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Accumulate-Repeat-Accumulate Codes:
Capacity-Achieving Ensembles of Systematic Codes
for the Erasure Channel with Bounded Complexity

Henry D. Pfister,Member, Igal Sason,Member

Abstract

The paper introduces ensembles of systematic accumulate-repeat-accumulate (ARA) codes which asymptotically achieve
capacity on the binary erasure channel (BEC) withbounded complexity, per information bit, of encoding and decoding. It
also introduces symmetry properties which play a central role in the construction of new capacity-achieving ensemblesfor the
BEC. The results here improve on the tradeoff between performance and complexity provided by previous constructions of
capacity-achieving ensembles of codes defined on graphs. The superiority of ARA codes with moderate to large block length
is exemplified by computer simulations which compare their performance with those of previously reported capacity-achieving
ensembles of LDPC and IRA codes. The ARA codes also have the advantage of being systematic.

Index Terms

Binary erasure channel (BEC), capacity, complexity, degree distribution (d.d.), density evolution (DE), iterative decoding,
irregular repeat-accumulate (IRA) codes, low-density parity-check (LDPC) codes, systematic codes.

I. I NTRODUCTION

Error-correcting codes which employ iterative decoding algorithms now represent the state of the art in low-
complexity coding techniques. There is already a large collection of iteratively decodable codes including low-
density parity-check (LDPC), turbo, repeat-accumulate and product codes; all of them demonstrate a rather small
gap (in rate) to capacity with feasible complexity [1].

The study of capacity-achieving (c.a.) sequences of LDPC codesfor the binary erasure channel (BEC) was
initiated by Luby et al. [2] and Shokrollahi [3]. They show that it is possible to closely approach the capacity of an
erasure channel with a simple iterative procedure whose complexity is linear in the block length of the code [2],
[3]. Following these works, Oswald and Shokrollahi presented in [4] a systematic study of c.a. sequences of LDPC
codes for the BEC. Jin et al. introduced irregular repeat-accumulate (IRA) codes and presented a c.a. sequence of
systematic IRA (SIRA) codes for the BEC [5]. A sequence of c.a. SIRA codes for the BEC with lower encoding
and decoding complexities was introduced in [6, Theorem 2]. All of the aforementioned codes have one drawback
in common: their decoding complexity scales like the log of the inverse of the gap (in rate) to capacity [3], [4],
[6], [7], [8], [9]; hence, under iterative message-passingdecoding, these codes haveunbounded complexity(per
information bit) as the gap to capacity vanishes.

In [10], the authors presented for the first time two sequencesof ensembles of non-systematic IRA (NSIRA)
codes which asymptotically (i.e., as their block length tends to infinity) achieve capacity on the BEC withbounded
complexityper information bit. This new result is achieved by puncturing bits and thereby introducing state nodes
in the Tanner graph representing the codes. We note that for fixed complexity, these codes will eventually (for large
enough block length) outperform any code proposed so far. However, the speed of convergence happens to be quite
slow and, for small to moderate block lengths, the codes introduced in [10] are not record breaking.
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In this paper, we are interested in the construction and analysis of c.a. codes for the BEC with bounded complexity
that also perform well at moderate block lengths. We also would also like these codes to be systematic and to have
reasonably low error floors. To this end, we make use of a new channel coding scheme, called “Accumulate-Repeat-
Accumulate” (ARA) codes, which was recently introduced by Abbasfar et al. [11]. These codes are systematic and
have both outstanding performance, as exemplified in [11], [12], [13], and a simple linear-time encoding. After
presenting an appropriate ensemble of irregular ARA codes,we construct a number of c.a. degree distributions.
Simulations show that some of these ensembles perform quite well on the BEC at moderate block lengths. We
therefore expect that irregular ARA codes, optimized for general channels, also perform well at moderate block
lengths (as is partially supported by some simulation results in [11]). This issue is regarded as a topic for further
research, while this paper is focused on the BEC. Throughout the paper, we consider the encoding and decoding
complexityper information bit.

Along the way, we study symmetry properties of c.a. sequences for the BEC and discover a new code structure
which we call “Accumulate-LDPC” (ALDPC) codes. We show that c.a.degree distributions for this structure can be
easily constructed based on the results of [10, Theorems 1, 2]. This fact and structure was proposed independently
by Hsu and Anastasopoulos [14].

The paper is organized as follows: Section II introduces ARA codes, describes their encoding and decoding, and
their density evolution analysis for the BEC. Section III introduces symmetry properties that play a central role
in the construction of c.a. sequences of ensembles for the BEC. Section IV serves as a preparatory step towards
the construction of explicit c.a. sequences of ARA codes forthe BEC, where their complexity of encoding and
decoding stays bounded as the gap to capacity vanishes. Section V presents explicit constructions of c.a. sequences
of bit-regular and check-regular ARA codes with bounded complexity. Section VI focuses on the construction of
c.a. ensembles of ARA, NSIRA and ALDPC codes (with bounded complexity) based on the ensembles of self-
matched LDPC codes introduced in the section. Computer simulations for the BEC are presented in Section VII,
and the superiority of self-matched ARA codes with moderateto large block length is exemplified by comparing
their performance with those of previously reported c.a. ensembles of LDPC and IRA codes from [3], [10]. Finally,
Section VIII concludes our discussion.

II. A CCUMULATE-REPEAT-ACCUMULATE CODES

In this section, we present our ensemble of ARA codes. Density evolution (DE) analysis of this ensemble is
presented in the second part of this section using two different approaches which lead to the same “DE fixed point
equation”; this equation characterizes the fixed points of the iterative message-passing decoder. The connection
between these two approaches is used later in this paper to state some symmetry properties which serve as an
analytical tool for designing various c.a. ensembles for the BEC (e.g., ARA, IRA and ALDPC codes).

A. Description of ARA Codes

Encoder
Accumulate Irr. Repeat

Encoder Encoder
Irr. SPC

Encoder
Accumulate

kL’(1)
R’(1)

kL’(1)
R’(1)

k

Π
kL’(1)kL’(1)kk

Fig. 1. Block diagram for the systematic ARA ensemble (’Irr.’ and ’SPC’ stand for ’irregular’ and ’single-parity check’, respectively, and
Π stands for a bit interleaver.)

ARA codes can be viewed either as interleaved serially concatenated codes (i.e., turbo-like codes) or as sparse-
graph codes (i.e., LDPC-like codes). From an encoding point of view, it is more natural to view them as interleaved
serially concatenated codes (see Fig. 1) where the encoding process is described in Section II-B.

Since the decoding algorithm of ARA codes is simply belief propagation on the appropriate Tanner graph (see
Fig. 2), this leads one to view them as sparse-graph codes froma decoding point of view. Treating these codes
as sparse-graph codes also allows one to build large codes by“twisting” together many copies of a single small
protograph[15], [16]. In general, this approach leads to very good codes with computationally efficient decoders.
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In this work, we consider the ensemble of irregular ARA codeswhich is the natural generalization of the IRA
codes from [5]. The ensemble of irregular ARA codes differs slightly from those proposed in [11], [12], [13]. For
this ensemble, we find that DE for the BEC can be computed in closed form and that algebraic methods can be
used to construct c.a. sequences.
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Fig. 2. Tanner graph for the ARA ensemble.

B. Encoding of ARA Codes

We describe here briefly the encoding process of the ARA codes in Fig. 1. The encoding of ARA codes is done
as follows: first, the information bits are accumulated (i.e., differentially encoded), and then the bits are repeated a
varying number of times (by an irregular repetition code) and interleaved. The interleaved bits are partitioned into
disjoint sets (whose size is not fixed in general), and the parity of each set of bits is computed. Finally, the bits
are accumulated for the second time. A codeword of systematic ARA codes is composed of the information bits
and the parity bits at the output of the second accumulator.

Some slight modifications are used later for our simulations and these details are explained in Section VII. In
this section, all references to the decoding graph should betaken to imply Fig. 2, and all sums are assumed to be
modulo-2.

We will refer to the three layers of bit nodes in the decoding graph as systematic bits, punctured bits, and
parity bits (the parity bits are named as “code bits” in Fig. 2). Referring to the Tanner graph of ARA codes, we
designate the systematic bits from left to right by(u1, u2, . . . , uk). The same convention is used for the punctured
bits (v1, v2, . . . , vk) and the parity bits(z1, z2, . . . , zn−k).

From the upper part of the graph, it follows thatvj = uj + vj−1 for j ∈ {2, . . . , k} andv1 = u1. This yields that

vj =

j∑

i=1

ui j = 1, 2, . . . , k. (1)

Let d(i) be the degree of thei-th “parity-check 2” node where the degree is w.r.t. the edges connecting the “punctured
bit” nodes and the “parity-check 2” nodes, andc(i, j) be the index of the punctured bit attached to thej-th edge of
the i-th “parity-check 2” node. All the connections between the “punctured bit” nodes and “parity-check 2” nodes
are described by these two sequences. Let the sequence(w1, w2, . . . , wn−k) be defined by

wi ,

d(i)∑

j=1

vc(i,j) i = 1, 2, . . . , n − k.
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This can be thought as the sum of the punctured bits which are connected to thei-th “parity-check 2” node. From
the lower part of the graph we havezj = zj−1 + wj (wherew0 , 0), and this gives

zj =

j∑

i=1

wi j = 1, 2, . . . , n − k. (2)

From Fig. 2 and equations (1) and (2), one can see that an ARA codeis the serial concatenation of four simple
codes. The first is an accumulate code (upper part of the graph),the second is an interleaved irregular repetition
code, the third is an irregular single parity-check (SPC) code(which is an irregular code due to the varying degrees
of the “parity-check 2” nodes), and finally the fourth is a second accumulate code (lower part of the graph).

C. Density Evolution of Systematic ARA Ensembles

We consider here the asymptotic analysis of ensembles of ARAcodes under the assumption that the codes are
transmitted over a BEC and decoded with an iterative message-passing decoder. Based on the density evolution
(DE) equations, derived in terms of the degree distributionsof these ensembles, we consider the fixed points of the
decoding process. In the following, we present two different approaches for the DE analysis of ARA codes for the
BEC which, as expected, provide equivalent results. While the concept of the first approach is standard, the second
one is helpful in establishing symmetry properties of c.a. ensembles for the BEC; these symmetries are discussed
later in Section III.

1) Density Evolution via Message Passing:An irregular ensemble of ARA codes is defined by its degree
distribution (d.d.). Nodes in the decoding graph will be referred to by the names given in Fig. 2. LetL(x) =∑∞

i=1 Lix
i be a power series whereLi denotes the fraction of “punctured bit” nodes with degree-i. Similarly, let

R(x) =
∑∞

i=1 Rix
i be a power series whereRi denotes the fraction of “parity-check 2” nodes with degree-i. In

both cases, the degree refers only to the edges connecting the “punctured bit” nodes to the “parity-check 2” nodes.
Similarly, let λ(x) =

∑∞
i=1 λix

i−1 and ρ(x) =
∑∞

i=1 ρix
i−1 form the d.d. pair from the edge perspective where

λi andρi designate the fraction of the edges which are connected to “punctured bit” nodes and “parity-check 2”
nodes with degree-i, respectively. We also assume that the permutation in Fig. 1 is chosen uniformly at random
from the set of all permutations. The pair of degree distributions of an ARA ensemble is given by(λ, ρ).

It is easy to show the following connections between the d.d.pairs w.r.t. the nodes and the edges in the graph:

λ(x) =
L′(x)

L′(1)
, ρ(x) =

R′(x)

R′(1)
(3)

or equivalently, sinceL(0) = R(0) = 0, then

L(x) =

∫ x
0 λ(t) dt

∫ 1
0 λ(t) dt

, R(x) =

∫ x
0 ρ(t) dt

∫ 1
0 ρ(t) dt

. (4)

The design rateR of the ensemble of ARA codes (see Fig. 1) is computed by expressing the block lengthn as the
sum ofk systematic bits andkL′(1)/R′(1) parity bits which then yields

R =
1

1 + L′(1)
R′(1)

. (5)

A random code is chosen from the ensemble and a random codeword is transmitted over a BEC with erasure
probability p. The asymptotic performance of the iterative message-passing decoder (as the block length of the
code tends to infinity) is analyzed by tracking the average fraction of erasure messages which are passed in the
graph of Fig. 2 during thelth iteration. The technique was introduced in [17] and is known as density evolution
(DE). The main assumption of density evolution is that the messages passed on the edges of the Tanner graph are
statistically independent. This assumption is justified by the fact that, for randomly chosen codes, the fraction of
bits involved in finite-length cycles vanishes as the block length tends to infinity.

A single decoding iteration consists of six smaller steps which are performed on the Tanner graph of Fig. 2.
Messages are first passed downward from the “systematic bit” nodes through each layer to the “code bit” nodes.
Then, messages are passed back upwards from the “code bit” nodes through each layer to the “systematic bit”
nodes. Letl designate the iteration number. Referring to Fig. 2, letx

(l)
0 andx

(l)
5 designate the probabilities of an
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erasure message from the “parity-check 1” nodes to the “punctured bit” nodes and vice-versa, letx
(l)
1 and x

(l)
4

be the probabilities of an erasure message from the “punctured bit” nodes to the “parity-check 2” nodes and vice
versa, and finally, letx(l)

2 andx
(l)
3 be the probabilities of an erasure message from the “parity-check 2” nodes to

“code bit” nodes and vice versa.
From the Tanner graph of ARA codes in Fig. 2, we see that an outgoing message from a “parity-check 1” node

to a “punctured bit” node is an erasure if either the incomingmessage through the other edge (which connects
a “punctured bit” node to the same “parity-check 1” node) is an erasure or the message received from the BEC
for the systematic bit (which is connected to the same “parity-check 1” node) is an erasure. Using the statistical
independence assumption, this yields the recursive equation

x
(l)
0 = 1 − (1 − p)

(
1 − x

(l−1)
5

)
.

It is also clear from Fig. 2 that an outgoing message from a “punctured bit” node to a “parity-check 2” node is an
erasure if and only if all the incoming messages passed through the other edges connected to this bit are erasures.
The update rule of the iterative message-passing decoder on the BEC therefore implies that

x
(l)
1 =

(
x

(l)
0

)2
λ
(
x

(l−1)
4

)
.

