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Introduction

Combinatorial Aspects of the Shannon Theory

Combinatorial tools play a key role in information theory.

IT inspires work in combinatorics and graph theory.

Entropy-based proofs in extremal combinatorics (focus of this talk).

This interplay between IT ↔ Discrete Math has been proved fruitful.

Results of mutual interest to IT & CS researchers.
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Shearer’s Lemma

Proposition (Shearer’s Lemma)

Let

X1, . . . , Xn be discrete random variables,

S1, . . . ,Sm ⊆ [1 : n] include every element i ∈ [1 : n] in at least k ≥ 1
of these subsets.

Then,

kH(Xn) ≤
m∑
j=1

H(XSj ),

with Xn ≜ (X1, . . . , Xn).
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Shearer’s Lemma

A Nice Geometric Application of Shearer’s Lemma

Problem

Let P ⊆ R3 be a set of points that has at most r projections on each of
the XY , XZ and Y Z planes. How large can this set be ?
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Shearer’s Lemma

A Nice Geometric Application of Shearer’s Lemma

Problem

Let P ⊆ R3 be a set of points that has at most r projections on each of
the XY , XZ and Y Z planes. How large can this set be ?

Solution

|P| ≤ r
3
2 .

The bound on the cardinality of P is achieved by a grid of
√
r ×

√
r ×

√
r

points, provided that r is a square of an integer.
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Shearer’s Lemma

A Nice Geometric Application of Shearer’s Lemma

Proof

Pick uniformly at random a point (X,Y, Z) ∈ P.

⇒ H(X,Y, Z) = log |P|.

I. Sason Oberwolfach, Germany March 13 - 19, 2022 5 / 36



Shearer’s Lemma

A Nice Geometric Application of Shearer’s Lemma

Proof

Pick uniformly at random a point (X,Y, Z) ∈ P.

⇒ H(X,Y, Z) = log |P|.
By Shearer’s lemma,

2H(X,Y, Z) ≤ H(X,Y ) + H(X,Z) + H(Y, Z).

I. Sason Oberwolfach, Germany March 13 - 19, 2022 5 / 36



Shearer’s Lemma

A Nice Geometric Application of Shearer’s Lemma

Proof

Pick uniformly at random a point (X,Y, Z) ∈ P.

⇒ H(X,Y, Z) = log |P|.
By Shearer’s lemma,

2H(X,Y, Z) ≤ H(X,Y ) + H(X,Z) + H(Y, Z).

At most r projections of P on each of the XY,XZ and Y Z planes
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Shearer’s Lemma

A Nice Geometric Application of Shearer’s Lemma

Proof

Pick uniformly at random a point (X,Y, Z) ∈ P.

⇒ H(X,Y, Z) = log |P|.
By Shearer’s lemma,

2H(X,Y, Z) ≤ H(X,Y ) + H(X,Z) + H(Y, Z).

At most r projections of P on each of the XY,XZ and Y Z planes

⇒ H(X,Y ) ≤ log r, H(X,Z) ≤ log r, H(Y,Z) ≤ log r.

This gives

2 log |P| ≤ 3 log r ⇒ |P| ≤ r
3
2 .
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Bipartite Graphs

Bipartite Graphs

A graph G is called bipartite if it has two types of vertices, and an
edge e ∈ E(G) cannot connect two vertices of the same type.

The two types of vertices are referred to as left and right vertices.
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Bipartite Graphs

Applications of Bipartite Graphs

Properties of bipartite graphs are of great interest in, e.g., modern coding
theory, and communication networks:

Tanner graphs.

LDPC codes.

Message-passing decoding algorithms operating on bipartite graphs.

Modelling complex networks by bipartite graphs.
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Independent Sets

Independent Sets

An independent set of an undirected graph G is a subset of its vertices
such that no pair of these vertices are adjacent (i.e., joined by an edge).
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Independent Sets

Independent Sets

An independent set of an undirected graph G is a subset of its vertices
such that no pair of these vertices are adjacent (i.e., joined by an edge).

Why independent sets of a graph are important ?

