive number that can be chosen arbitrarily small). Therefore, assuming

a sufficiently large block length, the ensemble average is a good indicator for the

performance of individual codes, and it is therefore reasonable to focus on the design

and analysis of capacity-approaching ensembles (via the density evolution technique).

This theorem is proved in [49, pp. 487–490] based on Azuma’s inequality.

84

4.4 A Tightened Large-Deviation Analysis for the

Conditional Entropy of LDPC Ensembles

A large-deviation analysis of the conditional entropy for random ensembles of LDPC

codes was introduced in [4, Theorem 1] and [8, Theorem 4]. The following theorem

is proved in [8, Appendix I] based on Azuma’s inequality:

Theorem 14 [Large deviations of the conditional entropy] Let C be chosen uniformly

at random from the ensemble LDPC(n, λ, ρ). Assume that the transmission of the

code C takes place over an MBIOS channel. LetH(X|Y) designate the conditional en-

tropy of the transmitted codeword X given the received sequence Y from the channel.

Then for any ξ > 0,

P(|H(X|Y)− ELDPC(n,λ,ρ)[H(X|Y)]| ≥ n ξ) ≤ 2 exp(−nBξ2)

where B , 1
2(dmax

c +1)2(1−Rd)
, dmax

c is the maximal check-node degree, and Rd is the

design rate of the ensemble.

The conditional entropy scales linearly with n, and this inequality considers deviations

from the average which also scale linearly with n.

In the following, we revisit the proof of Theorem 14 in [8, Appendix I] in order

to derive a tightened version of this bound. Based on this proof, let G be a bipar-

tite graph which represents a code chosen uniformly at random from the ensemble

LDPC(n, λ, ρ). Define the RV

Z = HG(X|Y)

which forms the conditional entropy when the transmission takes place over an MBIOS

channel whose transition probability is given by PY|X(y|x) =
∏n

i=1 pY |X(yi|xi) where

pY |X(y|1) = pY |X(−y|0). Fix an arbitrary order for the m = n(1 − Rd) parity-check

nodes where Rd forms the design rate of the LDPC code ensemble. Let {Ft}t∈{0,1,...,m}

form a filtration of σ-algebras F0 ⊆ F1 ⊆ . . . ⊆ Fm where Ft (for t = 0, 1, . . . ,m) is

the σ-algebra that is generated by all the sub-sets of m×n parity-check matrices that

are characterized by the pair of degree distributions (λ, ρ) and whose first t parity-

check equations are fixed (for t = 0 nothing is fixed, and therefore F0 = {∅,Ω} where

∅ denotes the empty set, and Ω is the whole sample space of m×n binary parity-check

85

matrices that are characterized by the pair of degree distributions (λ, ρ)). Accordingly,

based on Remarks 13 and 14, let us define the following martingale sequence

Zt = E[Z|Ft] t ∈ {0, 1, . . . ,m} .

By construction, Z0 = E[HG(X|Y)] is the expected value of the conditional entropy

for the LDPC code ensemble, and Zm is the RV that is equal (a.s.) to the conditional

entropy of the particular code from the ensemble (see Remark 14). Similarly to [8,

Appendix I], we obtain upper bounds on the differences |Zt+1 − Zt| and then rely on

Azuma’s inequality in Theorem 11.

Without loss of generality, the parity-checks are ordered in [8, Appendix I] by

increasing degree. Let r = (r1, r2, . . .) be the set of parity-check degrees in ascending

order, and Γi be the fraction of parity-check nodes of degree i. Hence, the first m1 =

n(1 − Rd)Γr1 parity-check nodes are of degree r1, the successive m2 = n(1 − Rd)Γr2

parity-check nodes are of degree r2, and so on. The (t+1)th parity-check will therefore

have a well defined degree, to be denoted by r. In order to avoid any further overlap

with the proof in [8, Appendix I], we note that according to this proof

|Zt+1 − Zt| ≤ (r + 1)H(X̃|Y) (4.1)

where H(X̃|Y) is a RV which designates the conditional entropy of a parity-bit X̃ =

Xi1⊕ . . .⊕Xir (i.e., X̃ is equal to the modulo-2 sum of some r bits in the codeword X)

given the received sequence Y at the channel output. The proof in [8, Appendix I]

was then completed by upper bounding the parity-check degree r by the maximal

parity-check degree dmax
c , and also by upper bounding the conditional entropy of the

parity-bit X̃ by 1. This gives

|Zt+1 − Zt| ≤ dmax
c + 1 t = 0, 1, . . . ,m− 1. (4.2)

which then proves Theorem 14 from Azuma’s inequality. Note that the di’s in The-

orem 11 are equal to dmax
c + 1, and n in Theorem 11 is replaced with the length

m = n(1 − Rd) of the martingale sequence {Zt} (that is equal to the number of the

parity-check nodes in the graph).

In the continuation, we deviate from the proof in [8, Appendix I] in two respects:

• The first difference is related to the upper bound on the conditional entropy

H(X̃|Y) in (4.1) where X̃ is the modulo-2 sum of some r bits of the transmitted

86

codeword X given the channel output Y. Instead of taking the most trivial

upper bound that is equal to 1, as was done in [8, Appendix I], a simple upper

bound on the conditional entropy is derived; this bound depends on the parity-

check degree r and the channel capacity C (see Proposition 1).

• The second difference is minor, but it proves to be helpful for tightening the

large-deviation inequality for LDPC code ensembles that are not right-regular

(i.e., the case where the degrees of the parity-check nodes are not fixed to a

certain value). Instead of upper bounding the term r+1 on the right-hand side

of (4.1) with dmax
c + 1, it is suggested to leave it as is since Azuma’s inequality

applies to the case where the bounded differences of the martingale sequence

are not fixed (see Theorem 11), and since the number of the parity-check nodes

of degree r is equal to n(1− Rd)Γr. The effect of this simple modification will

be shown in Example 2.

The following upper bound is related to the first item above:

Proposition 1 Let G be a bipartite graph which corresponds to a binary linear

block code whose transmission takes place over an MBIOS channel. Let X and Y

designate the transmitted codeword and received sequence at the channel output. Let

X̃ = Xi1 ⊕ . . .⊕Xir be a parity-bit of some r code bits of X. Then, the conditional

entropy of X̃ given Y satisfies

H(X̃|Y) ≤ h2

(
1− C

r
2

2

)
. (4.3)

Further, for a binary symmetric channel (BSC) or a binary erasure channel (BEC),

this bound can be improved to

h2

(
1−

[
1− 2h−1

2 (1− C)
]r

2

)
(4.4)

and

1− Cr (4.5)

respectively, where h−1
2 in (4.4) designates the inverse of the binary entropy function

on base 2.

87

Note that if the MBIOS channel is perfect (i.e., its capacity is C = 1 bit per

channel use) then (4.3) holds with equality (where both sides of (4.3) are zero),

whereas the trivial upper bound is 1.

Proof: Let us upper bound the conditional entropy H(X̃
∣∣Y) with H(X̃

∣∣Yi1 , . . . , Yir),

where the latter conditioning refers to the intrinsic information for the bitsXi1 , . . . Xir

which are used to calculate the parity-bit X̃. Then, from [15, Eq. (17) and Ap-

pendix I], the conditional entropy of the bit X̃ given the n-length received sequence

Y satisfies the inequality

H(X̃
∣∣Y) ≤ 1− 1

2 ln 2

∞∑
p=1

(gp)
r

p(2p− 1)
(4.6)

where (see [15, Eq. (19)])

gp ,
∫ ∞

0

a(l)(1 + e−l) tanh2p

(
l

2

)
dl, ∀ p ∈ N (4.7)

and a(·) denotes the symmetric pdf of the log-likelihood ratio at the output of the

MBIOS channel, given that the channel input is equal to zero. From [15, Lemmas 4

and 5], it follows that

gp ≥ Cp, ∀ p ∈ N.

Substituting this inequality in (4.6) gives that

H(X̃
∣∣Y) ≤ 1− 1

2 ln 2

∞∑
p=1

Cpr

p(2p− 1)

= h2

(
1− C

r
2

2

)
(4.8)

where the last transition follows from the power series expansion of the binary entropy

function where

h2(x) = 1− 1

2 ln 2

∞∑
p=1

(1− 2x)2p

p(2p− 1)
, 0 ≤ x ≤ 1. (4.9)

The tightened bound on the conditional entropy for the BSC is obtained from

(4.6) and the equality

gp =
(
1− 2h−1

2 (1− C)
)2p

, ∀ p ∈ N

88

which holds for the BSC (see [15, Eq. (97)]). This replaces C on the right-hand side

of (4.8) with
(
1− 2h−1

2 (1− C)
)2
, thus leading to the tightened bound in (4.4).

The tightened result for the BEC holds since from (4.7)

gp = C, ∀ p ∈ N

(see [15, Appendix II]), and a substitution of this equality in (4.6) gives (4.4) (note

that
∑∞

p=1
1

p(2p−1)
= 2 ln 2). This completes the proof of Proposition 1.

From Proposition 1 and (4.1)

|Zt+1 − Zt| ≤ (r + 1)h2

(
1− C

r
2

2

)
(4.10)

with the corresponding two improvements for the BSC and BEC (where the second

term on the right-hand side of (4.10) is replaced by (4.4) and (4.5), respectively).

This improves the loosened bound (dmax
c + 1) in [8, Appendix I].

From (4.10) and Theorem 11, we obtain the following tightened version of the

large-deviation inequality in Theorem 14.