From the graph in Fig. 2, we obtain in a similar manner the following DE equations of the iterative message-passing
decoder:

x
(l)
0 = 1 −

(
1 − x

(l−1)
5

)
(1 − p)

x
(l)
1 =

(
x

(l)
0

)2
λ
(
x

(l−1)
4

)

x
(l)
2 = 1 − R

(
1 − x

(l)
1

) (
1 − x

(l−1)
3

)
l = 1, 2, . . .

x
(l)
3 = px

(l)
2

x
(l)
4 = 1 −

(
1 − x

(l)
3

)2
ρ
(
1 − x

(l)
1

)

x
(l)
5 = x

(l)
0 L

(
x

(l)
4

)

A fixed point is implied by
lim
l→∞

x
(l)
i , xi i = 0, 1, . . . , 5.

Now, we can solve for the fixed point by substitutingx2 into x3, and then substituting the result intox4 which
gives the fixed point equation

x4 = 1 −
(

1 − p

1 − p R(1 − x1)

)2

ρ(1 − x1). (6)

Likewise, puttingx0 into x5 gives the fixed point equation

x5 =
p L(x4)

1 − (1 − p) L(x4)

and plugging this intox0 gives

x0 = 1 − (1 − x5)(1 − p) =
p

1 − (1 − p)L(x4)
. (7)

Finally, Eqs. (6), (7) and the equalityx1 = x2
0λ(x4) give the following implicit equation forx1 , x:

p2 λ

(
1 −

(
1−p

1−pR(1−x)

)2
ρ(1 − x)

)

[
1 − (1 − p) L

(
1 −

(
1−p

1−pR(1−x)

)2
ρ(1 − x)

)]2 = x. (8)

This equation provides the fixed points of the iterative message-passing decoder.



6

Fig. 3. Graph reduction operation applied to parity-check nodes (left) and bit nodes (right).

2) Density Evolution via Graph Reduction:For ensembles of ARA codes whose transmission takes place over a
BEC, the DE fixed point equation (8) can be also derived using agraph reductionapproach. This approach introduces
two new operations on the Tanner graph which remove nodes andedges while preserving the information in the
graph.

We start by noting that any “code bit” node whose value is not erased by the BEC can be removed from the graph
by absorbing its value into its two “parity-check 2” nodes. On the other hand, when the value of a “code bit” node
is erased, one can merge the two “parity-check 2” nodes whichare connected to it (by summing the equations) and
then remove the “code bit” node from the graph. This merging oftwo “parity-check 2” nodes causes their degrees
to be summed and is shown on the left in Figure 3. Now, we consider the degree distribution (d.d.) of a single
“parity-check 2” node in the reduced graph. This can be visualized as working from left to right in the graph, and
assuming the value of the previous “code bit” node was known.The probability that there arek erasures before the
next observed “code bit” is given bypk(1−p). The graph reduction associated with this event causes the degrees of
k + 1 “parity-check 2” nodes to be summed. The generating functionfor this sum ofk + 1 random variables, each
chosen independently from the d.d.R(x), is given byR(x)k+1. Therefore, the new d.d. of the “parity-check 2”
nodes after the graph reduction is given by

R̃(x) =
∞∑

k=0

pk(1 − p)R(x)k+1 =
(1 − p)R(x)

1 − pR(x)
. (9)

A similar graph reduction can be also performed on the “systematic bit” nodes in Fig. 2. Since degree-1 bit
nodes (e.g., the “systematic bit” nodes in Fig. 2) only provide channel information, erasures make them worthless.
So they can be removed along with their parity-checks (i.e., the “parity-check 1” nodes in Fig. 2) without affecting
the decoder. On the other hand, whenever the value of a “systematic bit” node is observed (assume the value
is zero w.o.l.o.g.), it can be removed leaving a degree-2 parity-check. Of course, degree-2 parity-checks imply
equality and allow the connected “punctured bit” nodes to bemerged (effectively summing their degrees). This
operation is shown on the right in Figure 3. The symmetry between graph reduction on the information bits and
the parity checks will become important later. Now, we consider the d.d. of a single “punctured bit” node in the
reduced graph. This can be seen as working from left to right inthe graph, and assuming the value of the previous
“systematic bit” node was erased. The probability of the event where the values ofk “systematic bit” nodes are
observed and the value of the next “systematic bit” node is erased by the channel is given by(1− p)kp. The graph
reduction associated with this event causes the degrees ofk + 1 “punctured bit” nodes (from the d.d.L(x)) to be
summed. Hence, the new d.d. of the “punctured bit” nodes after graph reduction is given by

L̃(x) =
∞∑

k=0

(1 − p)kpL(x)k+1 =
pL(x)

1 − (1 − p)L(x)
. (10)

After the graph reduction, we are left with a standard LDPC codewith new edge-perspective degree distributions
given by

λ̃(x) =
L̃′(x)

L̃′(1)
=

p2λ(x)
(
1 − (1 − p)L(x)

)2 (11)

ρ̃(x) =
R̃′(x)

R̃′(1)
=

(1 − p)2ρ(x)
(
1 − pR(x)

)2 . (12)

After the aforementioned graph reduction, all the “systematic bit” nodes and “code bit” nodes are removed. Therefore
the residual LDPC code effectively sees a BEC whose erasure probability is 1, and the DE fixed point equation is
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given by
λ̃
(
1 − ρ̃(1 − x)

)
= x. (13)

Based on (11) and (12), the last equation is equivalent to (8).
Remark 1 (The notation of tilted degree distributions):The tilted degree distributions̃λ and ρ̃ which are given

in (11) and (12), respectively, depend on the erasure probability p of the BEC. For simplicity of notation, we do
not write this dependency explicitly in our notation. However, in Section III, when discussing symmetry properties
and replacingp by 1 − p, the erasure probability is written explicitly in these tilted degree distributions.

D. The Stability Condition for ARA Ensembles

Like the NSIRA codes presented in [10], ARA codes have DE fixed points at bothx = 0 andx = 1. One can
see this by evaluating (8) at these points while assuming that each d.d. functionf satisfiesf(0) = 0 andf(1) = 1.
To get decoding started, the d.d. is perturbed slightly by adding degree-1 parity-checks, pilot bits, and/or systematic
bits. For successful completion of decoding, we need the fixedpoint atx = 0 to bestable. To minimize the number
of extra bits required to get decoding started, it is also useful for the fixed point (prior to the perturbation) atx = 1
to be unstable. Although x = 1 is not a fixed point after the perturbation, theinstability condition helps prevent
the decoder from getting stuck nearx = 1.

The stability and instability conditions are computed by taking the derivative of the LHS of (8) atx = 0 and
x = 1. For the fixed point atx = 0 to be stable, we need the derivative to be less than unity, andthis gives

p2λ2

(
ρ′(1) +

2pR′(1)

1 − p

)
< 1. (14)

Ensembles without degree-2 bits are unconditionally stableat x = 0.
For the fixed point atx = 1 to be unstable, we need the derivative to be greater than unity, and this gives

(1 − p)2ρ2

(
λ′(1) +

2(1 − p)L′(1)

p

)
> 1. (15)

This condition requires the presence of a non-vanishing fraction of degree-2 “parity-check 2” nodes; ensembles not
having this property are unable to immediately create new degree-1 checks and may therefore get stuck shortly
after starting. The instability condition guarantees that,on average, more new degree-1 checks are being created
than lost whenx is close to 1.

III. SYMMETRY PROPERTIES OFCAPACITY-ACHIEVING ENSEMBLES

In this section, we discuss the symmetry between the bit and check degree distributions of c.a. ensembles for the
BEC. First, we describe this relationship for LDPC codes, and then we extend it to ARA codes. The extension is
based on analyzing the decoding of ARA codes in terms of graphreduction and the DE analysis of LDPC codes.

A. Symmetry Properties of Capacity-Achieving LDPC Ensembles

The relationship between the bit d.d. and check d.d. of c.a. ensembles of LDPC codes can be expressed in a
number of ways. Starting with the DE fixed point equation

pλ
(
1 − ρ(1 − x)

)
= x (16)

wherep designates the erasure probability of the BEC, we see that picking either the d.d.λ or ρ determines the
other d.d. exactly. In this section, we make this notion precise and use it to expose some of the symmetries of c.a.
LDPC codes.

A few definitions are needed to discuss things properly. Following the notation in [4], letP be the set of d.d.
functions (i.e., functionsf with non-negative power series expansions around zero which satisfy f(0) = 0 and
f(1) = 1); this set is defined by

P ,

{
f : f(x) =

∞∑

k=1

fkx
k, x ∈ [0, 1], fk ≥ 0, f(0) = 0, f(1) = 1

}
.
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Let T be an operator which transforms invertible functionsf : [0, 1] → [0, 1] according to the rule

T f(x) , 1 − f−1(1 − x)

wheref−1 is the inverse function off . The functionT f is well-defined on[0, 1] for any functionf which is
strictly monotonic on this interval, and therefore for any function inP. We will say that two d.d. functionsf and
g arematchedif T f = g (sinceT 2f ≡ f , the equalityT f = g implies thatT g = f ). Finally, letA be the set of
all functionsf ∈ P such thatT f ∈ P, i.e.,

A ,

{
f : f ∈ P , T f ∈ P

}
.

The connection with LDPC codes is that finding somef ∈ A is typically the first step towards proving that
(f, T f) is a c.a. d.d. pair. Truncation and normalization issues which depend on the erasure probability of the BEC
must also be considered. Whenp = 1, many of these issues disappear, so we denote the set of d.d. pairs which
satisfy (16) by

CLDPC ,

{
(λ, ρ) ∈ P × P | λ

(
1 − ρ(1 − x)

)
= x

}

=
{

(λ, ρ) | λ ∈ A, ρ = T λ
}

.

The symmetry propertyof c.a. LDPC codes (with rate 0) asserts that

(λ, ρ) ∈ CLDPC
¾symmetry- (ρ, λ) ∈ CLDPC. (17)

One can prove this result by transforming (16) whenp = 1. First, we letx = 1 − ρ−1(1 − y), which gives

λ(y) = 1 − ρ−1(1 − y).

Then we rewrite this expression as
ρ
(
1 − λ(y)

)
= 1 − y

and lety = 1 − z to get
ρ
(
1 − λ(1 − z)

)
= z.

Comparing this with the DE fixed point equation (16) whenp = 1 shows the symmetry betweenλ andρ.

B. Symmetry Properties of Capacity-Achieving ARA Ensembles

The decoding of an ARA code can be broken into two stages. The firststage transforms the ARA code into
an equivalent LDPC code via graph reduction, and the second stage decodes the LDPC code. This allows us to
describe the symmetry property of c.a. ARA codes in terms of the symmetry property of c.a. LDPC codes. First,
we introduce notation which allows us to express compactly the effect of graph reduction on an arbitrary d.d. from
the edge perspective (see (4), (11) and (12)). Forf ∈ P, let us define

f̃p(x) ,
(1 − p)2 f(x)

(
1 − p

∫ x

0
f(t)dt∫ 1

0
f(t)dt

)2 . (18)

This allows the graph reduction of an ARA code to be interpreted as a mappingGARA from an ARA d.d. pair to
an LDPC d.d. pair which can be expressed as

(λ, ρ)
GARA -¾

(
λ̃1−p, ρ̃p

)
.

The inverse of the graph reduction mapping is represented by adashed arrow because this inverse mapping, while
always well-defined, does not necessarily preserve the property of having a non-negative power series expansion
around zero.

Referring to ensembles of ARA codes, the set of d.d. pairs which satisfy the DE fixed point equation (8) is given
by

CARA(p) ,

{
(λ, ρ) ∈ P × P | λ̃1−p

(
1 − ρ̃p(1 − x)

)
= x

}
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where the equivalence to (8) follows from (11), (12) and (18).
The symmetry between the bit and check degree distributions of c.a. ARA ensembles follows from the symmetry

relationship in (17), and the equivalence between a d.d. pair (λ, ρ) for ARA codes and the d.d. pair(λ̃1−p, ρ̃p) for
LDPC codes of zero-rate.

The complete symmetry relationship for c.a. ARA ensembles over the BEC is therefore given in the following
diagram:

(λ, ρ) ∈ CARA(p) ¾ ARA symmetry- (ρ, λ) ∈ CARA(1 − p)

(
λ̃1−p, ρ̃p

)
∈ CLDPC

GARA

?

6

¾LDPC symmetry-
(
ρ̃p, λ̃1−p

)
∈ CLDPC

6

GARA

?

The inverse of the graph reduction mapping is represented by the dashed arrow because this inverse transformation
is only valid if it is known ahead of time that the power seriesexpansions ofλ and ρ are non-negative. It turns
out that this symmetry is very useful in order to generate newd.d. pairs which satisfy the DE equality in (13). An
alternative way to show this symmetry explicitly is rewriting (13)

λ̃1−p

(
1 − ρ̃p(x)

)
= x

and using the symmetry property (17) for LDPC codes to rewrite it as

ρ̃p

(
1 − λ̃1−p(x)

)
= 1 − x.

From (11) and (12), the expansion of the last equation gives

(1 − p)2 ρ

(
1 − p2 λ(x)(

1−(1−p)L(x)
)2

)

(
1 − p R

(
1 − p2 λ(x)(

1−(1−p)L(x)
)2

))2 = 1 − x. (19)

Since the swappingL(x) ↔ R(x), λ(x) ↔ ρ(x), p ↔ 1 − p, andx ↔ 1 − x maps this equation back to (8), then
we can take any d.d. pair(λ, ρ) which satisfies (8) forp = p∗ and swapλ with ρ (and hence,L andR are also
swapped) to get a new d.d. pair which satisfies (19) forp = 1 − p∗ (equations (8) and (19) should be satisfied for
all x ∈ [0, 1], so switching betweenx and1 − x has no relevance).

C. Symmetry Properties of Capacity-Achieving NSIRA Ensembles

We now consider the graph reduction process and symmetry properties of non-systematic irregular repeat-
accumulate (NSIRA) codes (for preliminary material on NSIRA codes, the reader is referred to [10, Section 2]). In
this respect, we introduce a new ensemble of codes which we call “Accumulate-LDPC” (ALDPC) codes. These codes
are the natural image of NSIRA codes under the symmetry transformation. In fact, this ensemble was discovered
by applying the symmetry transformation to previously known c.a. code ensembles. Their decoding graph can be
constructed from the ARA decoding graph (see Fig. 2) by removing the bottom accumulate structure.

Since an NSIRA code has no accumulate structure attached to the“punctured bit” nodes, the graph reduction
process affects only the d.d. of the “parity-check 2” nodes.Therefore, graph reduction acts as a mappingGNSIRA

from the NSIRA d.d. pair(λ, ρ) to the LDPC d.d. pair(λ, ρ̃p). This yields that for ensembles of NSIRA codes,
the set of d.d. pairs which satisfy the DE fixed point equation is given by

CNSIRA(p) ,

{
(λ, ρ) ∈ P × P | λ

(
1 − ρ̃p(1 − x)

)
= x

}
.

