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On Rényi Entropy Power Inequalities

Eshed Ram Igal Sason

Abstract

This paper gives improved Rényi entropy power inequalities (R-EPIs). Consider a sum Sn =
∑n

k=1Xk

of n independent continuous random vectors taking values on Rd, and let α ∈ [1,∞]. An R-EPI provides
a lower bound on the order-α Rényi entropy power of Sn that, up to a multiplicative constant (which may
depend in general on n, α, d), is equal to the sum of the order-α Rényi entropy powers of the n random
vectors {Xk}nk=1. For α = 1, the R-EPI coincides with the well-known entropy power inequality by
Shannon. The first improved R-EPI is obtained by tightening the recent R-EPI by Bobkov and Chistyakov
which relies on the sharpened Young’s inequality. A further improvement of the R-EPI also relies on
convex optimization and results on rank-one modification of a real-valued diagonal matrix.

Keywords: Rényi entropy, entropy power inequality, Rényi entropy power.

I. INTRODUCTION

One of the well-known inequalities in information theory is the entropy power inequality
(EPI) which has been introduced by Shannon [41, Theorem 15]. Let X be a d-dimensional
random vector with a probability density function, let h(X) be its differential entropy, and let
N(X) = exp

(
2
d h(X)

)
be the entropy power of X . The EPI states that for independent random

vectors {Xk}nk=1, the following inequality holds:

N

(
n∑
k=1

Xk

)
≥

n∑
k=1

N(Xk) (1)

with equality in (1) if and only if {Xk}nk=1 are Gaussian random vectors with proportional
covariances.

The EPI has proved to be an instrumental tool in proving converse theorems for the capacity
region of the Gaussian broadcast channel [6], the Gaussian wire-tap channel [30], the capacity
region of the Gaussian broadcast multiple-input multiple-output (MIMO) channel [49], and a
converse theorem in multi-terminal lossy compression [35]. Due to its importance, the EPI has
been proved with information-theoretic tools in several insightful ways (see, e.g., [7], [18],
[22], [27, Appendix D], [37], [44], [46]); e.g., the proof in [46] relies on fundamental relations
between information and estimation measures ([21], [23]), together with the simple fact that for
estimating a sum of two random variables, it is preferable to have access to the individual noisy
measurements rather than to their sum. More studies on the theme include EPIs for discrete
random variables and some analogies [24], [25], [26], [29], [40], [42], [50], generalized EPIs
[31], [32], [52], reverse EPIs [10], [11], [34], [51], related inequalities to the EPI in terms of
rearrangements [47], and some refined versions of the EPI for specialized distributions [15],
[16], [25], [45]. An overview on EPIs is provided in [1]; we also refer the reader to a preprint
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of a recent survey paper by Madiman et al. [34] which addresses forward and reverse EPIs with
Rényi measures, and their connections with convex geometry.

The Rényi entropy and divergence have been introduced in [36], and they evidence a long
track record of usefulness in information theory and its applications. Recent studies of the
properties of these Rényi measures have been provided in [19], [20] and [43]. In the following,
the differential Rényi entropy and the Rényi entropy power are introduced.

Definition 1 (Differential Rényi entropy): Let X be a random vector which takes values in Rd,
and assume that it has a probability density function which is designated by fX . The differential
Rényi entropy of X of order α ∈ (0, 1) ∪ (1,∞), denoted by hα(X), is given by

hα(X) =
1

1− α
log

( ∫
Rd

fαX(x) dx

)
(2)

=
α

1− α
log ‖fX‖α. (3)

The differential Rényi entropies of orders α = 0, 1,∞ are defined by the continuous extension
of hα(X) for α ∈ (0, 1) ∪ (1,∞), which yields

h0(X) = log λ
(
supp(fX)

)
, (4)

h1(X) = h(X) = −
∫
Rd

fX(x) log fX(x) dx, (5)

h∞(X) = − log
(
ess sup(fX)

)
(6)

where λ in (4) is the Lebesgue measure in Rd.
Definition 2 (Rényi entropy power): For a d-dimensional random vector X with density, the

Rényi entropy power of order α ∈ [0,∞] is given by

Nα(X) = exp
(
2
d hα(X)

)
. (7)

Since hα(X) is specialized to the Shannon entropy h(X) for α = 1, the possibility of
generalizing the EPI with Rényi entropy powers has emerged, leading to the following question:

Question 1: Let {Xk} be independent d-dimensional random vectors with probability density
functions, and let α ∈ [0,∞] and n ∈ N. Does a Rényi entropy power inequality (R-EPI) of the
form

Nα

(
n∑
k=1

Xk

)
≥ c(n,d)α

n∑
k=1

Nα(Xk) (8)

hold for some positive constant c(n,d)α (which may depend on the order α, dimension d, and
number of summands n) ?

In [28, Theorem 2.4], a sort of an R-EPI for the Rényi entropy of order α ≥ 1 has been
derived with some analogy to the classical EPI; this inequality, however, does not apply the
usual convolution unless α = 1. In [47, Conjectures 4.3, 4.4], Wang and Madiman conjectured
an R-EPI for an arbitrary finite number of independent random vectors in Rd for α > d

d+2 .
Question 1 has been recently addressed by Bobkov and Chistyakov [9], showing that (8) holds

with

cα = 1
e α

1

α−1 , ∀α > 1 (9)
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independently of the values of n, d. It is the purpose of this paper to derive some improved
R-EPIs for α > 1 (the case of α = 1 refers to the EPI (1)). A study of Question 1 for α ∈ (0, 1)
is currently an open problem (see [9, p. 709]).

In view of the close relation in (3) between the (differential) Rényi entropy and the Lα norm,
the sharpened version of Young’s inequality plays a key role in [9] for the derivation of an
R-EPI, as well as in our paper for the derivation of some improved R-EPIs. The sharpened
version of Young’s inequality was also used by Dembo et al. [18] for proving the EPI.

For α ∈ (1,∞), let α′ = α
α−1 be Hölder’s conjugate. For α > 1, Theorem 1 provides a new

tighter constant in comparison to (9) which gets the form

c(n)α = α
1

α−1

(
1− 1

nα′

)nα′−1
(10)

independently of the dimension d. The new R-EPI with the constant in (10) asymptotically
coincides with the tight bound by Rogozin [38] when α → ∞ and n = 2, and it also
asymptotically coincides with the R-EPI in [9] when n → ∞. Moreover, the R-EPI with the
new constant in (10) is further improved in Theorem 2 by a more involved analysis which relies
on convex analysis and some interesting results from matrix theory; the latter result yields a
closed-form solution for n = 2.

This paper is organized as follows: In Section II, preliminary material and notation are
introduced. A new R-EPI is derived in Section III for α > 1, and special cases of this improved
bound are studied. Section IV derives a strengthened R-EPI for a sum of n ≥ 2 random variables;
for n = 2, it is specialized to a bound which is expressed in a closed form; its computation
for n > 2 requires a numerical optimization which is easy to perform. Section V exemplifies
numerically the tightness of the new R-EPIs in comparison to some previously reported bounds,
and finally Section VI summarizes the paper.

II. ANALYTICAL TOOLS

This section includes notation and tools which are essential to the analysis in this paper. It
starts with the sharpened Young’s inequality, followed by results on rank-one modification of
a symmetric eigenproblem [14]. We also include here some properties of the differential Rényi
entropy and Rényi entropy power which are useful to the analysis in this paper.

A. Basic Inequalities

The derivation of the R-EPIs in this work partially relies on the sharpened Young’s inequality
and the monotonicity of the Rényi entropy in its order. For completeness, we introduce these
results in the following.

Notation 1: For α > 0, let α′ = α
α−1 , i.e., 1

α + 1
α′ = 1; if α = 1, we define α′ =∞.

Note that α ∈ [1,∞) if and only if α′ ∈ [0,∞]. This notation is known as Hölder’s conjugate.
Fact 1 (Monotonicity of the Rényi entropy): The Rényi entropy, hα(X), is monotonically non-

increasing in α.
From (3), it follows that for α ∈ (0, 1) ∪ (1,∞), if f is a probability density function of a

d-dimensional vector X , then

hα(X) = − log
(
‖f‖α′α

)
. (11)

A useful consequence of Fact 1 and (11) is the following result (a weaker version of it is given
in [9, Lemma 1]):
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Corollary 1: Let α ∈ (0, 1) ∪ (1,∞), and let f ∈ Lα(Rd) be a probability density function
(i.e., f is a non-negative function with ‖f‖1 = 1). Then, for every β ∈ (0, α) with β 6= 1,

‖f‖β
′

β ≤ ‖f‖
α′

α . (12)

Notation 2: For every t ∈ (0, 1) ∪ (1,∞), let

At = t
1

t |t′|−
1

|t′| (13)

and let A1 = A∞ = 1. Note that for t ∈ (0,∞]

At′ =
1

At
. (14)

The sharpened Young’s inequality, first derived by Beckner [4] and re-derived with alternative
proofs in, e.g., [3] and [13] is given as follows:

Fact 2 (Sharpened Young’s inequality): Let p, q, r > 0 satisfy
1

p
+

1

q
= 1 +

1

r
, (15)

let f ∈ Lp(Rd) and g ∈ Lq(Rd) be non-negative functions, and let f ∗g denote their convolution.
• If p, q, r > 1, then

‖f ∗ g‖r ≤
(
ApAq
Ar

) d

2

‖f‖p ‖g‖q. (16)

• If p, q, r < 1, then

‖f ∗ g‖r ≥
(
ApAq
Ar

) d

2

‖f‖p ‖g‖q. (17)

Furthermore, (16) and (17) hold with equalities if and only if f and g are Gaussian probability
density functions (up to multiplicative constants).