Theorem 15 [A first tightened large-deviation inequality for the conditional en-

tropy] Let C be chosen uniformly at random from the ensemble LDPC(n, λ, ρ). As-

sume that the transmission of the code C takes place over an MBIOS channel. Let

H(X|Y) designate the conditional entropy of the transmitted codeword X given the

received sequence Y at the channel output. Then

P(|H(X|Y)− ELDPC(n,λ,ρ)[H(X|Y)]| ≥ n ξ) ≤ 2 exp(−nBξ2)

for every ξ > 0, and

B , 1

2(1−Rd)
∑dmax

c
i=1 (i+ 1)2Γi

[
h2

(
1−C

i
2

2

)]2 (4.11)

where dmax
c is the maximal check-node degree, Rd is the design rate of the ensemble,

and C is the channel capacity (in bits per channel use).

For the BSC and BEC, the parameter B can be improved (increased) to

B , 1

2(1−Rd)
∑dmax

c
i=1 (i+ 1)2Γi

[
h2

(
1−[1−2h−1

2 (1−C)]i

2

)]2
89

and

B , 1

2(1−Rd)
∑dmax

c
i=1 (i+ 1)2Γi (1− Ci)2

(4.12)

respectively

Remark 15 From (4.11), Theorem 15 indeed yields a stronger large-deviation in-

equality than Theorem 14.

Remark 16 In the limit where C → 1 bit per channel use, it follows from (4.11)

that if dmax
c < ∞ then B → ∞. This is in contrast to the value of B in Theorem 14

which does not depend on the channel capacity and is finite. Note that B should be

indeed infinity for a perfect channel, and therefore Theorem 15 is tight in this case.

In the case where dmax
c is not finite, we prove the following:

Lemma 5 If dmax
c = ∞ and ρ′(1) < ∞ then B → ∞ in the limit where C → 1.

Proof: See Appendix B.

This is in contrast to the value of B in Theorem 14 which vanishes when dmax
c = ∞,

and therefore Theorem 14 is not informative in this case (see Example 2).

Example 1 [Comparison of Theorems 14 and 15 for right-regular LDPC code ensem-

bles] In the following, we exemplify the improvement in the tightness of Theorem 15

for right-regular LDPC code ensembles. Consider the case where the communications

takes place over a binary-input additive white Gaussian noise channel (BIAWGNC)

or a BEC. Let us consider the (2, 20) regular LDPC code ensemble whose design rate

is equal to 0.900 bits per channel use. For a BEC, the threshold of the channel bit

erasure probability under belief-propagation (BP) decoding is given by

pBP = inf
x∈(0,1]

x

1− (1− x)19
= 0.0531

which corresponds to a channel capacity of C = 0.9469 bits per channel use. For the

BIAWGNC, the threshold under BP decoding is equal to σBP = 0.4156590. From

[49, Example 4.38] which expresses the capacity of the BIAWGNC in terms of the

standard deviation σ of the Gaussian noise, the minimum capacity of a BIAWGNC

over which it is possible to communicate with vanishing bit error probability under

90

BP decoding is C = 0.9685 bits per channel use. Accordingly, let us assume that for

reliable communications on both channels, the capacity of the BEC and BIAWGNC

is set to 0.98 bits per channel use.

Since the considered code ensembles is right-regular (e.g., the parity-check degree

is fixed to dc = 20), then B in Theorem 15 is improved by a factor of

1[
h2

(
1−C

dc
2

2

)]2 = 5.134.

This implies that the inequality in Theorem 15 is satisfied with a block length that

is 5.134 times shorter than the block length which corresponds to Theorem 14. For

the BEC, the result is improved by a factor of

1(
1− Cdc

)2 = 9.051

due to the tightened value of B in (4.12) as compared to Theorem 14.

Example 2 [Comparison of Theorems 14 and 15 for a heavy-tail Poisson distribution

(Tornado codes)] In the following, we compare Theorems 14 and 15 for Tornado LDPC

code ensembles. This capacity-achieving sequence for the BEC refers to the heavy-

tail Poisson distribution, and it was introduced in [6], [28, Section IV] (see also [49,

Problem 3.20]). We rely in the following on the analysis in [15, Appendix VI].

Suppose that we wish to design Tornado code ensembles that achieve a fraction

1−ε of the capacity of a BEC under iterative message-passing decoding (where ε can

be set arbitrarily small). Let p designate the bit erasure probability of the channel.

The parity-check degree is Poisson distributed, and therefore the maximal degree of

the parity-check nodes is infinity. Hence, B = 0 according to Theorem 14, and this

theorem therefore is useless for the considered code ensemble. On the other hand,

91

from Theorem 15

∑
i

(i+ 1)2Γi

[
h2

(
1− C

i
2

2

)]2
(a)

≤
∑
i

(i+ 1)2Γi

(b)
=

∑
i ρi(i+ 2)∫ 1

0
ρ(x) dx

+ 1

(c)
= (ρ′(1) + 3)davgc + 1

(d)
=

(
λ′(0)ρ′(1)

λ2

+ 3

)
davgc + 1

(e)

≤
(

1

pλ2

+ 3

)
davgc + 1

(f)
= O

(
log2

(1
ε

))
where inequality (a) holds since the binary entropy function on base 2 is bounded

between zero and one, equality (b) holds since

Γi =
ρi
i∫ 1

0
ρ(x) dx

where Γi and ρi denote the fraction of parity-check nodes and the fraction of edges

that are connected to parity-check nodes of degree i respectively (and also since∑
i Γi = 1), equality (c) holds since

davgc =
1∫ 1

0
ρ(x) dx

where davgc denotes the average parity-check node degree, equality (d) holds since

λ′(0) = λ2, inequality (e) is due to the stability condition for the BEC (where

pλ′(0)ρ′(1) < 1 is a necessary condition for reliable communication on the BEC under

BP decoding), and finally equality (f) follows from the analysis in [15, Appendix VI]

(an upper bound on λ2 is derived in [15, Eq. (120)], and the average parity-check

node degree scales like log 1
ε
). Hence, from the above chain of inequalities and (4.11),

it follows that for a small gap to capacity, the parameter B in Theorem 15 scales (at

92

least) like

O

(
1

log2
(
1
ε

)) .

Theorem 15 is therefore useful for the large-deviation analysis of this LDPC code

ensemble. As shown above, the parameter B in (4.11) tends to zero rather slowly as

we let the fractional gap ε tend to zero (which therefore demonstrates a rather fast

concentration in Theorem 15).

Example 3 This example forms a direct continuation of Example 1 for the (n, dv, dc)

regular LDPC code ensembles where dv = 2 and dc = 20. With the settings in this

example, Theorem 14 gives that

P(|H(X|Y)− ELDPC(n,λ,ρ)[H(X|Y)]| ≥ n ξ)

≤ 2 exp(−0.0113nξ2) (4.13)

for every ξ > 0. As was mentioned already in Example 1, the exponential inequalities

in Theorem 15 achieve an improvement in the exponent of Theorem 14 by factors 5.134

and 9.051 for the BIAWGNC and BEC, respectively. One therefore obtains via the

inequalities in Theorem 15 that for every ξ > 0

P(|H(X|Y)− ELDPC(n,λ,ρ)[H(X|Y)]| ≥ n ξ)

≤

 2 exp(−0.0580nξ2) BIAWGNC

2 exp(−0.1023nξ2), BEC
. (4.14)

4.5 Concentration for channels with ISI

Concentration analysis on the number of erroneous variable-to-check node messages

for random ensembles of LDPC codes was introduced in [29] and [48] for memoryless

channels. It was shown that the performance of an individual code from the ensem-

ble concentrates around the expected (average) value over this ensemble when the

block length of the code increases. Furthermore, the average behavior converges to

the behavior of the cycle-free case. These results were later generalized in [3] for the

case of channels with memory (i.e., for ISI channels), however no explicit expression

for the concentration rate was provided. In this section, we revisit the proofs of [3,

93

Theorems 1 and 2] for the case of regular LDPC code ensembles in order to derive

an explicit expression for the exponential rate that is related to the concentration in-

equality. It is then shown that particularizing the expression for memoryless channels

provides a tightened concentration inequality as compared to [29] and [48].

4.5.1 The ISI Channel and its message-passing decoding

In the following, we briefly describe the ISI channel and the graph used for its message-

passing decoding. For a detailed description, the reader is referred to [3]. Consider

a binary discrete-time ISI channel with a finite memory length, to be denoted by I.

The channel’s output yt at time t ∈ Z is given by the equality

yt =
I∑

i=0

hixt−i + nt.

Where xt ∈ {+1,−1} is the channel’s input, hi is the channel’s response and nt ∼
N(0, σ2) is an i.i.d. AWGN noise sequence. The information block of length k is coded

using a regular (n, dv, dc) LDPC code, and the resulting n coded bits are converted

to xt ∈ {+1,−1} before transmission over the channel. For decoding, we consider

the windowed version of the ”sum-product” algorithm when applied to ISI channels

(see details in [3] and [20]). As in the memoryless case, this is a message passing

algorithm. The variable-to-check and check-to-variable messages are computed as in

the min-sum algorithm for the memoryless case. The difference is that a variable

node’s message from the trellis nodes is not only a function of the the channel output

that corresponds to the considered symbol but also a function of 2W neighboring

channel outputs and 2W neighboring variables nodes as illustrated in Fig. 4.1.

4.5.2 Concentration results for channels with ISI

It is proved in this sub-section that for a large n, a neighborhood of depth ℓ of a

variable-to-check node message is tree-like with high probability. Using Azuma’s in-

equality and the later result, it is shown that for most graphs and channel realizations,

if x is the transmitted codeword, then the probability of a variable-to-check message

being erroneous after ℓ rounds of message-passing decoding is highly concentrated

around its expected value. This expected value is shown to converge to the value

94

Figure 4.1: Message flow neighborhood of depth 1. The round, cubic, triangle nodes
denote the variable, check and trellis nodes respectively. In this figure (I,W, dv, dc) =
(1, 1, 2, 3).