An ALDPC code has no accumulate structure attached to the “parity-check 2” nodes, and therefore the graph
reduction process only affects the d.d. of the “punctured bit” nodes. Hence, graph reduction acts as a mapping
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GALDPC from the ALDPC d.d. pair(λ, ρ) to the LDPC d.d. pair(λ̃1−p, ρ). For ALDPC ensembles, the set of d.d.
pairs which satisfy the DE fixed point equation is therefore given by

CALDPC(p) ,

{
(λ, ρ) ∈ P × P | λ̃1−p

(
1 − ρ(1 − x)

)
= x

}
.

The symmetry between c.a. ensembles of NSIRA and ALDPC codes overthe BEC follows from the symmetry
relationship in (17), the equivalence between a d.d. pair(λ, ρ) for NSIRA codes and the d.d. pair(λ, ρ̃p) for LDPC
codes, and the equivalence between a d.d. pair(λ, ρ) for ALDPC codes and the d.d. pair(λ̃1−p, ρ) for LDPC codes.

The symmetry relationship between c.a. NSIRA and ALDPC ensembles over the BEC is therefore given in the
following diagram:

(λ, ρ) ∈ CNSIRA(p) ¾ symmetry - (ρ, λ) ∈ CALDPC(1 − p)

(λ, ρ̃p) ∈ CLDPC

GNSIRA

?

6

¾ LDPC symmetry - (ρ̃p, λ) ∈ CLDPC

6

GALDPC

?

As before, the inverse of each graph reduction mapping is represented by a dashed arrow because this inverse
transformation is only valid if it is known ahead of time thatthe power series expansions ofλ andρ are non-negative.

D. Connections with Forney’s Transform

In [20], Forney introduces a graph transformation which maps the factor graph of any group code to the factor
graph of the dual group code. For factor graphs of binary linear codes which only have equality and parity constraints
(i.e., no trellis constraints), this operation is equivalent to swapping equality and parity constraints (e.g., bit and
check nodes). Forney’s approach represents observations by half-edges, and these remain attached to the original
node even though the nature of that node has changed. For example, Forney’s transform maps an LDPC code with
parity-check matrixH to a low-density generator-matrix (LDGM) code with generator matrix H and the half-edges
attached to the bit nodes of the LDPC code are attached to the parity-check nodes of the LDGM code.

Using Forney’s transform, we see that the swapping ofλ andρ described by our symmetry mappings actually
transforms the original ensemble into the dual ensemble. Letthe design rate of the original ensemble beR, then
the design rate of the dual ensemble is1−R. This means that if we want to have any chance of achieving capacity,
we must also map the channel erasure probabilityp to 1 − p. Therefore, our symmetry relationships show that
ARA, NSIRA, and ALDPC ensembles which are c.a. on BEC under iterative decoding also have dual ensembles
which are c.a. on the BEC under iterative decoding.1 In light of the area theorem and its relationship to the dual
code [22], this result is not entirely surprising. Still, we had not considered the possibility that c.a. ensembles might
automatically define c.a. dual ensembles.

Finally, we note that the basic structure of ARA codes is preserved under Forney’s transform. In particular, this
means that we can construct self-dual ARA codes by choosing the matrix which defines the connections between
the “punctured bit” nodes and the “parity-check 2” nodes (see Fig. 2) to be symmetric. This property may also be
useful for constructing quantum error-correcting codes based on classical codes which contain their duals [21].

IV. CAPACITY-ACHIEVING ARA ENSEMBLES FOR THEBEC

This section serves as a preparatory step towards the construction of explicit c.a. ARA ensembles for the BEC,
whose decoding complexities stay bounded as the gap to capacity vanishes. Later in Section V we will present
explicit constructions of bit-regular and check-regular ARA ensembles which are based on a similar approach
due to the symmetry properties provided in the previous section. Section VI introduces another approach for the
construction of c.a. ensembles of ARA codes with bounded complexity over the BEC. The concepts used for these
constructions are based on the symmetry properties in the previous section, and the material presented in this
section.

1To be precise, we actually need to consider sequences of ensembles which are c.a. and relate them to sequences of dual ensembles. This
distinction is rather cumbersome and does not cause problems in this case.
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A. A Starting Point

Using the tilted degree distributions after graph reduction given in Section II-C.2, we apply the DE equation for
LDPC codes (13) to derive c.a. sequences. This property is proved in the following lemma.

Lemma 1: If equality (13) is satisfied for allx ∈ [0, 1], then the design rate of the corresponding ensemble of
ARA codes is equal to the capacity of the BEC.

Proof: From the condition in (13), it follows that

1 − λ̃−1(1 − x) = ρ̃(x). (20)

Since λ̃(0) = 0, λ̃(1) = 1 and λ̃ is a monotonic differentiable function on the interval[0, 1], then from (20), the
substitutionx = λ(u) and integration by parts give

∫ 1

0
ρ̃(x) dx =

∫ 1

0

(
1 − λ̃−1(1 − x)

)
dx

= 1 −
∫ 1

0
λ̃−1(x) dx

= 1 −
∫ 1

0
uλ̃′(u) du

= 1 −
[
u λ̃(u)

∣∣∣
1

0
−

∫ 1

0
λ̃(u)du

]

=

∫ 1

0
λ̃(u)du. (21)

From (3), (11), and the equalitiesL(0) = 0 andL(1) = 1, we get
∫ 1

0
λ̃(x) dx =

∫ 1

0

p2λ(x)
(
1 − (1 − p)L(x)

)2 dx

=
1

L′(1)

∫ 1

0

p2L′(x)
(
1 − (1 − p)L(x)

)2 dx

=
1

L′(1)

∫ 1

0

p2du
(
1 − (1 − p)u

)2

=
p

L′(1)
. (22)

Similarly, from (3), (12) and the equalitiesR(0) = 0 andR(1) = 1, we obtain
∫ 1

0
ρ̃(x) dx =

1 − p

R′(1)
. (23)

By combining (21)–(23), we obtain the equality

L′(1)

R′(1)
=

p

1 − p
(24)

and hence, from (5), the design rate of the ensemble of ARA codes is equal to1 − p (i.e., the ensemble achieves
the capacity of the BEC).

Now, consider the DE fixed point equation (13) (or equivalently (8)). Using this equation, we see that the condition
ρ(0) = 0 (i.e., no degree-1 “parity-check 2” nodes) is necessary andsufficient to guarantee that (13) is always
satisfied atx = 1. Likewise, the conditionλ(0) = 0 (i.e., no degree-1 “punctured-bit” nodes) is necessary and
sufficient to guarantee that (13) is always satisfied atx = 0. From Lemma 1, we conclude that if there exists a d.d.
pair (λ, ρ) with bounded average degree that satisfies (8), then there is ac.a. sequence of ARA ensembles with
bounded complexity for the BEC. This conclusion is also based on the truncation discussed in the next section.



12

B. Truncating Degree Distributions

After finding a d.d. pair which satisfies the DE equation (8), a suitable truncation can be used to exhibit a
sequence of ensembles that achieves capacity. Consider, for example, a sequence of d.d. pairs{(λ(M), ρ(M))}M∈N

indexed by the maximum degreeM . Since the effect of each truncation is negligible asM goes to infinity, Lemma
1 shows that the design rate approaches capacity in this case. If the truncations are chosen properly, then we can
also show that each truncated d.d. pair in the sequence has noDE fixed points forx ∈ (0, 1]. This implies that, for
any δ > 0, there exists a block lengthn0(δ, M) such that the probability of decoding failure is less thanδ for all
block lengthsn > n0.

Since our DE equations depend on both the edge and node degree distributions, the truncation must be chosen
carefully to simultaneously bound both. For the check d.d.,we want modified degree distributionŝR and ρ̂ such
that R̂(x) > R(x) and ρ̂(x) > ρ(x) for x ∈ [0, 1). In particular, we replace large degree checks by degree-1 checks
and this gives

ρ̂(x) =

(
ρ1 +

∞∑

i=M+1

ρi

)
+

M∑

i=2

ρix
i−1

R̂(x) =

∫ x
0 ρ̂(t)dt

∫ 1
0 ρ̂(t)dt

.

This truncation was introduced in [10] and proven to satisfy the desired conditions.
For the bit d.d., we want truncated degree distributionsL̂ and λ̂ that satisfyL̂(x) < L(x) and λ̂(x) < λ(x) for

x ∈ (0, 1]. In this case, we replace large degree bits by pilot bits (e.g., these bits are forced to zero and known at
the receiver); this gives

λ̂(x) =
M∑

i=1

λix
i−1

L̂(x) =
M∑

i=1

Lix
i.

We note that this truncation satisfies the desired conditions(as long asLi > 0 for somei > M ) because it simply
removes positive terms.

C. Encoding and Decoding Complexity

When transmission takes place over a BEC, the encoding/decoding complexity under iterative message-passing
decoding is defined to be the average number of edges per information bit in the Tanner graph of the code (see
Fig. 2). The motivation for measuring the complexity in this way is because the encoder and the iterative decoder
can be both designed to use every edge in the graph exactly onetime (due to the absolute reliability of information
provided by the BEC).

From the Tanner graph of ARA codes in Fig. 2, it can be verified thatthe encoding complexity(χE) and the
decoding complexity(χD) are both equal to

χE = χD = 3 + L′(1) +
2(1 − R)

R
(25)

whereR is the design rate of the ensemble.
The complexity of NSIRA codes can also be computed from Fig. 2 by ignoring the accumulate structure for the

systematic bits. This shows that

χE = χD = L′(1) +
2

R
. (26)

Likewise, the complexity of ALDPC codes can be computed from Fig.2 by ignoring the accumulate structure
for the parity bits. This shows that

χD =
3 + L′(1)

R
. (27)
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In general, the encoding complexity of ALDPC codes does not grow linearly with the block length because the
brute-force encoding of an LDPC code is quadratic in the block length. We can, however, apply fast encoding
methods for LDPC codes (e.g., [18] and [19]) to ALDPC codes. These methods will result in essentially linear-
time encoding algorithms for c.a. ALDPC codes.

D. The Effect of Puncturing

Puncturing is a well-known technique that allows one to design for one code rate and adaptively increase that rate
to match channel conditions. Strictly speaking, we note thatpunctured ARA ensembles are no longer systematic
because some information bits may not be transmitted as a result of the puncturing. This technique, however, can
be used to extend the range ofp for which certain d.d. pairs are c.a. with bounded complexity.

For example, consider any code construction which is provably c.a. with bounded complexity forp > p0 (e.g.,
the check-regular ARA ensemble which will be introduced in Section V). This construction can be made to achieve
capacity for0 < p < 1 by simply puncturing bits at random before transmission (i.e., all bits have the same
puncturing rate). Letα be the fraction of bits transmitted, then the effective erasure rate of the channel is given by
peff = 1 − α(1 − p). Picking α < 1 − p0 guarantees thatpeff > p0 and that the ensemble achieves capacity. This
operation does increase the complexity by a factor of1

α because the punctured bits must be retained as part of the
decoding graph. We apply this method in some computer simulations to increase the code rate of a particularly
good ensemble of rate12 codes.

Codes with two classes of bits (e.g., ARA codes) may also benefit from asymmetric puncturing of the two classes.
For example, puncturing all of the systematic bits of an ARA code converts that code into a NSIRA code [10]. So
we find that sending a fractionα of the systematic bits of an ARA code gives a smooth transition between ARA
codes and NSIRA codes forα ∈ [0, 1].

V. B IT AND CHECK REGULAR CAPACITY-ACHIEVING ENSEMBLES WITH BOUNDED COMPLEXITY

This section gives explicit constructions of c.a. ARA ensembles for the BEC, which are either bit-regular or
check-regular. As will be observed, these ensembles possess bounded complexity (per information bit) as the gap
to capacity vanishes.

The symmetry property in Section III-B allows one for example to design an ensemble of high-rate ARA codes,
and get automatically (by switching between the pair of degree distributions) a new ensemble of ARA codes which
is suited for low-rate applications. We will rely on this symmetry property in Section V-B when we transform a
bit-regular ARA ensemble designed for a BEC with erasure probability p ∈ (0, p∗] into a check-regular ensemble
designed forp ∈ [1 − p∗, 1). We also rely on the fact that the method in Section V-A for computing the function
R given the functionL can be easily inverted using the symmetry property. This means that given an algorithm
to solve forR(x) in terms ofL(x) for a certainp0, the inverse algorithm which solvesL(x) in terms ofR(x) is
exactly the same, except thatp0 is replaced by1 − p0.

A. Solving forR(x) in terms ofL(x)

Given L(x), we start with the calculation ofλ(x) = L′(x)
L′(1) . Then λ̃(x) is calculated from (11), and̃ρ(x) =

1 − λ̃−1(1 − x) is calculated from (13). Combining (3) and (12) gives

ρ̃(x) =
(1 − p)2

R′(1)

R′(x)
(
1 − pR(x)

)2

and by integrating both sides of this equation, we get
∫ x

0
ρ̃(t) dt =

(1 − p)2

R′(1)

R(x)

1 − pR(x)
. (28)

SinceR(1) = 1, substitutingx = 1 in the last equality and solving forR′(1) gives

R′(1) =
1 − p

∫ 1
0 ρ̃(t) dt

.
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By substituting the last equality in (28), we get

Q(x) =
(1 − p)R(x)

1 − pR(x)
(29)

where

Q(x) ,

∫ x
0 ρ̃(t) dt

∫ 1
0 ρ̃(t) dt

. (30)

Using the fact thaty = z
1−pz =⇒ z = y

1+py , we solve (29) forR(x) and get

R(x) =
Q(x)

1 − p + pQ(x)
. (31)

Combining (3), (30) and (31) gives

ρ(x) =
R′(x)

R′(1)

=
ρ̃(x)

(
1 − p + pQ(x)

)2 . (32)

As long as we havẽρ(1) = 1, then evaluating (32) atx = 1 givesρ(1) = 1. Therefore, there is no need to truncate
the power series ofρ. As we noted above, a very similar approach can be applied to solve for L(x) in terms of
R(x); due to the symmetry property, one can simply apply the aboveprocedure to a parity-check d.d.R(x) with
an erasure probability of1 − p.

B. Bit and Check Regular Capacity-Achieving ARA Ensembles

The symmetry between bit-regular and check-regular c.a. ensembles of ARA codes follows from the symmetry
properties presented in Section III-B, so we choose to focus on a bit-regular ARA ensemble. Letλ(x) = x2, so
L(x) = x3, and from (11)

λ̃(x) =
p2x2

(
1 − (1 − p)x3

)2 .

