Aspects of Convex Optimization

and Concentration in Coding

Ronen Eshel






Aspects of Convex Optimization

and Concentration in Coding

Research Thesis

Submitted in Partial Fulfillment of the Requirements
For the Degree of Master of Science

in Electrical Engineering

Ronen Eshel

Submitted to the Senate of the Technion - Israel Institute of Technology
SHEBAT 5772 HAIFA FEBRUARY 2012






The Research Thesis Was Done Under the Supervision of Prof. Igal
Sason in the Electrical Engineering Department

ACKNOWLEDGMENTS

My sincere and wholehearted thanks go, first and foremost, to my
supervisor, Prof. lgal Sason. Without his meticulous and consistent
devotion to my guidance, this work would not be. He has also taught
me a great deal about the fine art of academic writing. Finally, | thank
my parents, for their moral support and never-ending patience
throughout this period. This thesis is devoted to them.

The Generous Financial Help Of The Technion Is Gratefully
Acknowledged.



To my parents, Ruth and Reuven.



Contents

Abstract 1

List of notation and abbreviations 3

1 Introduction 5
1.1 Convex optimization and LP decoding of linear codes . . . . . . . .. 6
1.2 Concentration of measures in LDPC code ensembles . . . . . . . . .. 7
1.3 Thesisoutline . . . . . . . .. .. ... 8

2 Complexity analysis of convex optimization problems solved using
interior-point method 11
2.1 Short overview . . . . . . . ... 11
2.2 Convex optimization and interior-point method . . . . . . . . .. .. 11

2.2.1 Minimization of un-constrained and equality-constrained con-
vex problems . . . ... oo o 13

2.3

24

2.2.2  Inequality-constrained convex problems - interior-point methods 17
2.2.3 Complexity analysis using self-concordance property . . . . . . 18

Revision of the classical analysis of the convergence rate of Newton’s

method . . . . . . 23
2.3.1 Damped Newton Phase . . . . . ... ... .. .. ... ... .. 24
2.3.2  Quadratic convergence phase . . . . . . . ... ... L. 25
2.3.3 Final complexity bound . . . . . .. ... 26

Tightened complexity bounds on Newton’s method and interior-point
method . . . . . .. 28

il



2.5

2.6

2.4.1 Theorem 4 - Complexity bound for ECSCM problems with pre-

determined step size . . . . . . ... ... 28
2.4.2 Theorem 5 - Complexity bound for ECSCM problems with an

improved pre-determined step size . . . . . .. ... ... 32
2.4.3 Theorem 6 - Complexity bound for ECSCM problems with

backtracking line-search . . . . . . ... ... ... ... .. 33

2.4.4 Theorem 7 - Bounds’ extension to equality and inequality con-

strained minimization using interior-point methods . . . . . . 37
Proofs of Theorems . . . . . . . . . ... ... ... ... ... ... 37
2.5.1 Proof of Theorem 4 . . . . . . . ... ... ... ... ..... 38
2.5.2 Proof of Theorem 5 . . . . . . . ... .. ... ... ...... 39
2.5.3 Proof of Theorem 6 . . . . . . . ... ... ... ... ..... 42
2.5.4 Proof of Theorem 7 . . . . . . . ... ... ... ... ..... 46
Numerical results . . . . . . .. ... oo 49
2.6.1 Predetermined stepsizet . . .. . ... ... L. 49
2.6.2 Backtracking line-search . . . . . . ... ..o o4
2.6.3 Comparison of backtracking line-search to predetermined step

SIZet . . .. 58
2.6.4 Conclusions regarding the numerical analysis . . . . . . . . .. 60

Complexity analysis of IPM-based LP decoders for binary linear

block codes 63
3.1 Short overview . . . . . . . ... 63
3.2 LP decoding background . . . . . . ... ..o 63
3.2.1 Linear block codes . . . . . . ... ... ... ... ...... 64
3.2.2 The ML decoder . . . . . .. ... ... ... ......... 66
3.2.3 Relaxed ML decoder . . . . . . .. .. ... ... ....... 67
3.3 Application of interior-point methods to LP decoding of binary linear
block codes . . . . . . . .. 69
3.3.1 IPM-based LP decoder . . . . . . . .. ... ... ... .... 70
3.3.2  Complexity analysis of an [PM-based LP decoder . . . . . .. 72
3.3.3 Parameter-optimized complexity bound for LP decoder . . . . 73

3.3.4 Properties of the complexity bound for LP decoder . . . . .. 75



3.4 Comparison of the bounds . . . . . . ... ... ... ... .. .. .. 7

4 Concentration of measures in LDPC code ensembles 79
4.1 Short overview . . . . . . . .. 79
4.2  Mathematical background about Martingales and Azuma’s inequality 80

4.2.1 Doob’s Martingales . . . . . . ... ... ... L. 80
4.2.2  Azuma’s Inequality . . . . . . ... ... 82
4.3 Some Applications of Azuma’s Inequality in Coding Theory . . . . . 82
4.3.1 Minimum Distance of Binary Linear Block Codes . . . . . .. 82
4.3.2 Performance of LDPC Codes under Iterative Message-Passing
Decoding . . . . . . . 84
4.4 A Tightened Large-Deviation Analysis for the Conditional Entropy of
LDPC Ensembles . . . . . . . . . .. ... 85
4.5 Concentration for channels with IST . . . . . .. ... ... ... .. 93
4.5.1 The ISI Channel and its message-passing decoding . . . . . . . 94
4.5.2 Concentration results for channels with IST . . . . . . . .. .. 94

5 Summary and Conclusions 105

5.1 Contribution of the Thesis and conclusions . . . . . ... .. ... .. 105
5.1.1 Complexity analysis of convex optimization . . . .. ... .. 105
5.1.2  Complexity analysis of IPM-based LP decoders . . . .. . .. 106
5.1.3 Concentration of measures in LDPC code ensembles . . . . . . 108

5.2 Topics for further research . . . . . . . ... ... ... ... ... .. 109

A Proof of Lemma 2 113

B Proof of Lemma 5 117

References 118

Hebrew Abstract N






2.1

2.2

2.3

24

2.5

2.6

List of Figures

The geometric interpretation of an LP. The feasible set P, which is a
polyhedron, is shaded. The objective function ¢’z + d is affine, so its
level curves are hyper-planes orthogonal to ¢ (shown as dashed lines).
The point x* is optimal and geometrically it is the point in P as far as

possible in the direction —c. . . . . . . ... oL

Backtracking line-search. The curve shows f, restricted to the line over
which we search. The lower dashed line shows the linear extrapolation
of f, and the upper dashed line has a slope a factor of o smaller. The

backtracking condition is that f lies below the upper dashed line, i.e.,

The figure illustrates the two layers of the interior-point method. The
iterations along the central-path are called outer iterations. Within
each outer iteration, Newton’s method is applied to find the minimum
of tfo(x) + B(x), subject to Az = b. The Newton iterations are called

mmer werations. . . . . .. . . e,

The coefficients ¢; and ¢y in the upper bound on the number of itera-
tions, as given in (2.21) and (2.22) for some values of the free parameter
n € (0,0.381). The additive constant ¢y in (2.21) refers to e = 10719, .

The optimal value of 7 versus the initial error f(z(®) — p* when the

bound in Theorem 4 is considered. . . . . . . . . . . . ... ... ..

The term NGoua! in (2.25) versus « for tolerance ¢ = 107'%. The
behavior of the bound can be classified into two cases depending on

the value of ae. . . . . . .

vii

13

16

19

30

31



2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

Improved (2.25) and original (2.19) bound for Npamped versus a. The
bounds are scaled by factor f(z(?)) — p* and shown for 3 = 1 and
Hoae = 0.38. o o

The function c¢(t = tye, A) and tpe Versus A, as given in (2.24) and
(2.23) respectively. The line 1.6\ is also plotted to show it upper
bounds the function c(t = tpre, A). . . . .o

Bound on the number of iterations in the slow exponential decay sub
phase vs 1. The bound on the number of iterations in this sub-phase
has to be calculated numerically by applying (2.32) recursively starting
from A=nuntil A =055, . . . .. ...

Consider Newton’s method with backtracking line-search. By observ-
ing the Newton decrement A\, we can trace the appearance of three
phenomena concerning the convergence of Newton’s method . From
a certain value (and below), it is assured that the backtracking line-
search chooses a full step. Similarly, below the value of 7.y, & double
exponential decay is assured. Next, below /€ it is assured that the

current iterate is at most € sub-optimal compared to p*. . . . . . . ..

Convergence of Newton’s method with pre-determined ¢ as given in
Theorem 4 with parameter n = 0.35. The results are given for an un-
constrained minimization, as given in (2.43) and as given in Theorem 5

with parameter n = 0.8. The two choices of ¢t show minor differences .

Convergence of Newton’s method with pre-determined ¢ as given in
Theorem 4 with parameter n = 0.35. The results are given for an
un-constrained minimization, as given in (2.43). The figure plots the
distance from the infimum f(z)—p*, the decrease in f at each iteration
Af and half the square of the Newton decrement A\?/2. . . . . ...

Bounds for Af(z) normalized by the Numerically simulated Af(x).

The results are for a function of the form given in (2.43) with t = =

Convergence of Newton’s method with backtracking line-search. The
figure plots the distance from the infimum f(x) — p*, the decrease in

f at each iteration Af and half the square of the Newton decrement
A2J2.

36

41

43

46

50

51

53



2.15

2.16

2.17

2.18

3.1

3.2

3.3

4.1

Lower bounds for Af(z) normalized by the simulated Af(z). The
function is of the form given in (2.43) solved with backtracking line-
search . . . .o
Numerical results for ¢ derived using backtracking line-search for a
function of the form given in (2.43). The plot includes the numerical
value of tpy, the bound on ty, using (2.36) and ty, = [logs(texi)]  Fop
reference, the function ¢ = 1/ is also plotted . . . . . .. ... ...
Number of Newton iterations (N) versus the value of 5 in the back-
tracking line-search . . . . . . .. ... Lo Lo
Convergence rate of f(x) — p* for a problem solved using Newton’s
method. It is evident that the usage of the backtracking line-search re-
sults in less Newton iterations compared to the usage of predetermined

step size t. . .. L

A high-level model of a communication link. The information word is
encoded into a codeword that contains redundant information. The
codeword is sent through the channel (transmission medium) where
it is being corrupted. The decoder applies an algorithm that tries to
recover the original information from the received word. . . . . . ..
A graphical representation of a proper polytope. The relaxation of the
domain creates fractional vertices called pseudo-codewords. Since the
LP decoder does not differ between codewords and pseudo-codewords,
this fractional vertices are the main reason for decoding errors.

The figure plots the function Q(§) = M, its approximation

In (1+49)
82 /24cy/M
5

Q(6) Approximation = and its upper bound Q(9)upper bound =

2Q(0) Approximation- The plot is given for ¢ = 6,7 = 1/6, M = 100.

Message flow neighborhood of depth 1. The round, cubic, triangle
nodes denote the variable, check and trellis nodes respectively. In this
figure (I, W,dy,d.) = (1,1,2,3). . . . . . ... .

95

57

29

60

64

68

74






Abstract

The thesis consists of three main parts. The first part of the work considers the com-
plexity of the interior-point method (IPM) for solving convex optimization problems.
We prove upper bounds on the number of Newton iterations needed to solve a con-
vex optimization problem whose objective function is self concordant (s.c.). Several
bounds are given for various step size algorithms: Newton’s method with backtrack-
ing line-search and two choices of pre-determined step size. Compared to previous
bounds, the new bounds are 10-100 times tighter. Using computer simulations, we

explore the properties of those new tightened bounds.

The second part of the thesis considers the problem of decoding linear block codes
(e.g., low-density parity-check codes (LDPC)) using Linear Programming (LP). We
apply the bounds derived earlier on an IPM-based LP decoder in order to obtain a
complexity bound on the number of iterations of the LP decoder. Next, we optimize
the bound in order to obtain an optimized set of IPM parameters based on the code
and channel parameters (i.e., block length, parity-check matrix row degree, noise
level, etc..). The bound derived gives an analytic insight on the decoding complexity
as a function of the code and channel parameters.

The third part of the work (which stands by itself) considers the concentration
of measures for LDPC code ensembles. The results derived in this thesis follow from
Azuma-Hoeffding inequality for Doob’s martingales with bounded differences. The
first result is a tightened concentration inequality for the conditional entropy (origi-
nally derived by Méasson et al.). Next, several concentration results on the number
of erroneous variable-to-check node messages for inter-symbol-interference (ISI) chan-
nels are proved. The analysis provides an explicit expression for the exponential decay
of the concentration inequalities given by Kavci¢ et al. It is shown that specializing

these results for memoryless channels provides tightened concentration inequalities



as compared to previous results by Luby et al. and Richardson & Urbanke.
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Chapter 1

Introduction

Low-density parity-check (LDPC) codes were discovered by Gallager in 1962 [42]. In
the 1990s, they were rediscovered by a number of researchers ([12],[34],[38]) and since
then, the subject has become a central research theme in coding theory. Research in
this field was followed by the adoption of those codes in commercial communication
systems. The performance of these codes is extraordinary and their complexity is
moderate, thus making them feasible for practical use. In 2001, Chung et al. [46]
have demonstrated a family of LDPC codes whose bit error rate vanishes at f,—g that
is 0.0045 dB from the capacity of the binary-input AWGN channel, as the block length
tends to infinity. One of the challenges that face researchers in this field is analyzing
the behavior of these codes. Current analysis is usually based on a method called
density-evolution who predicts the asymptotic performance of LDPC code ensembles.
Though useful, this method is still limited, as analytic results are known only for
simple channels (e.g. BEC and BSC). Other channels require numerical calculations
which provide only numerical results with the ability to derive closed-form expressions
for capacity-approaching ensembles. The analysis is especially difficult when the

factor graph contains cycles or if short to moderate block lengths are considered.
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1.1 Convex optimization and LP decoding of lin-

ear codes

The decoders most often used for LDPC codes are based on the belief-propagation al-
gorithm [43](e.g., sum-product algorithm), where messages are iteratively sent across
a factor graph of the code. In recent years, the idea of linear programming (LP) has
attracted the attention of many researchers. This alternative decoding algorithm is
based on the fact that Maximum-Likelihood Decoding (MLD) can be seen as a combi-
natorial optimization problem. In order to make the complexity feasible, a relaxation
technique is used. The idea is to relax the definition of the feasible set from a discrete
set to a continuous subset in R™. The elimination of the constraint that a feasible
point is integral leads to a linear programming (LP) problem that can be efficiently
solved. The resulting optimization problem might have a different optima (e.g., a
non-integral solution called a pseudo-codeword) with respect to the original problem,
however its computational complexity is drastically reduced, thus providing a trade-
off between the decoding complexity and performance. The research conducted by
Feldman et al. ([21], [22]) was the first to apply the concept of relaxation to decoding
problems. Since then, numerous studies on LP decoding have been conducted ( [2],
[10], [25], [30], [31], [40], [41]). An LP decoder for LDPC codes is an optimization
problem characterized with many constraints and variables. Therefore, in order to
make LP decoding feasible for codes with long block length, efficient LP solvers are
required. During the last twenty years, there has been a revolution in the methods
used to solve optimization problems. In the early 1980s, sequential quadratic pro-
gramming and augmented Lagrangian methods were favored for nonlinear problems,
while the simplex method was basically unchallenged for linear programming. Since
then, modern interior-point methods (IPMs) ([5], [9], [45]) have infused virtually ev-
ery area of continuous optimization, and have forced great improvements in the earlier
methods. In 1984, N. Karmarkar [37] discovered a polynomial interior-point method
that is practically more efficient than the ellipsoid method. He also claimed superior
performance compared to the simplex method. At the same time, Nesterov and Ne-
mirovski investigated the new methods from a more fundamental viewpoint: What
are the basic properties that lead to polynomial-time complexity? It turned out that

the key property is that the barrier function should be self-concordant. This seemed

6



to provide a clear, complexity-based criterion to delineate the class of optimization
problems that could be solved in a provably efficient way using the new methods. The
culmination of this work was the book by Nesterov and Nemirovski (1994) [52], whose
complexity emphasis contrasted with the classic text on barrier methods by Fiacco
and McCormick (1968). These advances in optimization theory made problems like
LP decoders computationally tractable. Using the self-concordant property, much
can be said about the complexity of the LP decoder (e.g., it can be shown that the
computational time grow moderately with accuracy and dimension of the problem).
In this thesis, we prove complexity bounds on self-concordant functions, and apply

those bounds to derive bounds on the complexity of the LP decoder.

1.2 Concentration of measures in LDPC code en-

sembles

The concentration of measures phenomenon was first put forward during the seventies
and eighties in geometric functional analysis, and has been subject to very nice devel-
opments in probability theory, mostly due to Ledoux [32] and Talagrand [35]. Very
roughly speaking, this phenomenon can be stated in the following simple way: “A
random variable that depends in a smooth way on many independent random vari-
ables (but not too much on any of them) is essentially constant”. The exact meaning
of such a statement clearly needs to be clarified rigorously, but it will often mean
that such a random variable X concentrates around a constant ¢ (where ¢ denotes
either the statistical expectation or median of X) in a way that the probability of
the event {|X — ¢| > t} decays exponentially in ¢ (for £ > 0 ). This type of bound is
referred to as a concentration inequality. The mathematical foundations of concentra-
tion of measures are considered, e.g., in [7], [32] and [36, Chapter 7]. Concentration
of measures inequalities are also at the core of probabilistic analysis of randomized
algorithms (see, e.g., [4], [13], [44]). The concentration of measure phenomenon is a
principle that is applied in measure theory, probability and combinatorics, and it has
consequences in some other fields such as functional analysis (see, e.g., [13], [32] and

[35]). The basic concentration theorem of iterative message-passing decoding (see [49,
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pp. 487-490]) asserts that all except an exponentially (in the block length) small frac-
tion of codes perform within an arbitrary small § from the ensemble average (where
J is a positive number that can be chosen arbitrarily small). Therefore, assuming a
sufficiently long block length, the ensemble average forms a good indicator for the
performance of individual codes. In general, all the concentration inequalities which
have been proved in the setting of iterative message-passing decoding so far are rather
loose, and much stronger concentration phenomena can be observed in practice for
moderate to long block lengths. Therefore, to date, these concentration inequalities
serve mostly to justify theoretically the ensemble approach, but they are not tight for
finite block lengths. In this thesis, we provide concentration of measures of LDPC

code ensemble and tighten some known results.

1.3 Thesis outline

The thesis is composed of three main chapters and a concluding chapter.

1. Chapter 2 [Complexity analysis of convex optimization problems solved

using interior-point method]

e We provide the reader with some background material about convex op-
timization. Classic algorithms such as Newton’s method and interior-
point method (IPM) are explained. Next, we define the property of self-
concordance which is used to analyze the convergence rate of Newton’s

method and the IPM.

e A convergence rate analysis of Newton’s method is conducted. New tight-
ened upper bounds on the number of Newton iterations are proved. These
bounds are given for the case of backtracking line-search and pre-determined

step size. Next, we extend the use of these bounds to the IPM.

e Numerical simulations are performed in order to explore the behavior of
the bounds derived.

2. Chapter 3 [Complexity analysis of IPM-based LP decoders]

e We provide the reader with some background material about LP decoding

of linear codes.



e An LP decoder which is based on the IPM is introduced. The conver-
gence rate analysis derived in the previous chapter is applied to the LP

decoder. These bounds are used to study the complexity of the IPM-based
LP decoder

e We compare the new tightened bounds derived to some previously reported

bounds.
3. Chapter 4 [Concentration of measures in LDPC code Ensembles]

e We present relevant mathematical background that is essential for the
analysis in this work, and also provide briefly some applications of these

mathematical tools in coding and communication theory.

e A large-deviation analysis of the conditional entropy is provided, and tight-
ened concentration inequalities are derived. The latter inequalities are

compared to the original bound by Méasson et al. [8, Theorem 4].

e Concentration results on the number of erroneous variable-to-check node
messages are derived for Inter-Symbol-Interference (ISI) channels. The
analysis provides explicit expression for the exponential rate that is related
to the concentration inequalities in [3, Theorems 1 and 2]. It is shown that
particularizing these results for memoryless channels provides tightened

concentration inequalities as compared to [29] and [48].