95

of p(ℓ)(x) which corresponds to the cycle-free case. Also, we prove that if the trans-

mitted sequence is i.u.d., then the probability highly concentrated around the value

p
(ℓ)
i.u.d. ≡ E[p(ℓ)(x)].
In the following theorems, we consider an ISI channel and windowed message-

passing decoding algorithm, when the code graph is chosen uniformly at random

from the ensemble of the graphs with variable and check node degree dv and dc

respectively. Denote N (ℓ)
e⃗ as the neighborhood of depth ℓ of an edge e⃗ = (v, c)

between a variable-to-check node. Let N
(ℓ)
c , N

(ℓ)
v and N

(ℓ)
e denote the total number of

check nodes, variable nodes and code related edges (variable-to-check node or check-

to-variable node edges) respectively in this neighborhood. Similarly denote N
(ℓ)
Y as

the number of variable-to-check node messages in the directed neighborhood of depth

ℓ of a received value of the channel.

Theorem 16 [Probability of a neighborhood of depth ℓ of a variable-to-

check node message to be tree-like for channels with ISI]

Define P
(ℓ)

t
≡ Pr

{
N (ℓ)

e⃗ not a tree
}

as the probability that N (ℓ)
e⃗ is not tree-like.

Then, there exists a positive constant

γ(dv, dc, I,W, ℓ) = N (ℓ)
v

2
+

dc
dv

N (ℓ)
v

2
(4.15)

such that

P
(ℓ)

t
≤ γ

n
.

Proof: This proof follows from the proof in [48] and extends it to the case of channels

with ISI. Consider a neighborhood N (ℓ)
e⃗ of fixed depth ℓ . Note that at each level the

graph expands by factor α ≡ (dv − 1 + 2Wdv)(dc − 1), therefore there are in total

N (ℓ)
v = 1 + [(dv − 1)(dc − 1) + 2W (1 + dv(dc − 1))]

ℓ−1∑
i=0

αi

variable nodes and

N (ℓ)
c = 1 + (dv − 1 + 2Wdv)

ℓ−1∑
i=0

αi

check nodes in this neighborhood.

96

In order to lower bound P
(ℓ)

t
we can upper bound P

(ℓ)
t = 1−P

(ℓ)

t
. This is done by

factorizing P
(ℓ)
t as

P
(ℓ)
t = Pr

{
N (0)

e⃗ is tree
} ℓ−1∏

ℓ∗=0

Pr
{
N (ℓ∗+1)

e⃗ is tree|N (ℓ∗)
e⃗ is tree

}
(4.16)

and bounding each factor. For ℓ∗ = 0 we have a single edge which is a tree, therefore

Pr
{
N (0)

e⃗ is tree
}

= 1. To bound Pr
{
N (ℓ∗+1)

e⃗ is tree|N (ℓ∗)
e⃗ is tree

}
we assume that

N (ℓ∗)
e⃗ is tree-like and reveal the code related edges (variable-to-check node or vice

versa, as opposed to the channel related edges which are predetermined) one at a

time. If in this process (of revealing the ℓ∗+1-th level of the tree) no loops are created

then N (ℓ∗+1)
e⃗ is also a tree. We start by revealing the leaves of a variable node . As

opposed to the case with no ISI, where each variable node has only dv−1 direct paths

to check nodes from the next level, here also 2Wdv indirect paths through trellis nodes

exist (i.e, variable-trellis-variable-check). Since the edges connected to a trellis node

are predetermined, then an indirect path requires the revelation of a single variable-

to-check node edge. Assume that k additional edges have been revealed at this stage

without creating a loop. The next revealed edge is chosen among (mdc − k −N
(ℓ∗)
c)

edges and it does not create a loop if it is connected to one of the (m − k − N
(ℓ∗)
c)

un-explored check nodes. Since each un-explored check node has dc edges, then the

probability for not creating a loop is given by (m−k−N
(ℓ∗)
c)dc

mdc−k−N
(ℓ∗)
c

. For large n we have

(m− k −N
(ℓ∗)
c)dc

mdc − k −N
(ℓ∗)
c

=
(N

(ℓ∗)
c + k)(dc − 1)

mdc − k −N
(ℓ∗)
c

(4.17)

≥ 1− N
(ℓ)
c

m
.

Since we have N
(ℓ∗+1)
c − N

(ℓ∗)
c edges to reveal (one for each check node), then the

probability that revealing all the leaves does not create a loop, given N (ℓ∗)
e⃗ is tree-like

is lower bounded by
(
1− N

(ℓ)
c

m

)N(ℓ∗+1)
c −N

(ℓ∗)
c

. Next, we reveal the outgoing edges of

the check node leaves one at a time (here only dc direct paths exist, as in the case

without ISI). Assuming k variable nodes have been revealed without creating a loop,

then the probability that the next revealed edge does no create a loop is (n−k−N
(ℓ∗)
v)dv

ndv−k−N
(ℓ∗)
v

.

97

For large n we have

(n− k −N
(ℓ∗)
v)dv

ndv − k −N
(ℓ∗)
v

=
(N

(ℓ∗)
v + k)(dv − 1)

ndv − k −N
(ℓ∗)
c

(4.18)

≥ 1− N
(ℓ)
v

n
.

Since we have N
(ℓ∗+1)
v −N

(ℓ∗)
v edges to reveal (one for each variable node), then the

probability that revealing all the leaves does not create loop, given the neighborhood

is tree-like so far is lower bounded by
(
1− N

(ℓ)
v

n

)N(ℓ∗+1)
v −N

(ℓ∗)
v

. Combining (4.16),

(4.17), (4.18) and P
(ℓ)
t = 1− P

(ℓ)

t
we have

P
(ℓ)

t
≤ 1−

(
1− N

(ℓ)
v

n

)N
(ℓ)
v
(
1− N

(ℓ)
c

m

)N
(ℓ)
c

.

Thus, for n sufficiently large

P
(ℓ)

t
≤

N
(ℓ)
v

2
+ dc

dv
N

(ℓ)
c

2

n
≡ γ

n

Remark 17 We note that if we the degenerate the expression for γ in (4.15) by

setting I = W = 0, we get the exact same expression given in [48] for channels

without memory.

Theorem 17 [Concentration of the number of erroneous variable-to-check

node messages for channels with ISI]

Let x be the transmitted codeword. Let Z(ℓ)(x) be the number of erroneous

variable-to-check node messages after ℓ rounds of the windowed message-passing de-

coding algorithm when the code graph is chosen uniformly at random from the en-

semble of the graphs with variable and check node degree dv and dc respectively.

Let p(ℓ)(x) be the expected fraction of incorrect messages passed along an edge with

a tree-like directed neighborhood of depth ℓ. Then, there exist positive constants

β(dv, dc, I,W, ℓ) = d2v

8
(
16dv(N

(ℓ)
e)2+(N

(ℓ)
Y)2

) and γ(dv, dc, I,W, ℓ) = N
(ℓ)
v

2
+ dc

dv
N

(ℓ)
c

2
such

that

[Concentration around expectation] For any ϵ > 0 we have

Pr

{∣∣∣∣Z(ℓ)(x)

ndv
− E[Z(ℓ)(x)]

ndv

∣∣∣∣ > ϵ/2

}
≤ 2e−βϵ2n (4.19)

98

[Convergence to cycle-free case] For any ϵ > 0 and n > 2γ
ϵ
we have∣∣∣∣E[Z(ℓ)(x)]

ndv
− p(ℓ)(x)

∣∣∣∣ < ϵ/2 (4.20)

[Concentration around cycle-free case] For any ϵ > 0 and n > 2γ
ϵ
we have

Pr

{∣∣∣∣Z(ℓ)(x)

ndv
− p(ℓ)(x)

∣∣∣∣ > ϵ

}
≤ 2e−βϵ2n (4.21)

Proof: First note that the following inequality holds

Pr

{∣∣∣∣Z(ℓ)(x)

ndv
− p(ℓ)(x)

∣∣∣∣ > ϵ

}
≤ Pr

{∣∣∣∣Z(ℓ)(x)

ndv
− E[Z(ℓ)(x)]

ndv

∣∣∣∣ > ϵ/2

}
(4.22)

+ Pr

{∣∣∣∣E[Z(ℓ)(x)]

ndv
− p(ℓ)(x)

∣∣∣∣ > ϵ/2

}
.

If inequality (4.20) holds, then Pr
{∣∣∣Z(ℓ)(x)

ndv
− p(ℓ)(x)

∣∣∣ > ϵ/2
}

= 0, therefore us-

ing (4.22) we deduce that (4.21) follows from (4.19) and (4.20). We start by prov-

ing (4.19). For a deterministic sequence x, the random variable Z(ℓ)(x) denotes the

number of incorrect variable-to-check node messages among all ndv variable-to-check

node messages passed in the ℓth iteration for a particular graph G and decoder’s input

y. Let us form a Doob’s martingale by first exposing the ndv edges of the graph one

by one and then exposing the n received values yi one by one. For i = 0, ...n(dv + 1),

define the RV Z̃i = E[Z(ℓ)(x)|a1, ...ai]. Where the sequence a is the sequence of

the ndv variable-to-check node edges of the graph followed by the sequence of the

n received values. Note that it is a martingale sequence where Z̃0 = E[Z(ℓ)(x)] and

Z̃n(dv+1) = Z(ℓ)(x). We can use Azuma’s inequality if we can bound the sequence of

differences |Z̃i+1 − Z̃i| ≤ di.

We now consider the effect of exposing an edge of the graph. Consider two graphs

G and G̃ whose edges are identical except for an exchange of the endpoint of two

edges. A variable-to-check message is affected by this change if one (or both) of the

edges is in its directed neighborhood of depth ℓ.