If a graph models some kind of incompatibility,
→ an independent set represents a mutually compatible collection.

Error-free communication (determined by independent sets in the
“confusion graph”)
→ Shannon capacity of a graph (1956).

Independent sets in a graph G are cliques in its complement G.
⇒ The maximal size of an independent set of G is upper bounded by
the chromatic number of G.

Notation:

I(G) denotes the set of all the independent sets in G.
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Number of Independent Sets

Theorem (Jeff Kahn, 2001)

If G is a bipartite d-regular graph with n vertices, then∣∣I(G)
∣∣ ≤ (

2d+1 − 1
) n

2d .

If (2d)|n, then the bound is achieved by a disjoint union of n
2d complete

d-regular bipartite graphs (Kd,d).

He also conjectured the tight bound for general (irregular) bipartite graphs.

J. Kahn, “An entropy approach to the hard-core model on bipartite
graphs,” Combinatorics, Probability and Computing, vol. 10, no. 3,
pp. 219–237, May 2001.

J. Kahn, “Entropy, independent sets and antichains: a new approach to
Dedekind’s problem,” Proceedings of the American Mathematical Society,
vol. 130, no. 2, pp. 371–378, June 2001.
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Number of Independent Sets

Some History of the Problem

Prof. Jeff Kahn (2001) solved the problem for regular bipartite
graphs, and conjectured correctly the bound for the general case.
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Number of Independent Sets

Some History of the Problem

Prof. Jeff Kahn (2001) solved the problem for regular bipartite
graphs, and conjectured correctly the bound for the general case.

Attempts to solve it came short & close:
▶ Y. Zhao, “The number of independent sets in a regular graph,”

Combinatorics, Probability and Computing, March 2010.
▶ D. Galvin and Y. Zhao, “The number of independent sets in a graph

with small maximum degree”, March 2011.
▶ M. Madiman and P. Tetali, “Information inequalities for joint

distributions with interpretations & applications,” IEEE T-IT, 2010.
▶ W. Samotij, “Counting independent sets in graphs,” European Journal

of Combinatorics, Aug. 2015.
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Number of Independent Sets

Some History of the Problem

Prof. Jeff Kahn (2001) solved the problem for regular bipartite
graphs, and conjectured correctly the bound for the general case.

Attempts to solve it came short & close:
▶ Y. Zhao, “The number of independent sets in a regular graph,”

Combinatorics, Probability and Computing, March 2010.
▶ D. Galvin and Y. Zhao, “The number of independent sets in a graph

with small maximum degree”, March 2011.
▶ M. Madiman and P. Tetali, “Information inequalities for joint

distributions with interpretations & applications,” IEEE T-IT, 2010.
▶ W. Samotij, “Counting independent sets in graphs,” European Journal

of Combinatorics, Aug. 2015.

In 2019, Y. Zhao passed on the challenge to his fearless students at
MIT, sophomore Ashwin Sah & junior Mehtaab Sawhney.

Together with their friend, David Stoner (an undergraduate student
from Harvard), they solved this problem in a month !
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Number of Independent Sets

Their approach, not relying on IT, led to the generalized result:

Theorem (A. Sah, M. Sawhney, D. Stoner and Y. Zhao, 2019)

Let G be an undirected graph without isolated vertices or multiple edges
connecting any pair of vertices. Let dr be the degree of r ∈ V(G). Then,∣∣I(G)

∣∣ ≤ ∏
(u,v)∈E(G)

(2du + 2dv − 1)
1

du dv ,

with equality if G is a disjoint union of complete bipartite graphs.
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Number of Independent Sets

Their approach, not relying on IT, led to the generalized result:

Theorem (A. Sah, M. Sawhney, D. Stoner and Y. Zhao, 2019)

Let G be an undirected graph without isolated vertices or multiple edges
connecting any pair of vertices. Let dr be the degree of r ∈ V(G). Then,∣∣I(G)

∣∣ ≤ ∏
(u,v)∈E(G)

(2du + 2dv − 1)
1

du dv ,

with equality if G is a disjoint union of complete bipartite graphs.