Note that the condition in (15) can be expressed in terms of the Hölder’s conjugates as follows:
1

p′
+

1

q′
=

1

r′
. (18)

By using (18) and mathematical induction, the sharpened Young’s inequality can be extended
to more than two functions as follows:

Corollary 2: Let ν, {νk}nk=1 > 0 satisfy
∑n

k=1
1
ν′k

= 1
ν′ , let

A =

(
1

Aν

n∏
k=1

Aνk

) d

2

(19)

where the right side in (19) is defined by (13), and let fk ∈ Lνk(Rd) be non-negative functions.
• If ν, {νk}nk=1 > 1, then

‖f1 ∗ . . . ∗ fn‖ν ≤ A
n∏
k=1

‖fk‖νk . (20)

• If ν, {νk}nk=1 < 1, then

‖f1 ∗ . . . ∗ fn‖ν ≥ A
n∏
k=1

‖fk‖νk (21)

with equalities in (20) and (21) if and only if fk are scaled versions of Gaussian probability
densities (up to multiplicative constants) for all k.



5

B. Rank-One Modification of a Symmetric Eigenproblem

This section is based on a paper by Bunch et al. [14] which addresses the eigenvectors and
eigenvalues (a.k.a. eigensystem) of rank-one modification of a real-valued diagonal matrix. We
use in this paper the following result [14]:

Fact 3: Let D ∈ Rn×n be a diagonal matrix with the eigenvalues d1 ≤ d2 ≤ . . . ≤ dn. Let
z ∈ Rn such that ‖z‖2 = 1 and let ρ ∈ R. Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of the
rank-one modification of D which is given by C = D + ρzzT . Then,

1) λi = di + ρµi, where
∑n

i=1 µi = 1 and µi ≥ 0 for all i ∈ {1, . . . , n}.
2) If ρ > 0, then the following interlacing property holds:

d1 ≤ λ1 ≤ d2 ≤ λ2 ≤ . . . ≤ dn ≤ λn (22)

and, if ρ < 0, then

λ1 ≤ d1 ≤ λ2 ≤ d2 ≤ . . . ≤ λn ≤ dn. (23)

3) If all the eigenvalues of D are different, all the entries of z are non-zero, and ρ 6= 0, then
inequalities (22) and (23) are strict. For i ∈ {1, . . . , n}, the eigenvalue λi is a zero of

W (x) = 1 + ρ

n∑
j=1

z2i
dj − x

. (24)

Note that the requirement ‖z‖2 = 1 can be relaxed to z 6= 0 by letting ẑ = z
‖z‖2 and ρ̂ = ρ‖z‖22.

C. Rényi Entropy Power

We present some properties of the differential Rényi entropy and Rényi entropy power which
are useful in this paper.
• In view of (3) and (7), for α ∈ (0, 1) ∪ (1,∞),

Nα(X) = (‖fX‖α)−
2α′
d . (25)

• The differential Rényi entropy hα(X) is monotonically non-increasing in α, and so is
Nα(X).

• If Y = AX + b where A ∈ Rd×d, |A| 6= 0, b ∈ Rd, then for all α ∈ [0,∞]

hα(Y ) = hα(X) + log |A|, (26)

Nα(Y ) = |A|
2

d Nα(X). (27)

This implies that the Rényi entropy power is a homogeneous functional of order 2 and it
is translation invariant, i.e.,

Nα(λX) = λ2Nα(X), ∀λ ∈ R, (28)

Nα(X + b) = Nα(X), ∀ b ∈ Rd. (29)

In view of (28) and (29), Nα(X) has some similar properties to the variance of X . However,
if we consider a sum of independent random vectors then Var (

∑n
k=1Xk) =

∑n
k=1 Var(Xk)

whereas the Rényi entropy power of a sum of independent random vectors is not equal, in
general, to the sum of the Rényi entropy powers of the individual random vectors (unless these
independent vectors are Gaussian with proportional covariances).

The continuation of this paper considers R-EPIs for orders α ∈ (1,∞]. The case where α = 1
refers to the EPI by Shannon [41, Theorem 15].
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III. A NEW RÉNYI EPI

In the following, a new R-EPI is derived. This inequality, which is expressed in closed-form,
is tighter than the R-EPI in [9, Theorem I.1].

Theorem 1: Let {Xk}nk=1 be independent random vectors with densities defined on Rd, and
let n ∈ N, α > 1, α′ = α

α−1 and Sn =
∑n

k=1Xk. Then, the following R-EPI holds:

Nα(Sn) ≥ c(n)α

n∑
k=1

Nα(Xk) (30)

with

c(n)α = α
1

α−1

(
1− 1

nα′

)nα′−1
. (31)

Furthermore, the R-EPI in (30) has the following properties:
1) Eq. (30) improves the R-EPI in [9, Theorem I.1] for every α > 1 and n ∈ N,
2) For all α > 1, it asymptotically coincides with the R-EPI in [9, Theorem I.1] as n→∞,
3) In the other limiting case where α ↓ 1, it coincides with the EPI (similarly to [9]),
4) If n = 2 and α→∞, the constant c(n)α in (31) tends to 1

2 which is optimal; this constant
is achieved when X1 and X2 are independent random vectors which are uniformly
distributed in the cube [0, 1]d.

Proof: In the first stage of this proof, we assume that

Nα(Xk) > 0, k ∈ {1, . . . , n} (32)

which, in view of (25), implies that fXk ∈ Lα(Rd), where fXk is the density of Xk for all
k ∈ {1, . . . , n}. In [9, (12)] it is shown that for α > 1,

Nα(Sn) ≥ B
n∏
k=1

N tk
α (Xk) (33)

with

B =
(
Aν1 . . . AνnAα′

)−α′
, (34)

νk > 1, ∀ k ∈ {1, . . . , n}, (35)

ν ′ =
ν

ν − 1
, ∀ ν ∈ R, (36)

n∑
k=1

1

ν ′k
=

1

α′
, (37)

tk =
α′

ν ′k
, ∀ k ∈ {1, . . . , n}. (38)

Consequently, (35)–(38) yields

tk ≥ 0, ∀ k ∈ {1, . . . , n}, (39)
n∑
k=1

tk = 1. (40)

The proof of (33), which relies on Corollaries 1 and 2, is introduced in Appendix A.
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Similarly to [9, (14)], in view of the homogeneity of the entropy power functional (see (28)),
it can be assumed without any loss of generality that

n∑
k=1

Nα(Xk) = 1. (41)

Hence, to prove (30), it is sufficient to show that under the assumption in (41)

Nα(Sn) ≥ c(n)α . (42)

From this point, we deviate from the proof of [9, Theorem I.1]. Taking logarithms on both
sides of (33) and assembling (13), (34)–(40) and (41) yield

logNα(Sn) ≥ f0(t), (43)

where t = (t1, . . . , tn), and

f0(t) =
logα

α− 1
−D(t‖Nα) + α′

n∑
k=1

(
1− tk

α′

)
log

(
1− tk

α′

)
, (44)

Nα = (Nα(X1), . . . , Nα(Xn)) , (45)

D(t‖Nα) =

n∑
k=1

tk log

(
tk

Nα(Xk)

)
. (46)

In view of (39) and (40), the bound in (43) holds for every t ∈ Rn+ such that
∑n

k=1 tk = 1.
Consequently, the R-EPI in [9, Theorem I.1] can be tightened by maximizing the right side of
(43), leading to the following optimization problem:

maximize f0(t)
subject to tk ≥ 0, k ∈ {1, . . . , n},∑n

k=1 tk = 1.
(47)

Note that the convexity of the function

f(x) =
(
1− x

α′

)
log
(
1− x

α′

)
, x ∈ [0, α′] (48)

yields that the third term on the right side of (44) is convex in t. Since the relative entropy
D(t‖Nα) is also convex in t, the objective function f0 in (44) is expressed as a difference of
two convex functions in t. In order to get an analytical closed-form lower bound on the solution
of the optimization problem in (47), we take the sub-optimal choice t = Nα (similarly to the
proof [9, Theorem I.1]) which yields that D(t‖Nα) = 0; however, our proof derives an improved
lower bound on the third term of f0(t) which needs to be independent of Nα. Let

t̂k = Nα(Xk), 1 ≤ k ≤ n, (49)

then, in view of (43) and (49),

logNα(Sn) ≥ f0(t̂) (50)