Consider a neighborhood of depth ℓ of a variable-to-check node message. Since at

each level the graph expands by factor α ≡ (dv − 1 + 2Wdv)(dc − 1) then there are,

99

in total

N (ℓ)
e = 1 + dc(dv − 1 + 2Wdv)

ℓ−1∑
i=0

αi

edges related to the code structure (variable-to-check node edges or vice versa) in

the neighborhood N e⃗
(ℓ). By symmetry the two edges can affect at most 4N

(ℓ)
e neigh-

borhoods (Alternatively we could directly sum the number of variable-to-check node

edges in a neighborhood of a variable-to-check node edge and in a neighborhood of a

check-to-variable node edge). The change in the number of incorrect variable-to-check

node messages is bounded by the case that each change in the neighborhood of a mes-

sage introduces an error. In a similar manner, when we reveal a received value, then

variable-to-check node messages whose directed neighborhood include that channel

input can be affected. We consider a neighborhood of depth ℓ of a received value. By

counting, it can be shown that this neighborhood includes

N
(ℓ)
Y = dv(2W + 1)

ℓ−1∑
i=0

αi

variable-to-check node edges. Therefore a change in a received value can affect up to

N
(ℓ)
Y variable-to-check node messages. We conclude that di ≤ 4N

(ℓ)
e for the first dvn

exposures and di ≤ N
(ℓ)
Y for the last n exposures. By applying Azuma’s inequality we

get

Pr

{∣∣∣∣Z(ℓ)(x)

ndv
− E[Z(ℓ)(x)]

ndv

∣∣∣∣ > ϵ/2

}
≤ e

− (ndvϵ/2)
2

2[ndv(16N
(ℓ)
e)

2
+n(N

(ℓ)
Y

)
2
]

By comparing the result to (4.19), we get an expression for β

1

β
= 8

(
16dv(N

(ℓ)
e)2 + (N

(ℓ)
Y)2

)
/d2v

Next, we prove inequality (4.20), again it is adopted from [3] and [48]. Let

E[Z(ℓ)
i (x)], i ∈ [ndv] be the expected number of incorrect messages passed along edge

−→e i, where the average is over all graphs and all received values. Then by linearity of

expectation and by symmetry

E[Z(ℓ)(x)] =
∑

i∈[ndv]

E[Z(ℓ)
i (x)] = ndvE[Z(ℓ)

1 (x)]. (4.23)

100

Furthermore

E[Z(ℓ)
1 (x)] = E[Z(ℓ)

1 (x)|N (ℓ)
e⃗ is tree]P

(ℓ)
t + E[Z(ℓ)

1 (x)|N (ℓ)
e⃗ not a tree]P

(ℓ)

t
.

As shown in Theorem 16, P
(ℓ)

t
≤ γ

n
where γ is a positive constant independent of

n. Furthermore, we have E[Z(ℓ)
1 (x)|neighborhood is tree] = p(ℓ)(x) and by definition

0 ≤ E[Z(ℓ)
1 (x)|neighborhood not a tree] ≤ 1. Hence

E[Z(ℓ)
1 (x)] ≤ (1− P

(ℓ)

t
)p(ℓ)(x) + P

(ℓ)

t
≤ p(ℓ)(x) + P

(ℓ)

t

E[Z(ℓ)
1 (x)] ≥ (1− P

(ℓ)

t
)p(ℓ)(x) ≥ p(ℓ)(x)− P

(ℓ)

t
. (4.24)

Using (4.23), (4.24) and P
(ℓ)

t
≤ γ

n
we get that∣∣∣∣E[Z(ℓ)(x)]

ndv
− p(ℓ)(x)

∣∣∣∣ ≤ P
(ℓ)

t
≤ γ

n
. (4.25)

If we assume that n > 2γ
ϵ
then from (4.25), it follows that (4.20) holds. Since (4.19)

and (4.20) hold then (4.21) is proved.

Discussion 1 The concentration result proved above is a generalization of the re-

sults given in [48] for the memoryless case. One can degenerate the expression
1
β
= 8

(
16dv(N

(ℓ)
e)2 + (N

(ℓ)
Y)2

)
/d2v to the memoryless case by setting W = 0 and

I = 0. Since we used exact expressions for N
(ℓ)
e and N

(ℓ)
Y in the proof, we can expect

a tighter bound as compared to the earlier result 1
βold

= 544d2ℓ−1
v d2ℓc given in [48].

For example for (dv, dc, ℓ) = (3, 4, 10) we get an improvement by a factor of about 1

million. However even with this improved expression, the required size of n according

to our proof can be absurdly large. This is because the proof is very pessimistic. We

assume that any change in an edge or the decoder’s input will introduce an error in

every message it affects. This is especially pessimistic if large ℓ is considered, since

as ℓ grows each message is a function of many edges and received values (since the

neighborhood grows with ℓ). However in practice, the probability that changing a

single edge or input will change the message is close to zero for long codes.

Theorem 18 Let x be a random sequence of i.u.d. binary variables x1, x2....xn. Let

Z(ℓ)(x) be the number of erroneous variable-to-check messages after ℓ rounds of the

101

windowed message-passing decoding algorithm when the code graph is chosen uni-

formly at random from the ensemble of the graphs with variable and check node

degree dv and dc respectively. Let p
(ℓ)
i.u.d. ≡ E[p(ℓ)(x)] be the expected fraction of in-

correct messages passed along an edge with a tree-like directed neighborhood of depth

ℓ. Then, there exist positive constants β′ = β(dv, dc, I,W, ℓ) and γ = γ(dv, dc, I,W, ℓ)

such that for any ϵ > 0 and n > 2γ
ϵ
we have

Pr

{∣∣∣∣Z(ℓ)(x)

ndv
− p

(ℓ)
i.u.d.

∣∣∣∣ > ϵ

}
≤ 4e−β′ϵ2n. (4.26)

Furthermore, p
(ℓ)
i.u.d. is equal to the error probability when all neighborhood types are

equally probable.

Proof: The proof follows closely to the proof presented in [3]. First, note that the

following chain of inequalities hold

Pr

{∣∣∣∣Z(ℓ)(x)

ndv
− p

(ℓ)
i.u.d.

∣∣∣∣ > ϵ

}
=

2n∑
j=1

2−n Pr

{∣∣∣∣Z(ℓ)(xj)

ndv
− p

(ℓ)
i.u.d.

∣∣∣∣ > ϵ

}
(4.27)

≤
2n∑
j=1

2−n Pr

{∣∣∣∣Z(ℓ)(xj)

ndv
− p(ℓ)(xj)

∣∣∣∣ > ϵ/2

}

+
2n∑
j=1

2−n Pr
{∣∣∣p(ℓ)(xj)− p

(ℓ)
i.u.d.

∣∣∣ > ϵ/2
}

≤
2n∑
j=1

2−n · 2e−βϵ2n/4 + Pr
{∣∣∣p(ℓ)(x)− p

(ℓ)
i.u.d.

∣∣∣ > ϵ/2
}

= 2e−βϵ2n/4 + Pr
{∣∣∣p(ℓ)(x)− p

(ℓ)
i.u.d.

∣∣∣ > ϵ/2
}
.

To bound the second term in the last line we shall use Azuma’s inequality. Let

us form a Doob’s martingale by exposing the n received symbols one by one. For

t = 1, ..., n, define the RV Mt = E[p(ℓ)(x)|x1, x2, ..., xt]. Note that M0 = E[p(ℓ)(x)] =
p
(ℓ)
i.u.d. and Mn = E[p(ℓ)(x)|x1, x2, ..., xn] = p(ℓ)(x). In order to use Azuma’s inequality

we shall show that the sequence of differences is bounded |Mt+1 − Mt| ≤ dt. Since

the channel has ISI of degree I, then exposing a single channel input affects I channel

outputs (which are the received values for the decoder). A variable-to-check node

102

message is affected only if one of the affected received values are in its neighborhood.

Therefore, changing a channel input can affect at most IN
(ℓ)
Y variable-to-check node

messages among the ndv messages in the graph. Thus |Mt+1 −Mt| ≤
IN

(ℓ)
Y

ndv
, and by

using Azuma’s inequality we have

Pr
{∣∣∣p(ℓ)(x)− p

(ℓ)
i.u.d.

∣∣∣ > ϵ/2
}
≤ 2e−δϵ2n (4.28)

where δ = 1
8

(
dv

INℓ
Y

)2
. Combining (4.28), (4.28) and comparing it to (4.26) gives that

β′ = min(β, δ).

Next, we get an expression for p
(ℓ)
i.u.d. and show it is equal to the error probability

when all neighborhood types are equally probable. This part of the proof is shown

in [3], and is given for the completeness of the proof. In Fig. 4.1, a depth 1 message-

flow neighborhood is shown. The row of bits ”0101” given above the trellis section

represent the binary symbols of the codeword x corresponding to the trellis nodes

that influence the message flow. Since the channel has ISI memory of length I, there

are 2W + I + 1 binary symbols of that influence the message flow. We call this

sequence of bits a neighborhood type. For example, in Fig. 4.1 the neighborhood

type is θ = [0101]. We expand this definition to a depth ℓ neighborhood by cascading

the bits of each sub-neighborhood of depth ℓ. Since at each level, the graph expends

by factor α ≡ (dv − 1 + 2Wdv)(dc − 1) then there are exactly 2N(ℓ) possible types of

message flow neighborhoods of depth ℓ, where

N(ℓ) = (2W + I + 1)
ℓ−1∑
i=0

αi = (2W + I + 1)
αℓ − 1

α− 1
.

We can now define

π
(ℓ)
θ = Pr (tree delivers incorrect message|tree type θ)

and

P (θ|x) = Pr (tree type θ|transmitted sequence = x)

Therefore we can express p(ℓ)(x) as

p(ℓ)(x) =
2N(ℓ)∑
i=0

π
(ℓ)
θi

Pr(θi|x).