Publication

https://news.mit.edu/2019/mit-undergraduates-solve-combinatorics-problem-

0225

Ashwin Sah, Mehtaab Sawhney, David Stoner and Yufei Zhao, “The
number of independent sets in an irregular graph,” Journal of
Combinatorial Theory, Series B, Volume 138, Sept. 2019, pp. 172-195.
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Number of Independent Sets

Follow-Up Work

The techniques that they found to solve that conjecture quickly led to
solve several other related open problems, including “A Reverse Sidorenko
Inequality,” related to graph colorings and graph homomorphisms.
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Number of Independent Sets

Kahn’s IT Proof (2001) and Left Challenge

Kahn’s proof for regular bipartite graphs made a clever use of
Shearer’s entropy inequality.

It remained unclear how to apply Shearer’s inequality in a lossless way
in the irregular case, despite previous attempts during the last decade
(including Sah et al., who proved it in a clever non-IT approach).
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Number of Independent Sets

Kahn’s IT Proof for Regular Bipartite Graphs (2001)

Let G be an undirected d-regular bipartite graph with
∣∣V(G)

∣∣ = n.
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2 .

Let S ⊆ [1 : n] be an independent set of G, selected uniformly at
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Number of Independent Sets

Kahn’s IT Proof for Regular Bipartite Graphs (2001)

Let G be an undirected d-regular bipartite graph with
∣∣V(G)

∣∣ = n.

Let A and B be the sets of vertices on the two sides of G.

Regularity of G ⇒ |A| = |B| = n
2 .

Let S ⊆ [1 : n] be an independent set of G, selected uniformly at
random from I(G).

Let Xi = 1{i ∈ S} ∈ {0, 1}, for i ∈ [1 : n], indicating which vertices
in G belong to the independent set S.
Uniform selection of S ∈ I(G) ⇒ H(X1, . . . , Xn) = log

∣∣I(G)
∣∣.

Denote XA = (Xi)i∈A, XB = (Xi)i∈B.

H(X1, . . . , Xn) = H(XA, XB) = H(XA) + H(XB|XA).
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Number of Independent Sets

Kahn’s IT Proof (Cont.)

We next upper bound H(XB|XA).
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Kahn’s IT Proof (Cont.)

We next upper bound H(XB|XA).

For b ∈ B, let N (b) be the set of vertices adjacent to vertex b.

G is bipartite ⇒ N (b) ⊆ A for all b ∈ B.

H(XB|XA) ≤
∑
b∈B

H(Xb|XA) ≤
∑
b∈B

H(Xb|XN (b)).

For b ∈ B, let
Qb ≜ 1{S ∩ N (b) = ∅}

be the indicator function of the event that non of the neighbors of b
is included in the independent set S.
Qb = 0 ⇒ b /∈ S (∃ neighbor of b in S) ⇒ H(Xb|Qb = 0) = 0.
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Number of Independent Sets

Kahn’s IT Proof (Cont.)

We next upper bound H(XB|XA).

For b ∈ B, let N (b) be the set of vertices adjacent to vertex b.

G is bipartite ⇒ N (b) ⊆ A for all b ∈ B.

H(XB|XA) ≤
∑
b∈B

H(Xb|XA) ≤
∑
b∈B

H(Xb|XN (b)).

For b ∈ B, let
Qb ≜ 1{S ∩ N (b) = ∅}

be the indicator function of the event that non of the neighbors of b
is included in the independent set S.
Qb = 0 ⇒ b /∈ S (∃ neighbor of b in S) ⇒ H(Xb|Qb = 0) = 0.

Qb = 1 ⇒ Xb ∈ {0, 1} and equiprobable ⇒ H(Xb|Qb = 1) = 1 [bits].
(it is equiprobable since S ∈ I(G) is random with equiprobable dist.).
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Number of Independent Sets

Kahn’s IT Proof (Cont.)

By DPI,
H(Xb|XN (b)) ≤ H(Xb|Qb), b ∈ B.
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Number of Independent Sets

Kahn’s IT Proof (Cont.)