=
logα

α− 1
+ α′

n∑
k=1

(
1− t̂k

α′

)
log

(
1− t̂k

α′

)
. (51)

Due to the convexity of f in (48), for all k ∈ {1, . . . , n},

f(t̂k) ≥ f(x) + f ′(x) (t̂k − x). (52)
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Choosing x = 1
n in the right side of (52) yields(

1− t̂k
α′

)
log

(
1− t̂k

α′

)
≥ log

(
1− 1

nα′

)
+

log e

nα′
− t̂k
α′

[
log e+ log

(
1− 1

nα′

)]
(53)

and, in view of (41) and (49) which yields
∑n

k=1 t̂k = 1, summing over k ∈ {1, . . . , n} on both
sides of (53) implies that

α′
n∑
k=1

(
1− t̂k

α′

)
log

(
1− t̂k

α′

)
≥ (nα′ − 1) log

(
1− 1

nα′

)
. (54)

Finally, assembling (50), (51) and (54) yields (42) with c(n)α in (31) as required.
In the sequel, we no longer assume that condition (32) holds. Define

K0 = {k ∈ {1, . . . , n} : Nα(Xk) = 0}, (55)

and note that

hα(Sn) = hα

∑
k/∈K0

Xk +
∑
k∈K0

Xk

 (56)

≥ hα

∑
k/∈K0

Xk +
∑
k∈K0

Xk

∣∣∣ {Xk}k∈K0

 (57)

= hα

∑
k/∈K0

Xk

 (58)

where the conditional Rényi entropy is defined according to Arimoto’s proposal in [2] (see also
[20, Section 4]), (57) is due to the monotonicity property of the conditional Rényi entropy (see
[20, Theorem 2]), and (58) is due to the independence of X1, . . . , Xn. Since Nα(Xk) > 0 for
every k /∈ K0, then from the previous analysis

Nα

∑
k/∈K0

Xk

 ≥ c(l)α ∑
k/∈K0

Nα(Xk), (59)

where l = n− |K0|. In view of (31), it can be verified that c(n)α is monotonically decreasing in
n; hence, (58), (59) and c(l)α ≥ c(n)α yield

Nα(Sn) ≥ c(n)α

n∑
k=1

Nα(Xk). (60)

We now turn to prove Items 1)–4).
• To prove Item 1), note that (9) and (31) yield c(n)α > cα for all α > 1 and n ∈ N.
• Item 2) holds since from (31)

lim
n→∞

c(n)α = 1
e α

1

1−α (61)

where the right side of (61) coincides with the constant cα in [9, (3)] (see (9)).
• Item 3) holds since α ↓ 1 yields α′ →∞, which implies that for every n ∈ N

lim
α↓1

c(n)α = lim
α↓1

cα = 1. (62)
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Hence, by letting α tend to 1, (30) and (62) yield the EPI in (1).
• To prove Item 4), note that from (31)

lim
α→∞

c(n)α =

(
1− 1

n

)n−1
(63)

which is monotonically decreasing in n for n ≥ 2, being equal to 1
2 for n = 2 and 1

e by
letting n tend to ∞. Let X be a d-dimensional random vector with density fX , and let

M(X) := ess sup(fX). (64)

From (6), (7) and (64), it follows that

N∞(X) := lim
α→∞

Nα(X) (65)

=M−
2

d (X). (66)

By assembling (30) and (66), it follows that if X1, . . . , Xn are independent d-dimensional
random vectors with densities then

M−
2

d (Sn) ≥
(
1− 1

n

)n−1 n∑
k=1

M−
2

d (Xk). (67)

This improves the tightness of the inequality in [8, Theorem 1] where the coefficient
(
1− 1

n

)n−1
on the right side of (67) has been loosened to 1

e (note, however, that they coincide when n→∞).
For n = 2, the coefficient 1

2 on the right side of (67) is tight, and it is achieved when X1 and X2

are independent random vectors which are uniformly distributed in the cube [0, 1]d [8, p. 103].

α

101 102 103

c
(n
)

α

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n = 2
n = 3
n = 10
n → ∞

Fig. 1. A plot of c(n)α in (31), as a function of α, for n = 2, 3, 10 and n→ ∞.

Figure 1 plots c(n)α as a function of α, for some values of n, verifying numerically Items 1)–4)
in Theorem 1. In [9, Theorem I.1], c(n)α is independent of n, and it is equal to cα in (8) which
is the limit of c(n)α in (31) by letting n→∞ (the solid curve in Figure 1).
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Remark 1: For independent random variables {Xk}nk=1 with densities on R, the result in (67)
with d = 1 can be strengthened to (see [8, p. 105] and [38])

1

M2(Sn)
≥ 1

2

n∑
k=1

1

M2(Xk)
(68)

where Sn :=
∑n

k=1Xk. Note that (67) and (68) coincide if n = 2 and d = 1.
Example 1: Let X and Y be d-dimensional random vectors with densities fX and fY ,

respectively, and assume that the entries of X are i.i.d. as well as those of Y . Let X1, X2,
Y1, Y2 be independent d-dimensional random vectors where X1, X2 are independent copies of
X , and Y1, Y2 are independent copies of Y . Assume that

P[X1,k = X2,k] = α,

P[Y1,k = Y2,k] = β
(69)

for all k ∈ {1, . . . , d}. We wish to obtain an upper bound on the probability that X1 + Y1 and
X2 + Y2 are equal. From (3), (7) (with α = 2), and (69)

N2(X) = exp
(
2
d h2(X)

)
(70)

=

(∫
Rd
f2X(x) dx

)−2
d

(71)

= P−
2

d [X1 = X2] (72)

=

d∏
k=1

P−
2

d [X1,k = X2,k] (73)

= α−2, (74)

N2(Y ) = β−2, (75)

N2(X + Y ) = P−
2

d [X1 + Y1 = X2 + Y2]. (76)

Assembling (30) with n = α = 2, (74), (75) and (76) yield

P[X1 + Y1 = X2 + Y2] ≤
(
27
32

(
α−2 + β−2

))− d
2 . (77)

The factor 27
32 on the base of the exponent on the right side of (77), instead of the looser factor

c2 = 2
e which follows from (9) with α = 2 (see [9, Theorem I.1]), improves the exponential

decay rate of the upper bound in (77) as a function of the dimension d. The optimal bound has
to be with a coefficient of

(
α−2 + β−2

)
on the base of the exponent in the right side of (77)

which is less than or equal to 1; this can be verified since if X and Y are independent Gaussian
random variables, then

N2(X + Y ) = N2(X) +N2(Y ), (78)

so,

P[X1 + Y1 = X2 + Y2] =
(
α−2 + β−2

)−d2 . (79)

This provides a reference for comparing the exponential decay which is implied by c2 in (9),
c
(2)
2 in (30), and the case where X and Y are independent Gaussian random variables:

2

e
<

27

32
< 1. (80)
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IV. A FURTHER TIGHTENING OF THE R-EPI

A. A Tightened R-EPI for n ≥ 2

In the following, we wish to tighten the R-EPI in Theorem 1. It is first demonstrated that a
reduction of the optimization problem in (47) to n−1 variables (recall that

∑n
k=1 tk = 1) leads to

a convex optimization problem. This convexity result is established by a non-trivial use of Fact 3
in Section II-B (see [14]), and it is also shown that the reduction of the optimization problem in
(47) from n to n−1 variables is essential for its convexity. Consequently, the convex optimization
problem is handled by solving the corresponding Karush-Kuhn-Tucker (KKT) equations. If n =
2, their solution leads to a closed-form expression which yields the R-EPI in Corollary 3. For
n > 2, no solution is provided in closed form; nevertheless, an efficient algorithm is introduced
for solving the KKT equations for an arbitrary n > 2, and the improvement in the tightness of
the new R-EPI in this section is exemplified numerically in comparison to the bounds in [5],
[9] and Theorem 1.

1) The optimization problem in (47): In view of (44)–(47), the maximization problem in (47)
can be expressed in the form

maximize f0(t) =
∑n

k=1 g(tk) +
∑n

k=1 tk logNk +
logα
α−1

subject to t ∈ Pn
(81)

where

g(x) = (α′ − x) log
(
1− x

α′

)
− x log x, x ∈ [0, 1] (82)

Nk = Nα(Xk), k ∈ {1, . . . , n} (83)

(for simplicity of notation, the dependence of g and Nk in α has been suppressed in (81)), and
Pn is the probability simplex

Pn =

{
t ∈ Rn : tk ≥ 0,

n∑
k=1

tk = 1

}
. (84)

The term
∑n

k=1 tk logNk on the right side of (81) is linear in t, thus the concavity of f0 in t is
only affected by the term

∑n
k=1 g(tk). Since g′′(x) = 2x−α′

x(α′−x) where x ∈ [0, 1], if α′ ≥ 2, then g
is concave on the interval [0, 1]. If α′ ∈ (1, 2) (i.e., if α ∈ (2,∞)) then g is not concave on the
interval [0, 1]; it is only concave on [0, α

′

2 ], and it is convex on [α
′

2 , 1]. Hence, as a maximization
problem over the variables t1, . . . , tn, the objective function f0 in (81) is not concave if α > 2.

