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Problem Statement

Let Xi be n Bernoulli random variables with

pi , P(Xi = 1) = 1 − P(Xi = 0) > 0.

I. Sason (Technion) ITA 2013, San-Diego February 2013. 2 / 16



Problem Statement

Let Xi be n Bernoulli random variables with

pi , P(Xi = 1) = 1 − P(Xi = 0) > 0.

Let

W ,

n∑

i=1

Xi, λ , E(W ) =
n∑

i=1

pi

where it is assumed that λ ∈ (0,∞).

I. Sason (Technion) ITA 2013, San-Diego February 2013. 2 / 16



Problem Statement

Let Xi be n Bernoulli random variables with

pi , P(Xi = 1) = 1 − P(Xi = 0) > 0.

Let

W ,

n∑

i=1

Xi, λ , E(W ) =
n∑

i=1

pi

where it is assumed that λ ∈ (0,∞).

Let Po(λ) denote the Poisson distribution with parameter λ.

I. Sason (Technion) ITA 2013, San-Diego February 2013. 2 / 16



Problem Statement

Let Xi be n Bernoulli random variables with

pi , P(Xi = 1) = 1 − P(Xi = 0) > 0.

Let

W ,

n∑

i=1

Xi, λ , E(W ) =
n∑

i=1

pi

where it is assumed that λ ∈ (0,∞).

Let Po(λ) denote the Poisson distribution with parameter λ.

Problem: Getting tight bounds for the total variation distance and
relative entropy between W and Po(λ).

I. Sason (Technion) ITA 2013, San-Diego February 2013. 2 / 16



Problem Statement

Let Xi be n Bernoulli random variables with

pi , P(Xi = 1) = 1 − P(Xi = 0) > 0.

Let

W ,

n∑

i=1
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pi

where it is assumed that λ ∈ (0,∞).

Let Po(λ) denote the Poisson distribution with parameter λ.

Problem: Getting tight bounds for the total variation distance and
relative entropy between W and Po(λ).
In this talk: New (improved) lower bounds on the total variation distance
and relative entropy are derived, and their possible use is outlined.
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Total Variation Distance

Let P and Q be two probability measures defined on a set X .

The total variation distance between P and Q is defined by

dTV(P,Q) , sup
Borel A⊆X

|P (A) − Q(A)|

where the supermum is taken w.r.t. all the Borel subsets A of X .

If X is a countable set then it is simplified to

dTV(P,Q) =
1

2

∑

x∈X

|P (x) − Q(x)| =
||P − Q||1

2
.

⇒ The total variation distance is equal to one-half of the L1-distance
between the two probability distributions.
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Theorem 1 - Barbour and Hall, 1984

Let W =
∑n

i=1
Xi be a sum of n independent Bernoulli random variables

with E(Xi) = pi for i ∈ {1, . . . , n}, and E(W ) = λ. Then, the total
variation distance between the probability distribution of W and the
Poisson distribution with mean λ satisfies

1

32

(
1 ∧

1

λ

) n∑

i=1

p2
i ≤ dTV(PW ,Po(λ)) ≤

(
1 − e−λ

λ

) n∑

i=1

p2
i

where a ∧ b , min{a, b} for every a, b ∈ R.

The derivation of the upper and lower bounds is based on the Chen-Stein
method for Poisson approximation.
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Chen-Stein Method

The Chen-Stein method forms a powerful probabilistic tool to calculate
error bounds for the Poisson approximation (Chen 1975).

Key Idea:

Z ∼ Po(λ) with λ ∈ (0,∞) if and only if

λ E[f(Z + 1)] − E[Z f(Z)] = 0

for all bounded functions f that are defined on N0 , {0, 1, . . .}.
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Key Idea:

Z ∼ Po(λ) with λ ∈ (0,∞) if and only if

λ E[f(Z + 1)] − E[Z f(Z)] = 0

for all bounded functions f that are defined on N0 , {0, 1, . . .}.

The idea behind this method is to treat analytically (by bounds) the
functional

Af(W ) , λ E[f(W + 1)] − E[W f(W )].

⇒ leads to some rigorous bounds on dTV(W,Z) as a function of the

choice of the bounded function f : N0 → R.
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Chen-Stein Method (2)

The proof of Theorem 1 (Barbour and Hall, 1984) relies on the choice

f(k) , (k − λ) exp

(
−

(k − λ)2

λ

)
, ∀ k ∈ N0.
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λ
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θλ

)
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where α1, α2 ∈ R and θ ∈ R
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variation distance is much improved by generalizing f to be

f(k) , (k − α1) exp

(
−

(k − α2)
2

θλ

)
, ∀ k ∈ N0

where α1, α2 ∈ R and θ ∈ R
+ are optimized to get the tightest lower

bound on dTV(W,Z). But, it complicates the analysis (Th. 2).
Special case: α1 = α2 , λ and optimizing θ leads to a simplified lower
bound (Th. 3) that achieves almost the same improvement for λ ≥ 10.
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Theorem 2 - Improved Lower Bound on the Total Variation Distance

In the setting of Theorem 1, the total variation distance between the
probability distribution of W and Po(λ) satisfies

K1(λ)

n∑

i=1

p2
i ≤ dTV(PW ,Po(λ)) ≤

(
1 − e−λ

λ

) n∑

i=1

p2
i

where
K1(λ) , sup

α1, α2 ∈ R,

α2 ≤ λ + 3

2
,

θ > 0

(
1 − hλ(α1, α2, θ)