By DPI,
H(Xb|XN (b)) ≤ H(Xb|Qb), b ∈ B.

Let
ωb ≜ Pr[Qb = 1], b ∈ B,

then
H(Xb|Qb) = ωb.
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Number of Independent Sets

Kahn’s IT Proof (Cont.)

By DPI,
H(Xb|XN (b)) ≤ H(Xb|Qb), b ∈ B.

Let
ωb ≜ Pr[Qb = 1], b ∈ B,

then
H(Xb|Qb) = ωb.

Combining all this gives

H(XB|XA) ≤
∑
b∈B

ωb.
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Number of Independent Sets
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Each element in A is covered exactly d times by the sets {N (b)}b∈B.
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Kahn’s IT Proof (Cont.)

We next bound H(XA), where Shearer’s lemma comes into the picture.

Each element in A is covered exactly d times by the sets {N (b)}b∈B.
By Shearer’s lemma,

H(XA) ≤
1

d

∑
b∈B

H
(
XN (b)

)
.
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Number of Independent Sets

Kahn’s IT Proof (Cont.)

We next bound H(XA), where Shearer’s lemma comes into the picture.

Each element in A is covered exactly d times by the sets {N (b)}b∈B.
By Shearer’s lemma,

H(XA) ≤
1

d

∑
b∈B

H
(
XN (b)

)
.

Since the binary RV Qb is uniquely determined by the vector
XN (b) ∈ {0, 1}d, for all b ∈ B,

H
(
XN (b)

)
= H

(
XN (b), Qb

)
= H(Qb) + H

(
XN (b)|Qb

)
= Hb(ωb) + H

(
XN (b)|Qb

)
.

I. Sason Oberwolfach, Germany March 13 - 19, 2022 16 / 36



Number of Independent Sets

Kahn’s IT Proof (Cont.)

Recall that ωb ≜ Pr[Qb = 1], so

H
(
XN (b)|Qb

)
= ωb H

(
XN (b)|Qb = 1

)
+ (1− ωb) H

(
XN (b)|Qb = 0

)
.
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Number of Independent Sets

Kahn’s IT Proof (Cont.)

Recall that ωb ≜ Pr[Qb = 1], so

H
(
XN (b)|Qb

)
= ωb H

(
XN (b)|Qb = 1

)
+ (1− ωb) H

(
XN (b)|Qb = 0

)
.

If Qb = 1, then i /∈ S for all i ∈ N (b), so XN (b) is a zero vector.

⇒ H
(
XN (b)|Qb = 1

)
= 0, b ∈ B.
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Number of Independent Sets

Kahn’s IT Proof (Cont.)

Recall that ωb ≜ Pr[Qb = 1], so

H
(
XN (b)|Qb

)
= ωb H

(
XN (b)|Qb = 1

)
+ (1− ωb) H

(
XN (b)|Qb = 0

)
.

If Qb = 1, then i /∈ S for all i ∈ N (b), so XN (b) is a zero vector.

⇒ H
(
XN (b)|Qb = 1

)
= 0, b ∈ B.

If Qb = 0, then XN (b) ∈ {0, 1}d cannot be a zero vector (there exists
at least one element i ∈ N (b) in S).

⇒ H
(
XN (b)|Qb = 0

)
≤ log(2d − 1), b ∈ B.
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Number of Independent Sets

Kahn’s IT Proof (Cont.)

Recall that ωb ≜ Pr[Qb = 1], so

H
(
XN (b)|Qb

)
= ωb H

(
XN (b)|Qb = 1

)
+ (1− ωb) H

(
XN (b)|Qb = 0

)
.

If Qb = 1, then i /∈ S for all i ∈ N (b), so XN (b) is a zero vector.

⇒ H
(
XN (b)|Qb = 1

)
= 0, b ∈ B.

If Qb = 0, then XN (b) ∈ {0, 1}d cannot be a zero vector (there exists
at least one element i ∈ N (b) in S).