4. Chapter 5 [Summary, conclusions and future research directions] We
conclude our work in Section 5.1, where we summarize the main results and
conclusions of the thesis. Finally, in Section 5.2, a number of directions are

suggested for future research in this area.
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Chapter 2

Complexity analysis of convex
optimization problems solved using

interior-point method

2.1 Short overview

In the following, we consider the interior-point method (IPM) for solving convex
optimization problems. The main purpose of this chapter is to provide a tightened
complexity analysis for this method. Since the IPM is an iterative algorithm, the
complexity of the solver is presented as a bound on the number of Newton iterations.
In Chapter 3, we shall use this analysis to provide bounds on the complexity of an

IPM-based LP decoder which is a relaxed version of the ML decoder.

2.2 Convex optimization and interior-point method

In this section, we provide some basic terminology and notation that is related to

convex optimization and the interior-point method.

11



Definition 1 [Convex optimization problem]

A convex optimization problem is an optimization problem of the form

minimize  fo(z)
subject to  fi(x) <0, i=1,..m (2.1)
Az =10

where fo, ..., fm : R®™ — R are convex functions, A € R™*" and b € R™*!

We note that the feasible set of a convex optimization problem is convex. We call
the problem feasible if an optimal solution z* exists, and denote p* as the optimal
value, p* = inf{ f(z)| constraints} = f(x*).

A particular example of a convex optimization problem is the family of Linear
Programming (LP) problems. The problem is called a linear program if the objective

and constraint functions are all affine.

Definition 2 [Linear programming optimization problem)|

minimize ¢z +d
subject to Gx < h (2.2)
Ar =b

Where A € R™" bh e R™! G € R h € RP*! ¢ e R™! and d € R.

The geometric interpretation of an LP is illustrated in Figure 2.1. The feasible
set of the LP problem is a polyhedron P. The objective is to minimize the affine
function ¢’z + d over P. The objective function ¢’z + d is affine, so its level curves
are hyper-planes orthogonal to ¢ (shown as dashed lines). The point z* is the optimal

point, and geometrically it is the point in P as far as possible in the direction —c.
Remark 1 It can be shown that if a single solution exists, then it is a vertex of the

polyhedron x* € V(P). Therefore, if the polyhedron P is the convex hull of a set C
(i.e.,P = Conv(C)), then if a single solution z* exist, then 2* € C

12



Figure 2.1: The geometric interpretation of an LP. The feasible set P, which is a
polyhedron, is shaded. The objective function ¢’z + d is affine, so its level curves are
hyper-planes orthogonal to ¢ (shown as dashed lines). The point x* is optimal and
geometrically it is the point in P as far as possible in the direction —c.

2.2.1 Minimization of un-constrained and equality-constrained

convex problems

Consider Definition 1 of a convex optimization problem. If m = 0 and p > 0 we
say the problem is equality-constrained, while if m = p = 0 we say the problem is
un-constrained. Next, we present Newton’s method, which is an efficient method for

solving general convex optimization problems.

Newton’s method for un-constrained minimization

Newton’s method is an iterative algorithm for solving convex optimization problems.
The idea behind the algorithm is to compute the minimizer of the second order
polynomial approximation of the objective function. The resulting minimizer is used

as a starting point for another iteration of the Newton’s method.

Definition 3 [The Newton’s method for un-constrained minimization prob-
lems]
Consider an un-constrained convex optimization problem. Given a starting point

2 € dom(f), tolerance € > 0, repeat

13



1. Compute the Newton step : Az, = —V2f(2)" 'V f(z).

2. Stopping criterion : Compute the Newton decrement \? = Azl V2 f(z)Az,,.
Quit if A\?/2 <e.

3. Line search : Choose step size t. (e.g., using backtracking line-search)
4. Update : x := x4+ tAx,y

Newton’s method, as outlined above, is sometimes called the damped Newton method
or guarded Newton method, to distinguish it from the pure Newton method, which
uses a fixed step size t = 1. In the algorithm described above, the search direction is
the vector Ax,;, however the step size is scaled by factor ¢t which is calculated using

a line-search algorithm. We shall consider the following line-search algorithms

1. Exact line-search : The optimal value tgy.et = argmin f(z + tAz,) is used.
This algorithm requires the lowest number of Newton iterations but it is com-

putationally complex because of the minimization required to calculate t.

2. Backtracking line-search : A low complexity line-search algorithm that approx-

imates the exact line-search. This algorithm is detailed later in this subsection.

3. Predetermined or fixed step size : The step size is a predetermined function of
the current state of variables (e.g.,A(z), z, |V f(z)|... ). In general, it offers the

lowest complexity with the tradeoff of slower convergence rate.
The following are the main properties of the Newton’s method

1. Invariant to linear scaling : If we apply a non-singular linear transformation
y = T, then the iterates when minimizing f(y) = f(Tz) are related by the

same change of coordinates (i.e., Ty® = x(*)).
2. The tolerance can be approximated using the Newton decrement
flz) —p" = N/2.
This approximation is highly accurate for A < 1.

3. The number of Newton iterations increases slowly as the problem size n in-

creases.

14



Newton’s method for Equality-constrained minimization

Newton’s method described above, can be extended to include equality constraints.
The method is almost the same as the Newton’s method without constraints except

for two differences
1. The initial point must be feasible (i.e., satisfy #(*) € dom(f) and Az = b)

2. The definition of the Newton step is modified to take the equality constraints
into account. In particular, we make sure that the Newton step Az, is a feasible

direction (i.e., AAx,; = 0). The Newton step Az, is computed by solving the

[V
o

Besides those modifications, the algorithm is the same and has similar properties.

so called KKT equations

Vif(x) AT
A 0

A.Tnt

w

Backtracking line-search

As mentioned before, the exact line-search computes the optimal step size which in
turn yields the lowest possible number of Newton iterations. However computing
the exact line-search involves solving another optimization problem, thus it is usually
computationally complex. Therefore, most line-searches used in practice are non-
exact. The step length is chosen to approximately minimize f(z) along the ray
{z + tAzx|t > 0}, or even to just reduce f(z) enough.

One non-exact line-search method that is very simple and quite effective is called
backtracking line-search. It depends on two backtracking line-search parameters o €
(0,0.5) and 8 € (0,1).

Definition 4 [The Backtracking line-search)]
Given the line-search parameters o € (0,0.5), 8 € (0,1), and a descent direction Ax
for f(z) at x € dom(f), initialize ¢t with ¢ := 1 and preform the following iterative

algorithm :
L If f(x +tAz) < f(z) + atV f(x)T Az, quit.
2. Update t := ft

15
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t=20 to

Figure 2.2: Backtracking line-search. The curve shows f, restricted to the line over
which we search. The lower dashed line shows the linear extrapolation of f, and the
upper dashed line has a slope a factor of a smaller. The backtracking condition is
that f lies below the upper dashed line, i.e., 0 <t < .

The line-search is called backtracking because it starts with unit step size and
then reduces it by factor S until the stopping condition holds. Since Ax is a descent
direction, we have V f(x)"Az < 0, so for small enough ¢ we have f(x + tAz) ~
f(@) +tVf(x)' Az < f(x) + atV f(x)T Az , which shows that the backtracking line-
search eventually terminates. As illustrated in Figure 2.2, the constant a can be
interpreted as the fraction of the decrease in f predicted by linear extrapolation that

we will accept.
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2.2.2 Inequality-constrained convex problems - interior-point

methods

In this subsection, we discuss interior-point methods for solving convex optimization

problems that include inequality constraints and affine equality constraints

minimize  fy(x)
subject to f; <0, i=1,...m (2.3)
Arx =10

Where fo,..., fmn : R® — R are convex and twice continuously differentiable, and
A € RP*" with rank(A) = p < n. We assume that an optimal solution z* exists and
denote p* = inf{f(z)| Ax = b} = f(z*) as the optimal value.

The key concept of interior-point methods is to solve (2.3) by applying Newton’s
method to a sequence of equality-constrained problems. We will focus on a particular
interior-point algorithm called the logarithmic barrier method.

Our goal is to approximately formulate the inequality-constrained problem (2.3)
as an equality-constrained problem to which Newton’s method can be applied. The
first step is to rewrite problem (2.3), making the inequality constraints implicit in the

objective function:
minimize  fo(z) + > I (fi(z))
i=1
subject to Az =10

(2.4)

where I(z) is an indicator function, i.e.,

](x):{o <0

oo x> 0.

The indicator function can be approximated by a logarithmic barrier function with

parameter ¢ > 0
19(z) = —(1/t) log(~x).
As t increases, the approximation becomes more accurate. We denote x*(t) as the
minimizer of the equality-constrained problem with the logarithmic barrier function
I®(x) replacing the indicator function. It can be shown that this point is at most
m/t-suboptimal, i.e.,
fo(z*(t)) —p* < m/t.
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The barrier method is based on solving a sequence of equality-constrained minimiza-
tion problems with increasing value of the parameter t. At each iteration the last point
found is used as a starting point for the next minimization problem. In other words,
we compute x*(t) for a sequence of increasing values of ¢ (this sequence is called the
central path), until ¢ > m/e, which guarantees that we have an e-suboptimal solution

of the original problem.
Definition 5 [The barrier method]

Consider the convex optimization problem given in (2.3) and define the barrier func-

tion B(z) = — Y log (—fi(x)). Given a strictly feasible starting point z(*), search
i=1
parameters ¢ := t(¥) 1 > 1 and required tolerance € > 0. Repeat the following steps

1. Centering step : Compute x*(¢) by minimizing ¢ fo(x)+ B(x), subject to Ax = b,

starting at x.
2. Update starting point : x := x*(¢).
3. Stopping criterion : Quit if m/t < e.
4. Increase t : t := ut.

As seen in Figure 2.3, the algorithm involves two layers of iterations. The itera-
tions along the central-path are called outer iterations. Within each outer iteration,
Newton’s method is applied to find the minimum of ¢ fo(x) 4+ B(z), subject to Az = b.

The Newton iterations are called inner iterations.

Remark 2 The choice of the parameter u involves a trade-off between the number
of inner and outer iterations. If p is small, then many outer iterations are required.
However, each inner iteration will be shorter because the result from the last outer
iteration is a good starting point for the next one. If i is large the opposite is true.
In practice for p in the range 3 to 100 the two effects nearly cancel, making the choice

of p not critical.

2.2.3 Complexity analysis using self-concordance property

When considering general convex problems, not much can be said about the com-

plexity of the solved problem. The classical convergence analysis of Newton’s method
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Outer loop (Barrier method) Inner loop (Newton's method)

t=:ut
Bt X=X +1;,Ax,

Compute Newton step

Minimize Z
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Figure 2.3: The figure illustrates the two layers of the interior-point method. The
iterations along the central-path are called outer iterations. Within each outer itera-
tion, Newton’s method is applied to find the minimum of ¢ fy(x) + B(x), subject to
Ax = b. The Newton iterations are called inner iterations.
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depends on constants that characterize the minimized function. However, in practice
those constants are usually not known or hard to calculate. Nesterov and Nemirovski
[52] discovered that if we restrict ourselves to a family of convex functions called
‘self-concordant’ functions, a simple and elegant complexity analysis can be obtained.

This family is important for several reasons
e The logarithmic barrier functions are included in this family.
e The complexity analysis of this family includes only known parameters.

e Like Newton’s method, the property of self-concordance is affine-invariant.

Definition 6 [Self-concordant function (s.c.)]

A convex function f: R — R is self-concordant (s.c.) if
[fP(@)] < 2f"(2)** (2:5)

for all x € dom(f). A function f : R" — R, with n > 1, is s.c. if it is s.c. along
every line in its domain (i.e., if the function f(t) = f(z + tv) is a s.c function of ¢ for

every point € dom(f) and v € R such that = + tv € dom(f)).

Self-concordance calculus

The property of s.c. is maintained over some basic mathematical operations.
1. Scaling - If f is s.c. and a > 1 then af is also s.c..
2. Sum - If fi(z), fo(z) are s.c. then fi(x) + fao(x) is also s.c..

3. Composition with affine function - If f is s.c. and T(x) = Az + b is an affine

transformation then f(Az + b) is also s.c..

4. Composition with logarithm function - Let ¢ : R — R be a convex function
with dom(g) = R, and

39”(1’)
et

9" ()] <

Then f(z) = —log(—g(z)) — log(z) is s.c. on {z|x > 0, g(z) < 0}.
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Self-concordance related minimization problems
We define notations for some basic s.c. related optimization problems.

1. Definition 7 [Un-constrained s.c. minimization (UCSCM) problem)]

An un-constrained convex optimization problem
minimize f(x) (2.6)

Where f : R" — R is an s.c. function. We assume that an optimal solution z*

exists, and let p* denote the optimal value, p* = inf f(z) = f(z*).

2. Definition 8 [Equality-constrained s.c. minimization (ECSCM) prob-
lem)]

A convex optimization problem with affine equality constraints

minimize  f(z)

. (2.7)
subject to Ax =0b

Where f : R" — R is an s.c. function, and A € R™*" with rankA = m < n.
We assume that an optimal solution x* exists, and let p* denote the optimal
value, p* = inf{f(z)| Az = b} = f(a*).

3. Definition 9 [Inequality and equality constrained s.c. minimization
(IECSCM) problem)]
A convex optimization problem with affine equality constraints and convex in-

equality constraints.

minimize  fy(x)
subject to Ax =b (2.8)

Where fy: R® — R is a s.c. function, A € RP*™ has rank p < n and fy, ..., fi :
R™ — R are convex and twice differentiable.
Complexity and optimality bounds using the property of self-concordance

In this subsection, complexity and optimality bounds related to the s.c. property are

provided.
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Theorem 1 [Bound on sub-optimality]| Consider an ECSCM problem (or the de-
generated UCSCM problem), denote p* as the optimal value and A(x) as the Newton’s
decrement. If A\(x) < 0.68, then the following inequality holds

Mx)* > f(z) —p
Proof: See Sections 9.6.3 and 10.2.3 in [45].

Remark 3 If € < 0.68% is the required tolerance, we can use A\(z)? < € as the stopping

criterion to guarantee that on exit f(z) — p* <e.

Theorem 2 [Complexity bound for ECSCM problems] Consider an ECSCM
problem (or the degenerated UCSCM problem) solved using Newton’s method with
backtracking line-search. Denote p* as the optimal value, € as the required tolerance,
B and o as the backtracking line-search parameters and z(*) as the starting point.
Then, the number of Newton iterations is bounded by

20 — 8 1
Nrotar < (oz,B(I——QOoéz)Q) (f(ff(o)) - p*) + log, Ing(g)-

Proof: See Section 2.3 for an outline of the proof. The full proof is given in Sections
9.6.4 and 10.2.4 in [45].

Theorem 3 [Complexity bound for IECSCM problems| Consider an IECSCM
optimization problem. Let the problem be solved using the IPM with Newton’s
method and backtracking line-search. Set the parameters of the outer iterations to
t© , and the parameters of the backtracking line-search to «, 8. Then, the total

number of Newton iteration (excluding the initial centering step) is upper bounded
by

nequality 1 g /(et(O)) 20 -8 1
N';otal iy < |V - (T(L)g,u )“ ((aﬁ(l——;zg)?> (m(p—1—1logpu)) + log, 10g2(5)>

Proof: See Section 11.5.2 in [45].
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2.3 Revision of the classical analysis of the conver-

gence rate of Newton’s method

The proofs of the Theorems given in Section 2.4 are highly related to the proof of
Theorem 2. Therefore, we revisit the classical analysis of Newton’s method with back-
tracking line-search when applied to an ECSCM problem. The analysis is given for
the un-constrained UCSCM problem and then shown to also apply for the constrained
problem. We assume that f is bounded below and a starting point (©) is set for the
minimization of f with Newton’s method. The sub-level set S = {z|f(z) < f(2@)}
is also assumed to be closed. In the following, we show that there exist some positive
numbers 7 and 7, where 0 < 1 < 1/4 depends only on the line-search parameters o
and [, such that the following holds:

e [Damped phase] - If A\(z*)) > 5, then for some vy > 0 (independent of k)
FE) — ) < = (29)

e [Quadratic phase] - If A(2®)) < 5 then the backtracking line-search selects
t=1and
2A(z*V) < (2A(z®)), (2.10)

Inequality (2.10) can be applied recursively, to conclude that

Mae®)y<n, VI>k

and
2l7k

- 1
2(+0) < (A ®))* < (2)* " < <§>
Using Theorem 1, the following inequality holds

Fa®) —p <A@, A <0.68.

“(3)

As a consequence, for all [ > k

Fa®) = <260 < 5(3)

and hence f(z®) — p* < e if | — k > log, log,(1/¢).

217k+1 2l*k+1
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Inequality (2.9) implies that the damped Newton phase requires not more than
(f(2©@) — p*)/~ iterations. Thus, the total number of iterations that is required for
the calculation of the minimum of f with accuracy ¢, starting at a point (%), is upper

bounded by

0)y _ p* 1
x
f(# + log, log, = (2.11)

2.3.1 Damped Newton Phase

If we let f(t) = f(x + tAx,;), then we have

The property of s.c. can be expressed as
d F1\—1/2
e )
‘ = ('
By integrating (2.12) between 0 and ¢ > 0, gives

f"(0)
(14 tf7(0)1/2)?

<1 (2.12)

o
(1 _ tf//(0>1/2)2

S f”(t S

(2.13)

The upper bound is valid if 0 < ¢t < f”(0)71/2. By integrating twice the upper bound
in (2.13), we obtain an upper bound for f

J(t) < JO)+1/(0) = 1](0)"* = 1og (1= 17" (0)"")
= f(0) —tA(z)* — tA(z) — log (1 — tA(z)) . (2.14)
Where this bound on f(t) is valid for 0 < ¢ < 1/\(z).

Let ty denote the first value of ¢ which satisfies the condition of the backtracking

line-search
f() = f(0) < —ar% (2.15)

when an initial value of ¢ = 1 is used, and consecutive multiplications of t by 8 €
(0,1) are performed until the condition is satisfied. From (2.14), it follows that
thk > B/(1 4+ A) since at the point

f=1/(1+\x))
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the line-search condition is satisfied, i.e.,

f&) = f(0) < —E\* —ix—log (1 — 1))
—A+log(1+A)

1 A2
< _Z
- 214+
< —aN
where the second inequality holds since
2?1
log (1 <z—— .
og(l+x) <=z R x>0
Since tpx > /(1 4+ A) we have
_ _ A2
k) — f(0) < — = —
f(to) — f(0) < Ofﬁl_l_)\ v

so for the n-th iteration we have

NOE
™ _ 0 M
7 =ap <1+/\(")> ‘

One can bound ™ for all the iterations of the damped Newton phase by lower bound-
ing the Newton decrement A with a certain constant n which is later determined
(i.e., A > 5 ). Thus the reduction in the value of f at each iteration during the
damped convergence phase is at least

2

n
= .
ol 61+n

(2.16)

This proves (2.9).

2.3.2 Quadratic convergence phase

Next, we show that we can use n = (1 — 2a))/4 to upper bound A in the quadratic
convergence phase. Suppose A < (1 — 2«) /2, then we have using (2.14) that

F) = f(0) < =X =AX—log(1- )
I 3
< —5)\ + A
< —a)i
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Therefore, the backtracking condition (2.15) is satisfied with t = 1 (i.e., a full step).
The second inequality follows from the fact that —z —log (1 —z) < 122 + 2 for
0<zx<0.81.

Assuming that 2("*Y) = 2 — V2 f(2™)~1V f(x(™), it is shown in [45] that if
AM(z™) < 1 and a full step is taken (i.e., t = 1), the following bound holds

(n))?
)\(:L‘(n+1)) < )\(1’ )

Therefore, if A(z™) < 1/4, then A(z™+V) < 2X\(z™)” which vields that (2.10)
holds when A\(z(™) < n. If we choose n = (1 — 2a)/4, then A\(z(™) < n < 1/4 implies
that A\(z("*V) < 1/4. A substitution of 5 in (2.16) gives that

_ap(l- 2a0)?

2.18
20 — 8« ( )

2.3.3 Final complexity bound

Combining the results for the two phases, an upper bound on the number of Newton

iterations gets the form

N < M+logzlog2(l)
g €
(s N oo !
B (aﬁ(l—Qa)2> (/=) p)+10g210g2(8)- (2.19)

This upper bound on the number of Newton iterations also holds for ECSCM

problems since it satisfies the following lemma.