103

Next, recognize that if x is an i.u.d. sequence, all neighborhood types are equally

probable, i.e. Pr (θ|x) = 2−N(ℓ). Using this we have

E[p(ℓ)(x)] =
2n∑
j=0

2−np(ℓ)(xj)

=
2n∑
j=0

2−n

2N(ℓ)∑
i=0

π
(ℓ)
θi

Pr(θi|xj)

=
2N(ℓ)∑
j=0

π
(ℓ)
θi

2n∑
i=0

2−n Pr(θi|xj)

=
2N(ℓ)∑
i=0

π
(ℓ)
θi

Pr(θi|x)

=
2N(ℓ)∑
i=0

π
(ℓ)
θi
2−N(ℓ)

The last term is equal to the error probability when all neighborhood types are equally

probable. Since E[p(ℓ)(x)] = p
(ℓ)
i.u.d. the theorem is proved.

104

Chapter 5

Summary and Conclusions

5.1 Contribution of the Thesis and conclusions

This thesis is focused on aspects of convex optimization and concentration in coding.

In the following, we summarize the main contributions and conclusions in the thesis.

The results are organized according to the three main subjects discussed.

5.1.1 Complexity analysis of convex optimization

In chapter 2, we consider the complexity of the interior-point method (IPM) for

solving convex optimization problems. The analysis is limited to problems whose

objective function is self-concordant.

We proved tightened bounds on the number of Newton iterations required to solve

UCSCM, ECSCM and IESCM problems. The bounds where given for backtracking

line-search and for two choices of predetermined step-size t. The bound given for

backtracking line-search is 10-100 times tighter compared to previous bounds consid-

ering this line-search algorithm. The predetermined step-size was chosen to optimize

the bound on the number of Newton iterations, resulting in a further improvement

(about 5-10 times smaller scaling factor for f(x(0)) − p∗) compared to the tightened

bound given for backtracking line-search. We note that the bounds for predetermined

step-size can be used as a bound for Newton’s method with exact line-search since

the pre-determined step size is a sub-optimal choice of t.

In the derivation of the described bounds, we have also proved several important

105

lemmas and Theorems. Lemma 1 and Theorem 7 establishes a rigid theoretical proof

to the extension of the upper bound on the number of Newton iteration from un-

constrained problems to equality and inequality constrained problems. Therefore,

if a bound for an UCSCM problem is known and certain conditions are met, then

the bound can be extended to ECSCM and IESCM problems. Lemma 2 provides a

recursive bound on the Newton decrement. This lemma extends a previous bound

[45] that was valid only for a full Newton step (i.e., t = 1), to a bound with the

step-size t given as a free parameter.

Although tight compared to previous bounds, numerical results show that the

tightened bounds still give a very conservative estimate for the number of Newton

iterations. Using numerical analysis, we point out the two main reasons that keep

the improved bounds from being tight :

1. The usage a of a global bound on the Newton decrement during the damped

phase.

2. An artificial constraint on the bounded step-size caused by the fact that the

bounds used have a domain of tλ < 1, whereas in practice tλ > 1 in the

damped phase.

Furthermore, numerical results show that although the predetermined choice of t gives

a tighter bound as compared to the backtracking bound, numerically, the algorithm

is less efficient. We conclude that the predetermined choice optimizes the bound on

the number of Newton iterations but not necessarily the practical efficiency of the

solver. Thus, the optimized value of t is an artifact of the bounding method used.

5.1.2 Complexity analysis of IPM-based LP decoders

In chapter 3, we apply the interior-point method to the relaxed MLD problem. We

provide an IPM-based LP decoder similar to the decoder given in [50],[51]. Based

on the complexity bounds derived in previous chapter, the number of Newton itera-

tions for the LP decoder is bounded. Similar analysis was presented in [50], however

that analysis was valid only for row regular codes using the backtracking line-search

whereas this analysis applies to general non-regular codes with backtracking, exact or

predetermined line-search. Moreover, since tightened bounds from previous chapter

106

were used, the new bounds are much tighter compared to previous bounds. Using

the derived analytic bound, we obtain a set of optimization parameters that optimize

the derived bound. These optimized parameters provide an optimized bound that

increases much slower with respect to the code’s parameters. As an example, the

original bound scales like O(M lnM) whereas the optimized bound scales only as

O(
√
M lnM). Next, we analyze the behavior of the derived bounds as a function of

the code and channel parameters. If the optimized bound is considered, the bound

on the number of Newton iteration shows several interesting behaviors.

• The bound scales like O(
√
M lnM), where M denotes the number of inequali-

ties required to describe the polytope. The number of inequalities is a measure

of the complexity of the polytope. As the number of inequalities grow larger,

the polytope is getting more complex, better representing the code, thus better

decoding performance is maintained. This result express the trade-off between

decoding performance (represented by the number of inequalities) and the de-

coding complexity (represented by the number of Newton iterations times the

complexity per iteration).

• When considering the time complexity of the code, for general linear codes the

bound scales like O(2n), whereas for LDPC codes the time complexity is only

O(n1.5 lnn). Therefore the decoder is mainly suitable for LDPC codes.

• The complexity of the bound is exponential with respect to the check-node

degree dc. Therefore, the complexity remains low only for LDPC codes with

low check-node degree.

The last two properties suggest that the proposed LP decoder has long running times

for general linear codes with high check-node degree. On the other hand, for LDPC

codes, the bound predicts relatively low complexity, making it suitable for this family

of linear codes. For high-density codes (where dmax
c scales like O(n)), alternative

polytopes [21],[25] provide lower complexity. For these polytopes, we show that the

bound on the number of iterations scales like O(n1.5 lnn) with complexity that scales

like O(n4.5 lnn).

Finally, we compare the new tightened bound, to a previous bound given in [50].

For the particular code and channel considered, it is shown that an improvement by

107

factor 10 is achieved. However, even with this improved bound, the upper bound gives

a very conservative estimate of the number of Newton iterations that does not reflect

average case behaviors. However, if we use the optimized bound with predetermined

step-size the resulting bound is a more reasonable estimate for the number of Newton

iterations.

5.1.3 Concentration of measures in LDPC code ensembles

In chapter 4, we consider concentration phenomena of LDPC code ensembles. We

show that all except an exponentially (in the block length) small fraction of codes

perform within an arbitrary small δ from the ensemble average (where δ is a positive

number that can be chosen arbitrarily small). Therefore, assuming a sufficiently long

block length, the ensemble average forms a good indicator for the performance of

individual codes.

We provide a large-deviation analysis of the conditional entropy of an LPDC code

transmitted thorough a MBIOS channel. The derived concentration result tightens

a similar bound by Méasson et al. [8, Theorem 4]. For BSC and BEC channels

the concentration result is further improved. Compared to the previous bound, the

new bound does not only tighten the concentration result, but also expands the

concentration result for codes with dmax
c → ∞. For example, a concentration result for

a heavy-tail Poisson distribution (Tornado codes) is shown using the refined analysis.

The previous result by Méasson et al. can not be used to show concentration in this

particular case.

Next, we consider the number of erroneous variable-to-check messages for Inter-

Symbol-interference (ISI) channels. The analysis provides an explicit expression for

the exponential rate that is related to the concentration inequalities given in [3,

Theorems 1 and 2]. It is shown that particularizing these results for memoryless

channels provides tightened concentration inequalities as compared to [29] and [48].

Also shown is a bound on the probability of a neighborhood of depth ℓ of a variable-

to-check node message to be tree-like for channels with ISI. This result, for channels

with ISI, is an extension of the classical result given in [48] for memoryless channels.

108

5.2 Topics for further research

In what follows, we point out some possible directions for future research:

1. Bounds on the convergence rate of convex optimization.

The newly derived bounds on the number of Newton iterations are 10-100 times

tighter than the classical bounds. However, when compared to the numerical

results, it is clear that the bounds are still very loose (especially during the

damped phase). In the following, we suggest ideas for further tightening of the

bounds.

• Global bound for λ(n) : The improved bounds use λ(n) > η in order to

bound λ for all the iterations in the damped phase. In practice, the value

of λ decreases dramatically during the damped phase. The bound uses a

global bound on λ which is tight only at the transition from the damped

phase to the quadratic phase. Since the bound on the convergence rate

at each iteration during the damped phase is proportional to λ2, a tight

bound for λ at each iteration will dramatically tighten the bound. This

is perhaps the main reason why the bounds are not tight at the damped

phase.

• Domain of bounds : During the derivation of the bounds, we used bounds

that have a domain of λtline < 1 whereas in practice λtline > 1 in the

damped phase. This created an artificial constraint on the line-search’s

step-size tline. For example, in the first steps of the damped phase λ ≫ 1,

this implies that the step-size used in the bound must be very small

(i.e.,tline < 1/λ ≪ 1), whereas in practice a good choice of the step-size

is usually close to one. As a result the choice of the predetermined tline is

relatively far from optimal and the backtracking bound for tbk is very loose

for large values of λ. This in turn causes the bound on the convergence rate

∆f(x) > tlineαλ
2 to be very loose. If alternative bounds, without this ar-

tificial constraint are found, then much tighter bounds on the convergence

rate could be derived.

• The bounds were derived on the assumption that the objective function

is self-concordant. In practice, we are interested in a much narrow family

109

of functions. Perhaps, if we narrow our discussion only to linear objective

functions with additive logarithmic barriers, then a tightened convergence

analysis can be performed.

2. Bounds on the number of iteration required by the IPM-based LP

decoder.

• Assuming large check-node degree, the fundamental polytope chosen to

represent the code requires a large amount of inequalities for its proper de-

scription. There exist alternative polytopes that require fewer inequalities.

It is interesting to repeat the complexity analysis with a different polytope

and compare the complexity bound of alternative representations of the

code.

• As a feasible starting point for the LP decoder, we have chosen the ”neutral

word” x(0) = (1/2, 1/2, ..., 1/2). This choice is far from optimal in terms of

complexity since it does not use the information from the received word.

The algorithm can be optimized if we choose a starting point closer to the

ML word. Such a word is the received word, however it is not necessarily

feasible. If a variation on the received word which is still feasible is found,

then the initial centering step will require less iterations, thus reducing the

overall complexity of the IPM-based LP decoder.