⇒ H
(
XN (b)|Qb = 0

)
≤ log(2d − 1), b ∈ B.

Combining all this, gives

H(XA) ≤
1

d

∑
b∈B

{
Hb(ωb) + (1− ωb) log(2

d − 1)
}
.
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Number of Independent Sets

Kahn’s IT Proof (Cont.)

Overall (with log on base 2),

log
∣∣I(G)

∣∣ = H(X1, . . . , Xn)

= H(XB|XA) + H(XA)

≤
∑
b∈B

ωb +
1

d

∑
b∈B

{
Hb(ωb) + (1− ωb) log(2

d − 1)
}

=
1

d

∑
b∈B

{
Hb(ωb) + ωb log

(
2d

2d − 1

)}
+

n

2d
log(2d − 1).
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Kahn’s IT Proof (Cont.)

Overall (with log on base 2),

log
∣∣I(G)

∣∣ = H(X1, . . . , Xn)

= H(XB|XA) + H(XA)

≤
∑
b∈B

ωb +
1

d

∑
b∈B

{
Hb(ωb) + (1− ωb) log(2

d − 1)
}

=
1

d

∑
b∈B

{
Hb(ωb) + ωb log

(
2d

2d − 1

)}
+

n

2d
log(2d − 1).

Let f : [0, 1] → R be given by

f(x) ≜ Hb(x) + x log

(
2d

2d − 1

)
, x ∈ [0, 1].

⇒ max
x∈[0,1]

f(x) = f

(
2d

2d+1 − 1

)
.
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Number of Independent Sets

Kahn’s IT Proof (Cont.)

log
∣∣I(G)

∣∣ ≤ 1

d

∑
b∈B

{
Hb(ωb) + ωb log

(
2d

2d − 1

)}
+

n

2d
log(2d − 1)

≤ |B|
d

f

(
2d

2d+1 − 1

)
+

n

2d
log(2d − 1)

=
n

2d

[
f

(
2d

2d+1 − 1

)
+ log(2d − 1)

]
=

n

2d
log(2d+1 − 1),

which gives, after exponentiation of both sides,∣∣I(G)
∣∣ ≤ (

2d+1 − 1
) n

2d .
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Number of Independent Sets

Achievability of the Bound for Regular Bipartite Graphs

The independent sets of Kd,d are all subsets of d vertices in each side
of the graph (including the empty set).
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of the graph (including the empty set).

⇒
∣∣I(Kd,d)

∣∣ = 2

d∑
i=0

(
d

i

)
− 1 = 2d+1 − 1.

(substraction by 1 is to avoid the double counting of the empty set).
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of the graph (including the empty set).

⇒
∣∣I(Kd,d)

∣∣ = 2

d∑
i=0

(
d

i

)
− 1 = 2d+1 − 1.

(substraction by 1 is to avoid the double counting of the empty set).

|V(Kd,d)| = 2d.
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Achievability of the Bound for Regular Bipartite Graphs

The independent sets of Kd,d are all subsets of d vertices in each side
of the graph (including the empty set).

⇒
∣∣I(Kd,d)

∣∣ = 2

d∑
i=0

(
d

i

)
− 1 = 2d+1 − 1.

(substraction by 1 is to avoid the double counting of the empty set).

|V(Kd,d)| = 2d.

If (2d)|n, and G is a bipartite graph of n
2d separate Kd,d subgraphs,

then ∣∣I(G)
∣∣ = (2d+1 − 1)

n
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Achievability of the Bound for Regular Bipartite Graphs

The independent sets of Kd,d are all subsets of d vertices in each side
of the graph (including the empty set).

⇒
∣∣I(Kd,d)

∣∣ = 2

d∑
i=0

(
d

i

)
− 1 = 2d+1 − 1.

(substraction by 1 is to avoid the double counting of the empty set).

|V(Kd,d)| = 2d.

If (2d)|n, and G is a bipartite graph of n
2d separate Kd,d subgraphs,

then ∣∣I(G)
∣∣ = (2d+1 − 1)

n
2d .