Lemma 1 Consider an ECSCM problem and it’s degenerated UCSCM problem
(same problem, excluding the constraints). Assume the problems are solved using
Newton’s method. Any bound on the number of Newton iterations or the Newton’s
decrement for the un-constrained problem also hold for the equality-constrained prob-
lem if the bound’s dependence on the value of the objective function f and the equality
constrains Ar = b may be expressed in terms of f(z(?), p* and A™. Where f(z())
denote the value of f at the first iteration, p* denote the optimal value and A denote

the the Newton decrement at the n-th iteration.
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Proof: As shown in [45, Chapter 10], an ECSCM problem with variable x

minimize  f(x)
subject to Az =10

can be reduced into an un-constrained problem with variable z
minimize f(z) = f(Fz + )

where AF = 0 and 7 is any particular solution of Az = b. This problem is shown to
iterate the same as the original problem, having the same Newton’s decrement, step
direction and number of Newton iterations. The reduced problem is an un-constrained
s.c. minimization problem, therefore we can use bounds for un-constrained s.c. min-
imization problem. Since the Newton’s decrement, the number of Newton iterations,
the minimum of the objective function and the value of the objective function at the
first iteration are the same for the original and the reduced problem then the bound
will hold for both problems.

We note that the bound in (2.19) depends only on the backtracking line-search
parameters « and (3, and the required tolerance € in the minimization of the s.c. func-
tion f. Moreover, the term involving the repeated logarithm can be safely replaced
by a rather small constant (e.g., 6), so the bound essentially depends only on «, 3
and the initial value (). For typical values of o and 3, the constant that multiplies
f(z) —p* is on the order of several hundreds. For example, fora = 0.1 and 3 = 0.8,
the corresponding scaling factor in (2.19) is equal to 375. With tolerance ¢ = 107,
we obtain the following upper bound on the number of iterations used by Newton’s

method for an s.c. function f:
375(f(x©) — p*) +6.

For s.c. functions of the form f = — 3" log (b; — af ), where the vectors a and b are
i=1
randomly generated, simulated results indicate that the number of iterations scales
like
c(f(z?) —p*) +5 (2.20)
where the value of ¢ is nearly 1. Comparing these numerical results to the above upper

bound, it follows that the bound is fairly conservative. However, it captures what

appears to be the general form of the worst-case number of Newton steps required.
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2.4 Tightened complexity bounds on Newton’s method

and interior-point method

In this section, the convergence behavior of Newton’s method is further analyzed in
order to derive tightened upper bounds on the number of Newton iterations. The

tightening of the classical bound in Theorem 2 is done in two different approaches:

1. An analysis with pre-determined step size t (as opposed to the backtracking

line-search).
2. A refined analysis of the original bound for the backtracking line-search.

As in Section 2.3, we derive upper bounds on the number of iterations during
the damped and quadratic Newton phases, and then obtain an upper bound on the

overall number of iterations by adding these two particular bounds, i.e.,
bound __ bound bound
Nrotal < NTotal — “VDamped + NQuad :

Where Nggﬁ?sed and Ng‘;‘;ﬁd designate the upper bound on the number of iterations
during the damped and quadratic Newton phases, respectively.

The new bounds also scale like (2.20), but with a considerably smaller scaling
factor ¢ for the initial error ( f (33(0)) — p*). Next, these improved bounds are used
to get an improved upper bound on the overall number of iterations that is required
for an interior-point method in conjunction with Newton’s method and logarithmic
barriers.

The motivation for deriving these new bounds lays in its application in commu-
nication theory. The use of interior-point methods for decoding low-density parity-
check codes on linear channels was recently introduced in [51]. In chapter 3, we apply
these new tightened bounds to an IPM-based LP decoder in order to provide better

estimates for the decoding complexity of such decoding algorithms.

2.4.1 Theorem 4 - Complexity bound for ECSCM problems

with pre-determined step size

In this subsection and in the following one, we focus on tightening the classical analysis

using a pre-determined step size ¢, as opposed to the backtracking line-search. These
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tightened bounds reduce the scaling factor for the initial error ( f(z©@) — p*) by factor
of 10 to 100.

Theorem 4 [Parametric complexity bound for ECSCM problem solved us-
ing Newton’s method with a pre-determined step size ¢ |
Consider an ECSCM problem solved using Newton’s method with the following pre-

determined choice of (™ :

4 _ H/l\—(n) A >pn Damped convergence phase
1 A" <5 Quadratic convergence phase

where 0 < n < %5 ~ 0.3819 is a free parameter. Let 2(*) be the initial point used for
Newton’s method. Then the number of iterations required to find p* with accuracy e

is upper bounded by

Nrotar < 1 (f(2©) = p*) + ¢ (2.21)
where
1
C e —
LT —log(1+ 1)

o= e (= )| o2

Proof: See Section 2.5.1

By changing the bound parameter € (0,0.381...), one obtains a tradeoff between
the two terms in (2.21) as is evidenced in Table 2.1 and Fig. 2.4.

While increasing the value of ) towards 0.381, the scaling factor of the initial error,
c1, is decreased whereas the additive constant ¢, is increased and tends to infinity.

In Fig. 2.5, the parameter 1 which optimizes the bound is plotted versus the initial
error f(z(®)—p* . It can be seen that for most of the values of f(x(?))—p*, the optimal
value for 7 is between 0.378 to 0.38 (practically this graph is meaningful only after
applying the normalization scaling described in remark 5). This result is very narrow

max

and close to n™®*. This indicates that c; is dominant compared to c;. Thus the use

of large values of n (e.g., n = 0.378) are preferable.
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Figure 2.4: The coefficients ¢; and ¢, in the upper bound on the number of iterations,

as given in (2.21) and (2.22) for some values of the free parameter n € (0,0.381). The
additive constant ¢y in (2.21) refers to e = 1071,
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Figure 2.5: The optimal value of 7 versus the initial error f(2(®)) —p* when the bound
in Theorem 4 is considered.
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Ui C1 C2
0.250 [ 37.2 ] 5
0.289 | 283 | 5
0.322 [ 33.1] 6
0.353 | 19.7 | 7
0.378 | 17.3 | 11
35 1171 | oo

Table 2.1: The coefficients ¢; and ¢, in the upper bound on the number of iterations,
as given in Theorem 4.

Remark 4 We note that a predetermined choice of ¢ is a suboptimal choice compared

to exact line-search. Thus, the upper bounds derived also apply to exact line-search.

Remark 5 Scaling of the objective function f(z) and the desired tolerance ¢ by
a factor k > 1 results in an equivalent problem with identical number of Newton
iterations. However, the number of Newton iterations in the bound above scales
linearly with f(z) — p* rather then being invariant to scaling in f(z). This can be
resolved by applying a normalization scaling to f(x) (in a manner that conserves the
s.c. property) before applying the bound. For example, consider a function f(x) that
fulfills the inequality
[FD@)] < ef"(@)*2.

Multiplying the function by the constant k = % results in the function f(z) = kf(z)
which complies with the s.c. inequality (6) with equality (see [45, p. 498]). In addition
a tighter bound is now obtained, since applying the bound on the normalized version
(ie., f(z) = kf(x) and & = ke) of the original problem will tighten the first term of
the bound by a factor k£ with minor effect (if any) on the additive term.

2.4.2 Theorem 5 - Complexity bound for ECSCM problems

with an improved pre-determined step size
Theorem 5 [Parametric complexity bound for ECSCM problem solved us-
ing Newton’s method with an Improved pre-determined step size ¢t | Con-

sider an ECSCM problem solved using Newton’s method. Let € (0,1) be chosen

arbitrarily, and consider the following pre-determined choice of the step size t™ :
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n n) __ 1

e Otherwise, if A(™ < 5, let

(n) — i (n)
t arg trer(l(l)g] c(t, A') (2.23)
where
t
a(t,\) =1-— T
1—(1-At)°
S I S
b(t, \) 7

Then the number of iterations required to find p* with accuracy ¢ is upper bounded
by

NTotal S C1 (f(x(o)) - p*) + 62
where ¢; is given in (2.22) for n € (0,1), and the additive term & (which is not

expressed in closed-form but calculated numerically) has the feature that it tends to

infinity as we let n — 1.
Proof: See Section 2.5.2.

By changing the parameter 7, we perform a tradeoff between c¢; and ¢ as shown
in Table 2.2.

We note that with the improved choice of ¢, the parameter n can be chosen close
to one thus tightening the term c¢; considerably. This property of the additive term
Co as above is in contrast to ¢ in Theorem 4 which tends to infinity as we let n tend
to 0.381 from below.

2.4.3 Theorem 6 - Complexity bound for ECSCM problems

with backtracking line-search

In this subsection, we provide a bound on the number of Newton iterations when

solving an ECSCM problem using Newton’s method and backtracking line-search.
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n C1 Co

0.250 | 37.25 | 4
0.381 | 17.18 | 5
0.700 | 5.90 | 10
0.900 | 3.87 | 35
0.990 | 3.31 | 392
1.000 | 3.26 | oo

Table 2.2: The coefficients ¢; and ¢, in the upper bound of Theorem 5 for some values
of the free parameter n € (0,1). The calculation of the additive constant ¢, is given
for an accuracy of ¢ = 107! in the calculation of p*.

This Theorem is an improved version of the classical result given in Theorem 2. The
new Theorem tighten the scaling factor of f(z) — p* by factor 10-100 (Depending on

the backtracking line-search parameters) as compared to Theorem 2 .

Theorem 6 [Improved complexity bound for ECSCM problems solved with
Newton’s method and backtracking line-search |
Consider an ECSCM problem solved using Newton’s method and backtracking
line-search. Let o € (0,1/2) and 3 € (0, 1) be the parameters of the backtracking line-
search. Let nyayx € (0, 3’2‘/5) be a free parameter and define 7 = min (1222, 1, ).
Then the number of Newton iterations is upper bounded by

Ntotal S N]gglrggled + N(Sil;gd (225)

where

o ().

Proof: See Section 2.5.3.

The parameter 1. is used to make Ngﬂ‘;ﬁd be finite. If n was not bounded by

Nmax, then for a < %5 ~ 0.19 the value of n was larger then 3_2\/5, this would cause

the bound for Nguaq to diverge to infinity.
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Figure 2.6: The term N5oui® in (2.25) versus o for tolerance € = 107'°. The behavior
of the bound can be classified into two cases depending on the value of «.

As seen in Figures 2.6 and 2.7, the bound above can be classified into two cases

depending on the value of a.

e Case A -a < %% The value of n is bounded by 7., in order to limit the

value of N3ouid. In this case Ngom® is invariant to changes in . The value of

bound
j\G)aniped

decreases as we increase the value of a.
e Case B -a > %ﬁﬂ The parameter 7. does not affect the bound. In this

11-2c
2 11—«

Nbound

Damped iICTEASES as we increase the value of

case n = and the value of

Q.

Figure 2.7 plots the term for the damped phase in the improved bound, as com-

bound

pared to the original bound. The improved bound receives its minima of % =

<ﬁ1)2< 4 ) >~ 35.27 at o = Y17 = (.21, The original bound also shows a
VIT-3 ) \5-V17 4

minima around a =~ 0.2, however it is almost 10 times looser compared to the im-
proved bound. If we let @« — 1/2 or @ — 0 the original bounds loosens much faster
then the improved bound. We note that the dependence of the improved bound on
« is very flat around its minima. This weak dependence on the value of « coincides

with simulated results that show small changes in the number of Newton iterations
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Figure 2.7: Improved (2.25) and original (2.19) bound for Npamped versus c«. The
bounds are scaled by factor f(z(®) — p* and shown for 3 = 1 and 7., = 0.38.
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when changing a.

2.4.4 Theorem 7 - Bounds’ extension to equality and in-
equality constrained minimization using interior-point
methods

In this subsection, we extend the results given in Theorems 4, 5 and 6 for an ECSCM
problem to the case of an IECSCM problem (i.e., problem with inequality constraints).
The theorem assumes that the problem is solved using interior-point methods with

logarithmic barrier.

Theorem 7 [Bounds’ extension to equality and inequality constrained min-
imization using interior-point methods]

Consider an IECSCM optimization problem. Assuming the problem is solved using
an interior-point method (IPM) with logarithmic barrier (where the parameters of
the outer iterations are set to t°), ;i, and the inner iterations are performed using

Newton’s method), then the number of Newton iterations is upper bounded by

Inequality __
NTotal - NouterNinner_l']Vinitial S |7

log (m/(gt(o)))—‘ (m (n—1—1log ) n c) N
log 11 g
The numbers v and ¢ are calculated by excluding the inequality constraints in the
original problem and applying the appropriate bound in Theorems 4, 5 or 6 depending
on the method t is calculated. The numbers v and ¢ are extracted by comparing the

bound to the form ” Npptar < W + ¢
Proof: See Section 2.5.4.

Remark 6 We note that the bound on Ny, is independent of ¢, suggesting that
the number of inner iterations does not change much from one outer iteration to the

next.

2.5 Proofs of Theorems

In this section, we provide proofs to the theorems introduced in Section 2.4. The

proofs of Theorems 4, 5 and 6 are given for UCSCM problem (disregarding the equality
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constraints of the original problem). Using Lemma 1, the proofs can be extended to

an ECSCM problem without any change.

2.5.1 Proof of Theorem 4

The proof consists of an analysis of the damped and quadratic convergence phases of
the Newton method.

Damped convergence phase

Using (2.14), a bound on the reduction in the value of f at the n-th iteration is

obtained
Af(t(”)) = f(m(n))_f(x(nﬂ)) - f(O)—f(t(”)) > () ()\("))2+t(”)/\(”)+10g (1 — t(n))\(n)) )

The maximization of the lower bound on A f(¢(™) is obtained by nulling the derivative

with respect to ¢ . This gives the equality

2 A 1
(n) (m) _ 7~ (n) —
() +20 — —amsar = 0= =
Therefore
AF(EM) = AW —log (1+ ™). (2.26)
This justifies the choice ¢t = ﬁ as a predetermined value of t™. Since an

explicit expression of A for any iteration, in terms of the parameters of the Newton’s
method and the function f, is not available, then (similarly to the classic analysis)
we lower bound A(™ in the damped convergence phase by a constant n which is later
determined. Since (2.26) is monotonically increasing with A then

Af(t(”)) > min ()\(") — log (1 + )\(”))) =n—log(l+mn).

A>n

Hence, the number of Newton iterations during the damped phase is at most

f(2©®) —p
n—log (1 +mn)

Ndamped S

This proves the expression for ¢; in (2.22).
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Quadratic convergence phase

We now show that once A < 1, a choice of ¢ = 1 yields a double exponential decay of
A which results in a very fast convergence to the minimal value of f (denoted by p*).
It is shown in [45] that if we choose t = 1, the following bound holds

)\(x(n+1)) < )\(,’L’(n)) i
(= A)

Using the bound in (2.27), we can ensure a decay if A(z™*1) < eA(z(™) where ¢ < 1.
By taking the limit ¢ — 1, we get ﬁ = \= " = %5 = 0.381. Increasing the
value of n tightens the bound on the number of iterations during the damped phase.

for Mz™) <1 (2.27)

However, in the vicinity of 0.381, the bound for the quadratic phase becomes useless
because it doesn’t converge.

Denote a = ﬁ where i € (0,0.381). If A\(x) <7, then using (2.27) we get that
Az ) < w £ aA(x™)2. Applying this inequality recursively gives

n)?
-k
aA(z) < (aA(z®))" T, 1>k (2.28)
At the final iteration X is very small (in the order of /¢ ), thus we may use the
following inequality (see [45, Eq. (9.49)]):

F@Oy —p < Aa™)? WA <0.68. (2.29)

Combining (2.28) and (2.29) gives

2l*k

(a)\(x(k)))

a ar<an a

Ve =1/fa0) —p < A=) <

(2.30)

An upper bound on the number of iterations during the quadratic phase is obtained

by solving the inequality for Nqyaq = | — k, which gives that

log, (a+/e
2

Ceiling this expression and substituting a = ﬁ proves the term for ¢y in (4).

2.5.2 Proof of Theorem 5

Similarly to the classical analysis, we address in the following the two convergence

phases of the Newton method.
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Damped convergence phase

As before (™ = ﬁ maximizes the bound for A f (t(")*) which results in A f (t(")*)

A" — Jog (1 + )\(”)). Using A > pn for the damped phase we get 7 <
1 —log (1+n)

IN A

Quadratic convergence phase

The proof relies on the following lemma:

Lemma 2 Let f : R" — R be a strictly convex s.c. function. Suppose that \(x)t < 1
and define xT = x +t (—VQf(x)AVf(a:)) = x+tAx,;. Then the following inequality
holds

AA(Z)) < c(t,\(z)) M)t < 1. (2.32)
where

at, ) =1— 1_tAt

i =1 - =)

ot 3) = 2o XL BN, (233

Proof: See proof of Lemma 2 in Appendix A.

Since minimizing c(¢, A(z)) maximizes the decay rate, the best predetermined choice
for " using this bound is to use t™ = t,.(\) = arg minge 1) ¢(t, A). Figure 2.8
plots the decay rate c(tpre, A) and t,.. Versus A, as given in (2.24) and (2.23) respec-
tively. The figure shows that the condition for decay, c¢(fpe, A) < 1, holds for A < 1.
Therefore the improved choice of ¢, results in a bound that converges for values of
7 approaching one.

In order to compute the bound on the number of Newton iterations in the quadratic
phase using this choice of ™ one needs to count numerically the number of iterations

required to apply inequality (2.32) recursively starting from A = n until A < /e. This
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Figure 2.8: The function ¢(t = tpe, A) and ¢, Versus A, as given in (2.24) and
(2.23) respectively. The line 1.6 is also plotted to show it upper bounds the function
c(t = tpre, A).
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method can be simplified by performing most of the counting analytically. Figure 2.8

shows that the quadratic phase has two convergence sub-phases:

1. Double exponential decay (i.e., A < 0.55) - For small values of X\ | ¢, ~ 1
and c(tpre, A) is tightly upper bounded by the line 1.6\. Therefore \(z™+V) <
1.6A(2(™)? and as in the proof given in Theorem 4, we have a double exponential
decay. We can use (2.30) with @ = 1.6 to bound the number of iterations in
this sub-phase

log, (1.64/¢)
N ouble exponentia, =1 S 1 " . 2.34
Double exponenial (¢ 6) [ng (log2 (1.6 min(n, 0.55))) (2.34)

Le., for n > 0.55 and € = 107'% the bound is Npouble exponential < 7-

2. Slow exponential decay - For higher values of A, .. approaches zero and
¢(tpre, A) 1s rather constant (but approaching 1). Therefore the decay rate is
much slower. This can be seen as a transition phase between the damped phase
and the double exponential phase. The bound on the number of iterations in
this sub-phase has to be calculated numerically by applying (2.32) recursively
starting from A = n until A = 0.55. The numerical result for this calculation is

given in Figure 2.9

The term ¢, is the sum of the results from the two sub-phases ¢2 = Npouble exponential +

N, slow exponential

2.5.3 Proof of Theorem 6

Similarly to previous proofs, we address in the following the two convergence phases
of the Newton method.

Damped convergence phase

Let tpx € (0,1] denote the first value of ¢ which satisfies the backtracking line-search
exit condition (2.15), where an initial value of ¢ = 1 is used and consecutive multipli-
cations of ¢ by 8 € (0,1) are performed until condition (2.15) is satisfied. Since the
backtracking condition is satisfied at ¢ = ty, then Af(t(™) is lower bounded by

AF(E™) = f(2™) = f) = [0) = F(t™) > arfy). (2.35)
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Figure 2.9: Bound on the number of iterations in the slow exponential decay sub phase
vs 7. The bound on the number of iterations in this sub-phase has to be calculated
numerically by applying (2.32) recursively starting from A\ = 7 until A = 0.55.
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In order to lower bound the value of ¢, we shall use the following lemma:

Lemma 3 Let f be as.c function minimized using Newton’s method and backtracking-
line-search. Let to € (0,1] denote the largest value of ¢ which satisfies the back-
tracking exit condition in (2.15). Then fq is lower bounded by

texit > min (1, %) (2.36)

Where G(«) = 2(1 — «) and X denotes the Newton decrement.