2) A reduction of the optimization problem in (47) to n − 1 variables: In view of (84), the
substitution

tn = 1−
n−1∑
k=1

tk (85)

transforms the maximization problem in (81) to the following equivalent problem:

maximize f(t1, . . . , tn−1)

subject to t ∈ Dn−1
(86)

where

f(t1, . . . , tn−1) = f0

(
t1, . . . , tn−1, 1−

n−1∑
k=1

tk

)
(87)
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and Dn−1 is the polyhedron

Dn−1 =

{
(t1, . . . , tn−1) : tk ≥ 0,

n−1∑
k=1

tk ≤ 1

}
. (88)

3) Proving the convexity of the optimization problem in (86): We wish to show that the
objective function f of the optimization problem in (86) is concave, i.e., it is required to assert
that all the eigenvalues of the Hessian matrix ∇2f are non-positive.

Eqs. (81) and (87) yield

f(t1, . . . , tn−1)

=

n−1∑
k=1

g(tk) + g

(
1−

n−1∑
k=1

tk

)

+

n−1∑
k=1

tk logNk +

(
1−

n−1∑
k=1

tk

)
logNn +

logα

α− 1
.

(89)

Let

q(x) = g′′(x) =
2x− α′

x(α′ − x)
, x ∈ [0, 1] (90)

then, in view of (89) and (90), for all (t1, . . . , tn−1) ∈ Dn−1

∇2f(t1, . . . , tn−1) =


q(t1) 0 · · · 0
0 q(t2) · · · 0
...

...
. . .

...
0 0 · · · q(tn−1)

+ q

(
1−

n−1∑
k=1

tk

)
1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


= D + ρ 1 1T (91)

where

D = diag(q(t1), . . . , q(tn−1)),

ρ = q

(
1−

n−1∑
k=1

tk

)
.

(92)

Recall that if α′ ∈ [2,∞) then f0(t1, . . . , tn) is concave in Pn, hence, so is f(t1, . . . , tn−1) in
Dn−1. We therefore need only to focus on the case where α′ ∈ (1, 2) (i.e., α ∈ (2,∞)).

Proposition 1: For every α′ ∈ (1, 2), the function f : Dn−1 → R in (89) is concave.
Proof: See Appendix B.

4) Solution of the convex optimization problem in (86): In the following, we solve the convex
optimization problem in (86) via the Lagrange duality and KKT conditions (see, e.g., [12,
Chapter 5]). Since the problem is invariant to permutations of the entries of X = (X1, . . . , Xn),
it can be assumed without any loss of generality that the last term of the vector Nα in (45) is
maximal, i.e.,

Nα(Xk) ≤ Nα(Xn), k ∈ {1, . . . , n− 1}. (93)

Moreover, it is assumed that

Nα(Xn) > 0. (94)
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The possibility that Nα(Xn) = 0 leads to a trivial bound since from (93), it follows that
Nα(Xk) = 0 for every k ∈ {1, . . . , n}; this makes the right side of (8) be equal to zero, while
its left side is always non-negative. Let

ck =
Nα(Xk)

Nα(Xn)
, k ∈ {1, . . . , n− 1}. (95)

From (93)–(95), the sequence {ck}n−1k=1 satisfies

0 ≤ ck ≤ 1, k ∈ {1, . . . , n− 1}. (96)

Let tn be defined as in (85). Appendix C provides the technical details which are related to
the solution of the convex optimization problem in (86) via the Lagrange duality and KKT
conditions (note that strong duality holds here). The resulting simplified set of constraints which
follow from the KKT conditions (see Appendix C) is given by

tk(α
′ − tk) = cktn(α

′ − tn), k ∈ {1, . . . , n− 1} (97)
n∑
k=1

tk = 1 (98)

tk ≥ 0, k ∈ {1, . . . , n} (99)

with the variables t in (97)–(99).
Note that if Nα(Xk) is independent of k then, from (95), ck = 1 for all k ∈ {1, . . . , n− 1}.

Hence, from (97) and (98), it follows that t1 = . . . = tn = 1
n (note that the other possibility

where tk = α′ − tn for some k ∈ {1, . . . , n − 1} contradicts (98) and (99) since in this case∑n
j=1 tj ≥ tk+tn = α′ > 1). This implies that the selection of the tk’s in the proof of Theorem 1

is optimal when all the entries of the vector Nα are equal; therefore, the R-EPI considered here
improves the bound in Theorem 1 only when Nα(Xk) depends on the index k.

In the general case, (97) yields a quadratic equation for tk whose solutions are given by

tk =
1
2

(
α′ ±

√
α′ 2 − 4cktn(α′ − tn)

)
(100)

with α′ = α
α−1 . The possibility of the positive sign in the right side of (100) is rejected since in

this case tn + tk ≥ α′ > 1, which violates (98). Hence, from (100), for all k ∈ {1, . . . , n− 1}

tk = ψk,α(tn) (101)

where we define

ψk,α(x) =
1
2

(
α′ −

√
α′ 2 − 4ck x(α′ − x)

)
, x ∈ [0, 1]. (102)

In view of (98) and (101), one first calculates tn ∈ [0, 1] by numerically solving the equation

tn +

n−1∑
k=1

ψk,α(tn) = 1. (103)

The existence and uniqueness of a solution of (103) is proved in Appendix D. Once we compute
tn, all tk’s for k ∈ {1, . . . , n−1} are computed from (101). Finally, the substitution of t1, . . . , tn
in the right side of (43) enables to calculate the improved R-EPI in (43), i.e.,

Nα

(
n∑
k=1

Xk

)
≥ exp

(
f0(t1, . . . , tn)

) n∑
k=1

Nα(Xk) (104)

with f0 in (44).
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Note that due to the optimal selection of the vector t = (t1, . . . , tn) in (104), the R-EPI in
this section provides an improvement over the R-EPI in Theorem 1 whenever Nα(Xk) is not
fixed as a function of the index k. This leads to the following result:

Theorem 2: Let X1, . . . , Xn be independent random vectors with probability densities defined
on Rd, let Nα(X1), . . . , Nα(Xn) be their respective Rényi entropy powers of order α > 1, and
let α′ = α

α−1 . Let the indices of X1, . . . , Xn be set such that Nα(Xn) is maximal, and let
1) {ck}n−1k=1 be the sequence defined in (95);
2) tn ∈ [0, 1] be the unique solution of (103);
3) {tk}n−1k=1 be given in (101) and (102).

Then, the R-EPI in (104) holds with f0 in (44), and it satisfies the following properties:
1) It improves the R-EPI in Theorem 1 unless Nα(Xk) is independent of k (consequently,

it also improves the R-EPI in [9, Theorem 1]); if Nα(Xk) is independent of k, then the
two R-EPIs in Theorem 1 and (104) coincide.

2) It improves the Bercher-Vignat (BV) bound in [5] which states that

Nα

(
n∑
k=1

Xk

)
≥ max

{
Nα(X1), . . . , Nα(Xn)

}
(105)

and the bounds in (104) and (105) asymptotically coincide as α→∞ if and only if
n−1∑
k=1

N∞(Xk) ≤ N∞(Xn) (106)

where N∞(X) is defined in (66).
3) For n = 2, it is expressed in a closed form (see Corollary 3).
4) It coincides with the EPI and the two R-EPIs in [9, Theorem 1] and Theorem 1 as α ↓ 1.

Proof: The proof of the R-EPI in (104) is provided earlier in this section with some
additional details in Appendices B–E. In view of this analysis:
• Item 1) holds since the proof of the R-EPI in Theorem 1 relies in general on a sub-optimal

choice of the vector t in (49), whereas it is set to be optimal in the proof of Theorem 2
in (101)–(103). Suppose, however, that Nα(Xk) is independent of the index k; in the
latter case, the selection of the vector t in the proof of Theorem 1 (see (49)) reduces to
t =

(
1
n , . . . ,

1
n

)
, which turns to be optimal in the sense of achieving the maximum of the

objective function in (89).
• Item 2) holds since the selection of t in the right side of (43) with tk = 1 and ti = 0 for

all i 6= k yields

Nα

(
n∑
k=1

Xk

)
≥ Nα(Xk) (107)

which then leads to (105) by a maximization of the right side of (107) over k ∈ {1, . . . , n}.
Appendix E proves that the bounds in (104) and (105) asymptotically coincide as α→∞
if and only if the condition in (106) holds.

