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Capacity-Achieving Channel Codes

The set-up
I DMC T : X → Y with capacity

C = C(T ) = max
PX

I(X;Y )

I (n,M)-code: C = (f, g) with encoder f : {1, . . . ,M} → X n
and decoder g : Yn → {1, . . . ,M}

Capacity-achieving codes:

A sequence {Cn}∞n=1, where each Cn is an (n,Mn)-code, is
capacity-achieving if

lim
n→∞

1

n
logMn = C.



Capacity-Achieving Channel Codes

Capacity-achieving input and output distributions:

P ∗X ∈ arg max
PX

I(X;Y ) (may not be unique)

P ∗X
T−−−−−−−−→ P ∗Y (always unique)

Theorem (Shamai–Verdú, 1997) Let {Cn} be any
capacity-achieving code sequence with vanishing error
probability. Then

lim
n→∞

1

n
D
(
P

(Cn)
Y n

∥∥∥P ∗Y n

)
= 0,

where P
(Cn)
Y n is the output distribution induced by the code

Cn when the messages in {1, . . . ,Mn} are equiprobable.



Capacity-Achieving Channel Codes

lim
n→∞

1

n
D(PY n‖P ∗Y n) = 0

Main message: channel output sequences induced by good
code “resemble” i.i.d. sequences drawn from the CAOD P ∗Y

Useful implications: estimate performance characteristics of
good channel codes by their expectations w.r.t. P ∗Y n = (P ∗Y )n

I often much easier to compute explicitly

I bound estimation accuracy using large-deviation theory
(e.g., Sanov’s theorem)

Question: what about good codes with nonvanishing error
probability?



Codes with Nonvanishing Error Probability
Y. Polyanskiy and S. Verdú, “Empirical distribution of good
channel codes with non-vanishing error probability” (2012)

1. Let C = (f, g) be any (n,M, ε)-code for T :

max
1≤j≤M

P
(
g(Y n) 6= j

∣∣f(Xn) = j
)
≤ ε.

Then D
(
P

(C)
Y n

∥∥P ∗Y n

)
≤ nC − logM + o(n).∗

2. If {Cn}∞n=1 is a capacity-achieving sequence, where each
Cn is an (n,Mn, ε)-code for some fixed ε > 0, then

lim
n→∞

1

n
D
(
P

(Cn)
Y n

∥∥∥P ∗Y n

)
= 0.

∗ In some cases, the o(n) term can be improved to O(
√
n).



Codes with Nonvanishing Error Probability

D(PY n‖P ∗Y n) ≤ nC − logM + o(n)

The same message: channel output sequences induced by
good codes “resemble” i.i.d. sequences drawn from P ∗Y

Main technical tool: concentration of measure

Our contribution: sharpening of the Polyanskiy–Verdú
bounds by identifying explicit expressions for the o(n) term



Preliminaries on Concentration of Measure

Let Z1, . . . , Zn ∈ Z be independent random variables. We
seek tight bounds on the deviation probabilities

P (f(Zn) ≥ r) for r > 0

where f : Zn → R is some function with E[f(Zn)] = 0.

Subgaussian tails:

logE[etf(Zn)] ≤ κt2/2, ∀t > 0

=⇒ P (f(Zn) ≥ r) ≤ exp

(
− r

2

2κ

)
, ∀r > 0



Preliminaries on Concentration of Measure

Suppose that Zn is a metric space with metric d(·, ·).

L1 Wasserstein distance: for any µ, ν ∈ P(Zn),

W1(µ, ν) , inf
Zn∼µ,Z̄n∼ν

E[d(Zn, Z̄n)]

L1 transportation cost inequalities (Marton): µ ∈ P(Zn)
satisfies a T1(c) inequality if

W1(µ, ν) ≤
√

2cD(ν‖µ), ∀ν � µ

T1(c) implies concentration!



Preliminaries on Concentration of Measure

L1 transportation cost inequalities (Marton): µ ∈ P(Zn)
satisfies a T1(c) inequality if

W1(µ, ν) ≤
√

2cD(ν‖µ), ∀ν � µ

Theorem (Bobkov–Götze, 1999) A probability measure
µ ∈ P(Zn) satisfies T1(c) if and only if

logEµ[etf(Zn)] ≤ ct2/2

for all f with Eµ[f(Zn)] = 0 and

‖f‖Lip , sup
zn 6=z̄n

|f(zn)− f(z̄n)|
d(zn, z̄n)

≤ 1



Preliminaries on Concentration of Measure
Endow Zn with the weighted Hamming metric

d(zn, z̄n) =

n∑
i=1

ci1{zi 6=z̄i}, for some fixed c1, . . . , cn > 0.