Based on (13), we get

ρ̃−1(x) = 1 − λ̃(1 − x)

= 1 − p2(1 − x)2
(
1 − (1 − p)(1 − x)3

)2 . (33)

This is exactly [10, Eq. (39)] withp replaced by1 − p and ρ switched withλ. Therefore, we obtain from [10,
Theorem 2] that the tilted d.d.̃ρ has the form

ρ̃(x) = 1 +

2(1 − p)(1 − x)2 sin

(
1
3 arcsin

(√
−27(1−p)(1−x)

3
2

4p3

))

√
3 p4

(
− (1−p)(1−x)

3
2

p3

) 3

2

. (34)

Following the procedure of Section V-A, starting from (30), gives (after some calculus)

Q(x) =
3(x − 1)ρ̃(x)

p
+

1 −
(
1 − ρ̃(x)

)3

1 − (1 − p)
(
1 − ρ̃(x)

)3 (35)
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where the calculations leading to the expression forQ are detailed in Appendix A.1. SubstitutingQ in (35) into
(31) gives the following expression of the d.d.R:

R(x) =
1

p

(
1 − 1 − p

1 − p + pQ(x)

)

=
1

p


1 − 1

1 + 3(x−1)ρ̃(x)
1−p + p

1−p

1−
(
1−ρ̃(x)

)3

1−(1−p)
(
1−ρ̃(x)

)3


 (36)

where the functioñρ is given in (34). It was verified numerically that forp ≤ 0.384, the first 300 coefficients of
the power series expansion of the d.d.R are non-negative; in Appendix C.3.2, we prove that ifp ≤ 0.26, thenR
has indeed a power series expansion aboutx = 0 whose all coefficients are non-negative. According to Lemma 1
(see p. 11), it also holds in general that any d.d. pair satisfying (8) has a design rate equal to the capacity of the
BEC. It therefore appears that the d.d. pair above characterizes a c.a. ensemble of bit-regular ARA codes over the
BEC; the capacity of the BEC is achieved with bounded complexity for rates greater than0.616. We note that
the convergence speed of the degree distribution for the parity-check nodes is relatively fast. As an example, for
p = 0.3, the fraction of check nodes with degree less than 32 is equalto 0.968.

Using the symmetry betweeñλ and ρ̃ (see Section III), this also implies that for rates less than0.384, the
ensemble of check-regular ARA codes withR(x) = x3 achieves capacity over the BEC with bounded complexity.
Based on the symmetry property for c.a. ensembles of ARA codes, the d.d.L for the check-regular ARA ensemble
is obtained from the d.d.R for the bit-regular ARA ensemble whenp is replaced by1 − p. From (36) and the
symmetry property, the d.d.L for the check-regular ARA ensemble which corresponds toR(x) = x3 has the form

L(x) =
1

1 − p


1 − 1

1 + 3(x−1)λ̃(x)
p + 1−p

p

1−
(
1−λ̃(x)

)3

1−p
(
1−λ̃(x)

)3


 (37)

where for this ensemble

λ̃(x) = 1 +

2p(1 − x)2 sin

(
1
3 arcsin

(√
−27p(1−x)

3
2

4(1−p)3

))

√
3 (1 − p)4

(
−p(1−x)

3
2

(1−p)3

) 3

2

. (38)

Note that the d.d.̃λ in (38) is obtained by replacingp by 1 − p in the RHS of (34), which finally gives the d.d.
function introduced in [10, Eq. (15)].

C. Capacity-Achieving ALDPC Ensembles

Using the symmetry relationship between NSIRA and ALDPC ensembles from Section III-C, we find that we
already have from [10, Theorems 1 and 2] two c.a. ensembles of ALDPC codes. These ensembles are based on
the bit-regular and check-regular NSIRA ensembles of [10]. This was also observed independently by Hsu and
Anastasopoulos [14].

Using symmetry, the check-regular NSIRA ensemble gives a bit-regular ALDPC ensemble which provably
achieves capacity with bounded complexity forp ∈ (0, 1). Since d.d. for smallp has long tails, one can also
use random puncturing to increase the effective erasure rate of the channel, and therefore simplify code design.
Similarly, the bit-regular NSIRA ensemble gives a check-regular ALDPC ensemble which provably achieves capacity
with bounded complexity forp ∈

[
12
13 , 1

)
. In this case, random puncturing can be used to extend the valid range to

(0, 1).
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The replacement ofp by 1− p in [10, Eq. (15)] which corresponds to the right d.d. of the check-regular NSIRA
ensemble, gives the following check d.d. for the bit-regular ALDPC ensemble with left degree of 3

ρ(x) = 1 +

2(1 − p)(1 − x)2 sin

(
1
3 arcsin

(√
−27(1−p)(1−x)

3
2

4p3

))

√
3 p4

(
− (1−p)(1−x)

3
2

p3

) 3

2

. (39)

Likewise, the replacement ofp by 1 − p in [10, Eq. (10)] which corresponds to the left d.d. of the bit-regular
NSIRA ensemble, and the substitutionq = 3 gives the following bit d.d. for the check-regular ALDPC ensemble
with right degree of 3

λ(x) =
1 − (1 − x)

1

2

[
1 − (1 − p)

(
1 − 3x + 2

[
1 − (1 − x)

3

2

])]2 . (40)

It is worth noting that the bit-regular ALDPC ensemble has minimum bit degree of 3. Therefore, truncating the
check d.d. to finite maximum check degree makes the ensemble unconditionally stable. Recall that the typical
minimum distance of regular LDPC ensembles, with bit degree 3,grows linearly with the block length [23]. This
suggests that the minimum distance of this bit-regular ALDPC ensemble might also grow linearly with the block
length. To prove this rigorously, however, one must also consider the effect of the accumulate structure on the
minimum distance.

VI. CAPACITY-ACHIEVING ENSEMBLES WITH BOUNDED COMPLEXITY FROM SELF-MATCHED LDPC
ENSEMBLES

In this section, we introduce another way of constructing c.a. ensembles of ARA codes for the BEC. Rather then
solving for the functionR in terms of the functionL (as in Section V-A) or doing the inverse via the symmetry
property, we consider here another natural way of searchingfor c.a. degree distributions. We start by choosing a
candidate d.d. pair(λ̃, ρ̃) which satisfies equation (13) and test if it can be used to construct an ensemble of c.a.
ARA codes. The testing process starts by mapping the tilted pair (λ̃, ρ̃) back to(λ, ρ) via (11) and (12), and then
testing the non-negativity of the resulting power series expansions ofλ andρ.

Following the notation in Section III-A, it enables one to rewrite (13) asρ̃ = T λ̃ (so the tilted degree distributions
λ̃ and ρ̃ are matched), and gives a compact description of capacity-achieving d.d. pairs of LDPC codes. Since
T 2f = f for every invertible functionf , we note thatf ∈ A if and only if T f ∈ A. Based on (13), we obtain
that we need to choose the tilted d.d. so thatλ̃ ∈ P and alsoT λ̃ ∈ P, i.e., we need that the d.d.̃λ (or ρ̃) both
belong to the setA. The reader is referred to [4, Lemma 1] which considers basic properties of the setA and the
transformationT .

So far, by choosing̃λ ∈ A (or ρ̃ ∈ A), we only know that both tilted d.d. have non-negative powerseries
expansions. This property does not ensure that both of the original (i.e., non-tilted) d.d.λ and ρ also have non-
negative power series expansions. Calculation ofλ andρ from the tilted d.d.̃λ and ρ̃ is not straightforward since
both equations involve the d.d.L andR which are the normalized integrals of the unknownλ andρ. In order to
overcome this difficulty in solving the two integral equations, we suggest calculating the tilted d.d. pair w.r.t. the
nodes of the graph using

L̃(x) =

∫ x
0 λ̃(t) dt

∫ 1
0 λ̃(t) dt

, R̃(x) =

∫ x
0 ρ̃(t) dt

∫ 1
0 ρ̃(t) dt

. (41)

The original d.d. pair w.r.t. the nodes (i.e., the original d.d. pair before the graph reduction) can be calculated from
(9) and (10). We obtain that

L(x) =
L̃(x)

p + (1 − p)L̃(x)
, R(x) =

R̃(x)

1 − p + pR̃(x)
(42)

and then use the equations in (3) to find(λ, ρ). The critical issue here is to verify whether the functionsL andR
have non-negative power series expansions.
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A. Capacity-Achieving ARA Ensembles

It is easy to verify that the function

f(x) =
(1 − b)x

1 − bx
, 0 < b < 1 (43)

belongs to the setA and alsoT f = f ; in the case whereT f = f , the functionf is said to be self-matched.
Therefore, based on (13), we examine here whether the choiceλ̃(x) = ρ̃(x) = (1−b)x

1−bx can be transformed into
an ensemble of ARA codes whose degree distributions have non-negative power series expansions. From (41) and
(42), we get

L̃(x) = R̃(x) =
bx + ln(1 − bx)

b + ln(1 − b)
(44)

and from (42), we obtain that

L(x) =
bx + ln(1 − bx)

p [b + ln(1 − b)] + (1 − p) [bx + ln(1 − bx)]
(45)

R(x) =
bx + ln(1 − bx)

(1 − p) [b + ln(1 − b)] + p [bx + ln(1 − bx)]
. (46)

Since we started with the functionf in (43) which is self-matched, the resulting functionsL andR in this approach
are exactly the same, except thatp and1−p are switched. In Appendix C.3, it is proved that the degree distributions
L andR in (45) and (46), respectively, have non-negative power series expansion if and only if

1

1 − 13−
√

61
9 ·

(
b + ln(1 − b)

) ≤ p ≤ 1 − 1

1 − 13−
√

61
9 ·

(
b + ln(1 − b)

) . (47)

Fortunately, there exists a region of(b, p) where this condition is satisfied. For the specification of thisregion,
we use the Lambert W-functionW (x) which is defined implicitly viaW (x)eW (x) = x; this function is real for
x > −1

e . In the following we introduce and prove the following theorem:
Theorem 1 (Ensembles of Self-Matched ARA Codes):The ensemble of self-matched ARA codes, defined by the

pair of degree distributions(L, R) in (45) and (46), achieves the capacity of the BEC for any erasure probability
p ∈ (0, 1). This result is achieved under iterative message-passing decoding withbounded complexity.

The tails of the d.d. (i.e., the partial sums
∑∞

i=k Li and
∑∞

i=k Ri) decay exponentiallylike O(bk) where the
parameterb is given by

b = W
(
−e

− 13+
√

61

12

1+|1−2p|
1−|1−2p|−1

)
+ 1. (48)

The complexity, per information bit, of encoding and decoding is given by

χE = χD =
3 − p

1 − p
− b2p

(1 − b)
[
b + ln(1 − b)

] . (49)

Proof: Referring to the pair of degree distributionsL andR in (45) and (46), respectively, we need to obtain the
necessary and sufficient conditions which ensure that these two function have non-negative power series expansion
aboutx = 0. For a given value ofb in these degree distributions, it is proved in Appendix C.3.3 that this property
is satisfied if and only if the inequality in (47) holds.

The encoding and decoding complexities of c.a. ensembles of ARA codes for the BEC are discussed in Section IV-
C. Since our ensemble is c.a., thenR = 1 − p wherep designates the erasure probability of the BEC, and from
(42) and (44)

L′(1) = p L̃′(1) = − b2p

(1 − b)[b + ln(1 − b)]
.

Combining (25) with the last equality provides the expression in (49) for the complexity, per information bit, of
encoding and decoding.

For fixedp ∈ (0, 1), the complexity in (49) forms a monotonic increasing function ofb (which becomes unbounded
as b → 1−). In order to minimize the encoding/decoding complexity, we wish to find the smallest value ofb in
the interval(0, 1) so that the power series expansions about zero of the degree distributionsL and R are both
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non-negative. For a fixed value ofp, it is equivalent to solving for the minimal value ofb ∈ (0, 1) which satisfies
the condition in (47). This gives the equation

1

1 − 13−
√

61
9 ·

(
b + ln(1 − b)

) = min(p, 1 − p)

which can be rewritten as

−b − ln(1 − b) =
13 +

√
61

12

1 + |1 − 2p|
1 − |1 − 2p| (50)

by using the equality

min(p, 1 − p) =
1

2
−

∣∣∣
1

2
− p

∣∣∣.

For a ∈ R, the solution of the equation−b − ln(1 − b) = a is given byb = W (−e−1−a) + 1. To verify this, one
needs to write the equation in the form(b−1)eb−1 = −e−a−1, and rely on the definition of the Lambert W-function.
Hence, the solution of equation (50) is given by the expression for b in (48). Forp ∈ (0, 1), the expression forb
in (48) achieves its global minimum atp = 1

2 , and its value is

b∗ = W (−e−
25+

√
61

12 ) + 1 ≈ 0.9304.

Eq. (48) therefore implies that for0 < p < 1, the parameterb ranges in the interval[b∗, 1); it achieves the value
b = b∗ at p = 1

2 , and tends to 1 whenp approaches zero or unity.
The asymptotic behavior of the two d.d. pairs w.r.t. the nodesand the edges is derived in Appendix B.3, and is

given by

Lk, Rk = O

(
bk

k ln2(k)

)
, λk, ρk = O

(
bk

ln2(k)

)
(51)

so the tails of the d.d. pair(L, R) decay exponentially withk.
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Fig. 4. Valid values ofp as a function of the parameterb in (45) and (46), so that the coefficients in the power series expansionsaround
zero ofL(·), R(·), λ(·) andρ(·) are all non-negative. This region is determined by the inequalities in (47),and it is therefore bounded by
the upper and lower curves in this figure.

The region(b, p) characterized by the inequality in (47) is depicted in Fig. 4,and we point out that its width
grows asb gets closer to 1. Note that it follows from (47) that in the limit where b → 1−, the d.d. pairL andR
have non-negative power series expansions for0 < p < 1. However, from (49), the complexity in the limit where
b → 1− becomes unbounded.

An efficient algorithm for the calculation of the d.d. pair in (45) and (46) w.r.t. the nodes of the graph, and the
d.d. pair(λ, ρ) w.r.t. the edges is given in Appendix B.2.