• Item 3) is proved in Section IV-B.
• Item 4) holds since the R-EPI obtained in Theorem 2 is at least as tight as the BC bound

in [9, Theorem 1]; the latter coincides with the EPI as we let α tend to 1 (recall that,
from (9), limα↓1 cα = 1) which is known to be tight for Gaussian random vectors with
proportional covariances.
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Remark 2: The R-EPI in Theorem 2 provides the tightest R-EPI known to date for α ∈ (1,∞).
Nevertheless, it is still not tight for α ∈ (1,∞) since at least one of the inequalities involved in
the derivation of (33) (see Appendix A) is loose. These include the sharpened Young’s inequality
in (20), and (12). The former inequality holds with equality only for Gaussians, whereas the
latter inequality holds with equality only for a uniformly distributed random variable (note that
in the latter case, the Rényi entropy is independent of its order). For α = ∞ and n = 2, the
sharpened Young’s inequality (16) reduces to

‖f ∗ g‖∞ ≤ ‖f‖p ‖g‖p′ (108)

where p > 1 and p′ = p
p−1 . Equality holds in (108) if f and g are scaled versions of a uniform

distribution on the same convex set, which is also the same condition for tightness of (12); this is
consistent with our conclusion that the R-EPIs in Theorems 1 and 2 are, however, asymptotically
tight for n = 2 by letting α→∞.
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Fig. 2. A comparison of the Rényi entropy power inequalities for n = 3 independent random vectors according
to [9] (BC), [5] (BV), Theorem 1 and the tightest bound in Theorem 2. The bounds refer to the two cases where
(Nα(X1), Nα(X2), Nα(X3)) = (40, 40, 40) or (10, 20, 90) (in both cases, the sum of the entries is 120; in the
former case, the condition in (106) does not hold, while in the latter it does).

Figure 2 compares the two R-EPIs in Theorems 1 and 2 with those in [9] (see (9)) and [5]
(see (105)) for n = 3 independent random vectors; the abbreviations ’BC’ and ’BV’ stand,
respectively, for the latter two bounds. Recall that the four bounds are independent of the
dimension d of the random vectors, and they are plotted in Figure 2 for symmetric and asym-
metric cases where (Nα(X1), Nα(X2), Nα(X3)) = (40, 40, 40) and (10, 20, 90), respectively
(note that in both cases, the sum of the entries is equal to 120). In the former case, for every
α > 1, Theorem 2 provides a lower bound on Nα(X1 + X2 + X3) which is tighter than
those in [5] and [9]; furthermore, in this special case where Nα(Xk) is independent of the
index k, the bounds in Theorems 1 and 2 coincide. In the asymmetric case, however, where
(Nα(X1), Nα(X2), Nα(X3)) = (10, 20, 90), the bound in Theorem 2 suggests a significant
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improvement over the bound in Theorem 1 due to the sub-optimality of the choice of the vector
t in the proof of Theorem 1 in comparison to its optimal choice in Theorem 2. As it is shown
in Figure 2 and supported by Item 2) of Theorem 2, the bound in this theorem asymptotically
coincides with the BV bound (by letting α→∞) in the considered asymmetric case; however,
for every α ∈ (1,∞), the bound in Theorem 2 is advantageous over the BV bound. It is
also shown in Figure 2 that in this asymmetric case, the BV bound is advantageous over our
bound in Theorem 1 for sufficiently large α; this observation emphasizes the significance of the
optimization of the vector t in the proof of Theorem 2, yielding the tightest R-EPI known to
date for α > 1. Finally, as it is shown in Figure 2, the R-EPIs of Theorems 1 and 2, as well as
[9, Theorem 1], coincide with the EPI as we let α tend to 1 (from above).

B. A Closed-Form Expression of the Tightened R-EPI for n = 2

We derive in the following a closed-form expression of the R-EPI in Theorem 2 for n = 2
independent random vectors. In the sequel, we make use of the binary relative entropy function
which is defined to be the continuous extension to [0, 1]2 of

d(x‖y) = x log

(
x

y

)
+ (1− x) log

(
1− x
1− y

)
. (109)

Corollary 3: Let X1 and X2 be independent random vectors with densities defined on Rd,
let Nα(X1), Nα(X2) be their Rényi entropy powers of order α > 1, and assume without any
loss of generality that Nα(X1) ≤ Nα(X2). Let

α′ =
α

α− 1
, (110)

βα =
Nα(X1)

Nα(X2)
, (111)

tα =


α′(βα+1)−2βα−

√
(α′ (βα+1))2−8α′βα+4βα
2(1−βα) if βα < 1,

1
2 if βα = 1.

(112)

Then, the following R-EPI holds:

Nα(X1 +X2) ≥ cα
(
Nα(X1) +Nα(X2)

)
(113)

with

cα = α
1

α−1 exp

(
−d
(
tα
∥∥ βα
βα + 1

)) (
1− tα

α′

)α′−tα (
1− 1− tα

α′

)α′−1+tα
. (114)

The R-EPI in (113) satisfies Items 1)–4) of Theorem 2; specifically, by letting α → ∞, the
lower bound on Nα(X1 +X2) tends to N∞(X2), which asymptotically coincides with the BV
bound in [5].

Proof: Due to the constraints in (47), the vector t can be parameterized in the form t =
(t, 1− t) for t ∈ [0, 1]; due to the normalization of the vector Nα = (Nα(X1), Nα(X2)) in (41),
then

Nα =
(

βα
1+βα

, 1
1+βα

)
(115)

and, by (44), the maximization in (81) is transformed to

maximize
t∈[0,1]

{
logα

α− 1
− t log

(
(1 + βα)t

)
− (1− t) log

(
(1 + βα)(1− t)

βα

)
+α′

[(
1− t

α′

)
log

(
1− t

α′

)
+

(
1− 1− t

α′

)
log

(
1− 1− t

α′

)]}
.

(116)
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It can be verified that the objective function in (116) is concave on [0, 1], it has a right derivative
at t = 0 which is equal to +∞, and a left derivative at t = 1 which is equal to −∞. This implies
that the maximization of the objective function over [0, 1] is attained at an interior point of this
interval. The optimized value of t is obtained by setting the derivative of this objective function
to zero, leading to the equation

log
(
(1−t)βα

t

)
− log

(
α′−t
α′−1+t

)
= 0. (117)

Eq. (117) can be expressed as a quadratic equation whose solution is given in (112). Substituting
the optimized value t = tα in (112) into the objective function on the right side of (116) leads
to the closed-form solution of the optimization problem in (81) for n = 2. Hence, under the
assumption in (41) where Nα(X1) +Nα(X2) = 1, straightforward algebra yields that

Nα(X1 +X2) ≥ cα (118)

where cα is given in (114); the relaxation of this assumption requires the multiplication of the
right side of (118) by Nα(X1) +Nα(X2) (due to the homogeneity of the Rényi entropy power,
see (28)). Note that, for n = 2, the condition in (106) becomes vacuous (since, by assumption,
N∞(X1) ≤ N∞(X2)) which implies that the bound in (113) asymptotically coincides with the
BV bound when α→∞.

V. EXAMPLE: THE RÉNYI ENTROPY DIFFERENCE BETWEEN DATA AND ITS FILTERING

Let {X(n)} be i.i.d. d-dimensional random vectors (the entries of the vector X(n) need not
be independent), with arbitrary densities on Rd. Let

Y (n) =

L−1∑
k=0

HkX(n− k) (119)

be the filtered data at the output of a finite impulse response (FIR) filter where H0, . . . ,HL−1
are fixed non-singular d× d matrices.

In the following, the tightness of several R-EPIs is exemplified by obtaining universal lower
bounds on the difference hα

(
Y (n)

)
− hα

(
X(n)

)
, being also compared with the actual value

of this difference when the i.i.d. inputs are d-dimensional Gaussian random vectors with i.i.d.
entries.

For k ∈ {0, . . . , L− 1} and every n, we have

hα
(
HkX(n− k)

)
= hα

(
X(n)

)
+ log

∣∣det(Hk)
∣∣ (120)

and

Nα

(
HkX(n− k)

)
= exp

(
2
d hα

(
HkX(n− k)

))
=
∣∣det(Hk)

∣∣ 2d Nα

(
X(n)

)
. (121)

Let α > 1, and α′ = α
α−1 . Similarly to Theorem 2, it is assumed without loss of generality that∣∣det(Hk)

∣∣ ≤ ∣∣det(HL−1)
∣∣ for all k ∈ {0, . . . , L− 2}; otherwise, the indices of H0, . . . ,HL−1

can be permuted without affecting the differential Rényi entropy of Y (n). In the setting of the
improved R-EPI of Theorem 2, in view of (95) and (121), for every k ∈ {0, . . . , L− 2},

ck =

( ∣∣det(Hk)
∣∣∣∣det(HL−1)
∣∣
) 2

d

(122)
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which, in view of the above assumption, implies that ck ∈ [0, 1] for k ∈ {0, . . . , L − 2}.
Given the L matrices {Hk}L−1k=0 , the vector (t0, . . . , tl−1) ∈ [0, 1]L is calculated according to
Theorem 2; first tL−1 ∈ [0, 1] is numerically calculated by solving the equation in (103) (with a
replacement of 1 and n in (103) by 0 and L− 1, respectively), and then the rest of the tk’s for
k ∈ {0, . . . , L− 2} are calculated via (101) and (102). In view of (120), (121), and the R-EPI
of Theorem 2, it follows that for every n

hα
(
Y (n)

)
− hα

(
X(n)

)
≥ d

2

(
logα

α− 1
+

L−1∑
k=0

g(tk)

)
+

L−1∑
k=0

tk log
∣∣det(Hk)

∣∣ (123)

where the function g is given in (82).
In view of the derivation so far, it is easy to verify that the R-EPI in Theorem 1 is equivalent

to the following looser bound, which is expressed in closed form:

hα
(
Y (n)

)
− hα

(
X(n)

)
≥ d

2
· log

(
L−1∑
k=0

∣∣det(Hk)
∣∣ 2d)

+
d

2

(
logα

α− 1
+

(
Lα

α− 1
− 1

)
log

(
1− α− 1

Lα

))
.