G(a)

Proof: First, we show that { = satisfies the backtracking exit condition

T+AG(a)
n (2.15).
@ L )
FO) = F(0) < —iA2—ix—log(l — i)
® o - i\ )
O 2 i —log (14 —2
Og( 1— i\
© . _q
< tA[—A—Hﬂ}
1— i\
D a2

where (a) follows from (2.14), (b) holds using the equality — log(l z) =log (1+ %)

with 2 = M, (c) follows from the inequality log(1 + z) <  — ?F (Valid for = > 0)
with x = % and (d) follows by substitution ¢ = % Hence { satisfies the exit

condition in (2.15).

Define g(t) = f(0) — f(t) — aX?t . Since g(0) = 0, g(f) > 0 and g(t) is a concave
function (as a sum of two concave functions), then if ¢ € [0,], then g(t) > 0 which
implies that ¢ satisfies the backtracking exit condition. Therefore if £ > 1 then the
exit condition is satisfied for ¢ = 1 as well. We conclude that min(1,#) € (0, 1] satisfies

the exit condition and therefore it is a lower bound on ;.

Since oy is the largest value of t that satisfies the backtracking line-search exit
condition, and the condition is checked only at values of the form t = g (k € Z*),

then ty, = [logs(texit) | Thig result can be lower bounded as follows
fo = 5[1og,3(texitﬂ > fltlogsltest) — gp (2.37)
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Using equations (2.35), (2.37), Lemma 3 and A > 7 = min (; 2 ] — ﬁ)

we get
FO) = FED) > a(Am)2m
Z a()\(” ) 5tex1t
G
> Ozﬁ()\(”))Zmin (1, 1—1—)\((—732‘(04))
: G(w)
> 045772 min (1, TG(O[)) _

However, since n < ;11 25 then 5 ﬁ](g()a) < 1 and min (1,%) = 1. Therefore
f(z® D) — f (W) < —y = —afn* which means that the number of iterations in
the damped phase is upper bounded by

NDamped S (238)

Quadratic convergence phase

Since A < n < %11__207 then inequality (2.36) becomes tey¢ > 1. This means that a

full Newton step is taken (i.e., ¢ = 1). Since in addition A < n < 1, then inequal-
ity (2.27) holds. As shown in the proof of Theorem 4, it follows that the number

of Newton iterations during the quadratic phase satisfies the bound in (2.31). This
3— f

Therefore, in order to make the bound finite,
0,55%)

bound diverges to infinity as n —
the expression for 7 contains a m1n1m1zat10n with 7max € (0, . Combining this
bound with (2.38) results in a bound on the total number of Newton iterations as

argued in (2.25).

Remark 7 As shown in Figure 2.10, by observing the Newton decrement A\, we can
trace the appearance of three phenomena concerning the convergence of the Newton
method:

1. A < A\, = 32222 : From this point on, a full Newton step (i.e., ¢ = 1) is assured.
A< maX . From this point on, a double exponential decay (i.e., AHD <

(n)
< A ) is assured.

1— Tmax
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Figure 2.10: Consider Newton’s method with backtracking line-search. By observing
the Newton decrement A\, we can trace the appearance of three phenomena concerning
the convergence of Newton’s method . From a certain value (and below), it is assured
that the backtracking line-search chooses a full step. Similarly, below the value of
Nmax, @ double exponential decay is assured. Next, below /€ it is assured that the
current iterate is at most € sub-optimal compared to p*.

3. A < \. = /2 : From this point on, tolerance smaller then ¢ is assured.

The transition between the damped to the quadratic convergence phases occurs when

the first two conditions are satisfied.

2.5.4 Proof of Theorem 7

The following proof is similar to a proof given in [45]. It is repeated to show that it
still holds as an extension for the newly derived bounds.

Consider an optimization problem as described in Theorem 7. Solving the prob-
lem using interior-point methods (IPM) requires solving a series of un-constrained

problems with parameter ¢ :

minimize tf(z) + B(x) (2.39)
subject to Ax =10 |
where m
—log (= fi(x)).
i=1
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It can be shown that the solution to this problem z*(¢) is m/t sub-optimal. Therefore,
it becomes more accurate as t grows. If the parameter ¢ is increased by factor p at

each outer iteration, then, the desired tolerance ¢ is achieved after exactly

(2.40)

| log (m/et®)
Nouter — {W

centering steps, plus the initial centering step. Each outer iteration involves solving an
equality-constrained optimization problem with objective function f (x) = pt- f(x)+

B(z). As a starting point, we use the solution from the previous outer iteration x*(t).

To lighten the notation, we use z to denote 2*(t) at the current outer iteration, and
xt to denote z*(ut) at the next iteration. We use A and v to denote A*(t) and v*(¢),
respectively. The self-concordance assumption implies that the number of Newton

inner iterations required to compute x* = x*(ut) starting at x = 2*(t) is bounded by

where v and c are derived from the bound for the ECSCM problems which result by
excluding the inequality constraints. We can bound this expression in terms of m

and p.
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ptfo(z) + B(z) — pt fo(x +) — B(z™)

@ it fo(x) — ptfolx +§:bg E:bg —fi(x
O it fox) — pt folz +2)% 2)%1/At
D it o) — pit ol z:k% —pAitfi(zh)) —mlog p
< ptfol) — ptfola +m2}ﬁ —m —mlog

(;)Mtfo(x) —put (fo(f) + Z Nifi(z®) +vT (Azt - b)) —m —mlog
=1

(0
< ptfo(z) — ptg (A, v) —m —mlog u

(i —1—log )

where (a) follows from the expression for the logarithmic barrier B(z) = — Z log (— fi(x)),

(b) follows from the equalities \; = —1/ (¢tf; (x)) shown in [45], (c) follows from loga-
rithm rules , (d) follows from the inequality log(a) < a — 1 for a > 0, (e) holds since
Axt =1b, (f) follows from the definition of the dual function given in [45]

g\ v)= mf( Z)‘fl Az—b)<f0 Z)\f, ( +—b)

, and (g) follows from the equality g (A\,v) = fo(x) —m/t. The conclusion is that
Ninner < m(ﬂ —1- log,u) +c

~
Combining (2.40) and (2.42) results in the following bound on the total number

of iterations :

(2.42)

Ntotal = NouterNinner + Ninitial

{bg (m/et(o))“ (m (u—1—log )

log pu gl

IN

+ C) + Ninitial
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2.6 Numerical results

In this section, we provide numerical results concerning the convergence of Newton’s
method. It is shown that although the improved bounds on the number of Newton
iterations are 1-2 orders tighter compared to the original bounds, they are still very
loose, especially in the damped phase. Using the empirical results, we point out what
steps in the derivation should be improved in order to further tighten the bounds. The
numerical results are shown for an un-constrained minimization of an s.c. function
f :R™ = R of the form

f(x)=clz — Z log(b; — a! ) (2.43)

solved using Newton’s method with tolerance e = 1071°. The problem parameters a;

and b; were randomly generated and the problem’s size was (m,n) = (1200, 450).

2.6.1 Predetermined step size t

The optimization problem described above was solved using Newton’s method with
a pre-determined choice of ¢, as given in Theorem 4 with parameter n = 0.35 and as
given in Theorem 5 with parameter n = 0.8.

As seen in Figure 2.11, the two methods show similar behavior (with minor dif-
ferences at the quadratic phase). The reason is that Newton’s method iterates most
of the time in the damped phase. In this phase the choice of ¢ is exactly the same
for both choices of pre-determined t. We conclude that the improved choice of ¢ is
mainly useful for tightening the bound on the number of iterations. Since the two
choices iterate almost the same, in the following we shall only analyze the numerical
behavior of Theorem 4 with parameter n = 0.35. Figure 2.12 plots the convergence
of a randomly generated problem (A single trial is shown that represents the gen-
eral behavior of the randomly generated problems). The problem was solved after
46 Newton iterations, of which the first 42 iterations are included in the damped
phase (i.e. A > n = 0.35) and the last 4 iterations are included in the quadratic
phase (i.e. A <n =0.35). As expected, the damped phase is characterized with slow

convergence, while the convergence in the quadratic phase is very rapid.
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Figure 2.11: Convergence of Newton’s method with pre-determined ¢ as given in
Theorem 4 with parameter n = 0.35. The results are given for an un-constrained
minimization, as given in (2.43) and as given in Theorem 5 with parameter n = 0.8.
The two choices of t show minor differences
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Figure 2.12: Convergence of Newton’s method with pre-determined ¢ as given in
Theorem 4 with parameter n = 0.35. The results are given for an un-constrained
minimization, as given in (2.43). The figure plots the distance from the infimum
f(z) — p*, the decrease in f at each iteration Af and half the square of the Newton
decrement \?/2.
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Applying the bound in (2.21) for the simulated problem results in the following
bound :

Niotal = NDamped + Nquad < 20(530) -+ 7 =10607.

The bound for Nquaa is relatively tight (7 iterations as opposed to 4), however the
bound for Npamped 18 still very loose.

From the numerical results of f(z) — p* compared to its lower bound A\?/2 used in
the derivation of the Theorem. It turns out that this bound is relatively tight. The
bound tightens as iterations increase and we enter the quadratic phase. This bound
was used in the derivation of the bound for the quadratic phase. The tightness in
this phase agrees with the overall tightness of the bound on the number of Newton
iterations in the quadratic phase.

In the following, the reasons for the loose bound for the damped phase are inves-
tigated. In the proof of Theorem 4, the number of Newton iterations in the damped
phase was bounded by division of f(z) — p* by a bound for the convergence rate
at each iteration Af(z™) > A(x™) — log(1 + A(2™)) ( where A(2™) was globally
bounded by A(z™) > 7). Figure 2.13 plots this bound normalized by the numerical
result for Af(z(™). It is evident that the bound is extremely loose, which explains
why the bound on the number of iterations is loose. Also shown in the figure is the
same bound only this time A(z(™) was not globally bounded with A(z™) > 5 but
extracted from the numerical results. With A\(z(™) not globally bounded, the bound
on Af(z™) is relatively tight.

We conclude that the bound on the number of Newton iterations during the
damped phase is loose, mainly because of the usage of a global bound on A(z™) < 7.
We can assume that if a tight bound on A(2(™) at each iteration was used, then the
bound on the number of iteration would be only 10 to 20 percent larger than the
numerical results.

Also shown in Figure 2.13 is the Taylor approximation for the rate of convergence
Af(t) = f(z) — f(z +tAzy) = (1 —1t/2)N> . Fort = 715 this approximation proved
to be extremely accurate, with error < 0.05%. The important thing to notice is
that it has the same general behavior as our bounds for Af(t). This shows that the
worse-case behavior is similar to the average case behavior, thus our bounds predict
the general behavior of the convergence rate. This approximation can be used in an

average case analysis of the convergence rate of the Newton method.
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Figure 2.13: Bounds for A f(x) normalized by the Numerically simulated A f(x). The

results are for a function of the form given in (2.43) with t = 5
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Figure 2.14: Convergence of Newton’s method with backtracking line-search. The
figure plots the distance from the infimum f(z) — p*, the decrease in f at each
iteration Af and half the square of the Newton decrement \?/2.

2.6.2 Backtracking line-search

We now examine the bound on the number of Newton iterations in Theorem 6 when
using backtracking line-search with line-search parameters o = 0.2 and § = 0.8.
Figure 2.14 plots the convergence of a randomly generated problem (for comparison
the same problem simulated in the subsection about predetermined ¢ is simulated
here). The problem is solved after 8 Newton iterations, of which the first 4 iterations
are included in the damped phase (i.e. A > n = 0.35) and the last 4 iterations are
included in the quadratic phase (i.e. A < n = 0.35). Applying the bound in (2.25) for
the simulated problem results in Niotal = NDamped + Nquaa < 37 % (530) + 11 = 19621.
The bound for Nquada is relatively tight (11 iterations as opposed to 4), however the
bound for Npamped is still very loose. In the following, the reasons for the loose bound
for the damped phase are investigated. In order to bound the number of iterations
in the damped phase, we used the backtracking exit condition as a bound on the

convergence rate at each iteration Af(z) > tal?>. We note that in the proof, the
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Figure 2.15: Lower bounds for Af(x) normalized by the simulated Af(x). The
function is of the form given in (2.43) solved with backtracking line-search

values of A and t were globally bounded.

Figure 2.15 plots several bounds on A f(x), normalized by the numerical result for
Af(x). Similarly to the case of predetermined ¢, the use of global bounds for A and
t is the main reason for the bound being loose. In order to investigate other reasons,
the bounds plotted in the figure are given with A and ¢ extracted from the numerical
results. The figure suggests that the backtracking exit condition bound has the same
general behavior as the numeric Af(z), but it is approximately «/0.5 times looser.
We conclude that in practice as shown later, the exit condition is usually satisfied
even without multiplying ¢ by  which results in ¢ ~ 1. Another potential reason
why the bound might be loose is the case that the minimized function is not minimal
s.c.. The bound on Af(z) which follows from the s.c. definition is also plotted. It
can be seen that for small A the s.c. definition bound predicts Af(x) with great
accuracy. This means that at the vicinity of z*, the function f(z) is a minimal s.c.
function. Thus the bound can not be improved by simply multiplying the function

with a normalization constant as described in remark 5.
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Since the backtracking exit condition bound Af(x) > tal? is proportional to t,
it is important that the bound on ¢ is tight. Figure 2.16 plots the numerical result
for t and the bound on t; using (2.36) and tp, = [logs(texi) ]| Ag mentioned before,
numerically, the backtracking line-search algorithm usually terminates at the first
iteration resulting in ¢ ~ 1. However, the lower bound is much lower, predicting
multiple multiplication by #. We note that this bound was derived almost directly
from the s.c. definition, thus it is surprising it is not tight. The reason lies in the
domain of the s.c. inequality in terms of Af(z) > tA\+tA*+log(1—¢\) which is tA < 1.
As t — 1/) the right hand side of the inequality tends to minus infinity making the
inequality useless. This tendency to infinity causes the bound to choose values of ¢
which comply to the artificial constraint of ¢ < 1/, whereas in practice larger values
of t also satisfy the backtracking condition and therefore are favorable. This means
that any bound derived from the s.c. inequality cannot by tight for A > 1. Since this
is the case during the damped phase, the bounds get loosen. If in the future better
bounds on A at each iteration are found then the fact that the bound for ¢ is not
tight for A > 1 might be problematic because the overall bound will still be loose. In
this case, only a combined improvement (i.e., a tight bound on A at each iteration
and a bound on ¢ that does no suffer from the artificial constraint of ¢ < 1/X) will

yield a bound on the number of iterations in the damped phase that is tight.

Number of Newton iteration vs. a and [

In the following, we explore the behavior of the improved bound on the number of

Newton iterations when changing the parameters a and .

e Dependence on « : Numerical results show little, if any dependence of o on
the number of Newton iterations. On the other hand the bound suggests that
the number of iterations has a minimum around o = 0.2 (See Figure 2.7).
This can be explained by the empiric fact that Af(z) ~ 0.5)\* even for t =
1. This means that for most cases the backtracking exit condition is satisfied
regardless the value of a. The bound shows stronger dependency upon «a because
it assumes multiplications by [ are required in order to satisfy the backtracking

exit condition.

e Dependence on 8 : The analytic bound suggests that the number of Newton
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Figure 2.16: Numerical results for ¢ derived using backtracking line-search for a func-
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is also plotted
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iterations scales like % Therefore the number of iteration decrease as § — 1.
As seen in Figure 2.17, in practice the behavior is more complex and has the

following properties

— Weak dependence on  for most values of 5. This can be explained by the
fact that usually ¢ = 1 is chosen and no multiplications by § are required.

In those cases, the value of S is meaningless.

— B — 0: The number of iterations increases rapidly (as the analytic bounds
suggests). This is because if a multiplications by 3 occurs, the value of ¢ is
reduced dramatically. Therefore a very small Newton step is taken. This

in turn slows down the convergence.

— [ — 1 : The number of iterations increases slightly. This behavior is not
intuitive, since f — 1 will follow in a very fine reduction in the value of ¢
until the backtracking condition is satisfied. Therefore, the largest possible
step is taken and a fast convergence is expected. However, ¢ might be
multiplied by  in order to get inside the domain of f(z). In this case
B — 1 will result in a step size that will lead us to the boundary of the
domain. Since near the boundary of the domain, f(z) is ill conditioned we

can expect slow convergence.

2.6.3 Comparison of backtracking line-search to predeter-

mined step size ¢

Comparing the bound on the number of Newton iterations with predetermined ¢ to
the bound with backtracking line-search, one could think that the solver using prede-
termined t will converge 10 times faster. Numerical results given in Figure 2.18 show
the exact opposite. The backtracking line-search proves to be more efficient numeri-
cally. We conclude that optimizing ¢ in order to minimize the bound on the number
of Newton iterations (as done in the case of predetermined t) does not necessarily
means that this is an optimal choice. The optimization was artificial because the
bound on the number of iterations does not reflect the full behavior of the number of
Newton iteration. The reason for this is that the bounds used, does not allow ¢ > 1/,

where in practice t\ >> 1 gives better results in the damped phase. In practice the
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Figure 2.18: Convergence rate of f(x) — p* for a problem solved using Newton’s
method. It is evident that the usage of the backtracking line-search results in less
Newton iterations compared to the usage of predetermined step size t.

backtracking algorithm does not suffer from this artificial constraint, thus it converge

faster during the damped phase. s

2.6.4 Conclusions regarding the numerical analysis

In the following, we summarize some of the main results and conclusions derived

throughout the numerical analysis.

e Although tighter compared to previous bounds, the numerical results show that
the improved bounds are still very conservative. Using a numerical analysis, we

point out the two main reasons that keep the bound from being tight

1. Global bound for A : The improved bounds use A > 7 in order to bound A
for all the iterations during the damped phase. The lack of a tight bound
for A\ at each iteration is the main reason why the bounds are not tight

at the damped phase.
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2. Domain of bounds : The bounds used have a domain of tA\ < 1 whereas
in practice it is preferable to choose tA > 1 in the damped phase. This
artificial constraint on t causes the choice of the predetermined ¢ to be
relatively far from optimal. As a result the backtracking bound for ¢, is
very loose for large values of A\, thus causing the bound on the convergence
rate Af(x) > taA? to be loose.

e The predetermined choice of ¢ results in a tighter bound as compared to the
backtracking bound, however numerically, the algorithm is less efficient. We
conclude that the predetermined choice optimizes the bound on the number
of Newton iterations but not necessarily the practical efficiency of the solver.
Thus, the optimized value of t is an artifact of the bounding method used. It
is last as an open question whether this bound is also valid for backtracking

line-search.

e It was shown empirically that for functions of the form (2.43) the Taylor series
approximation Af(t) = ¢(1 — t/2)\? predicts the convergence rate with great
accuracy. This expression has similar behavior compared to our bounds for
Af(t). This shows that the worse-case behavior is similar to the average case
behavior, thus our bounds predict the general behavior of the convergence rate.
This approximation can be used in an average case analysis of the convergence

rate of the Newton method.
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Chapter 3

Complexity analysis of IPM-based
LP decoders for binary linear block

codes

3.1 Short overview

In recent years, the idea of using Linear Programming (LP) as a decoder for linear
codes has attracted the attention of many researchers. This alternative decoding al-
gorithm is based on the fact that Maximum-Likelihood Decoding (MLD) can be seen
as a combinatorial optimization problem. In the following, we give some background
on the field of decoding binary linear block codes using Linear Programming. The
decoder presented is based on interior-point methods described in the previous chap-
ter. Using the tightened bounds on the number of Newton iterations, we provide
complexity bounds on the IPM-based LP decoder.

3.2 LP decoding background

In this section, we review the basics of LP decoding. The background provides basic

notations and major theorems that are essential for the analysis in this work.
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Figure 3.1: A high-level model of a communication link. The information word is
encoded into a codeword that contains redundant information. The codeword is sent
through the channel (transmission medium) where it is being corrupted. The decoder
applies an algorithm that tries to recover the original information from the received
word.

3.2.1 Linear block codes

In this thesis, we shall focus on binary linear block codes. A binary code C of length
n is a linear block code if C is a linear subspace of the vector space {0,1}". Recall
that a linear subspace of a vector space is any subspace closed under addition and

scalar multiplication, so a binary code C is linear if the following conditions hold
e All-zero codeword : 0" € C, i.e., the all-zero word belongs to the code.

e Linear property : For all pairs of codewords, if x',x € C, then (X' + X) 042 € C

where the mod 2 addition is done bit-wise.