• The IPM is only one method for LP decoding, for example in [22] the

simplex method is used for LP decoding. A possible research direction is

to perform complexity analysis on the alternative decoders and compare

the behavior of the derived bounds.

• The analysis of the IPM-decoder concentrated on the number of Newton

iterations. We note that the time complexity of the IPM-based LP decoder

depends not only on the number of Newton iterations but also on the

complexity per iteration. At each Newton iteration, we need to calculate

the inverse of the hessian matrix (i.e., ∇2Ψt(x) ∈ Rn×n). It is interesting to

analyze the complexity of calculating the inverse of the hessian matrix with

respect to the code and channel parameters. Combined with the analysis

in this thesis, it will bound the complexity of the IPM-based decoder.

110

• If in the future, tighter bounds on the number of the Newton method

are found, then they can be used in conjunction with the bounds derived

here in order to design an IPM-based decoder with search parameters

that optimize the Number of iterations of the decoder with respect to

the channel and code parameters.

• For LP decoding (with the fundamental polytope given in Definition 11), if

there exist a capacity-achieving LDPC ensemble (which is an open question

for general MBIOS channel), then we can discuss the case of decoding

with vanishing error at rate close to the capacity of the channel. For ML

decoding, it is shown in [19] that the maximal right degree (that is, the

maximal degree of the parity-check nodes) is not bounded as the gap to

capacity vanishes. It grows at least like log
(
1
ϵ

)
, where ϵ is the fractional

gap to capacity. If a similar behavior can be shown for the considered

LP decoder then the bound on the number of iterations scales like O
(

1
ϵk

)
,

where k > 0 is some positive constant (since the bound scales like O(2dc)).

This bound is similar to the conjecture regarding iterative message-passing

decoding that claims that the number of iterations scales like O
(
1
ϵ

)
(with

a proof for the BEC given in [17]).

3. Concentration of measures of LDPC code ensembles.

• The concentration result given in Theorem 17 is very loose. This is be-

cause the proof is very pessimistic. We assume that any change in an edge

or the decoder’s input will introduce an error in every message it affects.

This is especially pessimistic if large neighborhoods are considered. In

practice, the probability that changing a single edge or input will change

the message is close to zero for long codes and large neighborhoods. A

refined analysis should take into account the probability for mistakes as a

function of the neighborhood size and/or the structure of the parity-check

matrix/tanner graph of the code. Furthermore, if we apply the concentra-

tion result to irregular codes, we need to use dmax
c , dmax

v as a bound for dc

and dv respectively. A refined analysis should take into account the degree

distribution of the irregular code.

• The use of the union bound in the concentration result of M. Sipser and

111

D. A. Spielman for the graph expansion [34] seems to weaken this theorem

significantly. Perhaps, it is possible to improve the bound in this theorem

by replacing the use of the union bound with a refined analysis.

• The utilization of refined inequalities of the Azuma-Hoeffding inequality

in the context of graph-based codes.

112

Appendix A

Proof of Lemma 2

Proof : Let v = −∇2f(x)−1∇f(x), then from [45, Ex. (9.17)]

(1− tλ(x))2∇2f(x)≼∇2f(x+ tv)≼ ∇2f(x)

(1− tλ(x))2
.

We first prove (2.32) for the case where ∇2f(x) = I. Using v = −∇f(x) we get a

simplified bound for ∇2f(x+ tv)

(1− tλ(x))2I ≼ ∇2f(x+ tv) ≼ 1

(1− tλ(x))2
I. (A.1)

The function ∇f
(
x+
)
can be expressed using ∇f

(
x
)
as follows

∇f
(
x+
)

= ∇f
(
x+ tv

)
(A.2)

=

∫ t

0

∇2f (x+ t′v) vdt′ +∇f(x)

=

[
I −

∫ t

0

∇2f(x+ t′v)dt′
]
∇f(x)

= A · ∇f (x) .

where A ≡ I−
∫ t

0
∇2f (x+ t′v) dt′. Applying (A.1) on the expression for A yields the

following bound

aI ≼ A ≼ bI (A.3)

113

where

a = 1−
∫ t

0

1

(1− λt′)2
dt′ = 1− t

1− λt

b = 1−
∫ t

0

(1− λt′)
2
dt′ = 1− 1− (1− λt)3

3λ
.

Moreover, since the hessian is a symmetric matrix, then A is a symmetric matrix as

well. Using ATA = A2 and (A.3) we get a bound on ATA

(max (0, a))2 · I ≼ A2 = ATA ≼ (max (|a|, |b|))2 · I (A.4)

Using the properties above we can write λ
(
x+
)
as follows

λ
(
x+
) (a)

=

√
∇f
(
x+
)T∇2f

(
x+
)−1∇f

(
x+
)

(b)

≤ 1

1− tλ(x)

√
∇f
(
x+
)T∇f

(
x+
)

(c)
=

1

1− tλ(x)

√
∇f(x)T (ATA)∇f(x)

(d)

≤
(
max(|a|, |b|)
1− tλ(x)

)
∥∇f(x)∥2

(e)
= c(t, λ(x))λ(x).

Where (a) follows from the definition of λ, (b) follows from (∇2f (x+))
−1 ≼

1
(1−tλ(x))2

which results from (A.1) by inversion of the lower bound, (c) follows from

the expression for ∇f
(
x+
)
in terms of ∇f

(
x
)
given in (A.3), (d) follows from the

upper bound for ATA in (A.4) and (e) follows from the definition of c(t, λ) in (2.33)

and since λ(x) = ∥∇f(x)∥2 for ∇2f(x) = I.

We now generalize this result to a strictly convex s.c. function with an arbitrary

∇2f(x) ≻ 0 (i.e.,∇2f(x) ̸= I). This is done by showing that there exist a linear

transformation x̃ = Tx on f̃ (where ∇2f̃ (x̃) = I) which will result in ∇2f(x) =

T T∇2f̃ (x̃)T . Since the Newton decrement λ is invariant to linear transformation the

derivation made for f̃ (x̃) will still hold for f(x).

The function f is strictly convex, thus ∇2f(x) is symmetric with positive eigen-

values. This means it can be factored in the form ∇2f(x) = QTΛQ, where QT = Q−1

114

(Orthonormal matrix) and Λ = diag ({λi > 0}). We can further expand ∇2f(x) as

follows ∇2f(x) = QTΛQ =
(
Λ1/2Q

)T
I
(
Λ1/2Q

)
=

T≡Λ1/2Q
T T∇2f̃ (x̃)T . Thus we can

use T = Λ1/2Q as the transformation required in the previous paragraph.

115

116

Appendix B

Proof of Lemma 5

In order to prove Lemma 5, one needs to show that if ρ′(1) < ∞ then

lim
C→1

∞∑
i=1

(i+ 1)2Γi

[
h2

(
1− C

i
2

2

)]2
= 0 (B.1)

which then yields from (4.11) that B → ∞ in the limit where C → 1.

By the assumption in Lemma 5 where ρ′(1) < ∞ then
∑∞

i=1 iρi < ∞, and therefore

it follows from the Cauchy-Schwarz inequality that

∞∑
i=1

ρi
i
≥ 1∑∞

i=1 iρi
> 0.

Hence, the average degree of the parity-check nodes is finite

davgc =
1∑∞
i=1

ρi
i

< ∞.

The infinite sum
∑∞

i=1(i+ 1)2Γi converges under the above assumption since

∞∑
i=1

(i+ 1)2Γi

=
∞∑
i=1

i2Γi + 2
∞∑
i=1

iΓi +
∑
i

Γi

= davgc

(
∞∑
i=1

iρi + 2

)
+ 1 < ∞.

117

where the last equality holds since

Γi =
ρi
i∫ 1

0
ρ(x) dx

= davgc

(ρi
i

)
, ∀ i ∈ N.

The infinite series in (B.1) therefore uniformly converges for C ∈ [0, 1], hence, the

order of the limit and the infinite sum can be exchanged. Every term of the infinite

series in (B.1) converges to zero in the limit where C → 1, hence the limit in (B.1) is

zero. This completes the proof of Lemma 5.

118

References

[1] A. Barg and G. D. Forney, “Random codes: minimum distances and error exponents,”

IEEE Trans. on Information Theory, vol. 48, no. 9, pp. 2568–2573, September 2002.

[2] A. G. Dimakis and M. J.Wainwright, “Guessing facets: Polytope structure and improved

LP decoder,” in Proc. IEEE Int. Symp. Information Theory, Seattle, WA, Jul. 2006.

[3] A. Kavcić, X. Ma and M. Mitzenmacher, ”Binary intersymbol interference channels:

Gallager bounds, density evolution, and code performance bounds,”IEEE Trans. on

Information Theory, vol. 49, no. 7, pp. 1636—1652, July 2003.

[4] A. Montanari, “Tight bounds for LDPC and LDGM codes under MAP decoding,” IEEE

Trans. on Information Theory, vol. 51, no. 9, pp. 3247–3261, September 2005.

[5] A. Nemirovsky, Interior Point Polynomial Time Methods in Convex Programming, Lec-

ture Notes,2004. [Online]. Available: www2.isye.gatech.edu/~nemirovs/Lect_IPM.

pdf.

[6] A. Shokrollahi, “Capacity-achieving sequences,” IMA Volume in Mathematics and its

Applications, vol. 123, pp. 153–166, 2000.

[7] C. McDiarmid, ”Concentration,” Probabilistic Methods for Algorithmic discrete mathe-

matics, pp. 1–46, 1998.

[8] C. Méasson, A. Montanari and R. Urbanke, “Maxwell construction: The hidden bridge

between iterative and maximum apposteriori decoding,” IEEE Trans. on Information

Theory, vol. 54, pp. 5277–5307, December 2008.

[9] C. Roos, T. Terlaky, and J. Vial, Interior Point Methods for Linear Optimization, 2nd

ed. New York, springer,2006.