(124)

The R-EPI of [9, Theorem I.1] leads to the following loosened bound in comparison to (124):

hα
(
Y (n)

)
− hα

(
X(n)

)
≥ d

2

[
log

(
L−1∑
k=0

∣∣det(Hk)
∣∣ 2d)+

logα

α− 1
− log e

]
(125)

and, finally, the BV bound in [5] (see (105)) leads to the following loosening of (123):

hα
(
Y (n)

)
− hα

(
X(n)

)
≥ log

(
max

0≤k≤L−1

∣∣det(Hk)
∣∣) . (126)

The differential Rényi entropy of order α ∈ (0, 1) ∪ (1,∞) for a d-dimensional multivariate
Gaussian distribution is given by

hα
(
X(n)

)
=

d logα

2(α− 1)
+ 1

2 log
(
(2π)d det

(
Cov(X(n))

))
. (127)

Hence, if the entries of the Gaussian random vector X(n) are i.i.d.

hα
(
Y (n)

)
− hα

(
X(n)

)
= 1

2 log

(
det

(
L−1∑
k=0

HkH
T
k

))
. (128)

Example 2: Let

Y (n) = 2X(n)−X(n− 1)−X(n− 2) (129)

for every n where {X(n)} are i.i.d. random variables, and consider the difference h2(Y )−h2(X)
in the quadratic differential Rényi entropy. In this example α = 2, d = 1, L = 3, and H0 = 2,
H1 = −1, H2 = −1. The lower bounds in (123), (124), (125), (126) are equal to 0.8195,
0.7866, 0.7425 and 0.6931 nats, respectively (recall that the first two lower bounds correspond
to Theorems 2 and 1 respectively, and the last two bounds correspond to [9] and [5] respectively.
These lower bounds are compared to the achievable value in (128), for an i.i.d. Gaussian input,
which is equal to 0.8959 nats.



19

VI. SUMMARY

This work is focused on the derivation of improved Rényi entropy power inequalities (R-EPI)
for a sum of n independent and continuous random vectors over Rd. These inequalities are of
the form (8), they refer to orders α ∈ (1,∞], and they also coincide with the EPI [41] by letting
α → 1. Theorem 1 provides an R-EPI with a constant which is given in closed form in (31),
improving the R-RPI by Bobkov and Chistyakov in [9, Theorem 1]; furthermore, for n = 2,
the R-EPI in Theorem 1 is asymptotically tight when α→∞. The R-EPI which is introduced
in Theorem 2 can be efficiently calculated via a simple numerical algorithm, it is tighter than
Theorem 1 and all previously reported bounds, and it is currently the best known R-EPI for
α ∈ (1,∞). Corollary 3 provides a closed-form expression for the R-EPI in Theorem 2 for a
sum of two independent random vectors. It should be noted that the R-EPIs in Theorems 1 and 2
coincide when the Rényi entropy powers of the n independent random vectors are all equal.

Theorem 1 is obtained by tightening the recent R-EPI by Bobkov and Chistyakov [9] with the
same analytical tools, namely the monotonicity of Nα(X) in α, and the use of the sharpened
Young’s inequality. Theorem 2, which improves the tightness of the R-EPI in Theorem 1, relies on
the following additional analytical tools: 1) a strong Lagrange duality of an optimization problem
is asserted by invoking a theorem in matrix theory [14] regarding the rank-one modification of
a real-valued diagonal matrix, and 2) a solution of the Karush-Kuhn-Tucker (KKT) equations
of the related optimization problem.

APPENDIX A
PROOF OF (33)

Since {Xk}nk=1 are independent random variables, the density of Sn =
n∑
k=1

Xk is the convo-

lution of the densities fXk . In view of (20) and (25), for α > 1,

Nα(Sn) = (‖fX1
∗ . . . ∗ fXn‖α)

− 2α′
d

≥ A−
2α′
d

∏n
k=1 (‖fXk‖νk)

− 2α′
d

(130)

where

νk > 1, 1 ≤ k ≤ n (131)
n∑
k=1

1

ν ′k
=

1

α′
(132)

and, due to (14) and (19),

A =

(
Aα′

n∏
k=1

Aνk

) d

2

. (133)

From (131) and (132) it follows that νk ∈ (1, α] for all k ∈ {1, . . . , n}, hence in view of
Corollary 1,

‖fXk‖
ν′k
νk ≤ ‖fXk‖α

′

α , 1 ≤ k ≤ n. (134)

Combining (130) and (134), and defining tk = α′

ν′k
yields

Nα(Sn) ≥ A−
2α′
d

n∏
k=1

(‖fXk‖α)
− 2α′

d
· α′
ν′
k = A−

2α′
d

n∏
k=1

N tk
α (Xk) (135)

which by setting B = A−
2α′
d completes the proof of (33) with the constant B as given in (34).
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APPENDIX B
PROOF OF PROPOSITION 1

Let α′ ∈ (1, 2). If there exists an index k ∈ {1, . . . , n − 1} such that q(tk) = 0, then
tk = α′

2 > 1
2 (see (90)). In view of (88), it follows that tl < 1

2 for every other index l 6= k in
the set {1, . . . , n− 1}, which in turn implies from (90) that q(tl) < 0 for every such index l. In
other words, if there exists an index k ∈ {1, . . . , n− 1} such that q(tk) = 0, then it follows that
q(tl) ≤ 0 for all l ∈ {1, . . . , n − 1}. In view of (92), D � 0 and ρ < 0 (to verify that ρ < 0,
note that since 0 ≤ 1−

∑n−1
j=1 tj ≤ 1− tk = 1− α′

2 < 1
2 <

α′

2 then it follows from (90) and (92)
that ρ = q

(
1 −

∑n−1
j=1 tj

)
< 0); hence, (91) implies that ∇2f(t1, . . . , tn−1) ≺ 0 in the interior

of Dn−1, so f is (strictly) concave on Dn−1.
To proceed, the following lemmas will be useful.
Lemma 1: If α′ ∈ (1, 2) and x ∈ (0, 1− α′

2 ), then

1

q(x)
+

1

q(1− x)
> 0. (136)

Proof: In view of (90), the left side of (136) is equal to

<0︷ ︸︸ ︷
(1− α′)

>0︷ ︸︸ ︷
(2x2 − 2x+ α′)

(2x− α′)︸ ︷︷ ︸
<0

(2− 2x− α′)︸ ︷︷ ︸
>0

> 0.

Lemma 2: If α′ ∈ (1, 2), u, v > 0 and u+ v < 1− α′

2 , then

1

q(u)
+

1

q(1− u− v)
− 1

q(1− v)
> 0. (137)

Proof: In view of (90), the left side of (137) is equal to
>0︷ ︸︸ ︷

(2α′u)

>0︷ ︸︸ ︷
(α′ + v − 1)

<0︷ ︸︸ ︷
(u+ v − 1)

(2u− α′)︸ ︷︷ ︸
<0

(2− 2u− 2v − α′)︸ ︷︷ ︸
>0

(2− 2v − α′)︸ ︷︷ ︸
>0

> 0.

Lemma 3: If n ≥ 2, α′ ∈ (1, 2) and

t1, . . . , tn−1 > 0,
n−1∑
k=1

tk < 1− α′

2
,

tn = 1−
n−1∑
k=1

tk

(138)

then
n∑
k=1

1

q(tk)
> 0. (139)
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Proof: Lemma 3 is proved by using mathematical induction on n. In view of Lemma 1,
(139) holds for n = 2. Assuming its correctness for n, we have

n−1∑
j=1

1

q(tj)
+

1

q(tn)
> 0 (140)

where, from (138), tn = 1−
∑n−1

k=1 tk. We prove in the following that (139) also holds for n+1
when the constraints in (138) are satisfied with n+ 1, i.e.,

t1, . . . , tn > 0,
n∑
k=1

tk < 1− α′

2
,

tn+1 = 1−
n∑
k=1

tk.