Marton’s coupling argument: Any product measure
µ = µ1 ⊗ . . .⊗ µn ∈ P(Zn) satisfies T1(c) (relative to d) with

c =
1

4

n∑
i=1

c2
i

By Bobkov–Götze, this is equivalent to the subgaussian property

logEµ
[
etf(Zn)

]
≤ t2

8

n∑
i=1

c2
i

for any f : Zn → R with Eµf = 0 and ‖f‖Lip ≤ 1 (another way to
derive McDiarmid’s inequality)



Relative Entropy at the Output of a Code
Consider a DMC T : X → Y with T (·|·) > 0, and let

c(T ) = 2 max
x∈X

max
y,y′∈Y

∣∣∣∣ln T (y|x)

T (y′|x)

∣∣∣∣
Theorem. Any (n,M, ε)-code C for T , where ε ∈ (0, 1/2),
satisfies

D
(
P

(C)
Y n

∥∥∥P ∗Y n

)
≤ nC − logM + log

1

ε
+ c(T )

√
n

2
log

1

1− 2ε

Remark: Polyanskiy and Verdú show that

D
(
P

(C)
Y n

∥∥∥P ∗Y n

)
≤ nC − logM + a

√
n

for some constant a = a(ε)



Proof Idea: I

Fix xn ∈ X n and study concentration of the function

hxn(yn) = log
dPY n|Xn=xn

dP
(C)
Y n

(yn)

around its expectation w.r.t. PY n|Xn=xn :

E[hxn(Y n)|Xn = xn] = D
(
PY n|Xn=xn

∥∥∥P (C)
Y n

)
Step 1: Because T (·|·) > 0, the function hxn(yn) is
1-Lipschitz w.r.t. scaled Hamming metric

d(yn, ȳn) = c(T )
n∑
i=1

1{yi 6=ȳi}



Proof Idea: II

Step 1: Because T (·|·) > 0, the function hxn(yn) is
1-Lipschitz w.r.t. scaled Hamming metric

d(yn, ȳn) = c(T )
n∑
i=1

1{yi 6=ȳi}

Step 2: Any product probability measure µ on (Yn, d)
satisfies

logEµ
[
etf(Y n)

]
≤ nc(T )2t2

8

for any f with Eµf = 0 and ‖F‖Lip ≤ 1.

Proof: tensorization of the Csiszár–Kullback–Pinsker
inequality, followed by appeal to Bobkov–Götze.



Proof Idea: III

hxn(yn) = log
dPY n|Xn=xn

dP
(C)
Y n

(yn)

E[hxn(Y n)|Xn = xn] = D
(
PY n|Xn=xn

∥∥∥P (C)
Y n

)
Step 3: For any xn, µ = PY n|Xn=xn is a product measure, so

P
(
hxn(Y n) ≥ D

(
PY n|Xn=xn

∥∥∥P (C)
Y n

)
+ r
)
≤ exp

(
− 2r2

nc(T )2

)

Use this with r = c(T )
√

n
2

log 1
1−2ε

:

P

(
hxn(Y n) ≥ D

(
PY n|Xn=xn

∥∥∥P (C)
Y n

)
+ c(T )

√
n

2
log

1

1− 2ε

)
≤ 1− 2ε

Remark: Polyanskiy–Verdú show Var[hxn(Y n)|Xn = xn] = O(n).



Proof Idea: IV
Recall:

P

(
hxn(Y n) ≥ D

(
PY n|Xn=xn

∥∥∥P (C)
Y n

)
+ c(T )

√
n

2
log

1

1− 2ε

)
≤ 1− 2ε

Step 4: Same as Polyanskiy–Verdú, appeal to Augustin’s
strong converse to get

logM ≤ log
1

ε
+D

(
PY n|Xn

∥∥∥P (C)
Y n

∣∣∣P (C)
Xn

)
+ c(T )

√
n

2
log

1

1− 2ε

D
(
P

(C)
Y n

∥∥∥P ∗Y n

)
= D

(
PY n|Xn

∥∥∥P ∗Y n

∣∣∣P (C)
Xn

)
−D

(
PY n|Xn

∥∥∥P (C)
Y n

∣∣∣P (C)
Xn

)
≤ nC − logM + log

1

ε
+ c(T )

√
n

2
log

1

1− 2ε
�



Relative Entropy at the Output of a Code

Theorem. Let T : X → Y be a DMC with C > 0. Then,
for any 0 < ε < 1, any (n,M, ε)-code C for T satisfies

D
(
P

(C)
Y n

∥∥P ∗Y n

)
≤ nC − logM

+
√

2n (log n)3/2

(
1 +

√
1

log n
log

(
1

1− ε

)) (
1 +

log |Y|
log n

)
+ 3 log n+ log

(
2|X ||Y|2

)
.