[10] D. Burshtein, “Iterative approximate linear programming decoding of LDPC codes with

linear complexity,” in Proc. IEEE Int. Symp. Information Theory, Toronto, Canada, Jul.

2008.

119

[11] D. Burshtein, “Iterative Approximate Linear Programming Decoding of LDPC Codes

with Linear Complexity,” IEEE Transactions on Information Theory, vol. 55, no. 11,

pp. 4835-4859, November 2009

[12] D. Mackay, ”Good error corecting codes based on vey sparse matrices”, IEEE Trans.

on Information Theory, vol. 45, no. 2, pp. 399–431, 1991.

[13] D. P. Dubashi and A. Panconesi, Concentration of Measure for the Analysis of Ran-

domized Algorithms, Cambridge University Press, 2009.

[14] F. Chung and L. Lu, “Concentration inequalities and martingale inequalities: a survey,”

Internet Mathematics, vol. 3, no. 1, pp. 79–127, March 2006.

[15] I. Sason, “On universal properties of capacity-approaching LDPC code ensembles,”

IEEE Trans. on Information Theory, vol. 55, no. 7, pp. 2956–2990, July 2009.

[16] I. Sason, “On the fundamental system of cycles in the bipartite graphs of LDPC code

ensembles,” Proceedings 2009 IEEE International Symposium on Information Theory

(ISIT 2009), pp. 75–79, Seoul, Korea, June 28–July 3, 2009.

[17] I. Sason and G. Wiechman, “Bounds on the number of iterations for turbo-like ensembles

over the binary erasure channel,” IEEE Trans. on Information Theory, vol. 55, no. 6,

pp. 2602 - 2617, June 2009.

[18] I. Sason and R. Eshel “On concentration of measures for LDPC code ensembles,”

Proceedings 2011 IEEE International Symposium on Information Theory (ISIT 2011),

pp. 1268–1272, St. Petersburg, Russia, July 31–Aug 5, 2011

[19] I. Sason and R. Urbanke, “Parity-check density versus performance of binary linear block

codes over memoryless symmetric channels,” IEEE Trans. on Information Theory, vol.

49, no. 7, pp. 1611 - 1635, July 2003.

[20] J. Douillard, M. Jezequel, C. Berrou, A. Picart, P. Didier, and A. Glavieux, ”Iterative

correction of intersymbol interference: Turbo-equalization,” Europ. Trans. Commun.,

vol. 6, pp. 507—511, Sept. 1995.

[21] J. Feldman, ”decoding Error-Correcting Codes via Linear Programming”, Ph.D, Mass.

Inst. Technology, Cambridge, 2003.

[22] J. Feldman, M.J. Wainwright, and D.R. Karger, ”Using linear programming to decode

binary linear codes”, IEEE Trans. on Information Theory, vol. 51, no. 3, pp. 954–972,

Mar. 2005.

120

[23] J. S. Rosenthal, A First look at Rigorous Probability Theory, World Scientific Publishes,

second edition, 2006.

[24] K. Azuma, “Weighted sums of certain dependent random variables,” Tohoku Mathe-

matical Journal, vol. 19, pp. 357–367, 1967.

[25] K. Yang, X. Wang, and J. Feldman, “A new linear programming approach to decoding

linear block codes,” IEEE Trans. Inf. Theory, vol. 54, no. 3, pp. 1061–1072, Mar. 2008.

[26] M. Breiling, “A logarithmic upper bound on the minimum distance of turbo codes,”

IEEE Trans. on Information Theory, vol. 50, pp. 1692–1710, August 2004.

[27] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Improved low

density parity check codes using irregular graphs and belief propagation” Proceedings

1998 IEEE International Symposium on Information Theory, Cambridge, MA, Aug.

1998, p. 117.

[28] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi and D. A. Spielman, “Efficient erasure-

correcting codes,” IEEE Trans. on Information Theory, vol. 47, no. 2, pp. 569–584,

February 2001.

[29] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi and D. A. Spielman, “Improved low-

density parity-check codes using irregular graphs,” IEEE Trans. on Information Theory,

vol. 47, no. 2, pp. 585–598, February 2001.

[30] M. H. Taghavi and P. H. Siegel, “Adaptive linear programming decoding,” in Proc.

IEEE Int. Symp. Information Theory, Seattle, WA, Jul. 2006.

[31] M. H. Taghavi and P. H. Siegel, “Adaptive methods for linear programming decoding,”

IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5396–5410, Dec. 2008.

[32] M. Ledoux, The Concentration of Measure Phenomenon, Mathematical Surveys and

Monographs (AMS), vol. 89, 2001.

[33] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms

and Probabilistic Analysis, Cambridge University Press, Cambridge, MA, USA, 2005.

[34] M. Sipser and D. Spielman, ”Expander codes”, IEEE Trans. on Information Theory,

vol. 42, no. 6, pp. 1710–1722, 1996.

[35] M. Talagrand, ”Concentration of measure and isoperimteric inequalities in product

spaces,” Publications Mathématiques de l’I.H.E.S, vol. 81, pp. 93–205, 1995.

[36] N. Alon and J. H. Spencer, The Probabilistic Method, Wiley Series in Discrete Mathe-

matics and Optimization, Third Edition, 2008.

121

[37] N. K. Karmarkar, A new polynomial-time algorithm for linear programming , Combina-

torica 4 (1984), 373–395.

[38] N. Wiberg, ”Codes and Decoding on General Graphs”, PhD thesis, Linkoping Univer-

sity, Sweden, 1996.

[39] P. Oswald and A. Shokrollahi, “Capacity-achieving sequences for the erasure channel,”

IEEE Trans. on Information Theory, vol. 48, no. 12, pp. 3017–3028, December 2002.

[40] P. O. Vontobel, “Interior-Point Algorithms for Linear-Programming Decoding,”

in Information Theory and Applications Workshop , 2008, pp. 433–437, DOI

10.1109/ITA.2008.4601085

[41] P. O. Vontobel and R. Koetter, “Towards low-complexity linear-programming decod-

ing,” in Proc. 4th Int. Symp. Turbo Codes and Related Topics, Munich, Germany, Apr.

2006.

[42] R. Gallager. ”Low-desity parity-check codes” IRE Trans. Information Theory,Vol 8,

pp. 21-28, Jan, 1962.

[43] R. McEliece, D. Mackay and J. Cheng, ”Turbo decoding as an instance of pearl’s belief

propagation algorithm”, IEEE Journal on Selected Areas in Communictions, vol. 16,

no. 2, pp. 140–152, 1998.

[44] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press,

Cambridge, MA, USA, 1995.

[45] S. Boyd and L. Vanderberghe, Convex Optimization, Cambridge Press, 2004. [Online].

Available: http://www.stanford.edu/~boyd/cvxbook/.

[46] S. Y. Chung, G. D. Forney, T. Richardson, and R. Urbanke, ” On the design of low-

desity parity check codes within 0.0045dB of the Shannon limit”, IEEE Communications

Letters, vol. 5, no. 2, pp. 58–60, February 2001.

[47] T. Etzion, A. Trachtenberg and A. Vardy, “Which codes have cycle-free Tanner

graphs?,” IEEE Trans. on Information Theory, vol. 45, no. 6, pp. 2173–2181, September

1999.

[48] T. Richardson and R. Urbanke, “The capacity of low-density parity check codes under

message-passing decoding,” IEEE Trans. on Information Theory, vol. 47, pp. 599–618,

February 2001.

[49] T. Richardson and R. Urbanke, Modern Coding Theory, Cambridge University Press,

2008.

122

[50] T. Wadayama, ”An LP decoding algorithm based on primal path-following interior

point method,” Proceedings 2009 IEEE International Symposium on Information The-

ory, pp. 389–394, Seoul, South Korea, June 28 - July 3, 2009.

[51] T. Wadayama, ”Interior point decoding for linear vector channels based on convex

optimization,” IEEE Trans. on Information Theory, vol. 56, no. 10, pp. 4905–4921,

October 2010.

[52] Y. E. Nesterov and A. S. Nemirovski, Interior-point polynomial methods in convex pro-

gramming, SIAM Studies in Applied Mathematics, SIAM Publications, Philadelphia,

1994.

123

תוצאות ולקבל מסויימים למקרים ההתרכזות תופעות את להוכיח מנת על .density evolution
הפרשים בעלי מרטינגלים של בתכונות משתמשים אנו קלאסיות, תוצאות ממספר יותר הדוקות
למספר ביחס משופרת אנליזה מבצעים אנו Azuma Hoeffding שיוויון באי שימוש ידי על חסומים.
לאנטרופיה בנוגע מהודקת התרכזות תוצאת הינה הראשונה התוצאה בעבר. שפורסמו תוצאות
סימטרי בינארי, בערוץ מתרחשת התשדורת כאשר מהערוץ הקלט בהינתן הקוד מילת של המותנת
נוסף להידוק להגיע ניתן כי מראים אנו BEC ו BSC ערוצי עבור כן כמו .(MBIOS) זיכרון וחסר
מעניינים מקרים מספר עבור התרכזות תוצאות להראות מאפשר החסם לכך, בנוסף החסם. של
בהתפלגות שמתאפיינים Tornado קודי עבור (לדוגמא משמעות חסרי היו הקודמים החסמים שבהם
תוצאות למספר מפורשים ביטויים מספקים אנו בהמשך הזוגיות). בדיקת דרגות של פואסונית
I בעומק זיכרון בעלי (ISI) סימניות בין הפרעות עם בערוצים לתשדורת המתייחסות התרכזות
חסם הינה הראשונה התוצאה .W ברוחב חלון בעל windowed min sum מסוג מפענח ע"י ופענוח
עץ. איננה זוגיות בדיקת לצומת משתנה צומת בין הודעה של ℓ מדרגה שסביבה להסתברות
תוצאות עם מתלכדת אכן והיא זיכרון חסרי לערוצים קודמות תוצאות של הרחבה הינה התוצאה
מספר של להתרכזות מתייחסים אנו בהמשך סימבולים. בין הפרעות שאין מניחים אם אילו
מפורשים ביטויים מספקת האנליזה זוגיות. בדיקת לצומת משתנה צומת בין השגויות ההודעות
לערוצים התוצאות ניוון כי מראים אנו לבסוף ההתרכזות. שוויוני לאי הקשור המעריכי הקצב לגבי
& Urbanke ו Luby et al. ידי על שהוכחה ההתרכזות תוצאת את מהדק סימטריים זיכרון חסרי
פסימיות. עדיין הינן התוצאות ההתרכזות, שיוויוני אי בהדיקות השיפורים אף על .Richardson
שבפועל בעוד שגיאות להכניס עלול בערוץ או בקוד שינוי שכל מניחים שאנו היא לכך אמת סיבת