Therefore, the code is a linear subspace of a vector space. This subspace can
be specified by the basis of the subspace. For our purposes, the basis is a linearly
independent set of codewords B = xM, ..., x®) each of length n, such that every
codeword in C can be expressed as the sum of a subset of codewords in that set.
The generator matrix G of a binary linear code is an n x k binary matrix whose

columns are the basis vectors. The encoder for a binary code simply multiplies the
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information word by the generator matrix G. Therefore,
C={Gi":ze{0,1}"}.

Every linear subspace C of dimension k has an orthogonal linear subspace Ct of
dimension n — k. This new subspace C* can be though of as a new code, and is often
called the dual code to C. This dual code also has a basis, and so we can write down
a generator matrix H for this code as well. Since we have < x,x* >= 0 for all x € C

and x*+ € C , it must be the case that for all x € C, we have
Hx =0,

and so we have

HGT =0.

The matrix H is called the parity-check matrix of the code C, and has the property
that a word x is in the code if and only if x is orthogonal to every row of H. The
matrix H is called the parity-check matrix because every row induces a parity-check

on the codeword.

LDPC codes

Low-density parity-check (LDPC) codes are a family of linear codes with a sparse
parity-check matrix. Mathematically, a family of codes (parameterized by their block
length n) is considered to be a family of LDPC codes if the maximal Hamming weight
of the rows and columns of the parity-check matrix stay constant as n grows.

We say a code is a regular LDPC(n, d,, d.), if the rows have a constant Hamming
weight denoted by d. and the columns have a constant Hamming weight denoted by
d,. The parameters d., d, are also called the check-node and variable-node degree
respectfully. A more general family of LDPC codes is the (n, A(z) £ 3, 'L, p(x) £
> pix™t) irregular LDPC family, where the rows’ and columns’ weights are not
constant. Considering the factor graph G of the code, \; and p; denote the fraction

of edges attached, respectively, to variable and parity-check nodes of degree 1.

65



3.2.2 The ML decoder

The design of a decoder is perhaps the most difficult task in the design of an error-
correcting code, especially those that approach the theoretical limits. Given a partic-
ular code C, a natural question to ask is: what is the best possible decoder, if our goal
is to minimize the word error probability (WER)? The maximum-a-posteriori (MAP)
codeword xpiap is the one that was most probably transmitted, given the received

vector y:

XMap = arg max Pr[x transmitted|y received]
xeC

Using Bayes’ rule, and the assumption that all information words have equal proba-
bility, the MAP codeword is the same codeword x that maximizes the probability y

was received, given that x was sent:

XML = arg nc1ax Pr [y received|x transmitted]
x€e
An ML decoder is a decoder that always finds the ML codeword. This is also often
called optimal decoding. For most codes, there is no known polynomial-time ML
decoding algorithm. In fact, the problem is in general NP-hard, and it remains NP-
hard for many families of codes used in practice. Therefore in most cases, one would
look for a sub-optimal (but efficient) decoder. The goal then is to show that the WER
of that decoder is still low. For example, the decoders most often used for LDPC codes
are based on belief-propagation algorithms (e.g., sum-product algorithm) [43], where
messages are iteratively sent across the edges of the factor graph of the code. This
decoder finds the ML codeword provided that the Tanner graph of the code contains
no cycles. However, cycle-free block codes are known to have bad performance [47],
thus when using this algorithm for LDPC codes with cycles, we search for a sub-

optimal (but efficient) decoder.

The ML decoder as a min-sum optimization problem

Given a particular received word y, we define the log-likelihood ratio ¢; of a code bit
z; to be:

t(y) =l (—Pr[W" = O]) |

Pr[%m = 1]
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The sign of the log-likelihood ratio determines whether the transmitted bit z; is more
likely to be a 0 or a 1. If z; is more likely to be a 1 then ¢; will be negative. If z; is

more likely to be a 0 then ¢; will be positive.

Theorem 8 [ML decoder as a min-sum optimization problem | For any
binary-input memoryless channel, the codeword of minimum cost is the Maximum-
Likelihood codeword.

XM, = arg max Pr[y|x| = arg min (Z &xi>

xeC xeC i—1

Proof: See Section 2.5 in [21].

This shows that the ML decoder can be written as an optimization problem.
However, since the feasible set is integer, in general no efficient search methods exist

and the decoder needs to calculate the cost function for all 2¥ possible codewords.

3.2.3 Relaxed ML decoder

As stated before, the ML decoder can be written as an optimization problem. How-
ever, in general its complexity is practically infeasible. In order to reduce the com-
plexity of decoding, a technique called relaxation is applied. The basic concept of
relaxation is to relax the definition of the feasible set from a discrete set to a subset
of an n-dimensional real space R™. For example, for a combinatorial optimization
problem written in the form of integer linear programming, elimination of the con-
straint that “a feasible point is integral” leads to a linear programming (LP) problem
that can be efficiently solved by a simplex method or an interior point method.

In our relaxation, we first let the set of feasible values to be between zero and one,
instead of binary. We will define some additional linear constraints on the variables
that are a function of the structure of the code itself, and obtain a feasible set which is
a polytope P C [0, 1]™. It is shown in [21], that the minimum of an LP problem with
a feasible set is a vertex of P. An extreme would be to choose P such that V(P) = C.
In this case, the relaxed LP decoder will output the codeword with minimum cost
codeword which is the ML codeword. Due optimal, this polytope is too complex to

represent for any code for which ML decoding is NP-hard. In order to reduce the
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Figure 3.2: A graphical representation of a proper polytope. The relaxation of the
domain creates fractional vertices called pseudo-codewords. Since the LP decoder
does not differ between codewords and pseudo-codewords, this fractional vertices are
the main reason for decoding errors.

computational complexity, we can choose a structured polytope that approximate the
optimal polytope. The choice of the polytope is now a tradeoff between performance

and complexity. An indicator for a good polytope is the property of properness.

Definition 10 [Proper polytope] We call a polytope P proper, if the set of integral

points in P is exactly the set C of codewords.; i.e.,
Pn{0,1}" =C.

Since the integer vertices of a proper cone are the codewords, then if an LP decoder
outputs an integer solution (codeword) then we know it outputs the ML codeword.
This property is called the ML certificate property. It is one of the unique advantages
of LP decoding.

As illustrated in Figure 3.2 , not all vertices are integers, therefore the decoder
might output a fractional solution. This fractional solutions are called pseudo-
codewords and are obviously not codewords. Since the LP decoder does not differ
between codewords and pseudo-codewords, this fractional vertices are the main reason
for decoding errors.

A popular choice for a proper cone for LDPC codes is a relaxed polytope of the con-

vex hull of C. We refer to the following choice as the fundamental polytope [21],[51].

Definition 11 [The fundamental polytope] Consider a code with parity-check

matrix H, and let
Ai = {] c [l,n] . hij = 1}

68



for i € [1,m], where h;; is the (i, j)-element of H. The set T;(i € [1,m]) is the set of

all subsets of odd size in A;, namely
T, ={S C A; :|S| is odd}.

The constraints for x = (xy, z9, ..., z,) € R,

Vie[lm], VSeT, 1+ (z—1)— Y x<0 (3.1)
tesS teAiNS
and
Viel[l,n], 0<z;<1 (3.2)

are referred to as the parity constraints and the box constraints, respectively. The

fundamental polytope P(H) is the polytope defined by
P(H) = {x € R" : x satisfies constraints (3.2),(3.1)}

For each one of the m parity-check equations that a codeword must hold a set of 24!
inequalities constraints are set. This parity constraints basically forbid words with
odd Hamming weight at the indexes where h;j = 1. The fundamental polytope can
be shown to be a proper polytope, therefore the ML certificate property holds.

3.3 Application of interior-point methods to LP

decoding of binary linear block codes

Here, we apply the interior-point method based on log-barrier functions to the relaxed
MLD problem. We provide an IPM-based LP decoder similar to the decoder given
in [50],[51]. Based on the complexity bounds derived in previous sections, we derive
an upper bound on the number of Newton iterations for the LP decoder. Similar
analysis with loosened bounds was presented in [50]. This analysis was valid only
for regular LDPC codes using the backtracking line-search whereas this analysis uses
tightened bounds, and it applies to general non-regular codes with backtracking, exact
or predetermined line-search. Next, we discuss the properties of the derived bound
in the context of LDPC codes.
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3.3.1 IPM-based LP decoder

Prly;|e;=1]
(LLR) with respect to codeword bit z;. Using Theorem 8, the LP decoder objective

function is given by

Consider a received word y, denote £;(y;) = In <M> as the log-likelihood ratio

flx) = Z&@i)xi- (3.3)

If we use the fundamental polytope as in definition 11, the resulting log-barrier

function B(x) includes parity-check constraints and box constraints and is given by

B(x) = Z Zln — 1—}—29&—1— Z T (3.4)

i€[l,m] SCT; tes teA;\S
= > gl > n[—(z; - 1))
Jelln] J€[Ln]

Therefore, in order to perform decoding of the received value, the IPM-based decoder
computes a sequence of points on the central path x*(¢). Each point is computed by

applying Newton’s method to the following un-constrained problem
x*(t) = argmin{t f(x) + B(x)}.

Denote M as the number of inequality constraints. The stopping criterion is satisfied

M
t

equation contributes 2%~! inequalities. Therefore, for a general linear code with

when == < e. The box constraints contribute n inequalities, while each parity-check

distribution p(z), the total number of inequalities is

max
dc

M=o+ | —2— >

1

[ ooy |

max
dc

i2i—1
piz = 2n +md;"® E
i
i=1

pi2
?

i—1

(3.5)

As a starting point for the initial centering, a word close to the final solution will
help the convergence of the optimization algorithm. An example for such a word
is the received word y. However, this word is not necessarily a feasible starting
point. Therefore, we use the choice x(©) = (1/2,1/2,...,1/2) as starting point. The
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following lemma justify this choice as a feasible starting point. It is a straightforward

generalization of the lemma from [51] to non-regular codes.

Lemma 4 Consider a binary linear block code with parity-check matrix H. If the
row distribution p(z) satisfies p, = 0 (i.e., the minimum row degree d™" is greater
then 2), then the point x(©) = (1/2,1/2,...,1/2) is a feasible initial search point (i.e.,
x € P(H)).

Proof: Clearly, x satisfies the box constraints (3.2). Therefore, we only need to prove

the lemma for the parity constraints (3.1). For any ¢ € [1,m], S € T; we have

1 1 A dmin 3
1+Z(§—1)— > 5:1—%31—C7§1—§<0.
tesS teA;\S

The last inequality follows from the assumption that p, = 0, since it implies that

|A;| > 3.
We summarize the IPM-based LP decoding algorithm as following

Definition 12 [IPM-based LP decoding algorithm] Consider a binary linear
block code with parity-check matrix H € R™*"™ with check node distribution p(z).

Given a received word y, compute the objective function f(x) using (3.3) and the

dmax

barrier function B(x) using (3.4). Let t := t© > 1,¢ > 0, M = 2n+md®*8 CZ %ﬁl
=1

1=

and x(© = (1/2,1/2,...,1/2) as the initial starting point.
Repeat the following steps (Outer loop)

1. Centering step : Compute x*(t) by minimizing V;(x) = tf(x) + B(x), starting
at x =: x(0.
Repeat the following steps (Inner loop)
(a) Compute the Newton step : Ax,; = —V2W,(x) 'V, (x).

(b) Stopping criterion : Compute the Newton decrement A\* = AxL, V2, (x) Ax,;.
If \2/2 <'¢, set x*(t) = x and quit.

(c) Line search : Choose step-size typ (e.g., backtracking line).

(d) Update : X := X + tjineAXps.

71



2. Update starting point : x(© := x*(¢).
3. Stopping criterion : Quit if M/t < e

4. Increase t : t := ut.

If x*(¢) is an integer then xpp = x*(t), else report an error.

3.3.2 Complexity analysis of an IPM-based LP decoder

We note that the solved problem is an IECSCM problem, therefore we can apply the
complexity bounds we developed earlier in order to derive a bound on the number of

Newton iterations.

Theorem 9 [Bound on the number of Newton iteration for an IPM-based
LP decoding algorithm]| Consider the IPM-based LP decoding algorithm in defini-
tion 12. Denote fp,.x as an upper bound on |¢;(y;)|. The number of Newton iterations

is upper bounded by

N%(ia(}ecoder = NouterNinner + Ninitial
log (M/(t® M (u—1—1lo 1/2t00n
g (M/(t™)) ( (4 gu)+0)+ / e
log pu gl v

The numbers v and ¢ are calculated by excluding the inequality constraints in the
original problem and applying the bound in Theorems 4, 5 or 6 depending on the
line-search method chosen. The numbers v and ¢ are extracted by comparing the
bound to the form 7 Npota < w + 7.

Proof: The proof follows closely the proof given in [50] for a regular LDPC code
using loosened bounds for the number of Newton iterations. We note that the LP
decoding algorithm applies to the barrier method of an IECSCM problem. Applying
Theorem 7 proves the first part of the bound. Next, we consider the second term of
the bound that refers to the number of Newton iterations during the initial centering
step, i.e., from x(© = {1/2,1/2, ..., 1/2} to x*(t©).
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This problem is an UCSCM problem, therefore, depending on the line-search
method, Theorem 5, 4 or 6 can be applied.

Tyo (x) — Wy (x*(¢9))
g

Ninitial < +c (3.6)

The numerator can be upper bounded by

U0 (x) = U0 (x) = tOf(xD) + Bx?) -1 f(x*) - B(x")

—
o
Naig

< tO9f(x") + B(x*) -tV f(x*) — B(x")
= 1O (12— a))
=1
(b) ¢0) 2
< 5 Z 4]
=1
(c) +(0)
S TEmaxn

where (a) follows from the fact that x® = {1/2,1/2,...,1/2} is the minimizer of
B(x) (i.e., VB(x®) = 0), (b) follows from |z; — 1/2| < 1/2 and (c) follows from the
definition of ¢,,,x as an upper bound for |/;|. This result combined with 3.6 proves

the required bound on Nj,itial-

Remark 8 For regular LDPC codes with check node degree d., the expression for

the total number of inequalities in (3.5), can be degenerated to

M =2n+m2% ™t =n(2+ (1 — R)2%71).

3.3.3 Parameter-optimized complexity bound for LP decoder

In this subsection, we use the bound on the number of Newton iterations derived in
Theorem 9 and optimize the search parameters ;¢ and t©. It turns out we can reduce
the complexity of the bound with respect for M if we by make p and ¢ a function
of M.
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Theorem 10 [Parameter-optimized complexity bound for LP decoder]
Consider the bound in Theorem 9, for a code with M > <. Then, the bound is

20
minimized (approximately) for the search parameters
2cy
=1 — 3.7
Iz +A/ 37 (3.7)
4(0)x 32M ey
" max

Using this optimized search parameters, the number of iterations is bounded by

. ScM M lo.n
total S In + 1
ol 32cy €

+c (3.8)

Proof: Consider the bound in Theorem 9. It can be verified numerically that for

M > ¢, the bound is minimized for values of i near the value 1.
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Therefore, if we set u = 1 4 6, then we can simplify the bound with very good
0—In (14+8)+cy/M ~
In (149) -

. Unfortunately, as shown in Figure 3.3 the approximation lower bounds the

accuracy by replacing In(1 + ¢) with polynomial expressions, i.e.,
82 /2+cy/M
5

original expression. By multiplying it by 2, it can be shown that we get an upper
bound that holds for F < 20. This results in a slightly loosen version of the original
bound (by factor 2)

log (M /(t® M(p—1-1 1/2t0¢
N%fta(}ecoder S |Vog( /(8 ))—‘ < (,LL Ogﬂ“) +C) + / max TV +e

log Y Y

IN

(0) M(+2 (0)
2<log(M/(6t ))) < 2>+c +1/2t Enlaxn+c

J y Y

To get the optimized values presented in 3.7, we nullify the derivative of the loosen
bound with respect to t(®) and §. Using this optimized search parameters, the number
of iterations is bounded by (3.8).

Remark 9 Practically, good values of the parameter u lie in the range 2-100. We
would not use the value p* =1+ \/Tﬁ , which is far too small. Our main interest
in this value of p is that it (approximately) minimizes our (very conservative) upper
bound on the number of Newton steps, and yields an overall estimate that grows as
VM , instead of M. This result is an artifact of the bounding method. Even with the
improved values for ¢, vy, the bound on the inner iterations is very loose and increases
very fast with respect to f(x) — p*. By setting u very close to 1, the starting point
for each inner iteration is very close to the solution on the central path, thus lowering

the number of internal iterations required.

3.3.4 Properties of the complexity bound for LP decoder

We are now ready to discuss the behavior of our complexity bound. We will refer
to the bound in Theorem 9, and also to its optimized version in Theorem 10. When
comparing the two bounds, it is evident that the optimized bound in Theorem 10

increases much slower with respect to the code’s parameters.

e [Number of Inequalities - M ] : The number of inequalities is a measure

of the complexity of the fundamental polytope. As the number of inequalities
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is increased, the polytope is getting more complex, and better decoding per-
formance can be maintained. The bound in Theorem 9 scales like O(M In M),
whereas in Theorem 10 the bound scales only like O(v/M In M). Both bounds
show that there exist a trade-off between the decoding performance (represented
by the number of inequalities) and the decoding complexity (represented by the

number of Newton iterations times the complexity per iteration).

e [Noise level - /.., | : The level of noise in the channel is represented by
the value of f,,.x. The bound in Theorem 9 scales like O({pax), Whereas in
Theorem 10 the bound scales like O(In £yay).

Next, for the simplicity of the analysis, we shall assume the code is regular with
check node degree d.. In this case the expression for the number of inequality degen-

erates to

M =2n+m2% " =n(2+ (1 — R)2%7").

Next, we substitute this expression in the optimized bound of Theorem 10, and explore

its dependence on d. and n.

e [Block length - n | : Error-correcting codes that operate reliably at rates close
to the channel capacity suffer from the drawback of having large block-lengths
(due to sphere-packing bounds). It is therefore important that the decoding
complexity would have a reasonable scaling as a function of the block length n.
For general linear codes d.. scales like O(n). Since M scales like O(2%), then in
general the complexity is exponential in n. For LDPC codes d. is fixed (i.e., it
stays fixed irrespectively of n) thus M scales like O(n). Therefore, the bound
on the number of iterations scales like O(y/nlnn). However, in each Newton
iteration we need to calculate the inverse of the Hessian matrix V2, (x) € R™*".
For a general code this matrix has no structure, thus the computation requires
O(n?) operations. Fortunately, for LDPC codes, this matrix is sparse, therefore
computing its inverse usually requires only O(n) operations [45]. Therefore, the
total time complexity scales like O(n'® Inn), which is relatively low. We note
that this result is higher compared to a result by D. Burshtein [11] that provides

an LP decoder with number of iterations that scales like O(n).
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e [Check node degree - d.. ] : We note that M scales like O(29). This alone
makes the number of iterations to be exponential in d.. Therefore, the bound
suggests that the proposed LP decoder has long running times for codes with

high check-node degree.

Remark 10 We note that there exist alternative polytopes (see [21],[25]) that are
more suitable for high-density codes. For these polytopes, the number of inequalities
scales like O(nm +md? + d.d,). Since M scales like O(n?), the bound on the number
of iterations scales like O(n'®Inn). Computing the inverse of the hessian matrix
requires O(n?®) operations, thus the bound on complexity scales like O(n*®Inn). In a

similar manner, since M scales like O(d?) then the bound on the number of iterations
scales like O(d. Ind.).

Remark 11 We note that the time complexity of the IPM-based LLP decoder depends
not only on the number of Newton iterations but also on the complexity per iteration.
At each Newton iteration, we need to calculate the inverse of the Hessian matrix (i.e.,
inverting the matrix V2¥,(x) € R™"). In order to bound the overall complexity of

the decoder, one needs to bound the complexity involved in that inversion.

3.4 Comparison of the bounds

In the following, we compare the original bound by Wadayama given in [50] to the im-
proved bound given in this thesis. We consider an LDPC(1008,3,6) code transmitted
through an AWGN channel with %:2.0 dB. Moreover, for the IPM, the following
parameters are assumed : €mmer iterations = 107>, €0uter iterations = 1075, a = 0.3,8 =
0.5t =20 and p = 20.