We believe the performance advantage of this ensemble over other c.a. ensembles is mainly due to theexponential
decay of the d.d. coefficients, as given in (51). In contrast, most other ensembles in Table VIII have d.d. tails which
decay polynomially.
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1) Numerical Results:The encoding and decoding complexity of the self-matched ARAensemble introduced
in this section is shown on the left in Fig. 5. This figure also shows (on the right) the minimal value ofk such
that the partial sums

∑k
i=2 λi and

∑k
i=2 ρi exceed 0.95.
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Fig. 5. Left plot: Encoding/decoding complexity per information bit of the considered ensemble of ARA codes. The complexity is given
in (49) as a function of the erasure probability(p) of the BEC, and to this end, we choose the parameterb according to equation (48) for
minimizing the complexity. Right plot: A plot of the minimal value ofk as a function of the erasure probability(p) so that the partial sums∑

k

i=2 λi and
∑

k

i=2 ρi both exceed 0.95. We choose the parameterb according to equation (48) which also minimizesk for a fixed value
of p.

Both of these sums converge to 1 ask goes to infinity, and the convergence time is measured by the minimal value
of k where these partial sums exceed a threshold which is close to1 (e.g., 0.95). We note that, like the complexity,
the convergence time of these partial sums is increasing with b. Therefore, the choice we made according to equation
(48) minimizes both quantities simultaneously. Notice that the complexity and convergence time are rather small
for 0.35 ≤ p ≤ 0.65. Both of these quantities achieve their minimal value atp = 1

2 since the value ofb required by
(48) is also minimized. We also note that the minimal value ofk is symmetric aroundp = 1

2 (see right plot) while
the complexity is asymmetric (see left plot). The reason for the symmetry property aroundp = 1

2 in the right plot
of Fig. 5 is because the replacement ofp by 1− p yields the same value ofb in (48); actually, the replacement of
p by 1− p yields the same d.d. pair, except that{λi}i≥2 and{ρi}i≥2 are switched (this follows directly from (45)
and (46)).

For p = 0.50 andp = 0.60, the convergence rates of the degree distributions w.r.t. the nodes and edges of the
graph are shown in Fig. 6. The value of the parameterb is determined by (48), and the corresponding complexity (per
information bit) is equal to 8.585 and 13.776, respectively. The results for a BEC with erasure probabilityp = 0.50
(i.e., a design rate of12 ) are particularly encouraging. In this case, the encoding/decoding complexity is equal to
6.585, and the partial sum

∑k
i=2 λi (or equivalently,

∑k
i=2 ρi) exceeds 0.95 fork ≥ 29. For comparison, consider

the check-regular NSIRA ensemble in [10, Theorem 2] which requires more than 300 terms so that the partial
sum

∑k
i=2 λi exceeds 0.95. This significant improvement in the convergencerate of the degree distributions yields

ensembles whose performance for moderate block lengths is superior to previous constructions. The considered
ensemble of self-matched ARA codes has the property that fora design rate of one-half,L = R andλ = ρ, so the
d.d. pairs of the punctured bits and the parity-checks coincide.

In Fig. 7, we compare the asymptotic expressions of the degreedistributions{Lk}, {Rk}, {λk}, {ρk} to their
exact values. There is a good match between the asymptotic andexact values for moderate to large values ofk. The
best match between the two expressions is obtained whenp = 0.50 because this affords the minimal value ofb. To
see this phenomenon exactly, one can look at the error terms of the asymptotic expressions given in Appendix B.3.

To conclude, we note that the ensemble of self-matched ARA codes without puncturing, as considered in this
section is well suited for moderate rates while, on the otherhand, the ensembles of bit-regular and check-regular
ARA codes are well suited for high and low rates, respectively. In order to make the ensemble of self-matched
ARA codes suitable for high code rates, we use random puncturing (as will be exemplified later, the performance
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Fig. 6. The plots refer to the ensemble of self-matched ARA codes with the pair of degree distributions in (45) and (46); these plots show
the partial sums

∑
k

i=2 Li,
∑

k

i=2 Ri,
∑

k

i=2 λi, and
∑

k

i=2 ρi as a function of the integerk. The left plot refers top = 0.500 andb = 0.9304
(where for this case,Li = Ri and λi = ρi for all i ∈ N), and the right plot refers top = 0.600 and b = 0.972. The left and right plots
refer to the (encoding and decoding) complexity per information bit which, under message-passing iterative decoding, is equal to 8.585 and
13.776, respectively.
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matched ARA ensemble, designed for a BEC with erasure probability ofp = 1

2
. The parameterb in the left and right degree distributions

(45) and (46), respectively, is determined by Eq. (48), so its value isb = 0.9304.

of these ensembles with puncturing is good also for moderateblock lengths).
2) Not All Self-Matched LDPC Ensembles Give Valid Results:The starting point in Section VI-A was the choice

of the functionf in (43) which belongs to the setP and which also satisfies the propertyf = T f . This choice
simplifies the analysis in Section VI-A by setting̃λ(x) = ρ̃(x) = f(x). From the symmetry property stated in
Section III, we see thatL and R (and alsoλ and ρ) have the same form except thatp is replaced by1 − p.
The functionf in (43) is however not the only function in the setP which satisfies the propertyf = T f . In [4,
Appendix V], there is a discussion on the fixed points of the operator T . We cite here a necessary condition for
the satisfaction of this property.

Proposition([4, Appendix V]): If f = T f for somef ∈ P, thenf(x) = t(x) + 1 − x wheret(x) satisfies the
identity

t(x) = 2x − 1 − h(t(x)), x ∈ [0, 1] (52)
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and the functionh satisfies the properties

0 ≤ h(t) < 1, h(t) = h(−t), t ∈ [0, 1], h(1) = h(−1) = 0.

Choosing appropriate functions in (52) may lead to new families of fixed points of the operatorT . For example,
the choiceh(t) = α(1 − t2) gives the function

f(x) = 1 +
1

2α
− x −

√(
1 +

1

2α

)2

− 2x

α
(53)

which indeed belongs to the setP and satisfies the propertyf = T f for 0 < α ≤ 1
2 . Using an approach similar to

the one in Section VI-A, we set̃λ = ρ̃ = f , and rely on (41) to calculatẽL and R̃. These functions are identical
becausef is a fixed point of the operatorT . The choice of the function in (53) gives

L̃(x) = R̃(x) =

∫ x
0 f(t) dt

∫ 1
0 f(t) dt

=

(
1 + 1

2α

)
x − x2

2 + α
3

{[(
1 + 1

2α

)2 − 2x
α

] 3

2 −
(
1 + 1

2α

)3
}

1
2 − 2α

3

and the candidate d.d. pair(L, R) is then calculated by using (42). From our numerical experiments, L is likely
to have a non-negative power series expansion forp ∈ [0.85, 1) (with α ∈ [0.38, 0.5]). As we noted above, the
expressions forL andR are the same except thatp is replaced by1− p. Since the intervals[0.85, 1) and(0, 0.15]
do not overlap, we find that bothL(x) andR(x) cannot simultaneously have non-negative power series expansions
aboutx = 0. This shows that not all self-matched functions give rise to valid degree distributions of ARA ensembles.

B. Capacity-Achieving NSIRA Ensembles

This section is focused on the construction of NSIRA ensemblesfrom LDPC ensembles whose degree distributions
from the edge perspective are matched. We apply here the concept of DE via graph reduction to ensembles of NSIRA
codes. In this case, the graph reduction only applies to the “parity-check 2” nodes (see Fig. 2). This is because
the upper part of Fig. 2 does not exist in the Tanner graph of NSIRA codes (i.e., the “punctured bit” nodes in
this figure are the “information bit” nodes in the graph of NSIRAcodes). Based on graph reduction, we obtain
that L = L̃ for ensembles of NSIRA codes, while the functionsR and R̃ satisfy the equality in (42). In a similar
manner, the equalityλ = λ̃ holds for NSIRA ensembles while equality (12) is satisfied for the degree distributions
of the parity-checks from the edge perspective. We note thatfrom (12) and (13), the fixed point of the DE equations
for NSIRA ensembles is given by

λ

(
1 − (1 − p)2ρ(1 − x)

(
1 − pR(1 − x)

)2

)
= x.

Of course, this equation coincides with the DE fixed point equation [10, Eq. (6)] (withx0 replaced byx) derived
previously for NSIRA codes.

For the construction of ensembles of NSIRA codes using LDPC codes whose degree distributions from the edge
perspective are both matched to themselves, we rely as a starting point on the functionf in (43) which forms a
d.d. which is matched to itself, and setλ̃(x) = ρ̃(x) = (1−b)x

1−bx for 0 < b < 1, similarly to Section VI-A. For the
considered ensemble of NSIRA codes, the d.d.L(x) is then equal tõL(x) in (44), i.e.,

L(x) =
bx + ln(1 − bx)

b + ln(1 − b)
. (54)

From this, we see that there are no degree-1 “information bit”nodes, and that the fraction of “information bit”
nodes with degree-i is given by

Li = −bi

i

1

b + ln(1 − b)
, i = 2, 3, . . . .
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The non-negativity of the sequence{Li} holds when0 < b < 1 (so b + ln(1− b) < 0). Therefore, the power series
expansion of the d.d.L is always non-negative and there is no requirement on the erasure probabilityp in this
regard. The condition for the d.d.R to be non-negative is identical to that of the self-matched ARA codes derived
in Appendix C.3.3 and is given by

p ≤ 1 − 1

1 − 13−
√

61
9 [b + ln(1 − b)]

. (55)

By comparing it to the parallel requirement for the ARA ensemble, as given in (47), one observes that (55) requires
a weaker condition onp which is only the upper bound onp in (47). As mentioned above, the d.d.R is the same
as for the ARA ensemble in Section VI-A. The encoding and decoding complexities of this ensemble are equal
and have the form

χE = χD =
2

1 − p
− b2

(1 − b) [b + ln(1 − b)]
. (56)

This gives an explicit construction of NSIRA ensembles from LDPCcodes whose degree distributions from the
edge perspective are matched to themselves. In general, we find by computer simulations for finite-length codes
over the BEC that ARA codes have the best performance.

C. Capacity-Achieving ALDPC Ensembles

We now construct ensembles of ALDPC codes using LDPC codes whose degree distributions from the edge
perspective are matched. Using the symmetry property between NSIRA and ALDPC codes, this construction follows
almost trivially from the results of Section VI-B. The symmetry transformation acts by switchingλ with ρ andp
with 1 − p, which gives

R(x) =
bx + ln(1 − bx)

b + ln(1 − b)
. (57)

From this, we see that there are no degree-1 “parity-check 2” nodes and that the fraction of “parity-check 2” nodes
with degree-i is given by

Ri = −bi

i

1

b + ln(1 − b)
, i = 2, 3, . . . .

The non-negativity of the sequence{Ri} follows directly because0 < b < 1 (so b + ln(1 − b) < 0). Since the
Ri are non-negative forp ∈ [0, 1], the valid range ofp for this construction is determined by the non-negativity
of L(x). Similar to the NSIRA ensemble in Section VI-B, the d.d.L is equal to the one in (45) for the ARA
ensemble. From Appendix C.3.3, we see thatL(x) will have a non-negative power series expansion if

p ≥ 1

1 − 13−
√

61
9 [b + ln(1 − b)]

. (58)

Using (27) and (45), the decoding complexity of this ensemble is given by

χD =
3

1 − p
− b2p

(1 − p)(1 − b)[b + ln(1 − b)]
. (59)

This gives an explicit construction of ALDPC ensembles from ensembles of LDPC codes with self-matched
degree distributions. In Section VII, we compare the performance of this ensemble with the ensembles of NSIRA
and ARA codes in Sections VI-A and VI-B, respectively. In general, we find that the ARA codes have the best
performance.

VII. C OMPUTERSIMULATIONS

The details of our computer simulations are described in thissection and the results are discussed. In particular,
our main result is that the ARA ensemble of Section VI shows a distinct advantage over all the other c.a. ensembles
we consider. We believe this advantage is largely due to the exponential decay of its d.d. tails.
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A. Encoding Details

We consider here the explicit construction of finite-length ARA codes from infinite degree distributions. Letk
be the number of “systematic bit” nodes andn−k be the number of “parity-check 2” nodes (see Fig. 2 in p. 3). In
the first step, we scale and quantize the degree distributionsinto a list of integers corresponding to the number of
“punctured bit” nodes and “parity-check 2” nodes of each degree. All “parity-check 2” nodes with degree greater
thandR are reduced to degree-dR. This truncation has the effect of reducing the number of edges between “parity-
check 2” nodes and “punctured bit” nodes. All “punctured bit” nodes with degree greater thandL are converted
into pilot bits. Therefore, the values of these bits are forced to a known value (e.g., zero) at the encoder. This is
done by choosing the value of one of the “systematic bit” nodes carefully as described in Section II-B. We note
that each pilot bit has the effect of reducing the dimension of the code by 1.

The main reason for introducing pilot bits is that decoding cannot get started without them (see the DE equations
in Section II-C.1). A slight modification of the encoding process is required for pilot bits, and we describe it
now using the notation from Section II-B. Our goal is to set thepunctured bitvj to zero by picking a systematic
bit appropriately. We find that the punctured bitvj can be set to zero by choosing the systematic bituj to be
vj−1 =

∑j−1
i=1 ui. Since each pilot bit determines one of the systematic bits, this process reduces the actual number

of information bits by the number of pilot bits.
While long random codes chosen from the ensemble of Section VI-A tend to have vanishing bit erasure probability

as the block length goes to infinity, the block erasure probability does not vanish. This phenomenon is caused by
small weaknesses in the graph, and can be mitigated by using ahigh-rate outer code as a second layer of protection.
In the case of ARA codes, we believe that it is most effective to apply this code to the punctured bits. In particular,
we force the lastm punctured bits to equal random linear combinations of the first k − m punctured bits. This
operation reduces the information content of the code bym bits.

Again, we must slightly modify the encoding process to accommodate the outer code. Using the notation of
Section II-B, we find that this involves forcing the sequencev to satisfyHv = 0 for somem × k parity-check
matrix H. For our purposes, it suffices to consider matrices of the formH = [P I], whereI is them×m identity
andP is anm × (k − m) matrix with entriesPj,i. We can require thev sequence to satisfyHv = 0 by choosing
eachuj , for j ∈ {k − m + 1, . . . , k}, as follows. We choose

uj = vj−1 +
k−m∑

i=1

Pj,ivi

because combining this with (1) shows that

vj =
k−m∑

i=1

Pj,ivi ⇒ Hv = 0.

B. Decoding Details

The simulations essentially use Luby’s decoding algorithm [2], which starts with the full graph and deletes edges
as they become known. This process starts by choosing a degree-1 parity-check node and finding the bit node to
which it attaches. This bit node is declared known, and all of the edges which are attached to it are removed from
the graph. Without loss of generality, one can assume that the all-zero codeword was transmitted, and the received
bits are erased with probabilityp.