נמוך. כזה למאורע הסיכוי
שדורשים לתחומים דוגמאות ומספקים בתחום, נוספים למחקרים כיוונים סוקרים אנו לסיום,

נוספת. התייחסות

ג

product ו min sum מפענחי (לדוגמא belief propafation מסוג איטרטיביים אלגוריתמים ידי על
בשנים הקוד. את שמייצג הגרף קשתות פני על איטרטיבית בצורה נשלחות ההודעות שבהם (sum
מפענח אקדמי. עניין לצבור החלו לינארי תכנות על המתבססים חילופיים מפענחים האחרונות
likelihood ה מפענח את לייצג ניתן מסוימות הנחות תחת כי העובדה על מתבסס ליניארי תכנות
מנת על בדיד. פתרון ומרחב ליניארית מטרה פונקצית בעלת אופטימיזציה כבעיית Maximum
(relaxation) הרפיה מבצעים אנו חישובית, מבחינה פתירה שהיינה LP לבעיית הבעיה את להפוך
המבוסס ליניארי תכנות מפענח הצגת לאחר רציף). למרחב מעבר (כגון הפתרונות מרחב של
על חסם לקבל מנת על LP מפענח על הקודם מהחלק החסמים את מיישמים אנו IPM שיטת על
של הפרמטרים על אופטימיזציה מבצעים אנו בהמשך, המפענח. שמבצע ניוטון איטרציות מספר
עתה אילו פרמטרים החסם. של נוסף להידוק להביא מנת על IPM ה לשיטת הקשורים המפענח
רמת הזוגיות, בדיקת מטריצת דרגת הבלוק, אורך : כגון והקוד, הערוץ של בפרמטרים תלויים
שמבצע ניוטון איטרציות מספר על אנליטיות תובנות מאפשרים החדשים החסמים וכד'. הרעש
באורך כתלות האיטרציות מספר כי מראה החסם והערוץ. הקוד בפרמטרי כתלות המפענח
חסום האיטרציות מספר כי להראות ניתן LDPC קודי עבור אולם כללי, באופן מעריכי הינו הבלוק
הסיבוכיות את בחשבון (שלוקחת המפענח של הסיבוכיות דומה באופן .O(

√
n ln (n)) ידי על

מתאים זה מקודד לפיכך .O(n1.5 ln (n)) ידי על חסומה הפענוח) של איטרציה בכל הכרוכה
בדרגת כתלות מעריכי באופן עולה האיטרציות מספר כי מראים אנו בהמשך, .LDPC קודי לפענוח
ידי על חסום האיטרציות מספר כי מראים אנו לבסוף הקוד. של הזוגיות בדיקת מטריצת
ככל עולים המפענח שביצועי מכיוון הקוד. לתיאור הדרושים שיוויון האי אילוצי מספר שורש
את בוחנים אנו לבסוף לביצועיו. המפענח סיבוכיות בין trade off קיים גדל, האילוצים שמספר
ביחס שיפור מהווה המשופר החסם ספציפיים. פענוח ושיטת קוד עבור נומרי באופן החסם של
שעבר בחסם שימוש ע"י הדוק. איננו עדיין הוא אולם ,Wadayama ידי על שניתנו דומים לחסמים
בהדיקות משמעותי שיפור מתקבל הצעד גודל לחישוב החדשות השיטות עם בשילוב אופטימיזציה
אילוצים ללא באופטימיזציה האיטרציות מספר על לחסם הקשורים והמקדמים במידה החסם.
אומדן לקבל מנת על זה בחלק שהוצג החסם עם בשילוב בהם להשתמש יהיה ניתן בעתיד, יהודקו
פרמטרי של אופטימאלית בחירה לאפשר וכן המפענח שמבצע האיטרציות מספר לגבי יותר טוב

והקוד. הערוץ בפרמטרי כתלות המפענח

(concentration of measures) מידות התרכזות תופעות בוחנים אנו העבודה, של האחרון בחלקו
השנים 15 במהלך בעבר שפורסמו לתוצאות בהמשך אילו, תוצאות .LDPC קודי של בצבירים
מתנהג מהצביר זעיר לחלק פרט הקודים כל כמעט נתון, קודים צביר עבור כי מראות האחרונות,
של הממוצעת ההתנהגות גדולים, בלוק אורכי עבור לפיכך הקודים. צביר פני על של הממוצע כמו
הצידוק את ומהווה מהצביר ספציפיים קודים להתנהגות טובה אינדיקציה מהווה הקודים צביר
שיטת בעזרת LDPC קודי צביר של האסימפטוטים הביצועים של הסטטיסטי לניתוח האנליטי

ב

תקציר

בעיות של בהיבט מידות והתרכזות קמורה אופטימיזציה של לאספקטים מתייחסת זו עבודה
עיקריים. חלקים לשלושה התזה את לחלק ניתן בתקשורת. קידוד

בעיות פתרון של לסיבוכיות הקשורים עליונים חסמים לפיתוח מתייחס הראשון החלק
בתכונות שימוש ידי על .(s.c.) self concordant מסוג מטרה פונקציית עם קמורות אופטימיזציה
ידי על הנדרשות האיטרציות מספר על עליונים חסמים מוכיחים אנו ,s.c. מסוג פונקציות של
הראשון החסם שיוויון. אילוצי בעלת קמורה אופטימיזציה בעיית של לפתרון ניוטון אלגוריתם
משווה זו בעבודה הנגזר העליון החסם ניוטון. צעד גודל לחישוב backtracking שיטת עבור ניתן
שבמהלכה damped phase פאזות: לשתי מחולקת שההתכנסות הוא גם ומראה קלאסי, לחסם
התכנסות קיימת שבמהלכה quadratic phase מכן ולאחר האלגוריתם, של מתונה התכנסות קיימת
בערך של שיפור על מראה מהעבר דומים לחסמים זה חסם השוואת האלגוריתם. של מאוד מהירה
ה שיטת בפרמטרי כתלות החסם התנהגות כי מתקבל כן כמו החסם. בהדיקות 100 עד 10 פי
שתי עבור חסמים מוכיחים אנו דומה באופן בפועל. הסיבוכיות של להתנהגות דומה backtracking
פונקצייה ידי על הצעד גודל של חישוב על מבוססות השיטות הצעד. גודל חישוב של נוספות צורות
להגיע שמאפשר באופן האיטרציות מספר על החסם את מהדקות שהן כך נבחרו והן מראש ידוע
אילו חסמים מרחיבים אנו מהעבר, דומים פיתוחים על בהתבסס החסם. בהדיקות נוסף לשיפור
סימולציות בעזרת .(IPM) interior point method בשיטת ושימוש שוויון אי אילוצי עם בעיות עבור
שהוכחנו. המהודקים החסמים של טיבם את שבוחנת נומרית אנליזה מבצעים אנו ממוחשבות
אינם אולם הבעיה סיבוכיות של הכללית ההתנהגות את מנבאים החסמים כי מראות הסימולציות
damped phase שב הרי יחסי, באופן הדוקים החסמים quadratic phase שב בעוד הדוקים. מאוד
לחוסר הסיבות את מנתחים אנו נומריות דוגמאות בעזרת החסם. של נוסף לשיפור מקום קיים
יחסי. באופן הדוק לחסם להגיע ניתן בפיתוח גורמים זוג שיפור ידי על כי ומראים זו, הדיקות
ה על רקורסיבי לחסם הנוגעת תוצאה מרחיבים אנו החסמים פיתוח מתהליך כחלק כן, כמו

יחידה. איננו ניוטון צעד גודל שבו למקרה Newton decrement

(לדוגמא, ובינאריים ליניאריים בלוק קודי פענוח של לבעיה מתייחס התזה של השני החלק
מבוצע LDPC קודי פענוח לרוב, .(LP) ליניארי תכנות על המבוסס מפענח בעזרת (LDPC קודי

א

אשל. וראובן רות להורי

ששון יגאל פרופ' בהדרכת נעשה המחקר
חשמל להנדסת בפקולטה

תודה הכרת

והמסורה הצמודה הנחייתו על ששון, יגאל פרופ' שלי, למנחה מגיעות חמות תודות
השלמה. לכדי מגיעה זו עבודה היתה לא עזרתו, ללא הדרך. אורך לכל

לכל שגילו והסבלנות תמיכתם על אשל, וראובן רות להורי, מודה אני לבסוף,
לכם. מוקדשת זו עבודה השתלמותי. תקופת אורך

בהשתלמותי הנדיבה הכספית התמיכה על לטכניון מודה אני

והתרכזות קמורה אופטימיזציה של אספקטים

בתקשורת קידוד בבעיות מידות

מחקר על חיבור

תואר לקבלת הדרישות של חלקי מילוי לשם

למדעים מגיסטר

חשמל הנדסת

אשל רונן

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2012 פברואר חיפה תשע"ב שבט

והתרכזות קמורה אופטימיזציה של אספקטים

בתקשורת קידוד בבעיות מידות

אשל רונן