Applying the original bound by Wadayama gives an upper bound of about 108
Newton iterations, as compared to about 107 Newton iterations when applying the
tightened bound for backtracking line-search. In practice, numerical simulations us-
ing the backtracking line-search show convergence after about 10?> Newton iterations.
Since in practice, we know that the predetermined step size and the optimized pa-

*

rameters p* and t©* only increase the number of Newton iterations, then we can
use the bound derived for predetermined step size with optimized p* and t(@* as a

bound for backtracking line-search. As seen in Table 3.1, applying the bound for the
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improved predetermined step size with ¢t(®) = 20 and p = 20 gives a bound of about
10% Newton iterations. Applying the bound for the improved predetermined step size
with the optimized IPM p* and t(©* gives a much tighter bound of about 10* New-
ton iterations. We conclude that the improved bound for backtracking line-search
tighten the bound by factor of 10 and the bound for predetermined step size results
in further improvement of factor 10. However, even with these improved bounds, the
upper bounds give a very conservative estimate of the number of Newton iterations
that does not reflect average case behaviors. In practice, the centering step requires
much fewer iterations to achieve reasonable convergence. However, these bounds can
be used as a theoretical basis to justify the low complexity of the LP decoder when
used to decode LDPC codes. Moreover, although not recommended practically, the

optimized parameters p* and ¢(©*

tighten the bound considerably, closing some of
the gap between the conservative theoretical bounds and the practical results for the

number of Newton iterations.

Source IPM parameters | Search method Iterations
Simulations (1, <>) (20,20) | (a, B) = (0.3,0.5) | 10
Original bound [50] | (u,t®) = (20,20) | (o, 8) = (0.3,0.5) | 108
Tightened bound | (i, @) = (20,20) | (a, 8) = (0.3,0.5) | 107
Tightened bound | (u, ) = (20,20) | Pre-determined ¢ | 10°
Tightened bound Optlmlzed Pre-determined ¢ | 10*

~—_ — — —

Table 3.1: Numerical comparison of different bounds on the number of iterations for
an IPM-based decoder. We consider an LDPC(1008,3,6) code transmitted through
an AWGN channel with SNR 2.0 dB.
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Chapter 4

Concentration of measures in
LDPC code ensembles

4.1 Short overview

This chapter considers concentration phenomena of LDPC code ensembles. The basic
concentration theorem of iterative message-passing decoding asserts that all except an
exponentially (in the block length) small fraction of codes perform within an arbitrary
small 4 from the ensemble average (where 0 is a positive number that can be chosen
arbitrarily small). Therefore, assuming a sufficiently large block length, the ensemble
average forms a good indicator for the performance of individual codes.

In Section 4.2, we provide some mathematical background about Martingales and
Azuma’s inequality. These mathematical tools will help us to derive concentration
results for ensembles of LDPC codes. Next, in Section 4.3, we provide briefly some
applications in coding and communication theory of the mathematical tools presented
in the previous section. Using Azuma’s inequality, we analyze the concentration of

measures in LDPC code ensembles.

e Section 4.4 provides a large-deviation analysis of the conditional entropy, and
it derives tightened inequalities as compared to the original bound by Méasson
et al. [8, Theorem 4].

e Section 4.5 shows concentration results on the number of erroneous variable-

to-check messages for Inter-Symbol-interference (ISI) channels. The analysis
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provides explicit expression for the exponential rate that is related to the con-
centration inequalities given in [3, Theorems 1 and 2|. It is shown that particu-
larizing these results for memoryless channels provides tightened concentration

inequalities as compared to [29] and [48].

4.2 Mathematical background about Martingales

and Azuma’s inequality

In this section, we present relevant mathematical background that is essential for the

analysis in this work.

4.2.1 Doob’s Martingales

This sub-section provides a short background on martingales to set definitions and

notation.

Definition 13 [Doob’s Martingale] Let (€2, F,P) be a probability space. A Doob’s
martingale sequence is a sequence Xy, X, ... of random variables (RVs) and corre-

sponding sub o-algebras Fy, F, ... that satisfy the following conditions:

1. X; € LY(Q, F;,P) for every i, i.e., each X; is defined on the same sample space
€2, it is measurable with respect to the corresponding o-algebra F; (i.e., X; is
Fi-measurable) and E[|X;|] = [,, [ X;(w)]dP(w) < oco.

2. Fo C F; C ... (where this sequence of o-algebras is called a filtration).
3. The equality X; = E[X;;|F;] holds almost surely (a.s.) for every i.

In this case, it is said that the martingale sequence {X;}"_ is adapted to the filtration

{Fitiso.
Remark 12 For every ¢

E[Xin1] = E[E[Xin|F]] = E[X]
so the expectation of a martingale stays constant.
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Remark 13 One can generate martingale sequences by the following procedure:

Given a RV X € LYQ,F,P) and an arbitrary filtration of sub o-algebras {F;},
let

X, =E[X|F] i=0,1,....

Then, the sequence Xy, X1, ... forms a martingale since

1. The RV X; = E[X|F;] is F;-measurable, and also E[|X;|] < E[|X]|] < oo (since

conditioning reduces the expectation of the absolute value).
2. By construction {F;} is a filtration.
3. For every ¢

E[Xi11]Fi]

- E[E[XU'}HHFJ

= E[X|F;] (sinceF; C Fiiq)
=X, a.s.

Remark 14 In continuation to Remark 13, one can choose
Fo={Q,0}, F.,=F
so that Xy, X1,..., X, is a martingale sequence where

Xo = E[X|Fo] = E[X] (since X is independent of Fy)
X, =E[X|F,] =X as. (since X is F-measurable).

In this case, one gets a martingale sequence where the first element is the expected
value of X, and the last element of the sequence is X itself (a.s.). This has the
following interpretation: At the beginning, we don’t know anything about X, so it
is initially estimated by its expectation. We then reveal at each step more and more

information about X until we can specify it exactly (a.s.).
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4.2.2 Azuma’s Inequality

Definition 14 [Bounded-difference martingales| Let a sequence of random variables
{X:}/_, be a martingale. This sequence is said to be a bounded-difference martingale
if there exists a fixed vector d = (dy,...,d,) of non-negative entries such that the

condition

X — Xia] < d;

is satisfied a.s. for every i € {1,2,...,n}.

Azuma’s inequality forms a useful concentration inequality for bounded-difference

martingales [24]. In the following, this inequality is introduced.

Theorem 11 [Azuma’s inequality] Let Xy,..., X,, be a bounded-difference martin-

gale with the associated vector d in Definition 14, then

2

r

), Vr>0.

4.3 Some Applications of Azuma’s Inequality in

Coding Theory

In the following, we shortly provide some examples of the use of Azuma’s inequality

for coding and communication theory.

4.3.1 Minimum Distance of Binary Linear Block Codes

Consider the ensemble of binary linear block codes of length n and rate R. The
average value of the normalized minimum distance is equal to

E[dmin (C)]

n

=hy' (1= R)

where h;' designates the inverse of the binary entropy function to the base 2, and
the expectation is with respect to the ensemble where the codes are chosen uniformly

at random (see [1]).
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Let H designate an n(1 — R) X n parity-check matrix of a linear block code C from
this ensemble. The minimum distance of the code is equal to the minimal number
of columns in H that are linearly dependent. Note that the minimum distance is a
property of the code, and it does not depend on the choice of the particular parity-
check matrix which represents the code.

Let us construct a martingale sequence Xy, ..., X,, where X; (fori =0,1,...,n)
is a RV that denotes the minimal number of linearly dependent columns of a parity-
check matrix that is chosen uniformly at random from the ensemble, given that we
already revealed its first ¢ columns. Based on Remarks 13 and 14, this sequence
forms indeed a martingale sequence where the associated filtration of the o-algebras
Fo CF C ... C F,is defined so that F; (for i =0,1,...,n) is the o-algebra that is
generated by all the sub-sets of n(1— R) x n binary parity-check matrices whose first i
columns are fixed. This martingale sequence satisfies | X; — X; 1| <1lfori=1,...,n
(since if we reveal a new column of H, then the minimal number of linearly dependent
columns can change by at most 1). Note that the RV Xj is the expected minimum
Hamming distance of the ensemble, and X, is the minimum distance of a particular
code from the ensemble (since once we revealed all the n columns of H, then the code

is known exactly). Hence, by Azuma’s inequality
2

P(|duin (C) — Elduin(C)]| > av/m) < 2exp (_%> Va0,
This leads to the following theorem:

Theorem 12 [The minimum distance of binary linear block codes]
Let C be chosen uniformly at random from the ensemble of binary linear block
codes of length n and rate R. Then for every a > 0, with probability at least

1 —2exp (—%), the minimum distance of C is in the interval
[nhy' (1 — R) — av/n, nhy'(1 — R) 4+ ay/n]
and it therefore concentrates around its expected value.

Note, however, that some well-known capacity-approaching families of binary lin-
ear block codes possess a minimum Hamming distance which grows sub-linearly with
the block length n. For example, the class of parallel concatenated convolutional
(turbo) codes was proved to have a minimum distance which grows at most like the

logarithm of the interleaver length [26].
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4.3.2 Performance of LDPC Codes under Iterative Message-
Passing Decoding

In the following, we consider ensembles of binary LDPC codes. Following standard
notation, let \; and p; denote the fraction of edges attached, respectively, to variable
and parity-check nodes of degree i. The LDPC code ensemble that is denoted by
LDPC(n, A, p) is characterized by the block length n of the codes, and the pair \(z) £
S i hand p(x) £ Y, pia~! which represent, respectively, the left and right degree

distributions from the edge perspective.

The following theorem was proved in [49, Appendix C] based on Azuma’s inequal-

ity:

Theorem 13 [Concentration of the bit error probability around the ensem-

ble average]

Let C, a code chosen uniformly at random from the ensemble LDPC(n, A, p), be
used for transmission over a memoryless binary-input output-symmetric (MBIOS)
channel characterized by its L-density aypros. Assume that the decoder performs [
iterations of message-passing decoding, and let P,(C, aympros, () denote the resulting
bit error probability. Then, for every § > 0, there exists an a > 0 where a =
a(\ p,6,1) (independent of the block length n) such that

P (’Pb(C, anmBios, 1) — Evppcmap [P (C, ansios, ()] > 5) < exp(—an)

This theorem asserts that all except an exponentially (in the block length) small
fraction of codes behave within an arbitrary small ¢ from the ensemble average (where
d is a positive number that can be chosen arbitrarily small). Therefore, assuming
a sufficiently large block length, the ensemble average is a good indicator for the
performance of individual codes, and it is therefore reasonable to focus on the design
and analysis of capacity-approaching ensembles (via the density evolution technique).

This theorem is proved in [49, pp. 487-490] based on Azuma’s inequality.
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4.4 A Tightened Large-Deviation Analysis for the
Conditional Entropy of LDPC Ensembles

A large-deviation analysis of the conditional entropy for random ensembles of LDPC
codes was introduced in [4, Theorem 1] and [8, Theorem 4]. The following theorem

is proved in [8, Appendix I] based on Azuma’s inequality:

Theorem 14 [Large deviations of the conditional entropy]| Let C be chosen uniformly
at random from the ensemble LDPC(n, A, p). Assume that the transmission of the
code C takes place over an MBIOS channel. Let H(X]Y) designate the conditional en-
tropy of the transmitted codeword X given the received sequence Y from the channel.

Then for any & > 0,

P(|H(X]Y) — ELppcman [H(X[Y)]| = n€) < 2exp(—nBE?)

A 1
where B = @),

design rate of the ensemble.

L d** is the maximal check-node degree, and R4 is the

The conditional entropy scales linearly with n, and this inequality considers deviations
from the average which also scale linearly with n.

In the following, we revisit the proof of Theorem 14 in [8, Appendix I} in order
to derive a tightened version of this bound. Based on this proof, let G be a bipar-
tite graph which represents a code chosen uniformly at random from the ensemble
LDPC(n, A, p). Define the RV

Z = Hg(XY)

which forms the conditional entropy when the transmission takes place over an MBIOS
channel whose transition probability is given by Pyx(y|x) = [, pv|x(vi|x;) where
pyix(¥|1) = py|x(—¥|0). Fix an arbitrary order for the m = n(1 — Rq) parity-check
nodes where R4 forms the design rate of the LDPC code ensemble. Let {Fi}i o1
form a filtration of o-algebras Fy C F; C ... C F,, where F; (for t =0,1,...,m) is
the o-algebra that is generated by all the sub-sets of m x n parity-check matrices that
are characterized by the pair of degree distributions (A, p) and whose first ¢ parity-
check equations are fixed (for ¢ = 0 nothing is fixed, and therefore Fy = {), 2} where

() denotes the empty set, and €2 is the whole sample space of m x n binary parity-check
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matrices that are characterized by the pair of degree distributions (), p)). Accordingly,

based on Remarks 13 and 14, let us define the following martingale sequence
Zy=E[Z|F] te{0,1,...,m}.

By construction, Zy = E[Hg(X[Y)] is the expected value of the conditional entropy
for the LDPC code ensemble, and Z,, is the RV that is equal (a.s.) to the conditional
entropy of the particular code from the ensemble (see Remark 14). Similarly to [8,
Appendix I], we obtain upper bounds on the differences |Z; ;1 — Z;| and then rely on
Azuma’s inequality in Theorem 11.

Without loss of generality, the parity-checks are ordered in [8, Appendix I] by
increasing degree. Let r = (11,79, ...) be the set of parity-check degrees in ascending
order, and I'; be the fraction of parity-check nodes of degree . Hence, the first m; =
n(1l — Rq)T',, parity-check nodes are of degree 71, the successive my = n(1 — Rq)l',,
parity-check nodes are of degree 75, and so on. The (¢4 1)th parity-check will therefore
have a well defined degree, to be denoted by r. In order to avoid any further overlap

with the proof in [8, Appendix I], we note that according to this proof
| Zis1 — Z) < (r + 1) HX[Y) (4.1)

where H(X|Y) is a RV which designates the conditional entropy of a parity-bit X =
X, ®...®X;, (ie., X is equal to the modulo-2 sum of some 7 bits in the codeword X)
given the received sequence Y at the channel output. The proof in [8, Appendix I
was then completed by upper bounding the parity-check degree r by the maximal
parity-check degree d***, and also by upper bounding the conditional entropy of the
parity-bit X by 1. This gives

|Zt+1_Zt| SdICIlaX+1 t:O,l,...,m—l. (42)

which then proves Theorem 14 from Azuma’s inequality. Note that the d;’s in The-
orem 11 are equal to d;** + 1, and n in Theorem 11 is replaced with the length
m = n(l — Rq) of the martingale sequence {Z;} (that is equal to the number of the
parity-check nodes in the graph).

In the continuation, we deviate from the proof in [8, Appendix I] in two respects:

e The first difference is related to the upper bound on the conditional entropy
H(X|Y) in (4.1) where X is the modulo-2 sum of some 7 bits of the transmitted
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codeword X given the channel output Y. Instead of taking the most trivial
upper bound that is equal to 1, as was done in [8, Appendix I], a simple upper
bound on the conditional entropy is derived; this bound depends on the parity-

check degree r and the channel capacity C' (see Proposition 1).

e The second difference is minor, but it proves to be helpful for tightening the
large-deviation inequality for LDPC code ensembles that are not right-regular
(i.e., the case where the degrees of the parity-check nodes are not fixed to a
certain value). Instead of upper bounding the term 7+ 1 on the right-hand side
of (4.1) with d* + 1, it is suggested to leave it as is since Azuma’s inequality
applies to the case where the bounded differences of the martingale sequence
are not fixed (see Theorem 11), and since the number of the parity-check nodes
of degree r is equal to n(1 — Rq)L',. The effect of this simple modification will

be shown in Example 2.
The following upper bound is related to the first item above:

Proposition 1 Let G be a bipartite graph which corresponds to a binary linear
block code whose transmission takes place over an MBIOS channel. Let X and Y
designate the transmitted codeword and received sequence at the channel output. Let
X =X, ®...® X, be a parity-bit of some 7 code bits of X. Then, the conditional
entropy of X given Y satisfies

H(XY) < hs <1 _202) | (4.3)

Further, for a binary symmetric channel (BSC) or a binary erasure channel (BEC),

this bound can be improved to

h2<1— [1—2h21(1—0)]r> 4)

2

and

1-C" (4.5)

respectively, where h, ! in (4.4) designates the inverse of the binary entropy function

on base 2.
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Note that if the MBIOS channel is perfect (i.e., its capacity is C' = 1 bit per
channel use) then (4.3) holds with equality (where both sides of (4.3) are zero),

whereas the trivial upper bound is 1

Proof: Let us upper bound the conditional entropy H(X"Y) with H(X’|Y};l, oY),
where the latter conditioning refers to the intrinsic information for the bits X;,,... X;,
which are used to calculate the parity-bit X. Then, from [15, Eq. (17) and Ap-
pendix 1], the conditional entropy of the bit X given the n-length received sequence

Y satisfies the inequality

- 1 & r
HX[Y)<1- 5 p; p(z(zp)_ 5 (4.6)
where (see [15, Eq. (19)])
i /Ooo a(l)(1+ e™") tanh® (%) dl, VpeN (4.7)

and a(-) denotes the symmetric pdf of the log-likelihood ratio at the output of the
MBIOS channel, given that the channel input is equal to zero. From [15, Lemmas 4

and 5], it follows that
g, >CP, VpeN.

Substituting this inequality in (4.6) gives that

oo

H(X‘Y> = 21n2z 2p—1

- <1_02) (4.8)

where the last transition follows from the power series expansion of the binary entropy

function where

1 o= (1—2x)%
=1- <z<l. 4.
ha() 21n2;p(2p—1)’ Vsos (4.9)

The tightened bound on the conditional entropy for the BSC is obtained from
(4.6) and the equality

g = (1=2n'(1— )", VpeN
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which holds for the BSC (see [15, Eq. (97)]). This replaces C' on the right-hand side
of (4.8) with (1 —2hy"(1 — C’))Q, thus leading to the tightened bound in (4.4).
The tightened result for the BEC holds since from (4.7)

gp=C, VpeN

(see [15, Appendix IT]), and a substitution of this equality in (4.6) gives (4.4) (note

that z;il m = 21n2). This completes the proof of Proposition 1.

From Proposition 1 and (4.1)

1—C3
| Zyi1 — Zy| < (r + 1)hg ( 5 > (4.10)

with the corresponding two improvements for the BSC and BEC (where the second
term on the right-hand side of (4.10) is replaced by (4.4) and (4.5), respectively).
This improves the loosened bound (d*** + 1) in [8, Appendix IJ.

From (4.10) and Theorem 11, we obtain the following tightened version of the

large-deviation inequality in Theorem 14.

Theorem 15 [A first tightened large-deviation inequality for the conditional en-
tropy] Let C be chosen uniformly at random from the ensemble LDPC(n, A, p). As-
sume that the transmission of the code C takes place over an MBIOS channel. Let
H(X]Y) designate the conditional entropy of the transmitted codeword X given the

received sequence Y at the channel output. Then
P(|H(X[Y) — Eropoman [H(X[Y)]] = n€) < 2exp(—nBg?)

for every & > 0, and

A 1

£ Y
2(1 — Ra) %7 (i 4 1)2T [hz (—1‘57 )]

where d*** is the maximal check-node degree, Ry is the design rate of the ensemble,

B

(4.11)

and C' is the channel capacity (in bits per channel use).
For the BSC and BEC, the parameter B can be improved (increased) to

1

B2 - _
2(1 — Ra) S5 (i 4+ 1)°T [hg <1—[1—2th 1<1—c>12)]
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and )
B2 . 4 (4.12)
2(1 - Rq) Ziél (t+1)°T (1 —C")?

respectively

Remark 15 From (4.11), Theorem 15 indeed yields a stronger large-deviation in-
equality than Theorem 14.

Remark 16 In the limit where C' — 1 bit per channel use, it follows from (4.11)
that if d'®* < oo then B — oo. This is in contrast to the value of B in Theorem 14
which does not depend on the channel capacity and is finite. Note that B should be
indeed infinity for a perfect channel, and therefore Theorem 15 is tight in this case.

In the case where d2*** is not finite, we prove the following:

Lemma 5 If d** = oo and p/(1) < oo then B — oo in the limit where C' — 1.
Proof: See Appendix B.