Remark: Polyanskiy and Verdú show that

D
(
P

(C)
Y n

∥∥P ∗Y n

)
≤ nC − logM + b

√
n log3/2 n

for some constant b > 0.



Concentration of Lipschitz Functions

Theorem. Let T : X → Y be a DMC with c(T ) <∞. Let
d : Yn×Yn → R+ be a metric, and suppose that PY n|Xn=xn ,
xn ∈ X n, as well as P ∗Y n , satisfy T1(c) for some c > 0.

Then, for any ε ∈ (0, 1/2), any (n,M, ε)-code C for T , and
any function f : Yn → R we have

P
(C)
Y n

(
|f(Y n)− E[f(Y ∗n)]| ≥ r

)
≤ 4

ε
exp

(
nC − lnM + a

√
n− r2

8c‖f‖2
Lip

)
, ∀ r ≥ 0

where Y ∗n ∼ P ∗Y n , and a , c(T )
√

1
2

ln 1
1−2ε

.



Proof Idea
Step 1: For each xn ∈ X n, let φ(xn) , E[f(Y n)|Xn = xn].
Then, by Bobkov–Götze,

P
(
|f(Y n)− φ(xn)| ≥ r

∣∣∣Xn = xn
)
≤ 2 exp

(
− r2

2c‖f‖2Lip

)

Step 2: By restricting to a subcode C′ with codewords xn ∈ X n
satisfying φ(xn) ≥ E[f(Y ∗n)] + r, we can show that

r ≤ ‖f‖Lip

√
2c

(
nC − logM ′ + a

√
n+ log

1

ε

)
,

with M ′ = MP
(C)
Xn

(
φ(Xn) ≥ E[f(Y ∗n)] + r

)
. Solve to get

P
(C)
Xn

(
|φ(Xn)− E[f(Y ∗n)]| ≥ r

)
≤ 2e

nC−logM+a
√
n+log 1

ε
− r2

2c‖f‖2
Lip

Step 3: Apply union bound. �



Empirical Averages at the Code Output
I Equip Yn with the Hamming metric

d(yn, ȳn) =

n∑
i=1

1{yi 6=ȳi}

I Consider functions of the form

f(yn) =
1

n

n∑
i=1

fi(yi),

where |fi(yi)− fi(ȳi)| ≤ L1{yi 6=ȳi} for all i, yi, ȳi. Then
‖f‖Lip ≤ L/n.

I Since PY n|Xn=xn for all xn and P ∗Y n are product measures on
Yn, they all satisfy T1(n/4) (by tensorization)

I Therefore, for any (n,M, ε)-code and any such f we have

P
(C)
Y n

(
|f(Y n)− E[f(Y ∗n)]| ≥ r

)
≤ 4

ε
exp

(
nC − logM + a

√
n− nr2

2L2

)



Operational Significance
I A bound like

C(T )− logM ≥ 1

n
D
(
P

(C)
Y n

∥∥P ∗Y n

)
− a(T, ε)√

n

quantifies trade-offs between minimal blocklength required
for achieving a certain gap (in rate) to capacity with a
fixed block error probability ε, and normalized divergence
between output distribution induced by the code and the
(unique) CAOD of the channel

I We have identified the precise dependence of a(T, ε) on
the channel T and on the block error probability ε

I These results are similar to a lower bound on rate loss
w.r.t. fully random block codes (whose average distance
spectrum is binomially distributed) in terms of normalized
divergence between the distance spectrum of a specific
code and the binomial distribution (Shamai–Sason, 2002).



Concentration of measure =
powerful tool for studying
nonasymptotic behavior of

stochastic objects in
information theory!

For more information, see M. Raginsky and
I. Sason, “Concentration of Measure Inequalities in
Information Theory, Communications and Coding,”
arXiv:1212.4663



That’s All, Folks!