One advantage of Luby’s decoding algorithm for LDPC codes is that it averages over all random graphs without
explicitly constructing each graph. It does this simply by tracking the number of nodes of each degree throughout
the decoding process. For ARA codes, we first use graph reduction (from Section II-C.2) to convert the ARA graph
into an LDPC graph. This reduction is not done in the average sense, but instead by explicitly placing erasures
and combining nodes. This step implicitly averages over all orderings of the systematic and parity bits. Next, the
resulting LDPC code is decoded using Luby’s algorithm. This stepimplicitly averages over all random graphs.
Therefore, this simulation technique averages over the entire ARA ensemble. Careful design of the graph can only
improve performance.

If decoding terminates before all bits are known, then the high-rate outer code is decoded. Assume thatl bits
remain unknown after iterative decoding finishes. Decoding the outer code is equivalent to solving a set ofm linear
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equations withl unknowns. Of course, the parity checks leftover from iterative decoding can be used to increase
the number of equations (or reduce the number of unknowns). In particular, it is easy to use one of the leftover
degree-2 parity-check nodes to reduce the number of unknowns by one. Such a parity check implies the equality of
the two unknowns connected to it. This equality allows one to add two columns of the matrix together and reduce
the number of unknowns by one. This process can be continued, but one must be wary of linear dependencies
among the degree-2 parity-check nodes. Therefore, ift is the number of linearly independent degree-2 parity-check
nodes remaining at the end of iterative decoding, then decoding is successful if and only if the rank of the new
m × (l − t) matrix is l − t. We note that each entry in theP matrix is chosen randomly from{0, 1} with equal
probability. Choosing theP matrix more carefully can only improve performance.

C. Discussion of Results

The results of the computer simulations are discussed in thissection. Although all of the ensembles introduced
have been simulated, results are presented mainly for the ARA and IRA ensembles which are constructed from self-
matched LDPC codes. These codes seem to have the best performance in the waterfall region (probably because
their degree distributions decay exponentially fast). The results are compared with simulations of Shokrollahi’s
check-regular ensemble [3].

Figures 8 and 9 compare the self-matched ARA, the self-matched IRA, and the check-regular LDPC ensembles
at rate 1

2 . Figures 8 shows the raw error rates without using a high-rateouter code. Therefore, the error floor is
rather severe because the results are averaged over the entire ensemble and no attempt was made to avoid small
stopping sets. Figure 9 shows the results when a high-rate outer code is used to mitigate small stopping sets. The
results show that the self-matched ARA ensemble can handle an erasure rate roughly 0.005 larger than the other
ensembles while maintaining the same performance. This gainis present throughout the waterfall region and similar
for block lengths of 8192 and 65536 bits.

Fig. 10 shows how the performance of the self-matched ARA ensemble varies with block length. The upper plot
shows the results without a high-rate outer code and one notices that the word erasure probability never goes below
10%. Even with the high-rate outer code, this ensemble has a word erasure floor due to the fraction of degree-2 bit
nodes. As with stable ensembles of irregular LDPC codes, this floor can be made arbitrarily low by expurgating
low weight stopping sets and/or adding a stronger outer code.

For a rateR > 1
2 , one can either design self-matched ARA codes directly for this rate or, alternatively, by first

designing rate–12 self-matched ARA codes and puncturing the code bits up to rate R. The problem with designing
the code directly for rateR is that the parameterb in (45) and (46) must be increased in this case and becomes
very close to 1. This increases the encoding and decoding complexities and the required maximum degree (see
Fig. 5). For example, the rate–1

2 ensemble requires only about the 30 first terms of the degree distributions in order
to achieve 99% of the design rate while the rate–7

10 ensemble requires about the 160 first terms of these degree
distributions. Figure 11 shows the performance of these two design methods for rate710 . The results are compared
directly in Fig. 12, showing the advantage of the methodologywhere the ensemble is designed for rate one-half
and then punctured to obtain the higher rate. This advantage over the approach of designing self-matched ARA
codes without puncturing is exemplified in Fig. 11 either if theARA code is combined with a high-rate outer code
or not.

It can be observed from Fig. 5 that the ensemble of self-matched ARA codes with the pair of degree distributions
in (45) and (46) is not suitable for designing codes of low rates; the lower the design rate becomes below1

2 bits
per channel use, the complexity of this ensemble increases significantly (see the left plot of Fig. 5). To this end,
we propose the bit-regular accumulate-LDPC (ALDPC) codes (see Section VI-C) as a preferable alternative for
designing codes of low rates. The performance of the bit-regular ALDPC ensemble, where the degree of the bit
nodes is set to 3, is shown in Fig. 13. In this figure, the performance of these codes is exemplified for moderate
to large block lengths, showing the significance of a high-rate outer code in reducing the erasure floor.

VIII. S UMMARY AND CONCLUSIONS

In this section, we provide a table of capacity achieving (c.a.) code constructions for the binary erasure channel
(BEC). With the exception of the low-density parity-check (LDPC) codes and systematic irregular repeat-accumulate
(SIRA) codes, all of these codes achieve capacity on the BEC with bounded complexity per information bit. Since
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each of the actual c.a. degree distributions has infinite support, we let M be the truncation depth of the degree
distribution (d.d.) and give the gap to capacity as a function of M .

Code Ensemble Type Range ofp Bit d.d. Check d.d. Gap to Complexity

capacity(ε) asε → 0

LDPC Tornado (0,1) λ(x) = − 1
α

ln(1 − x) ρ(x) = eα(x−1) O

(
1

M

)
χD = O

(
log

1

ε

)

LDPC CR-k (0, 1) λ(x) = 1 − (1 − x)
1

k−1 ρ(x) = xk−1 O

(
1

M

)
χD = O

(
log

1

ε

)

SIRA [6, Th. 2] (0,1) [6, Eq. (33)] ρ(x) = eα(x−1) O

(
1

M

)
χE = χD = O

(
log

1

ε

)

NSIRA CR-3 (0, 0.95) [10, Eq. (15)] ρ(x) = x2 O

(
1

M
3
2

)
χE = χD =

5

1 − p

NSIRA BR-3
(
0, 1

13

)
λ(x) = x2 [10, Eq. (10)] O

(
1√
M

)
χE = χD = 3 +

2

1 − p

NSIRA SM Eq. (55) Eq. (54) Eq. (46) O

(
bM

ln2(M)

)
Eq. (56)

ARA CR-3 (0.616, 1)† Eq. (37) R(x) = x3 O

(
1

M
3
2

)
χE = χD = 3 +

5p

1 − p

ARA BR-3 (0, 0.348) L(x) = x3 Eq. (36) O

(
1

M
3
2

)
χE = χD = 6 +

2p

1 − p

ARA SM Eq. (47) Eq. (45) Eq. (46) O

(
bM

ln2(M)

)
Eq. (49)

ALDPC CR-3
(

12
13

, 1
)†

Eq. (40) ρ(x) = x2 O

(
1√
M

)
χD =

3(1 + p)

1 − p

ALDPC BR-3 (0.05, 1) λ(x) = x2 Eq. (39) O

(
1

M
3
2

)
χD =

6

1 − p

ALDPC SM Eq. (58)† Eq. (45) Eq. (57) O

(
bM

ln2(M)

)
Eq. (59)

TABLE I

L IST OF CAPACITY-ACHIEVING (C.A .) ENSEMBLES FOR THEBEC. IN THIS TABLE, ’BR’, ’CR’ AND ’SM’ STAND FOR ’ BIT-REGULAR’,

’ CHECK-REGULAR’ AND ’ SELF-MATCHED DEGREE DISTRIBUTIONS’, RESPECTIVELY. THE VALID RANGE OF p IS MARKED BY † IF IT

CAN BE EXTENDED TO(0, 1) VIA PUNCTURING. THE PARAMETERb IN THE D.D. PAIRS OF THESM ENSEMBLES IS ALLOWED TO BE IN

THE INTERVAL (0.9304, 1).

Simulation results show that among all these ensembles, the self-matched ARA ensemble, constructed in Sec-
tion VI, has the best performance for moderate to large blocklengths (considering rates which are at least1

2
bit per channel use). We believe the performance advantage of the self-matched ARA ensemble is mainly due
to the exponentialdecay of the d.d. coefficients. In contrast, most other ensembles in Table VIII have d.d. tails
which decay polynomially. For low-rate codes, we propose the bit-regular accumulate-LDPC (ALDPC) ensemble
in Section VI-C as the preferred alternative (see Fig. 13).
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APPENDIX A
DERIVATION OF Q IN (35)

Following the procedure of Section V-A, and starting from (30) gives

Q(x) =

∫ x
0 ρ̃(t) dt

∫ 1
0 ρ̃(t) dt

=
3

p

∫ x

0
ρ̃(t) dt (A.1)

where the last equality follows from (21) and (22), i.e.,
∫ 1

0
ρ̃(t) dt =

∫ 1

0
λ̃(t) dt =

p

L′(1)
=

p

3
.

The substitutiont = ρ̃−1(u) and integration by parts gives
∫ x

0
ρ̃(t) dt

=

∫ ρ̃(x)

0
u

d

du

(
ρ̃−1(u)

)
du

= uρ̃−1(u)
∣∣∣
ρ̃(x)

u=0
−

∫ ρ̃(x)

0
ρ̃−1(u)du

= xρ̃(x) −
∫ ρ̃(x)

0

[
1 − p2(1 − u)2

(
1 − (1 − p)(1 − u)3

)2

]
du

= (x − 1)ρ̃(x) − p2

3(1 − p)

1

1 − (1 − p)(1 − u)3

∣∣∣
ρ̃(x)

u=0

= (x − 1)ρ̃(x) +
p

3

1 −
(
1 − ρ̃(x)

)3

1 − (1 − p)
(
1 − ρ̃(x)

)

and the substitution of the last equality in the RHS of (A.1) gives (35).

APPENDIX B
ON THE POWER SERIESEXPANSION OF(45) AND (46)

From (45), we get

L(x) =
1

1 − p


1 − 1

1 +
(1−p)

[
bx+ln(1−bx)

]

p
[
b+ln(1−b)

]




=
1

1 − p


1 − 1

1 − α(p, b)
[
bx + ln(1 − bx)

]




= − 1

1 − p

∞∑

m=1

αm(p, b)
[
bx + ln(1 − bx)

]m

=
1

1 − p

∞∑

m=1

{
(−1)m−1 αm(p, b)

[
b2x2

2
+

b3x3

3
+

b4x4

4
+ . . .

]m
}

(B.1)

where
α(p, b) , − 1 − p

p [b + ln(1 − b)]
. (B.2)
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We note thatα(p, b) is positive for0 < b < 1 and 0 < p < 1. From equation (B.1), it is easily verified that the

minimal degree in the power series expansion of
[
bx + ln(1 − bx)

]m
is x2m, so if k < 2m, then the coefficient

of xk is equal to zero. Sincem and k are integers, then if follows that the coefficient ofxk in the power series
expansion of

[
bx + ln(1 − bx)

]m
vanishes form ≥ bk

2c + 1. This gives the following equality:

Lk = [xk]L(x) = − 1

1 − p

b k

2
c∑

m=1

αm(p, b) · [xk]
{[

bx + ln(1 − bx)
]m}

where the infinite sum we had before turned to be a finite sum in thelast equality. Therefore, the power series
expansion ofbx + ln(1 − bx) yields that

Lk =
1

1 − p

b k

2
c∑

m=1

{
(−1)m−1 αm(p, b) ·

{
[xk]

(
b2x2

2
+

b3x3

3
+

b4x4

4
. . .

)m}}

=
α(p, b)

1 − p

b k

2
c∑

m=1

{
(−1)m−1 αm−1(p, b) ·

{
[xk]

(
b2x2

2
+

b3x3

3
+

b4x4

4
. . .

)m}}

From the last equality, we obtain that

Lk =
α(p, b) bk

1 − p

b k

2
c∑

m=1

{
(−1)m−1 cm,k · αm−1(p, b)

}
, k = 2, 3, 4, . . . (B.3)

where
cm,k ,

∑

i1 + i2 + . . . + im = k
i1, i2, . . . , im ≥ 2

Ni1,i2,...,im

i1 i2 . . . im
, m = 1, 2, . . . , bk

2
c (B.4)

andNi1,i2,...,im
in the RHS of (B.4) designates the number of different permutations of the sequence{i1, i2, . . . , im}.

From the duality betweenR andL in our example (see (45) and (46)), then for the calculation of the coefficient
Rk in the power series expansion ofR we only need to replacep in (B.3) by 1 − p, so

Rk =
α(1 − p, b) bk

p

b k

2
c∑

m=1

{
(−1)m−1 cm,k · αm−1(1 − p, b)

}
, k = 2, 3, 4, . . . . (B.5)

Sinceλ(x) = L′(x)
L′(1) , thenλk = kLk

L′(1) . From (B.2) and (49), we obtain the equalityL′(1) = b2p2α(p,b)
(1−p)(1−b) , and then

it follows from (B.3) and the last two equalities that

λk =
(1 − b) k bk−2

p2

b k

2
c∑

m=1

{
(−1)m−1 cm,k · αm−1(p, b)

}
, k = 2, 3, 4, . . . . (B.6)

From the duality between (45) and (46), then by switchingp in (B.6) by 1 − p, we obtain that

ρk =
(1 − b) k bk−2

(1 − p)2

b k

2
c∑

m=1

{
(−1)m−1 cm,k · αm−1(1 − p, b)

}
, k = 2, 3, 4, . . . (B.7)

so (B.6) and (B.7) provide explicit expressions for the coefficients of the d.d. pair from the edge perspective.
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A. A Recursion for the Sequence{cm,k}
We intend to give now an efficient way to calculate the coefficients cm,k where1 ≤ m ≤ bk

2c (as otherwisecm,k

is equal to zero). To this end, we can rewritecm,k in (B.4) as

cm,k ,
∑

i1 + i2 + . . . + im = k
i1, i2, . . . , im ≥ 2

1

i1 i2 . . . im
, m = 1, 2, . . . , bk

2
c (B.8)

where the difference from (B.4) is that now the order of the terms in the sequence{i1, i2, . . . , im} is relevant, so
effectively every term of the form 1

i1 i2 ... im
is countedNi1,i2,...,im

times in the sum above. We will show that this
sequence satisfies a simple recursive equation. First, it is trivial that

c1,k =
1

k
, k = 2, 3, . . . (B.9)

Since we impose the constrainti1 + i2 + . . . im = k on the calculation ofcm,k, then we can rewritecm,k in (B.8)
as

cm,k =
1

k

∑

i1 + i2 + . . . + im = k
i1, i2, . . . , im ≥ 2

i1 + i2 + . . . + im
i1 i2 . . . im

=
1

k

∑

i1 + i2 + . . . + im = k
i1, i2, . . . , im ≥ 2

(
1

i2 i3 . . . im
+

1

i1 i3 . . . im
+ . . . +

1

i1 i2 i3 . . . im−1

)

Symmetry considerations imply that the sum w.r.t. every termamong them terms above are all equal to each other,
so the expression ofcm,k can be simplified to

cm,k =
m

k

∑

i1 + i2 + . . . + im = k
i1, i2, i3 . . . , im ≥ 2

1

i2 i3 . . . im
. (B.10)

Comparing to (B.8), the last summation is over all the possible vectors{i2, i3, . . . , im} (i.e., i1 does not appear in
the term 1

i2 i3 ...im
, but only i2, i3, . . . , im appear there). Sinceij ≥ 2 for 1 ≤ j ≤ m, then the sumi2 + i3 + . . . im

gets all possible values between2(m − 1) and k − 2 (where the inequality2(m − 1) ≤ k − 2 is automatically
satisfied because of the assumption thatk ≥ 2m, as otherwisecm,k = 0). Since the summations in (B.8) and (B.10)
are taken w.r.t. all possible combinations of{i1, i2, . . . , im} when the two constraints in (B.10) are satisfied, then
we obtain the following recursive equation:

cm,k =
m

k

k−2∑

j=2(m−1)

cm−1,j . (B.11)

The combination of the recursive equation in (B.11) with the initial values in (B.9) gives an efficient way to calculate
the terms of the sequence{cm,k}. We implemented this algorithm in software.