(141)

Consequently, the left side of (139) is equal to
n+1∑
k=1

1

q(tk)
=

n−1∑
k=1

1

q(tk)
+

1

q(tn)
+

1

q(tn+1)

> − 1

q(tn)
+

1

q(tn)
+

1

q(tn+1)
(142)

=
1

q(tn)
+

1

q (1−
∑n

k=1 tk)
− 1

q(1−
∑n−1

k=1 tk)
(143)

> 0 (144)

where (142) follows from (140); (143) holds by the equality constraint in (141); (144) follows
from Lemma 2 by setting u = tn, v =

∑n−1
k=1 tk which satisfy u+ v < 1− α′

2 in view of (141).
Hence, it follows by mathematical induction that Lemma 3 holds for every n ≥ 2.

In the following, we prove the concavity of f when q(tk) 6= 0 for all k ∈ {1, . . . , n − 1}
(recall that the case where there exits k ∈ {1, . . . , n − 1} such that q(tk) = 0 was addressed
in the paragraph before Lemma 1). Without loss of generality, we prove that ∇2f(t) � 0 when(
q(t1), . . . , q(tn−1)

)
is a vector whose all entries are distinct. To justify this assumption, note

that since the function q in (90) is monotonically increasing (q′(t) = 1
t2 + 1

(α′−t)2 > 0), we
actually restrict ourselves under the latter assumption to the case where the entries of the vector
(t1, . . . , tn−1) are all distinct. Otherwise, if some of the entries of the vector (t1, . . . , tn−1) are
equal, then the proof that the Hessian matrix is non-positive definite continues to hold by relying
on the satisfiability of this property when all the entries of (t1, . . . , tn−1) are distinct, and from
the continuity in t of the eigenvalues of the Hessian matrix ∇2f(t).

Since the optimization problem in (86) is invariant to a permutation of the entries of t, it is
assumed without loss of generality that

q(t1) < q(t2) < . . . < q(tn−1). (145)

In view of (145), there are only two possibilities: either

q(t1) < q(t2) < . . . < q(tn−2) < q(tn−1) < 0, (146)

or

q(t1) < q(t2) < . . . < q(tn−2) < 0 < q(tn−1) (147)
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as if it was possible that q(tn−2) ≥ 0, it would have implied that q(tn−1) > q(tn−2) ≥ 0 which
in turn yields that tn−1 > tn−2 ≥ α′

2 . This, however, cannot be true since otherwise

n−1∑
k=1

tk ≥ tn−2 + tn−1 > α′ > 1

which violates the inequality constraint
∑n−1

k=1 tk ≤ 1 in (88).
The continuation of this proof relies on Fact 3 by Bunch et al. [14] (see Section II-B), and

on Lemma 3. Let

tn = 1−
n−1∑
k=1

tk. (148)

Case 1: If (146) holds, then (92) implies that

D ≺ 0. (149)

• If q(tn) < 0 then ρ = q(tn)11
T ≺ 0 which, in view of (91) and (149), implies that

∇2f(t1, . . . , tn−1) ≺ 0.
• Otherwise, if q(tn) > 0 then ρ > 0 (see (92) and (148)); from (91) and the interlacing

property in (22), the eigenvalues λ1, . . . , λn−1 of ∇2f(t) satisfy

q(t1) < λ1 < q(t2) < . . . < q(tn−2) < λn−2 < q(tn−1) < λn−1 (150)

where, in view of the third item of Fact 3, the inequalities in (150) are strict. From (146)
and (150), it follows that λ1, . . . , λn−2 < 0. To prove that ∇2f(t1, . . . , tn−1) ≺ 0, it
remains to show that also λn−1 < 0. In view of the third item of Fact 3 and (91), the
eigenvalues of ∇2f(t1, . . . , tn−1) satisfy the equation

1 + q(tn)

n−1∑
j=1

1

q(tj)− λ
= 0 (151)

which therefore implies that, for all k ∈ {1, . . . , n− 1},
n−1∑
j=1

1

λk − q(tj)
=

1

q(tn)
. (152)

Let us assume on the contrary that λn−1 > 0. Since it is assumed here that q(tn) > 0
then tn > α′

2 , and it follows from (148) that

n−1∑
k=1

tk < 1− α′

2
. (153)

Since q(tj) < 0 for all j ∈ {1, . . . , n− 1}, if λn−1 > 0, then in view of (152)

n−1∑
j=1

1

−q(tj)
≥

n−1∑
j=1

1

λn−1 − q(tj)

=
1

q(tn)
.

(154)
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Rearrangement of terms in (154) yields
n∑
j=1

1

q(tj)
≤ 0 (155)

and, in view of the interior of Dn−1 in (88), and (148) and (153), inequality (155)
contradicts the result in Lemma 3. This therefore proves by contradiction that λn−1 < 0,
so all the n−1 eigenvalues of the Hessian are negative, and therefore f is strictly concave
under the assumption in (146).

Case 2: We now consider the case where (147) holds. Under this assumption,

q(tn) < 0. (156)

To verify (156), note that q(tn−1) > 0 yields that tn−1 > α′

2 ; assume by contradiction that
q(tn) ≥ 0, then tn ≥ α′

2 (see (90)) which implies that
∑n

j=1 tj ≥ tn + tn−1 > α′ > 1 in
contradiction to the equality

∑n
j=1 tj = 1 in (148); hence, indeed q(tn) < 0. Consequently, in

view of (91), let

C =
1

q(tn)
∇2f(t1, . . . , tn−1) (157)

= D + 11T (158)

where

D = diag
(
q(t1)

q(tn)
, . . . ,

q(tn−1)

q(tn)

)
. (159)

From (147) and (156), it follows that

q(t1)

q(tn)
>
q(t2)

q(tn)
> . . . >

q(tn−2)

q(tn)
> 0 >

q(tn−1)

q(tn)
. (160)

It is shown in the following that C � 0 which, from (156) and (157), imply that indeed
∇2f(t1, . . . , tn−1) � 0. Let {λk}n−1k=1 designate the eigenvalues of C; in view of (158) and
the last two items of Fact 3, it follows that

<0︷ ︸︸ ︷
q(tn−1)

q(tn)
< λ1 <

>0︷ ︸︸ ︷
q(tn−2)

q(tn)
< λ2 < . . . <

>0︷ ︸︸ ︷
q(t2)

q(tn)
< λn−2 <

>0︷ ︸︸ ︷
q(t1)

q(tn)
< λn−1. (161)

Hence, (161) asserts that λ2, . . . , λn−1 > 0, and it only remains to prove that λ1 > 0. From
the third item of Fact 3, and from (157), (158), (159), the eigenvalues {λk}nk=1 of the rank-one
modification C satisfy the equality

1 +

n−1∑
j=1

1
q(tj)
q(tn)

− λk
= 0 (162)

for all k ∈ {1, . . . , n− 1}. Assume on the contrary that λ1 ≤ 0, then from (162)

1 +

n−1∑
j=1

q(tn)

q(tj)
≥ 1 +

n−1∑
j=1

1
q(tj)
q(tn)

− λ1
= 0. (163)

Consequently, from (156) and (163), it follows that
∑n

j=1
1

q(tj)
≤ 0 in contradiction to Lemma 3.

Hence, all λk > 0 for k ∈ {1, . . . , n− 1}, which therefore implies that ∇2f(t1, . . . , tn−1) ≺ 0
for all (t1, . . . , tn−1) in the interior of Dn−1. This completes the proof of Proposition 1.



24

APPENDIX C
DERIVATION OF (97)–(99) FROM LAGRANGE DUALITY

We consider the convex optimization problem in (86), and solve it via the use of the Lagrange
duality where strong duality holds.

The Lagrangian of the convex optimization problem in (86) is given by

L(t1, . . . , tn−1;λ1, . . . , λn)

=

n−1∑
k=1

g(tk) + g

(
1−

n−1∑
k=1

tk

)
+

n−1∑
k=1

tk logNk

+

(
1−

n−1∑
k=1

tk

)
logNn +

n−1∑
k=1

λktk + λn

(
1−

n−1∑
k=1

tk

) (164)

where λ � 0, the function g is defined in (82), and Nk := Nα(Xk) (see (83)).
In view of the Lagrangian in (164) and the function g defined in (82), straightforward

calculations of the partial derivatives of L with respect to tk for k ∈ {1, . . . , n− 1} yields

∂L

∂tk
= g′(tk)− g′(1− t1 − . . .− tn−1) + log

(
Nα(Xk)

Nα(Xn)

)
+ λk − λn

= − log

(
tk

(
1− tk

α′

))
+ log

(
tn

(
1− tn

α′

))
+ log

(
Nα(Xk)

Nα(Xn)

)
+ λk − λn (165)

where tn := 1−
∑n−1

k=1 tk. By setting the partial derivatives in (165) to zero, and exponentiating
both sides of the equation, we get for all k ∈ {1, . . . , n− 1}

tn(α
′ − tn)

tk(α′ − tk)
=
Nα(Xn)

Nα(Xk)
· exp(λn − λk). (166)

In view of (166) and the definition of {ck}n−1k=1 in (95), we obtain that for all k ∈ {1, . . . , n−1}

tk(α
′ − tk) = ck tn(α

′ − tn) exp(λk − λn). (167)

Consequently, (167), the definition of tn, and the slackness conditions lead to the following set
of constraints:

tk ≥ 0, k ∈ {1, . . . , n} (168)
n∑
k=1

tk = 1 (169)

λk ≥ 0, k ∈ {1, . . . , n} (170)

λktk = 0, k ∈ {1, . . . , n} (171)

tk(α
′ − tk) = cktn(α

′ − tn) exp(λk − λn), k ∈ {1, . . . , n− 1} (172)

with the variables λ and t in (168)–(172).
Consider first the case where

Nα(Xk) > 0, ∀ k ∈ {1, . . . , n− 1} (173)

which in view of (95), implies

ck > 0, ∀ k ∈ {1, . . . , n− 1}. (174)
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Under the assumption in (173), we prove that

λk = 0, ∀ k ∈ {1, . . . , n}. (175)

Assume on the contrary that there exists an index k such that λk 6= 0. This would imply from
(171) that tk = 0. If k = n (i.e., if tn = 0) then it follows from (172) that also tk = 0 for all
k ∈ {1, . . . , n} (recall that α′ > 1), which violates the equality constraint in (169). Otherwise,
if tk = 0 for some k < n, then it follows from (172) and (174) that tn = 0 which leads to the
same contradiction as above.