This is in contrast to the value of B in Theorem 14 which vanishes when d*** = oo,

and therefore Theorem 14 is not informative in this case (see Example 2).

Example 1 [Comparison of Theorems 14 and 15 for right-regular LDPC code ensem-
bles] In the following, we exemplify the improvement in the tightness of Theorem 15
for right-regular LDPC code ensembles. Consider the case where the communications
takes place over a binary-input additive white Gaussian noise channel (BIAWGNC)
or a BEC. Let us consider the (2,20) regular LDPC code ensemble whose design rate
is equal to 0.900 bits per channel use. For a BEC, the threshold of the channel bit
erasure probability under belief-propagation (BP) decoding is given by

T
= inf ————— =0.0531
pep :cé%),l] 1—(1—x)W

which corresponds to a channel capacity of C' = 0.9469 bits per channel use. For the
BIAWGNC, the threshold under BP decoding is equal to ogp = 0.4156590. From
[49, Example 4.38] which expresses the capacity of the BIAWGNC in terms of the
standard deviation o of the Gaussian noise, the minimum capacity of a BIAWGNC

over which it is possible to communicate with vanishing bit error probability under
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BP decoding is C' = 0.9685 bits per channel use. Accordingly, let us assume that for
reliable communications on both channels, the capacity of the BEC and BIAWGNC

is set to 0.98 bits per channel use.

Since the considered code ensembles is right-regular (e.g., the parity-check degree

is fixed to d. = 20), then B in Theorem 15 is improved by a factor of

This implies that the inequality in Theorem 15 is satisfied with a block length that
is 5.134 times shorter than the block length which corresponds to Theorem 14. For
the BEC, the result is improved by a factor of

due to the tightened value of B in (4.12) as compared to Theorem 14.

Example 2 [Comparison of Theorems 14 and 15 for a heavy-tail Poisson distribution
(Tornado codes)] In the following, we compare Theorems 14 and 15 for Tornado LDPC
code ensembles. This capacity-achieving sequence for the BEC refers to the heavy-
tail Poisson distribution, and it was introduced in [6], [28, Section IV] (see also [49,

Problem 3.20]). We rely in the following on the analysis in [15, Appendix VI].

Suppose that we wish to design Tornado code ensembles that achieve a fraction
1 — ¢ of the capacity of a BEC under iterative message-passing decoding (where & can
be set arbitrarily small). Let p designate the bit erasure probability of the channel.
The parity-check degree is Poisson distributed, and therefore the maximal degree of
the parity-check nodes is infinity. Hence, B = 0 according to Theorem 14, and this

theorem therefore is useless for the considered code ensemble. On the other hand,
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from Theorem 15

<) (i+1)T,
(i + 2

<:>Z§p(% ) 11
o p(x) dx

= (p'(1) +3)de™® +1
(A <X(0)p’(1)
A2

(e) 1
< <—+3) i+ 1
PA2

20 (10(2))

where inequality (a) holds since the binary entropy function on base 2 is bounded

#3) @

—
~

between zero and one, equality (b) holds since
fol p(x)dz

where I'; and p; denote the fraction of parity-check nodes and the fraction of edges

i

that are connected to parity-check nodes of degree i respectively (and also since
>.;Ti=1), equality (c) holds since

de® = —3 :
Jo plz)de

where d?# denotes the average parity-check node degree, equality (d) holds since
N(0) = Xg, inequality (e) is due to the stability condition for the BEC (where
pXN'(0)p/(1) < 11is a necessary condition for reliable communication on the BEC under
BP decoding), and finally equality (f) follows from the analysis in [15, Appendix VI]
(an upper bound on Ag is derived in [15, Eq. (120)], and the average parity-check
node degree scales like log %) Hence, from the above chain of inequalities and (4.11),

it follows that for a small gap to capacity, the parameter B in Theorem 15 scales (at
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least) like

Theorem 15 is therefore useful for the large-deviation analysis of this LDPC code
ensemble. As shown above, the parameter B in (4.11) tends to zero rather slowly as
we let the fractional gap e tend to zero (which therefore demonstrates a rather fast

concentration in Theorem 15).

Example 3 This example forms a direct continuation of Example 1 for the (n,d,, d.)
regular LDPC code ensembles where d, = 2 and d. = 20. With the settings in this

example, Theorem 14 gives that

P(1H(X]Y) = ELppc g [H(X[Y)]| = 1)
< 2exp(—0.0113n&?) (4.13)

for every &€ > 0. As was mentioned already in Example 1, the exponential inequalities
in Theorem 15 achieve an improvement in the exponent of Theorem 14 by factors 5.134
and 9.051 for the BIAWGNC and BEC, respectively. One therefore obtains via the
inequalities in Theorem 15 that for every £ > 0

P(|H(X]Y) — Erprcman [H(X[Y)]] = nf)

2exp(—0.0580n€2)  BIAWGNC
< | (4.14)
2exp(—0.1023n€%),  BEC

4.5 Concentration for channels with ISI

Concentration analysis on the number of erroneous variable-to-check node messages
for random ensembles of LDPC codes was introduced in [29] and [48] for memoryless
channels. It was shown that the performance of an individual code from the ensem-
ble concentrates around the expected (average) value over this ensemble when the
block length of the code increases. Furthermore, the average behavior converges to
the behavior of the cycle-free case. These results were later generalized in [3] for the
case of channels with memory (i.e., for ISI channels), however no explicit expression

for the concentration rate was provided. In this section, we revisit the proofs of [3,
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Theorems 1 and 2] for the case of regular LDPC code ensembles in order to derive
an explicit expression for the exponential rate that is related to the concentration in-
equality. It is then shown that particularizing the expression for memoryless channels

provides a tightened concentration inequality as compared to [29] and [48].

4.5.1 The ISI Channel and its message-passing decoding

In the following, we briefly describe the ISI channel and the graph used for its message-
passing decoding. For a detailed description, the reader is referred to [3]. Consider
a binary discrete-time ISI channel with a finite memory length, to be denoted by I.
The channel’s output y; at time t € Z is given by the equality

I
Y = Z hizi—; 4+ ny.
i=0

Where z; € {+1,—1} is the channel’s input, h; is the channel’s response and n; ~
N(0,0%) is an i.i.d. AWGN noise sequence. The information block of length k is coded
using a regular (n,d,,d.) LDPC code, and the resulting n coded bits are converted
to x; € {41, —1} before transmission over the channel. For decoding, we consider
the windowed version of the ”sum-product” algorithm when applied to ISI channels
(see details in [3] and [20]). As in the memoryless case, this is a message passing
algorithm. The variable-to-check and check-to-variable messages are computed as in
the min-sum algorithm for the memoryless case. The difference is that a variable
node’s message from the trellis nodes is not only a function of the the channel output
that corresponds to the considered symbol but also a function of 2WW neighboring

channel outputs and 2W neighboring variables nodes as illustrated in Fig. 4.1.

4.5.2 Concentration results for channels with ISI

It is proved in this sub-section that for a large n, a neighborhood of depth ¢ of a
variable-to-check node message is tree-like with high probability. Using Azuma’s in-
equality and the later result, it is shown that for most graphs and channel realizations,
if x is the transmitted codeword, then the probability of a variable-to-check message
being erroneous after ¢ rounds of message-passing decoding is highly concentrated

around its expected value. This expected value is shown to converge to the value
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ZW+T+1
0
/ symbols

de1 de-1

Figure 4.1: Message flow neighborhood of depth 1. The round, cubic, triangle nodes
denote the variable, check and trellis nodes respectively. In this figure (I, W, d,, d.) =
(1,1,2,3).

95



of p(x) which corresponds to the cycle-free case. Also, we prove that if the trans-
mitted sequence is i.u.d., then the probability highly concentrated around the value
Pia = E[p9(x)]

In the following theorems, we consider an ISI channel and windowed message-
passing decoding algorithm, when the code graph is chosen uniformly at random
from the ensemble of the graphs with variable and check node degree d, and d.
respectively. Denote /\/’5(@ as the neighborhood of depth ¢ of an edge € = (v,c)
between a variable-to-check node. Let NC(K), N and N denote the total number of
check nodes, variable nodes and code related edges (variable-to-check node or check-
to-variable node edges) respectively in this neighborhood. Similarly denote Ng) as
the number of variable-to-check node messages in the directed neighborhood of depth

¢ of a received value of the channel.

Theorem 16 [Probability of a neighborhood of depth ¢ of a variable-to-
check node message to be tree-like for channels with ISI]
Define P{(Z) = Pr {N éz) not a tree} as the probability that ./\fé(é) is not tree-like.

Then, there exists a positive constant
W dy,dey I, W, £) = NO 4 Sy (0?2 (4.15)

such that

Proof: This proof follows from the proof in [48] and extends it to the case of channels

with ISI. Consider a neighborhood ./\fg) of fixed depth ¢ . Note that at each level the

graph expands by factor a = (d, — 1+ 2Wd,)(d. — 1), therefore there are in total
-1

NO =1+ [(dy —1)(de — 1) + 2W (1 + dy(d. — 1))] Zo/

=0

variable nodes and
-1

N =1+ (dy - 142Wd,) ) o
=0
check nodes in this neighborhood.
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)

In order to lower bound Pz(Z we can upper bound Pt(e) =1- P{(z). This is done by

factorizing Pt(g) as

-1
FO = e {0 i e} TT PN el e} a0
£*=0

and bounding each factor. For /* = 0 we have a single edge which is a tree, therefore
Pr {Né(.o) is tree} = 1. To bound Pr {./\/’SK*H) is tree|/\/’c££*) is tree} we assume that

/\/'é(g*) is tree-like and reveal the code related edges (variable-to-check node or vice
versa, as opposed to the channel related edges which are predetermined) one at a
time. If in this process (of revealing the ¢*+1-th level of the tree) no loops are created
then ./\/’g“rl) is also a tree. We start by revealing the leaves of a variable node . As
opposed to the case with no ISI, where each variable node has only d, —1 direct paths
to check nodes from the next level, here also 2Wd, indirect paths through trellis nodes
exist (i.e, variable-trellis-variable-check). Since the edges connected to a trellis node
are predetermined, then an indirect path requires the revelation of a single variable-
to-check node edge. Assume that k£ additional edges have been revealed at this stage
without creating a loop. The next revealed edge is chosen among (md. — k — Nc(m)
edges and it does not create a loop if it is connected to one of the (m — k — NC(K*))
un-explored check nodes. Since each un-explored check node has d. edges, then the

e N
probability for not creating a loop is given by (m(ikk—N“N(e)*cf“. For large n we have
mac—RK—INc

(m—k—NNde (N +E)(de — 1)

md, — k — N md, — k — N
N

—

(4.17)

> 1

Since we have N — NI edges to reveal (one for each check node), then the

probability that revealing all the leaves does not create a loop, given ./\/g*) is tree-like
(€ +1) _ p(e%)

. (©) Nc _Nc .

is lower bounded by <1 — NW . Next, we reveal the outgoing edges of

the check node leaves one at a time (here only d. direct paths exist, as in the case

without IST). Assuming k variable nodes have been revealed without creating a loop,
(n—k—N)d,

then the probability that the next revealed edge does no create a loop is PP GO
Nnav—RK— 1INy
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For large n we have

(n—k-NNdy, (W7 +k)(d - 1) (4.18)
nd, — k — N nd, — k — N '
N

n .

> 1-

Since we have NV(E*H) — Nv(m edges to reveal (one for each variable node), then the

probability that revealing all the leaves does not create loop, given the neighborhood

(€ +1) ()
N, —N,
N‘(,Z) > v v

is tree-like so far is lower bounded by <1 - =

(4.17), (4.18) and P{” =1 — P we have

N N©
N\EZ) v Néé) c
Pt“)gl—<1— ) (1— .
n m

Thus, for n sufficiently large

Combining (4.16),

Remark 17 We note that if we the degenerate the expression for v in (4.15) by
setting I = W = 0, we get the exact same expression given in [48] for channels

without memory.

Theorem 17 [Concentration of the number of erroneous variable-to-check
node messages for channels with ISI]

Let x be the transmitted codeword. Let Z(x) be the number of erroneous
variable-to-check node messages after ¢ rounds of the windowed message-passing de-
coding algorithm when the code graph is chosen uniformly at random from the en-
semble of the graphs with variable and check node degree d, and d. respectively.
Let p(x) be the expected fraction of incorrect messages passed along an edge with
a tree-like directed neighborhood of depth ¢. Then, there exist positive constants

_ d? _ 0% d (02
Bldy, de, I, W, ) = (164, (N2 +(N)?) and y(dy, de, [, W, £) = Ny* + GEN” such

that

[Concentration around expectation] For any € > 0 we have

Pe{ ‘ 7000 _ E[Z(x)

nd, nd,

> 6/2} < 2P (4.19)
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[Convergence to cycle-free case] For any ¢ > 0 and n > 2¥ we have

_p0(x)| < ¢/2 (4.20)

nd,

‘E[Z )]

[Concentration around cycle-free case] For any ¢ > 0 and n > 2 we have

7 (x)
prd |22 @)
r{‘ nd. p (X) >

e} < 2¢ P (4.21)

Proof: First note that the following inequality holds

VAU, (x)
P —p®
r { ‘ wd. P (x)

>e} < Pr{‘Z:);?_]E[Z;gV(X)]

Pr{‘E[Z“)(X)]

> e/z} (4.22)

> e/2}.

If inequality (4.20) holds, then Pr{)z() X _ O (x )’ > 6/2} = 0, therefore us-
ing (4.22) we deduce that (4.21) follows from (4.19) and (4.20). We start by prov-

ing (4.19). For a deterministic sequence x, the random variable Z()(x) denotes the

n0)
. P (x)

number of incorrect variable-to-check node messages among all nd, variable-to-check
node messages passed in the (th iteration for a particular graph G and decoder’s input
y. Let us form a Doob’s martingale by first exposing the nd, edges of the graph one
by one and then exposing the n received values y; one by one. For i =0, ...n(d, + 1),
define the RV Z; = E[Z¥(x)|ay,...a;]. Where the sequence a is the sequence of
the nd, variable-to-check node edges of the graph followed by the sequence of the
n received values. Note that it is a martingale sequence where Z, = E[Z")(x)] and
Zn(dv—‘rl) = ZU(x). We can use Azuma’s inequality if we can bound the sequence of
differences \ZiH — Z-\ < d;.

We now consider the effect of exposing an edge of the graph. Consider two graphs
G and G whose edges are identical except for an exchange of the endpoint of two
edges. A variable-to-check message is affected by this change if one (or both) of the
edges is in its directed neighborhood of depth ¢.

Consider a neighborhood of depth ¢ of a variable-to-check node message. Since at
each level the graph expands by factor a = (d, — 1+ 2Wd,)(d. — 1) then there are,
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in total
-1

NO =1+ de(d, — 14 2Wd,) Y o
i=0

edges related to the code structure (variable-to-check node edges or vice versa) in
the neighborhood /\/'(e;) By symmetry the two edges can affect at most AN neigh-
borhoods (Alternatively we could directly sum the number of variable-to-check node
edges in a neighborhood of a variable-to-check node edge and in a neighborhood of a
check-to-variable node edge). The change in the number of incorrect variable-to-check
node messages is bounded by the case that each change in the neighborhood of a mes-
sage introduces an error. In a similar manner, when we reveal a received value, then
variable-to-check node messages whose directed neighborhood include that channel
input can be affected. We consider a neighborhood of depth ¢ of a received value. By

counting, it can be shown that this neighborhood includes

~

-1
N =d, 2w +1)Y o

7

Il
o

variable-to-check node edges. Therefore a change in a received value can affect up to
Ng ) variable-to-check node messages. We conclude that d; < 4N€(Z) for the first d,n
exposures and d; < Ng ) for the last n exposures. By applying Azuma’s inequality we

get
— (ndve/2)2
Pr{‘Z(f)(X) - ]E[Z(IZ)(X)]' .. /2} e K
ndy nds <

By comparing the result to (4.19), we get an expression for /3

1 ) 0
;=8 (16dv(Nf )2 + (N )2) /2

Next, we prove inequality (4.20), again it is adopted from [3] and [48]. Let
E[Zi(z) (x)],7 € [nd,] be the expected number of incorrect messages passed along edge
?i, where the average is over all graphs and all received values. Then by linearity of
expectation and by symmetry

E[Zz9x)] = > E[£"(x)] = nd.E[Z" (x)] (4.23)

i
1€[ndy]
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Furthermore

E[Z"(x)] = E[Z(x) |Né(.£) is tree] P\ + E[Z (X)|./\/'E(€) not a tree]Pf(e).

As shown in Theorem 16, PE(Z) < I where 7 is a positive constant independent of
n. Furthermore, we have E[Z; )( )|ne1ghb0rhood is tree] = p(x) and by definition
0< ]E[Z ( )|neighborhood not a tree] < 1. Hence

EZ"x)] < (1-P)pOx) + P9 <p(x)+ P
()] > (1= B0 2006 - B, (4.24)

Using (4.23), (4.24) and PE(Z) < I we get that

E[Z(x)

—pO(x)| <P <
nd, P < BT <

(4.25)
If we assume that n > 2 then from (4.25), it follows that (4.20) holds. Since (4.19)
and (4.20) hold then (4.21) is proved.

Discussion 1 The concentration result proved above is a generalization of the re-
sults given in [48] for the memoryless case. One can degenerate the expression
% =8 (16dv(J\f.g(£))2 - (Ng))2> /d? to the memoryless case by setting W = 0 and
I = 0. Since we used exact expressions for Ne ) and N ) in the proof, we can expect
= 544d%~1d% given in [48].
For example for (dy,d.,?) = (3,4,10) we get an 1mprovement by a factor of about 1

a tighter bound as compared to the earlier result 5.
million. However even with this improved expression, the required size of n according
to our proof can be absurdly large. This is because the proof is very pessimistic. We
assume that any change in an edge or the decoder’s input will introduce an error in
every message it affects. This is especially pessimistic if large ¢ is considered, since
as ¢ grows each message is a function of many edges and received values (since the
neighborhood grows with ¢). However in practice, the probability that changing a

single edge or input will change the message is close to zero for long codes.

Theorem 18 Let x be a random sequence of i.u.d. binary variables x1, zs....x,. Let

Z¥(x) be the number of erroneous variable-to-check messages after £ rounds of the
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windowed message-passing decoding algorithm when the code graph is chosen uni-

formly at random from the ensemble of the graphs with variable and check node
)

i.u.d.

degree d, and d. respectively. Let p = E[p(x)] be the expected fraction of in-
correct messages passed along an edge with a tree-like directed neighborhood of depth
(. Then, there exist positive constants 5 = 5(d,, d., I, W, {) and v = v(dy,d., I, W, ()

such that for any € > 0 and n > 2?7 we have

ndv i.u.d.

> e} < e P, (4.26)

(0

i.u.d.

Furthermore, p is equal to the error probability when all neighborhood types are

equally probable.

Proof: The proof follows closely to the proof presented in [3]. First, note that the

following chain of inequalities hold

Pr {‘_Z Ox)

2”
. Z“)(x-) y
>e} = 22 Pr{’Tj—pﬁ.d.

> e} (4.27)

ndv i.u.d. ‘
7=1
271
7O (1.
< 22_” Pr {‘# — 9 (z;)| > 6/2}
j=1 v
27’7/
3 Pr{|p 0 — | > 2}
j=1
2n
< 22_” . 2e~ PN/ | pr {‘p(e)(x) - pggd.‘ > 6/2}
j=1

= 2e PN/ 4 Pr{‘p(@(x) - pgzd" > 6/2} .

To bound the second term in the last line we shall use Azuma’s inequality. Let
us form a Doob’s martingale by exposing the n received symbols one by one. For
t =1,...,n, define the RV M, = E[p\9(x)|zy, za, ..., 7;]. Note that My = E[p)(x)] =
pgi)ild_ and M, = E[pY(x)|z1, T2, ..., vn] = pP(x). In order to use Azuma’s inequality
we shall show that the sequence of differences is bounded |M; 1 — M;| < d;. Since
the channel has ISI of degree I, then exposing a single channel input affects I channel

outputs (which are the received values for the decoder). A variable-to-check node
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message is affected only if one of the affected received values are in its neighborhood.