B. An Algorithm for Calculating the Degree Distributions in Section VI-A

We provide here an algorithm to calculate the coefficients in the d.d. pairs(L, R) and(λ, ρ). This algorithm was
implemented in software.

1. Calculate the sequence{cm,k} with the recursive equation (B.11) and the initial values in(B.9).
2. Calculateα(p, b) from (B.2).
3. Calculate{Lk} and{λk} from (B.3) and (B.6), respectively.
4. Calculateα(1 − p, b) from (B.2), and{Rk} and{ρk} from (B.5) and (B.7), respectively.
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C. Asymptotic Expressions for the Degree Distributions in Section VI-A

We wish to find here asymptotic expressions for the sequences{Lk}, {Rk}, {λk} and{ρk} wherek is sufficiently
large. First we see that it is enough to solve the problem for the sequence{Lk}, since if there exists a sequence of
functions{gk(·, ·)} so thatLk ≈ gk(p, b) for k À 1, then we obtain from (B.3)–(B.7) that the following asymptotic
expressions are valid for the other degree distributions when k À 1:

Rk ≈ gk(1 − p, b), λk ≈ (1 − b)k

b2p2
· gk(p, b), ρk ≈ (1 − b)k

b2(1 − p)2
· gk(1 − p, b) . (B.12)

We shall therefore focus on the derivation of the asymptoticbehavior of the sequence{Lk} in the power series
expansion of the functionL(·) in (45). To this end, we rewriteL(·) in the form

L(x) =
bx + ln(1 − bx)

p [b + ln(1 − b)] + (1 − p) [bx + ln(1 − bx)]

=
1

1 − p

(
1 − p[b + ln(1 − b)]

p [b + ln(1 − b)] + (1 − p) [bx + ln(1 − bx)]

)

=
1

1 − p

(
1 − 1

1 + 1−p
p[b+ln(1−b)] · [bx + ln(1 − bx)]

)

=
1

1 − p

(
1 − 1

1 − α(p, b) · [bx + ln(1 − bx)]

)

where the functionα is introduced in (B.2), and is positive for0 < p < 1 and0 < b < 1. Let us define the function

h(z; c) =
1

1 − c[z + ln(1 − z)]
, 0 < c ≤ 13 −

√
61

9
≈ 0.5766. (B.13)

then
L(x) =

1

1 − p
·
(
1 − h

(
bx; α(p, b)

))
(B.14)

where the restriction onc follows from the restriction onα that we obtained earlier so thatL6 is non-negative, and
from the equalityc = α(p, b) which holds by comparing (B.13) and (B.14).

The following equality therefore holds fork ≥ 2:

Lk = − bk

1 − p
· hk(c), c , α(p, b) (B.15)

where{hk(c)}k≥0 is the sequence the coefficients in the power series expansionh(z; c) =
∑∞

k=0 hk(c)z
k. In the

continuation, we will find the asymptotic behavior of the power series expansion of the functionh(z; c) in (B.13),
and then use (B.15) to derive the asymptotic behavior of the sequence{Lk}, and use (B.12) for the derivation of
the asymptotic behavior of the other degree distributions.

In [24], a class of methods is presented which enables one to translate, on a term-by-term basis, an asymptotic
expression of a function around a dominant singularity intoa corresponding asymptotic expansion for the Taylor
coefficients of the function. In the continuation of the asymptotic analysis, we rely on [24]. The functionh(z; c)
has singularities at the points where the following equation is satisfied:

1 − c
(
z + ln(1 − z)

)
= 0.

The closed form solution of the above equation isz = z1,2 where

z1 = 1 + W (−e
1

c
−1) , z2 = z∗1

andW denotes the Lambert W-function. Since we require that0 < c ≤ 13−
√

61
9 ≈ 0.5766, thenz1 andz2 have an

absolute value which is at least equal to 2.074 (we note that the absolute value ofz1,2 is a monotonic decreasing
function of c, so it is achieved whenc gets its maximal value within this interval). The dominant singularity of
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the functionh(z; c) is therefore at the pointz = 1 where the logarithm in (B.13) becomes singular. In the region
around the dominant singularity atz = 1, the functionh(z; c) behaves like

h(z; c) = O

(
ln−1

(
1

1 − z

))

so from [24], the asymptotic behavior of the coefficients in the power series expansion of this function is

hk = O

(
1

k ln2(k)

)
.

A more careful analysis which is based on the singularity analysis in [24] shows that

hk =
1

1 − c

1

k
(
1 + d ln(k)

)2

[
−1 +

2γ

1 + d ln(k)
+

π2 − 6γ2

2
(
1 + d ln(k)

)2

]
+ O

(
1

k ln5(k)

)
(B.16)

whered , c
1−c , andγ ≈ 0.5772 designates Euler’s constant. From (B.15) and (B.16), we obtain that

Lk =
1(

1 − α(p, b)
)
(1 − p)

· bk

k
· 1
(
1 + d(p, b) ln(k)

)2 ·
(

1 − 2γ

1 + d(p, b) ln(k)

)
+ O

(
bk

k ln4(k)

)
(B.17)

where the transition from (B.16) to (B.17) follows by substituting c = α(p, b) whereα(·, ·) is introduced in (B.2),
and then based on (B.2) and (B.16)

d(p, b) =
α(p, b)

1 − α(p, b)
= − 1 − p

1 − p + p[b + ln(1 − b)]
.

The asymptotic expression for the other degree distributions (i.e.,{Rk}, {λk} and{ρk} follow now immediately
from the asymptotic behavior of{Lk} in (B.17) and the transition to the asymptotic behavior of the other d.d. in
(B.12). The following degree distributions are therefore obtained:

Rk =
1(

1 − α(1 − p, b)
)
p
· bk

k
· 1
(
1 + d(1 − p, b) ln(k)

)2 ·
(

1 − 2γ

1 + d(1 − p, b) ln(k)

)
+ O

(
bk

k ln4(k)

)

λk =
1 − b(

1 − α(p, b)
)
p2(1 − p)

· bk−2

(
1 + d(p, b) ln(k)

)2 ·
(

1 − 2γ

1 + d(p, b) ln(k)

)
+ O

(
bk

ln4(k)

)

ρk =
1 − b(

1 − α(1 − p, b)
)
(1 − p)2p

· bk−2

(
1 + d(1 − p, b) ln(k)

)2 ·
(

1 − 2γ

1 + d(1 − p, b) ln(k)

)
+ O

(
bk

ln4(k)

)
.

Therefore, the asymptotic behavior of the d.d. pairs w.r.t. the nodes and the edges is given by

Lk, Rk = O

(
bk

k ln2(k)

)
, λk, ρk = O

(
bk

ln2(k)

)
.

The parameterb above is chosen according to (48), so it is determined as a function of the erasure probability
(p) of the BEC (0.9304 ≤ b < 1). The closer is the value ofp to one-half, then the smaller becomes the value
of b, and this accelerates the convergence rate to zero of the d.d. pairs above. It is therefore clear from these two
equations that the convergence rate of the d.d. pairs is improved whenp becomes closer to one-half (as is also
shown in Fig. 6).
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APPENDIX C
A GENERALIZATION OF POLYA’ S CRITERION TO DISCRETEDISTRIBUTIONS AND ITS APPLICATION TO

NON-NEGATIVITY PROOFS

A. Polya’s Criterion

Polya’s criterion [25, p. 509] is a simple condition which is sufficient to imply that a functionF (t) is the inverse
Fourier transform (i.e., characteristic function) of a non-negative functionf(x). It requires that the functionF is
real, symmetric, non-negative, and convex non-increasingon [0,∞). This gives a simple method of proving that
some functions are indeed characteristic functions.

Example C.1:Consider the function

Fα(t) = e−|t|α , α ∈ (0, 1].

Since there is no closed-form expression for the (scaled) Fourier transform

fα(x) =
1

2π

∫ ∞

−∞
Fα(t)e−itxdt,

we cannot verify directly thatFα(t) is the characteristic function of a random variable (i.e.,fα(x) ≥ 0). It is
easy, however, to verify thatFα(t) satisfies Polya’s criterion forα ∈ (0, 1] and this proves thatfα(x) is indeed
non-negative.

B. A Generalization of Polya’s Criterion to Discrete Distributions

We now generalize Polya’s criterion to discrete distributions and offer an elementary proof which is substantially
different from the standard “tent function” proof outlinedin [25, p. 505].

Definition C.1: A function γ(x) hascosine symmetryif

γ(x) = γ(2π + x), ∀ x ∈ R

and
γ(x) = −γ(π − x) = −γ(π + x) = γ(2π − x) ≥ 0, ∀ x ∈ [0, π/2].

Lemma C.1:Let γ(x) be a function with cosine symmetry which is non-negative on[0, π
2 ], andf(x) be a real

and convex function forx ∈ [0, 2π). Then, the integral
∫ 2π
0 γ(x)f(x)dx is non-negative.

Proof: First, rewrite the integral as
∫ 2π

0
γ(x)f(x)dx =

∫ π/2

0
[γ(x)f(x) + γ(π − x)f(π − x) + γ(π + x)f(π + x) + γ(2π − x)f(2π − x)] dx

=

∫ π/2

0
γ(x) [f(x) − f(π − x) − f(π + x) + f(2π − x)] dx

=

∫ π/2

0
γ(x)g(x)dx

whereg(x) , f(x) − f(π − x) − f(π + x) + f(2π − x). Taking the derivative of the functiong gives

g′(x) = f ′(x) + f ′(π − x) − f ′(π + x) − f ′(2π − x)

=
[
f ′(x) − f ′(π + x)

]
+

[
f ′(π − x) − f ′(2π − x)

]
.

Notice thatg′(x) ≤ 0 for x ∈ [0, π
2 ] because the convexity off on [0, 2π] implies thatf ′(x) ≤ f ′(x + π) and

f ′(π − x) ≤ f ′(2π − x) for x ∈ [0, π
2 ]. Finally, we note that the integral is non-negative because both γ(x) and

g(x) are non-negative forx ∈
[
0, π

2

]
.

Lemma C.2:Let γ(x) be a function with cosine symmetry which is non-negative on[0, π
2 ], and letF (t) be a

real, symmetric, and convex function fort ∈ [0, a]. Then, forx > 0

1

π

∫ a

0
F (t)γ(tx)dt ≥ 1

π

∫ a

2π

x b xa

2πc
F (t)γ(tx)dt.
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Proof: Using Lemma C.1, we find that the integral over each full cycle ofγ(x) is non-negative which leaves
only the remaining partial cycle neara. We show this using, forx > 0, the decomposition

1

π

∫ a

0
F (t)γ(tx)dt =

1

π

∫ a

2π

x b xa

2πc
F (t)γ(tx)dt +

1

π

b xa

2πc−1∑

j=0

[∫ 2π(j+1)

x

2πj

x

F (t)γ(tx)dt

]

=
1

π

∫ a

2π

x b xa

2πc
F (t)γ(tx)dt +

1

πx

b xa

2πc−1∑

j=0

[∫ 2π

0
F

(
2πj + u

x

)
γ(u)du

]

≥ 1

π

∫ a

2π

x b xa

2πc
F (t)γ(tx)dt.

The last step follows from Lemma C.1 using the fact thatF
(

2πj+u
x

)
is convex foru ∈ [0, 2π] if 0 ≤ j ≤

⌊
xa
2π

⌋
−1.

Definition C.2: A function F (t) : R → R satisfies Polya’s criterion fort ∈ [0, a], if and only if it satisfies the
following conditions:

1. F (t) = F (−t), i.e., F is a symmetric function.
2. F (t) ≥ 0 i.e., F is non-negative over the interval[0, a].
3. F ′(t) ≤ 0, i.e., F is non-increasing over the interval[0, a].
4. F ′′(t) ≥ 0, i.e., F is convex over the interval[0, a].

Let Pa be the set of functions satisfying Polya’s criterion on[0, a].
Theorem C.2:Any function F ∈ P∞ is the characteristic function of a continuous probabilitydistribution, and

any functionF ∈ Pπ which is 2π-periodic (i.e.,F (x) = F (x + 2π)) is the characteristic function of a discrete
probability distribution.

Proof: For theF ∈ P∞ case, we have

f(x) =
1

2π

∫ ∞

−∞
F (t)e−itxdt

=
1

π

∫ ∞

0
F (t) cos(tx)dt.

First, we note thatf(0) ≥ 0 becauseF (t) ≥ 0. Next, we apply Lemma C.2 to this withγ(x) = cos(x), which
gives

f(x) ≥ lim
a→∞

1

π

∫ a

2π

x b xa

2πc
F (t) cos(tx)dt

≥ 1

π
lim

a→∞

(
a − 2π

x

⌊xa

2π

⌋)
min

2π

x b xa

2πc≤t≤a
F (t) cos(tx)

≥ − lim
a→∞

2

x
F

(
2π

x

⌊xa

2π

⌋)

where the last step follows since the functionF ∈ P∞ is non-negative and monotonic non-increasing, so for any
a > 0 andx > 0

|F (t) cos(tx)| ≤ F (t) ≤ F

(
2π

x

⌊xa

2π

⌋)
, ∀ t ∈

[
2π

x

⌊xa

2π

⌋
, a

]
.