The substitution of (175) into the right side of (172) gives the simplified equation in (97). In
view of (168) and (169), this leads to the simplified set of KKT constraints in (97)–(99).

Finally, if the assumption in (173) does not hold, i.e., Nα(Xk) = 0 for some k ∈ {1, . . . , n−1},
then the optimal solution satisfies tk = 0 (with the convention that 0 · log 0 = 0) since any other
assignment makes the objective function in (89) be equal to −∞. In addition, in this case ck = 0,
so the simplified set of KKT constraints in (97)–(99) still yields the optimal solution t.

APPENDIX D
ON THE EXISTENCE AND UNIQUENESS OF THE SOLUTION IN (103)

Define

φα(x) = x+

n−1∑
k=1

ψα,k(x), x ∈ [0, 1], (176)

and note that we need to show that there exists a unique solution of the equation φα(x) = 1
where x ∈ [0, 1]. From the continuity of φα(·) and since φα(0) = 0 and

φα(1) = 1 +

n−1∑
k=1

ψα,k(1) > 1, (177)

the existence of such a solution is assured. To prove uniqueness, consider two cases: α′ ≥ 2
and 1 < α′ < 2.

The derivative of φα(x) is given by

φ′α(x) = 1 +

n−1∑
k=1

ck(α
′ − 2x)√

α′2 − 4ckx(α′ − x)
, (178)

so if α′ ≥ 2, then φα(x) is monotonically increasing in [0, 1], hence the solution tn ∈ [0, 1] of
the equation (103) is unique.

If α′ ∈ (1, 2), then

φ′α(x) > 0, x ∈ [0, α
′

2 ]. (179)

Note that

α′ 2 − 4ckx(α
′ − x) = α′ 2(1− ck) + ck(2x− α′)2,

thus in view of (178),

φ′α(x) = 1 +

n−1∑
k=1

ck√
ck +

α′2(1−ck)
4(x−α′

2
)2

. (180)
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Eq. (180) implies that φ′α(·) is monotonically decreasing in (α
′

2 , 1]; in other words, φα(·) is
concave in the interval (α

′

2 , 1]).
Assume on the contrary that there are two solutions, 0 < x1 < x2 < 1 to (103), i.e.,

φα(x1) = φα(x2) = 1. (181)

Eq. (181) implies that there exists c ∈ (x1, x2) such that φ′α(c) = 0 and from (179), c ∈ (α
′

2 , x2).
Since φ′α(·) is monotonically decreasing in (α

′

2 , 1], it follows that φ′α(x) < 0 for all x ∈ (c, 1).
Hence, φα(·) is monotonically decreasing in (x2, 1), which leads to the contradiction

1 < φα(1) < φα(x2) = 1.

This therefore demonstrates the uniqueness of the solution in both cases.

APPENDIX E
ON THE ASYMPTOTIC EQUIVALENCE OF (104) AND (105)

If N∞(Xk) = 0 for all k ∈ {1, . . . , n}, the bounds in (104) and (105) obviously coincide
asymptotically as α→∞. In addition, in this case, the condition in (106) clearly holds as well.
It is therefore assumed that N∞(Xk) is strictly positive for at least one value of k ∈ {1, . . . , n}
which, under the assumption in (93), yields that

N∞(Xn) > 0. (182)

Let c?k be defined as

c?k = lim
α→∞

Nα(Xk)

Nα(Xn)
=
N∞(Xk)

N∞(Xn)
. (183)

In view of (183), the condition in (106) is equivalent to
n−1∑
k=1

c?k ≤ 1. (184)

Hence, it remains to show that the tightest R-EPI in (104) and the BV bound in (105) asymp-
totically coincide, by letting α→∞, if and only if the condition in (184) holds.

Let φα : [0, 1]→ R be the function defined in (176) for α ∈ (1,∞), and define

φ∞(x) = lim
α→∞

φα(x) (185)

for x ∈ [0, 1]. In view of (102), (176) and (183), the limit in (185) is given by

φ∞(x) = x+ 1
2

n−1∑
k=1

(
1−

√
1− 4c?k x(1− x)

)
(186)

for x ∈ [0, 1]. Recall that under the assumption in (93), the selection of tn = 1 in (89) leads to
the BV bound in (105). Hence, in view of (103), if t = 1 is the unique solution of

φ∞(t) = 1, t ∈ [0, 1] (187)

then the bounds in (104) and (105) asymptotically coincide by letting α→∞. Note that,

φ∞(0) = 0, (188)

φ∞(1) = 1. (189)
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From (189), t = 1 is a solution of (187) regardless of the sequence {c?k}. Moreover, from (186),

φ′∞(x) = 1 +

n−1∑
k=1

c?k (1− 2x)√
1− 4c?k x(1− x)

, (190)

so

φ′∞(x) > 0, ∀x ∈ (0, 12), (191)

φ′∞(1) = 1−
n−1∑
k=1

c?k. (192)

The function φ′∞(·) is monotonically decreasing in the interval [12 , 1]; this concavity property of
φ∞ can be justified by Appendix D since the function φα(·) is concave in [α

′

2 , 1] and α′ → 1 by
letting α→∞. Thus, if the condition in (184) holds, then φ′∞(x) > 0 for all x ∈ (0, 1) which,
in view of (189), yields that t = 1 is the unique solution of (187). This implies that the tightest
R-EPI in (104) and the BV bound in (105) asymptotically coincide by letting α→∞.

To prove the ’only if’ part, one needs to show that if the condition in (184) does not hold
then the bounds in (104) and (105) do not coincide asymptotically in the limit where α→∞;
in the latter case, we prove that our bound in (104) is tighter than (105). If (184) does not hold,
then (192) implies that

φ′∞(1) < 0. (193)

Hence, from (189), there exists x0 ∈ (0, 1) such that φ∞(x0) > 1 which, in view of (188) and
the continuity of φ∞(·), implies that there exists t ∈ (0, x0) which is a solution of (187). This
implies that there are two different solutions of (187) in the interval [0, 1]. Let t(1) ∈ (0, 1) and
t(2) = 1 denote such solutions, i.e.,

t(1) < t(2) = 1. (194)

Note that there are no solutions of the equation φ∞(t) = 1 in [0, 1], except for t(1) and t(2) = 1
since φ∞(·) is monotonically increasing in [0, 12 ] and it is concave in [12 , 1] with φ∞(1) = 1.

We need to show that t(1) leads to an R-EPI which is tighter than the R-EPI in (105); the
bound in (105) corresponds to t(2) = 1 under the assumption in (93). For every α > 1, let t(α)
be the unique solution of (103) (see Appendix D). It follows that the limit of any convergent
subsequence {t(αn)}, as αn → ∞, is either t(1) ∈ (0, 1) or t(2) = 1. In the sequel, if the
condition in (106) is not satisfied, we show that every such subsequence tends to t(1) ∈ (0, 1),
which therefore implies that

lim
α→∞

t(α) = t(1) < 1. (195)

From (193) and the continuity of φ∞(·), it follows that there exists δ > 0 such that

φ∞(x) > 1, ∀x ∈ (1− δ, 1). (196)

In addition, since φα(·) is continuous in α for every x ∈ [0, 1], it follows from (196) that there
exists α0 > 1 such that φα(x) > 1 for all α > α0 and x ∈ (1 − δ, 1] (note that the rightmost
point is included in this interval in view of (177)). Hence, since by definition φα

(
t(α)

)
= 1 for

all α ∈ (1,∞) then t(α) ≤ 1− δ for all α > α0. This therefore proves that every subsequence
{t(αn)} tends to t(1) as αn → ∞ (since it cannot converge to t(2) = 1), which yields (195).
Hence, the R-EPI in Theorem 2 asymptotically yields a tighter bound than (105) when α→∞;
this therefore proves the ’only if’ part of our claim.
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