2 gλ(α1, α2, θ)

)

for some functions hλ, gλ that are given in Th. 2 of the conference paper.
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Theorem 3 - Simple Lower Bound on the Total Variation Distance

Under the assumptions in Theorem 1, the following inequality holds:

K̃1(λ)

n∑

i=1

p2
i ≤ dTV(PW ,Po(λ)) ≤

(
1 − e−λ

λ

) n∑

i=1

p2
i

where

K̃1(λ) ,
e

2λ

1 − 1

θ

(
3 + 7

λ

)

θ + 2e−1/2

θ , 3 +
7

λ
+

1

λ
·
√

(3λ + 7)
[
(3 + 2e−1/2)λ + 7

]
.
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Theorem 4 - Improved Lower Bound on the Relative Entropy

In the setting of Th. 1, the divergence between the probability distribution
of W and the Poisson distribution with mean λ = E(W ) satisfies:

K2(λ)

(
n∑

i=1

p2
i

)2

≤ D
(
PW ||Po(λ)

)
≤

1

λ

n∑

i=1

p3
i

1 − pi

where
K2(λ) , m(λ)

(
K1(λ)

)2

m(λ) ,





(
1

2e−λ−1

)
log
(

1

eλ−1

)
if λ ∈ (0, log 2)

2 if λ ≥ log 2.
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Theorem 4 - Proof Outline

The lower bound on the relative entropy is based on new lower bound
on the total variation distance and the distribution-dependent
refinement of Pinsker’s inequality (Ordentlich & Weinberger, IEEE
Trans. on IT, 2005).
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Corollary

If {Xi} are i.i.d. binary RVs, W ,
∑n

i=1
Xi, and Z ∼ Po(λ) with

λ =
∑n

i=1
pi, then

dTV(W,Z) = O

(
1

n

)
, D

(
PW ||Po(λ)

)
= O

(
1

n2

)
.

I. Sason (Technion) ITA 2013, San-Diego February 2013. 11 / 16



Improved Lower Bound on the Relative Entropy (2)

The combination of the original lower bound on dTV(W,Z) (see
Theorem 1) with Pinsker’s inequality gives:

D
(
PW ||Po(λ)

)
≥

1

512

(
1 ∧

1

λ2

) ( n∑

i=1

p2
i

)2

.

The improvement of the new lower bound on the relative entropy is
by a factor of 179.7 log

(
1

λ

)
for λ ≈ 0, by a factor of 9.22 for λ → ∞,

and at least by a factor of 6.14 for all λ ∈ (0,∞).
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Personal Communications with P. Harremoës

There exists another recent lower bound on the relative entropy (a
work in preparation by Kontoyiannis et al.). The bounds are derived
by different approaches.

The two lower bounds on the relative entropy scale like
(∑n

i=1
p2

i

)2
but with a different scaling factor.
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Possible Uses of the New Bounds

The paper (whose shortened version is submitted to ISIT 2013):

I. Sason, “Entropy bounds for discrete random variables via coupling,”
submitted to the IEEE Trans. on Information Theory, September 2012.
[Online]. Available: http://arxiv.org/abs/1209.5259

introduces new entropy bounds for discrete random variables via maximal
coupling, providing bounds on the difference between the entropies of two
discrete random variables in terms of the local and total variation
distances between their probability mass functions.
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[Online]. Available: http://arxiv.org/abs/1209.5259

introduces new entropy bounds for discrete random variables via maximal
coupling, providing bounds on the difference between the entropies of two
discrete random variables in terms of the local and total variation
distances between their probability mass functions.

The new lower bound on the total variation distance dTV(W,Z) was
involved in a rigorous estimation of the entropy of W (via bounds).

Application: Getting numerical bounds on the sum-rate capacity of a
noiseless K-user multiple-access channel with binary inputs subject to a
constraint on the total power.
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Possible Uses of the New Bounds (2)

The use of the new lower bound on the relative entropy for the
Poisson approximation of a sum of Bernoulli random variables is
exemplified in the full paper version of this work (see Section 4.E) in
the context of a problem in binary hypothesis testing.
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Possible Uses of the New Bounds (2)

The use of the new lower bound on the relative entropy for the
Poisson approximation of a sum of Bernoulli random variables is
exemplified in the full paper version of this work (see Section 4.E) in
the context of a problem in binary hypothesis testing.

The upper bound on the error probability depends exponentially on
the relative entropy between the two probability distributions.

The improvement of the lower bound on the relative entropy ⇒
Remarkable improvement in the minimal block length that ensures a
fixed error probability (numerical results appear in the full paper).
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Conclusions

New lower bounds on the total variation distance between the
distribution of a sum of independent Bernoulli random variables and
the Poisson random variable (with the same mean) were introduced
via the Chen-Stein method.

Corresponding lower bounds on the relative entropy were introduced,
based on the lower bounds on the total variation distance and an
existing distribution-dependent refinement of Pinsker’s inequality.

Two uses of these bounds were outlined.

The full paper version is available at http://arxiv.org/abs/1206.6811.

Conference paper is available at http://arxiv.org/abs/1301.7504.

I. Sason (Technion) ITA 2013, San-Diego February 2013. 16 / 16