If lima→∞ F (a) = 0, then we havef(x) ≥ 0 for x 6= 0. On the other hand, iflima→∞ F (a) > 0, thenf(x) has
a Delta function atx = 0. Subtracting this Delta function returns us to the first case and shows thatf(x) ≥ 0 for
x 6= 0.

For the2π-periodicF ∈ Pπ case, we have

hk =
1

2π

∫ π

−π
F (t)e−iktdt

=
1

π

∫ π

0
F (t) cos(kt)dt.
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For k = 0, we see thath0 ≥ 0 by the non-negativity ofF (t) for t ∈ [0, π]. For k > 0, we apply Lemma C.2 with
γ(x) = cos(x) to get

hk ≥ 1

π

∫ π

2π

k b k

2c
F (t) cos(kt)dt.

Whenk is even, we havehk ≥ 0 because the range of integration becomes zero. Whenk is odd, we have

hk ≥ 1

π

∫ π(k−1/2)

k

π(k−1)

k

F (t) cos(tk)dt +
1

π

∫ π

π(k−1/2)

k

F (t) cos(kt)dt

=
1

π

∫ π

2k

0

[
F

(
π(k − 1)

k
+ u

)
− F (π − u)

]
cos(ku)du.

This giveshk ≥ 0 becausecos(tk) ≥ 0 for t ∈
[
0, π

2k

]
andF (t) is non-increasing fort ∈ [0, π].

Corollary C.1: Let the functiong : C → C be complex analytic on the open unit discD =
{
x ∈ C

∣∣ |x| < 1
}

,
well-defined and continuous on the boundary∂D, and real on the subdomainD ∩ R. If the function h(x) ,

Re
{
g

(
eix

)}
is convex on[0, π] andg(0) ≥ 0, then the power series expansion ofg about zero has non-negative

coefficients. Furthermore, iflimx→0 x g(1 − x) = 0, then the result holds even ifg has a singularity atx = 1.
Proof: Sinceg is real onD∩R, the power series expansion ofg about zero has real coefficients, i.e.,gn ∈ R for

all n ≥ 0; thereforeg(x∗) = g(x)∗ andh(−x) = h(x). Next, we note thath is non-increasing on[0, π] because it is
convex (i.e.,h′′(x) ≥ 0) on this interval andh′(x) = Re

{
2ieixg′(eix)

}
implies thath′(π) = Re{−2ig′(−1)} = 0.

Sinceg(0) ≥ 0 is the coefficient ofx0 in power series expansion, we can simply subtract it (without affecting the
convexity ofh) and assume thatg(0) = 0 without loss of generality.

This allows us to apply Theorem C.2 to the2π-periodic functionh. One caveat is thath may not satisfyh(x) ≥ 0
for x ∈ [0, π]. In this case, revisiting the proof of Theorem C.2 shows that this is needed only to proveg0 ≥ 0,
and thereforeg(0) ≥ 0 can be used instead.

Now, we will relate the Fourier transform ofh to the power series expansion ofg. If g is analytic onD and
continuous on the entire boundary∂D, then we can apply Cauchy’s theorem to get

gn =
1

2πi

∮

∂D

g(x)

xn+1
dx

=
1

2πi

∫ π

−π

g
(
eiθ

)

ei(n+1)θ
ieiθdθ

=
1

2π

∫ π

−π
g

(
eiθ

)
e−inθdθ

(a)
=

1

2π

∫ π

−π

[
g

(
eiθ

)
+ g

(
e−iθ

)]
e−inθdθ

=
1

2π

∫ π

−π
h(θ)e−inθdθ. (C.1)

Step (a) follows from the fact thatg(e−iθ) contributes nothing to the integral. This is becauseg(0) = 0 and
analyticity together imply thatg(x) has only positive integer powers ofx and

∫ π
−π e−inθdθ = 0 for non-zero integer

n.
On the other hand, ifg is singular atx = 1, then we can modify the contour to avoidx = 1. If we choose the

new contour to be the boundary ofD ∩
{
x ∈ C

∣∣ |x − 1| ≤ ε
}

, then it can be decomposed into two circular arc
sections:

C1 =
{
x ∈ C

∣∣ |x| = 1, φ ≤ arg(x) ≤ 2π − φ
}

C2 =
{
x ∈ C

∣∣ |1 − x| = ε, −ψ ≤ arg(1 − x) ≤ ψ
}
.
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Therefore, we can write

gn =
1

2πi

∮

C1∪C2

g(x)

xn+1
dx

=
1

2πi

∮

C1

g(x)

xn+1
dx

+
1

2π

∫ ψ

−ψ

g(1 − εe−iθ)εe−iθ

(1 − εe−iθ)n+1
dθ. (C.2)

The magnitude of the second term can be upper bounded by
∣∣∣∣

1

2π

∫ ψ

−ψ

g(1 − εe−iθ)εe−iθ

(1 − εe−iθ)n+1
dθ

∣∣∣∣ ≤ max
|x|≤ε

∣∣∣∣
xg(1 − x)

(1 − x)n+1

∣∣∣∣.

As ε → 0, the second term vanishes because of the assumption thatlimx→0 x g(1 − x) = 0. Furthermore, from
(C.1), the first term on the RHS of (C.2) tends, in the limit where φ → 0, to the Fourier transform ofh. Therefore,
it follows from (C.1) and Theorem C.2 thatgn ≥ 0 for any integern ≥ 0.

C. Applications: Non-Negativity Proofs for the Degree Distributions of Some Capacity-Achieving Ensembles

In our study of codes on graphs, the validity of the ensemblesconstructed requires the verification that the degree
distributions have non-negative positive power series expansions aboutx = 0.

1) Non-Negativity Proof for the Check-Regular NSIRA Ensemble:In [10, Theorem 2], a capacity-achieving
ensemble of non-systematic irregular repeat-accumulate (NSIRA) codes was introduced, achieving the capacity of
a BEC under iterative message-passing decoding with boundedcomplexity per information bit. The d.d. of interest
is given by Eq. (38), and the construction is only valid for a particular erasure rate,p, if g(x) , λ(x) has a
non-negative power series expansion for thatp. Using Corollary C.1, we can defineh(x) = Re

{
g

(
eix

)}
and verify

numerically, for anyp, that h′′(x) ≥ 0 for x ∈ [0, π], and alsog(0) ≥ 0. This approach appears to work for all
p ∈ [0, 1), hence it verifies the non-negativity of the power series expansion of the left d.d.λ. In [10, Appendix C],
the non-negativity of the power series expansion ofλ was proved forp ∈ [0, 0.95] where the proof there was quite
involved. This approach extends the verification of the non-negativity of the power series expansion ofλ for all
0 ≤ p < 1, thus proving Conjecture 2 in [10, Section 3].

2) Non-Negativity Proof for the Bit-Regular ARA Ensemble:Starting from (36), let

g(x) ,
R′(x)

x
.

Since from (33),̃ρ−1(0) = 0, then ρ̃(0) = 0, so the first non-negative coefficient of the power series expansion of
ρ̃(x) aboutx = 0 is the one ofx. SinceQ(x) in (35) is calculated by an appropriate scaling of the integral of
ρ̃ over the interval[0, x] so thatQ(1) = 1, then the first non-negative coefficient of the power series expansion
of Q(x) is the one ofx2. Finally, from (31), it follows that also the first non-negative coefficient of the power
series expansion ofR(x) aboutx = 0 is the one ofx2. Hence, sinceR(0) = R′(0) = 0, thenR(x) has a power
series expansion aboutx = 0 whose all coefficients are non-negative if and only if the function g(x) possesses this
property.

Using Corollary C.1, let us defineh(x) , Re
{
g(eix)

}
. It was verified numerically that ifp ≤ 0.26, then

h′′(x) ≥ 0 for x ∈ [0, π], and alsog(0) ≥ 0. This therefore proves that ifp ≤ 0.26, then the functiong(x) (and
hence, also the d.d.R(x)) has a power series expansion aboutx = 0 whose coefficients are non-negative.

3) Non-Negativity Proof for the Self-Matched ARA Ensemble:In Section VI-A, we construct capacity-achieving
ARA ensembles from self-matched LDPC codes. From (45) and (46),the left and right degree distributions can be
rewritten in the form

L(x) =
K1

(
−bx − ln(1 − bx)

)

1 + c1

(
−bx − ln(1 − bx)

) ,

R(x) =
K2

(
−bx − ln(1 − bx)

)

1 + c2

(
−bx − ln(1 − bx)

) (C.3)
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where

K1 = − 1

p[b + ln(1 − b)]
, K2 = − 1

(1 − p)[b + ln(1 − b)]
,

c1 = − 1 − p

p[b + ln(1 − b)]
, c2 = − p

(1 − p)[b + ln(1 − b)]
. (C.4)

Note thatK1,2 and c1,2 are positive for values ofp and b in the range0 < p < 1 and0 < b < 1. Hence, in order
to find the region ofp andb where both degree distributions (i.e.,L(x) andR(x)) have non-negative power series
expansions aboutx = 0, let us find conditions on the parameterc which ensure that

g(x) =
−x − ln(1 − x)

1 + c
(
−x − ln(1 − x)

) (C.5)

has a non-negative power series expansion aboutx = 0. The first few terms of the expansion are

g(x) =
7∑

n=2

gn(c)xn

=
3x2 + 2x3

6
+

(1 − c)x4

4
+

(3 − 5c)x5

15
+

(12 − 26c + 9c2)x6

70
+

(120 − 308c + 210)x7

840
+ O

(
x8

)
.

Applying Corollary C.1 directly to this function does not work because the function is neither non-increasing nor
convex. Instead, we remove the first few terms of the power series and apply Corollary C.1 to

g̃(x) =
1

x8

(
−x − log(1 − x)

1 + c [−x − log(1 − x)]
−

7∑

n=2

gn(c)xn

)
.

Following the notation in Corollary C.1, let the functionh be

h(x) , Re
{
g̃(eix)

}

=
1

2

[
g̃(eix) + g̃(e−ix)

]
.

Numerically, we find that ifc ∈ [0, 0.6], thenh′′(x) ≥ 0 for x ∈ [0, π]. Checking the first few terms by hand shows
that g6(c) becomes negative first forc > c∗ , 13−

√
61

9 ≈ 0.5766. Therefore, we find that the original power series
expansion of the functiong in (C.5) is non-negative if and only ifc ∈ [0, c∗]. From (C.3), it follows that the left
and right d.d. (L(x) andR(x), respectively) have non-negative power series expansion about x = 0 if and only if

c1 ≤ 13 −
√

61

9
, c2 ≤ 13 −

√
61

9

which based on (C.4), is translated to the condition in (47).
Finally, we consider the question of whether the numerical verification of convexity on[0, π] is reasonable. While

one could also compute any finite number of terms in the power series expansion and verify their non-negativity,
we note that the next term could always be negative. This new approach is different because, in many cases,
the convexity can be verified numerically in finite time using complex interval arithmetic. The basic approach is
by subdividing the interval[0, π] into a large number of small overlapping intervals. For eachsmall interval, the
function h′′ is evaluated using interval arithmetic. If all the values (i.e., the resulting intervals) are non-negative,
then this proves thath is convex on[0, π]. If h also depends on some parameter, then the parameter intervalcan
also be subdivided into small overlapping subintervals. Ifthe first test succeeds for each parameter subinterval, then
we have shown thath is convex on[0, π] for all parameter values as well.
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Fig. 8. Simulations for the ensembles of ARA and NSIRA codes constructed from LDPC codes with self-matched degree distributions
(see Sections VI-A and VI-B), and the ensemble of right-regular LDPCcodes in [3]. The plots refer to block lengths of 8192 and 65536
bits (see upper and lower plots, respectively) and a design rate of 0.5 bits per channel use. No high-rate outer code is assumed.
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Fig. 9. Simulations for the ensembles of ARA and NSIRA codes constructed from LDPC codes (see Sections VI-A and VI-B), and right-
regular LDPC codes [3]. The plots refer to block lengths of 8192 and 65536 bits (see upper and lower plots, respectively) and a design rate
of 0.5 bits per channel use. Since the ensemble averaged performance is simulated, high-rate outer codes (rates8179

8192
and 65520

65536
, respectively)

are used to lower the error floor due to small stopping sets. These outer codes are chosen uniformly at random from the ensemble of the
binary linear block codes and their rate loss is neglected.
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Fig. 10. Simulations for the ensemble of ARA codes in Section VI-A, constructed from the ensemble of LDPC codes whose degree
distributions are matched to themselves. The design rate of the ensemble is 0.5 bits per channel use. The upper plot refers to the case where
there is no outer high-rate code, and the lower plot refers to the case where there is such a code.
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Fig. 11. Simulations for the ensemble of self-matched ARA codes whose rate is 0.7 bits per channel use, having high-rate outer codes (the
rate of the outer code is1014

1024
, 8179

8192
and 65520

65536
, for a block length of 1024, 8192 and 65536 bits, respectively.) The upper plot refers to the

case where the ensemble of self-matched ARA codes is directly designedfor a rate of 0.7 (without puncturing), and the lower plot refers to
the design of the self-matched ARA ensemble for a rate of 0.5, and then increasing the rate to 0.6 by random puncturing of the code bits.
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Fig. 12. Simulations for the ensemble of punctured ARA codes in Section VI-A where we compare the case where the self-matched
ensemble is designed directly to a rate of 0.7 bits per channel use, versus the case of designing the ensemble for a rate of 0.5 and increasing
the rate by puncturing. The upper and lower plots refer to block lengths of8192 and 65536 bits, respectively. P and NP stand for ’punctured’
and ’non-punctured’.
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Fig. 13. Simulations for the ALDPC-BR3 ensemble (i.e., bit-regular accumulate-LDPC ensemble whose bit nodes have degree-3); the
design rate of this ensemble is set to1

4
bits per channel use. The upper plot refers to the case where there is no high-rate outer code, and

the lower plot refers to the case where there is such an outer code. The plots refer to block lengths of 1024, 8192 and 65536 bits; for the
lower plot and these block lengths, the rate of the outer random code is equal to 1014

1024
, 8179

8192
and 65520

65536
, respectively.