Therefore, changing a channel input can affect at most [ N}(f ) variable-to-check node
Q)
messages among the nd, messages in the graph. Thus |M;11 — M| < I:TY, and by

using Azuma’s inequality we have

Pr{|px) —pl, | > e/2) < 270 (428)

IN¢
B = min(f,9).

Next, we get an expression for p

2
where § = ¢ ( dy ) . Combining (4.28), (4.28) and comparing it to (4.26) gives that

()

;g and show it is equal to the error probability

when all neighborhood types are equally probable. This part of the proof is shown
in [3], and is given for the completeness of the proof. In Fig. 4.1, a depth 1 message-
flow neighborhood is shown. The row of bits 70101” given above the trellis section
represent the binary symbols of the codeword x corresponding to the trellis nodes
that influence the message flow. Since the channel has ISI memory of length I, there
are 2W + I 4+ 1 binary symbols of that influence the message flow. We call this
sequence of bits a neighborhood type. For example, in Fig. 4.1 the neighborhood
type is @ = [0101]. We expand this definition to a depth ¢ neighborhood by cascading
the bits of each sub-neighborhood of depth ¢. Since at each level, the graph expends
by factor a = (dy, — 1+ 2Wd,)(d. — 1) then there are exactly 2V(*) possible types of

message flow neighborhoods of depth ¢, where

~

| 1
N =@W+T+1)> ol =W +1+1)%

)

a—1

Il
o

We can now define
ﬂé@ = Pr (tree delivers incorrect message|tree type 6)

and
P(8|x) = Pr (tree type #|transmitted sequence = x)
Therefore we can express p')(x) as

oN(£)

pO(x) = Z Wéf) Pr(6;|x).
i=0
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Next, recognize that if x is an i.u.d. sequence, all neighborhood types are equally
probable, i.e. Pr(f|x) = 2=V, Using this we have

Ep“(x)] = 22‘”29“)(%)

on N (£)
—n ¢
= Y 2> w) Pr(b,|ry)
=0 i=0
N (£) on
= >_m > 2" Pr(bi)
§=0 i=0
9N (£)
= Y w) Pr(d]x)
=0
9N (£)

- S
=0

The last term is equal to the error probability when all neighborhood types are equally
probable. Since E[p\(x)] = P the theorem is proved.

i.u.d.
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Chapter 5

Summary and Conclusions

5.1 Contribution of the Thesis and conclusions

This thesis is focused on aspects of convex optimization and concentration in coding.
In the following, we summarize the main contributions and conclusions in the thesis.

The results are organized according to the three main subjects discussed.

5.1.1 Complexity analysis of convex optimization

In chapter 2, we consider the complexity of the interior-point method (IPM) for
solving convex optimization problems. The analysis is limited to problems whose
objective function is self-concordant.

We proved tightened bounds on the number of Newton iterations required to solve
UCSCM, ECSCM and IESCM problems. The bounds where given for backtracking
line-search and for two choices of predetermined step-size t. The bound given for
backtracking line-search is 10-100 times tighter compared to previous bounds consid-
ering this line-search algorithm. The predetermined step-size was chosen to optimize
the bound on the number of Newton iterations, resulting in a further improvement
(about 5-10 times smaller scaling factor for f(z(?)) — p*) compared to the tightened
bound given for backtracking line-search. We note that the bounds for predetermined
step-size can be used as a bound for Newton’s method with exact line-search since
the pre-determined step size is a sub-optimal choice of t.

In the derivation of the described bounds, we have also proved several important
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lemmas and Theorems. Lemma 1 and Theorem 7 establishes a rigid theoretical proof
to the extension of the upper bound on the number of Newton iteration from un-
constrained problems to equality and inequality constrained problems. Therefore,
if a bound for an UCSCM problem is known and certain conditions are met, then
the bound can be extended to ECSCM and IESCM problems. Lemma 2 provides a
recursive bound on the Newton decrement. This lemma extends a previous bound
[45] that was valid only for a full Newton step (i.e., t = 1), to a bound with the
step-size t given as a free parameter.

Although tight compared to previous bounds, numerical results show that the
tightened bounds still give a very conservative estimate for the number of Newton
iterations. Using numerical analysis, we point out the two main reasons that keep

the improved bounds from being tight :

1. The usage a of a global bound on the Newton decrement during the damped

phase.

2. An artificial constraint on the bounded step-size caused by the fact that the
bounds used have a domain of tA < 1, whereas in practice tA\ > 1 in the

damped phase.

Furthermore, numerical results show that although the predetermined choice of t gives
a tighter bound as compared to the backtracking bound, numerically, the algorithm
is less efficient. We conclude that the predetermined choice optimizes the bound on
the number of Newton iterations but not necessarily the practical efficiency of the

solver. Thus, the optimized value of ¢ is an artifact of the bounding method used.

5.1.2 Complexity analysis of IPM-based LP decoders

In chapter 3, we apply the interior-point method to the relaxed MLD problem. We
provide an IPM-based LP decoder similar to the decoder given in [50],[51]. Based
on the complexity bounds derived in previous chapter, the number of Newton itera-
tions for the LP decoder is bounded. Similar analysis was presented in [50], however
that analysis was valid only for row regular codes using the backtracking line-search
whereas this analysis applies to general non-regular codes with backtracking, exact or

predetermined line-search. Moreover, since tightened bounds from previous chapter
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were used, the new bounds are much tighter compared to previous bounds. Using
the derived analytic bound, we obtain a set of optimization parameters that optimize
the derived bound. These optimized parameters provide an optimized bound that
increases much slower with respect to the code’s parameters. As an example, the
original bound scales like O(M In M) whereas the optimized bound scales only as
O(vVMIn M). Next, we analyze the behavior of the derived bounds as a function of
the code and channel parameters. If the optimized bound is considered, the bound

on the number of Newton iteration shows several interesting behaviors.

e The bound scales like O(v/M In M), where M denotes the number of inequali-
ties required to describe the polytope. The number of inequalities is a measure
of the complexity of the polytope. As the number of inequalities grow larger,
the polytope is getting more complex, better representing the code, thus better
decoding performance is maintained. This result express the trade-off between
decoding performance (represented by the number of inequalities) and the de-
coding complexity (represented by the number of Newton iterations times the

complexity per iteration).

e When considering the time complexity of the code, for general linear codes the
bound scales like O(2"), whereas for LDPC codes the time complexity is only
O(n'51nn). Therefore the decoder is mainly suitable for LDPC codes.

e The complexity of the bound is exponential with respect to the check-node
degree d.. Therefore, the complexity remains low only for LDPC codes with

low check-node degree.

The last two properties suggest that the proposed LP decoder has long running times
for general linear codes with high check-node degree. On the other hand, for LDPC
codes, the bound predicts relatively low complexity, making it suitable for this family
of linear codes. For high-density codes (where d*** scales like O(n)), alternative
polytopes [21],[25] provide lower complexity. For these polytopes, we show that the
bound on the number of iterations scales like O(n'® Inn) with complexity that scales
like O(n*®Inn).

Finally, we compare the new tightened bound, to a previous bound given in [50].

For the particular code and channel considered, it is shown that an improvement by
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factor 10 is achieved. However, even with this improved bound, the upper bound gives
a very conservative estimate of the number of Newton iterations that does not reflect
average case behaviors. However, if we use the optimized bound with predetermined
step-size the resulting bound is a more reasonable estimate for the number of Newton

iterations.

5.1.3 Concentration of measures in LDPC code ensembles

In chapter 4, we consider concentration phenomena of LDPC code ensembles. We
show that all except an exponentially (in the block length) small fraction of codes
perform within an arbitrary small § from the ensemble average (where § is a positive
number that can be chosen arbitrarily small). Therefore, assuming a sufficiently long
block length, the ensemble average forms a good indicator for the performance of

individual codes.

We provide a large-deviation analysis of the conditional entropy of an LPDC code
transmitted thorough a MBIOS channel. The derived concentration result tightens
a similar bound by Méasson et al. [8, Theorem 4|. For BSC and BEC channels
the concentration result is further improved. Compared to the previous bound, the
new bound does not only tighten the concentration result, but also expands the
concentration result for codes with d*** — oo. For example, a concentration result for
a heavy-tail Poisson distribution (Tornado codes) is shown using the refined analysis.
The previous result by Méasson et al. can not be used to show concentration in this

particular case.

Next, we consider the number of erroneous variable-to-check messages for Inter-
Symbol-interference (ISI) channels. The analysis provides an explicit expression for
the exponential rate that is related to the concentration inequalities given in [3,
Theorems 1 and 2|. It is shown that particularizing these results for memoryless
channels provides tightened concentration inequalities as compared to [29] and [48].
Also shown is a bound on the probability of a neighborhood of depth ¢ of a variable-
to-check node message to be tree-like for channels with ISI. This result, for channels

with IS, is an extension of the classical result given in [48] for memoryless channels.
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5.2 Topics for further research
In what follows, we point out some possible directions for future research:

1. Bounds on the convergence rate of convex optimization.

The newly derived bounds on the number of Newton iterations are 10-100 times

tighter than the classical bounds. However, when compared to the numerical

results, it is clear that the bounds are still very loose (especially during the

damped phase). In the following, we suggest ideas for further tightening of the

bounds.

e Global bound for A : The improved bounds use A > n in order to
bound A for all the iterations in the damped phase. In practice, the value
of A decreases dramatically during the damped phase. The bound uses a
global bound on A which is tight only at the transition from the damped
phase to the quadratic phase. Since the bound on the convergence rate
at each iteration during the damped phase is proportional to A%, a tight
bound for A at each iteration will dramatically tighten the bound. This
is perhaps the main reason why the bounds are not tight at the damped

phase.

Domain of bounds : During the derivation of the bounds, we used bounds
that have a domain of A, < 1 whereas in practice Atj,e > 1 in the
damped phase. This created an artificial constraint on the line-search’s
step-size tyn.. For example, in the first steps of the damped phase A > 1,
this implies that the step-size used in the bound must be very small
(i.e.,tine < 1/A < 1), whereas in practice a good choice of the step-size
is usually close to one. As a result the choice of the predetermined ty, is
relatively far from optimal and the backtracking bound for t; is very loose
for large values of A. This in turn causes the bound on the convergence rate
Af(x) > tineaA? to be very loose. If alternative bounds, without this ar-
tificial constraint are found, then much tighter bounds on the convergence

rate could be derived.

The bounds were derived on the assumption that the objective function

is self-concordant. In practice, we are interested in a much narrow family
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of functions. Perhaps, if we narrow our discussion only to linear objective
functions with additive logarithmic barriers, then a tightened convergence

analysis can be performed.

2. Bounds on the number of iteration required by the IPM-based LP

decoder.

e Assuming large check-node degree, the fundamental polytope chosen to
represent the code requires a large amount of inequalities for its proper de-
scription. There exist alternative polytopes that require fewer inequalities.
It is interesting to repeat the complexity analysis with a different polytope
and compare the complexity bound of alternative representations of the

code.

e As a feasible starting point for the LP decoder, we have chosen the ”neutral
word” x(® = (1/2,1/2,...,1/2). This choice is far from optimal in terms of
complexity since it does not use the information from the received word.
The algorithm can be optimized if we choose a starting point closer to the
ML word. Such a word is the received word, however it is not necessarily
feasible. If a variation on the received word which is still feasible is found,
then the initial centering step will require less iterations, thus reducing the
overall complexity of the IPM-based LP decoder.

e The IPM is only one method for LP decoding, for example in [22] the
simplex method is used for LP decoding. A possible research direction is
to perform complexity analysis on the alternative decoders and compare
the behavior of the derived bounds.

e The analysis of the IPM-decoder concentrated on the number of Newton
iterations. We note that the time complexity of the IPM-based LP decoder
depends not only on the number of Newton iterations but also on the
complexity per iteration. At each Newton iteration, we need to calculate
the inverse of the hessian matrix (i.e., V2W;(x) € R"*"). It is interesting to
analyze the complexity of calculating the inverse of the hessian matrix with
respect to the code and channel parameters. Combined with the analysis
in this thesis, it will bound the complexity of the IPM-based decoder.
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e If in the future, tighter bounds on the number of the Newton method
are found, then they can be used in conjunction with the bounds derived
here in order to design an IPM-based decoder with search parameters
that optimize the Number of iterations of the decoder with respect to

the channel and code parameters.

e For LP decoding (with the fundamental polytope given in Definition 11), if
there exist a capacity-achieving LDPC ensemble (which is an open question
for general MBIOS channel), then we can discuss the case of decoding
with vanishing error at rate close to the capacity of the channel. For ML
decoding, it is shown in [19] that the maximal right degree (that is, the
maximal degree of the parity-check nodes) is not bounded as the gap to
capacity vanishes. It grows at least like log (%), where € is the fractional
gap to capacity. If a similar behavior can be shown for the considered
LP decoder then the bound on the number of iterations scales like O (Eik),
where k > 0 is some positive constant (since the bound scales like O(2%)).
This bound is similar to the conjecture regarding iterative message-passing
decoding that claims that the number of iterations scales like O (1) (with
a proof for the BEC given in [17]).

3. Concentration of measures of LDPC code ensembles.

e The concentration result given in Theorem 17 is very loose. This is be-
cause the proof is very pessimistic. We assume that any change in an edge
or the decoder’s input will introduce an error in every message it affects.
This is especially pessimistic if large neighborhoods are considered. In
practice, the probability that changing a single edge or input will change
the message is close to zero for long codes and large neighborhoods. A
refined analysis should take into account the probability for mistakes as a
function of the neighborhood size and/or the structure of the parity-check
matrix/tanner graph of the code. Furthermore, if we apply the concentra-
tion result to irregular codes, we need to use dg***, dy*®* as a bound for d.
and d, respectively. A refined analysis should take into account the degree

distribution of the irregular code.

e The use of the union bound in the concentration result of M. Sipser and
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D. A. Spielman for the graph expansion [34] seems to weaken this theorem
significantly. Perhaps, it is possible to improve the bound in this theorem

by replacing the use of the union bound with a refined analysis.

e The utilization of refined inequalities of the Azuma-Hoeffding inequality

in the context of graph-based codes.
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Appendix A
Proof of Lemma 2

Proof : Let v = —V2f(z) "'V f(z), then from [45, Ex. (9.17)]

22 2 V2f(37)
(1 —t\x))"Vf(z)=V f(:c—i—tv)jm.

We first prove (2.32) for the case where V2f(x) = I. Using v = —V f(x) we get a
simplified bound for V2f(z + tv)

1

The function V f (x*) can be expressed using V f (x) as follows
Vi(zt) = Vf(z+tv) (A.2)

= /tvzf(x—i-t/v)vdt/—i-Vf(x)
0

— {[—/Otvzf(x—irt’v)dt’} Vf(x)
— AV ().

where A =1 — fot V2f (z +t'v)dt’. Applying (A.1) on the expression for A yields the

following bound

al R A=bI (A.3)
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where

t 1 t
a = 1—/—2dt’:1—
o (1—=\t) 1— Mt

t 1—(1-X)°
- 11— 1= MVdt =1 — — 7/
b /O( At dt o

Moreover, since the hessian is a symmetric matrix, then A is a symmetric matrix as
well. Using ATA = A? and (A.3) we get a bound on AT A
(max (0,a))*- I < A = ATA < (max (|al, [b]))* - I (A.4)

Using the properties above we can write )\(a:+) as follows

Azt) @ V() VR () TV ()
< %Wf(ﬁfw(m

9 \/Vf (ATA)Vf(2)

@ (max(lal, )
¢ <—<>)” @),

© ot M)A\ (2).

Where (a) follows from the definition of A, (b) follows from (V2f (z7))™" =<
m which results from (A.1) by inversion of the lower bound, (c) follows from
the expression for Vf(z") in terms of Vf(z) given in (A.3), (d) follows from the
upper bound for ATA in (A.4) and (e) follows from the definition of c¢(t, \) in (2.33)
and since \(z) = ||V f(2)]|, for V*f(z) = I.

We now generalize this result to a strictly convex s.c. function with an arbitrary
V2f(z) = 0 (i.e,V2f(z) # I). This is done by showing that there exist a linear
transformation # = Tz on f (where V2f (Z) = I) which will result in V2f(z) =
TTV2f (%) T. Since the Newton decrement ) is invariant to linear transformation the
derivation made for f(z) will still hold for f(z).

The function f is strictly convex, thus V2f(z) is symmetric with positive eigen-

values. This means it can be factored in the form V2f(z) = QTAQ, where QT = Q!
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(Orthonormal matrix) and A = diag ({\; > 0}). We can further expand V?f(z) as

follows V2f(x) = QTAQ = (AY2Q)" T (AY2Q) = T"V2f(#)T. Thus we can
T=A2Q

use T = AY2Q) as the transformation required in the previous paragraph.
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Appendix B

Proof of Lemma 5

In order to prove Lemma 5, one needs to show that if p'(1) < oo then

lim oo( +1)°T; [@(1_2(7;)] =0 (B.1)

=1

which then yields from (4.11) that B — oo in the limit where C' — 1.
By the assumption in Lemma 5 where p'(1) < co then Y °, ip; < oo, and therefore
it follows from the Cauchy-Schwarz inequality that

z 1Zpl

Hence, the average degree of the parity-check nodes is finite

davg _ 1

i

The infinite sum Y >, (i + 1)?T; converges under the above assumption since

< oQ.

o0

> (i+1)°T,

=1

:iﬁrﬁziirﬁZn
i=1 =1 7
— 28 (iipi +2> +1 < o0.

i=1
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where the last equality holds since

[

r, = 1+

Jo p(z)dz

= @ (B, vien
i

The infinite series in (B.1) therefore uniformly converges for C' € [0, 1], hence, the
order of the limit and the infinite sum can be exchanged. Every term of the infinite
series in (B.1) converges to zero in the limit where C' — 1, hence the limit in (B.1) is

zero. This completes the proof of Lemma 5.
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MNNN 92PO) OYMDN DIPRD NRDINNN MYMN NN NIND NN DY  .density evolution
D'WI9N DY DDIPVIN DY NMNDNA DOVNNYN NN ,NPORIP MXXIN 19000 INY MPrTH
9901NY ONYA NN NPDIN OYNAN 1IN Azuma Hoeffding 1111 'N2 vIW »T Dy .0MMION
TPOTVIND YA NPTIND NRDIND NIRN NPN NNYRIN IRNND .I2Y2 MONOY NMINRNN
P00 PINYA YIIYA NYNINND NNTYNN IYUNRD YIIYNN VOPN NP TIPN NN DY NIMNN
GO PITNY YIND 1N 0D ONRIN N BEC ) BSC 17y M2y 10 mO (MBIOS) PIDn 90M
DIMYN OXIPN 90N NIAY NNOINN MXIN MNIND IWINND ODNN ,TI0 90N .0DNN DY
NNIDONNA D2ININNIVY Tornado TP MNAY NNNTO) MYNYN MON PN DNTIPN DNIONN DNAY
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product ) min sum >NIYIN RNPNTY) belief propafation NON DP’DVIVN DNIIPINVON OT DY
DOV . TIPN NXR NIV NN MNYP 29 DY PDOIVN NN MNOYI MYTINN ONAY (sum
NIYON ONTPN PIY NIAXD 1DNN PIRYPD NON Dy DXODINNN OPNDN DNIYHN MNINNMD
likelihood N NIYAN NN I¥»D 1) MMXNON MNIN NNN D NTIYN DY DOIANN INID MION
N YY LTI PIND AN TPINYD NIVN TPXPND NOYA PIIPVIN N»YAD Maximum
(relaxation) M990 DYNIAN NN ,NPNVN NYNAN NPNS NPV LP N»yad dyan NX Noand
DDI2NN MINPD NNON NIYHN NINND INKRD (PN ANIND 7ayN D) MNINSN ANIN OV
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YNIANY POV NPXIVN 901 HY NPODIN NN DIVINRD VTN DHONN /T wyIn
TN MOND NPXIVND T90N D NI OONN .M PN 2I01NI92 MOND NIYINN
DIDN NVYNIVNRN T901 2D MNXIND N2 LDPC >Tip NAY OOIN DD J9IND 237IYN 10 719aN
NP0 DX PIAYNA NNPIYY) NIyann ¥ nraon imT 19Na .O(y/nln (n)) > Sy
DRID M TTPR 7285 .O(n'PIn(n)) > Sy NMDN (MIYaN YY MNIYN 951 1517151
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