The entropy-based upper bound is tight for regular bipartite graphs.
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Number of Independent Sets

Tensor Product

The tensor product G×H of two graphs G and H is a graph such that

The vertex set of G×H is the Cartesian product V(G)× V(H),

Two vertices (g, h), (g′, h′) ∈ V(G×H) are adjacent

⇕

g is adjacent to g′, and h is adjacent to h′

(i.e., (g, g′) ∈ E(G) and (h, h′) ∈ E(H)).
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Tensor Product

The tensor product G×H of two graphs G and H is a graph such that

The vertex set of G×H is the Cartesian product V(G)× V(H),

Two vertices (g, h), (g′, h′) ∈ V(G×H) are adjacent

⇕

g is adjacent to g′, and h is adjacent to h′

(i.e., (g, g′) ∈ E(G) and (h, h′) ∈ E(H)).

Graph K2

The graph K2 ≜ K1,1 is specialized to two vertices that are connected by
an edge. We label the two vertices in K2 by 0 and 1.
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Bipartite Double Cover

For a graph G, the tensor product G×K2 is a bipartite graph, called the
bipartite double cover of G.
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Number of Independent Sets

Bipartite Double Cover

For a graph G, the tensor product G×K2 is a bipartite graph, called the
bipartite double cover of G.

The set of vertices in G×K2 is given by

V(G×K2) =
{
(v, i) : v ∈ V(G), i ∈ {0, 1}

}
,

and set of edges in G×K2 is given by

E(G×K2) =
{(

(u, 0), (v, 1)
)
: (u, v) ∈ E(G)

}
.
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Bipartite Double Cover

For a graph G, the tensor product G×K2 is a bipartite graph, called the
bipartite double cover of G.

The set of vertices in G×K2 is given by

V(G×K2) =
{
(v, i) : v ∈ V(G), i ∈ {0, 1}

}
,

and set of edges in G×K2 is given by

E(G×K2) =
{(

(u, 0), (v, 1)
)
: (u, v) ∈ E(G)

}
.

An edge (u, v) ∈ E(G) is mapped into edges(
(u, 0), (v, 1)

)
∈ E(G×K2)(

(v, 0), (u, 1)
)
∈ E(G×K2)

(G is undirected).

I. Sason Oberwolfach, Germany March 13 - 19, 2022 22 / 36



Number of Independent Sets

Figure: A graph G (left) and the bipartite double cover G×K2 (right).
(The figure is reproduced from wikipedia.)
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Number of Independent Sets

Zhao’s Inequality

Theorem (Zhao 2010)

For every finite graph G:
∣∣I(G)

∣∣2 ≤ ∣∣I(G×K2)
∣∣.
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Number of Independent Sets

Zhao’s Inequality

Theorem (Zhao 2010)

For every finite graph G:
∣∣I(G)

∣∣2 ≤ ∣∣I(G×K2)
∣∣.

Utility

Extending Khan’s bound for d-regular bipartite graphs to d-regular graphs.
Let G be a d-regular graph with n vertices.

⇒ G×K2 is a d-regular bipartite graph with 2n vertices.

⇒
∣∣I(G)

∣∣2 ≤ ∣∣I(G×K2)
∣∣ ≤ (2d+1 − 1)

2n
2d ,

and taking square roots implies that Khan’s inequality continues to
hold even when the regular graph G is not necessarily bipartite.
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Number of Independent Sets

Zhao’s Inequality

Theorem (Zhao 2010)

For every finite graph G:
∣∣I(G)

∣∣2 ≤ ∣∣I(G×K2)
∣∣.

Utility

Extending Khan’s bound for d-regular bipartite graphs to d-regular graphs.
Let G be a d-regular graph with n vertices.

⇒ G×K2 is a d-regular bipartite graph with 2n vertices.

⇒
∣∣I(G)

∣∣2 ≤ ∣∣I(G×K2)
∣∣ ≤ (2d+1 − 1)

2n
2d ,

and taking square roots implies that Khan’s inequality continues to
hold even when the regular graph G is not necessarily bipartite.

The same kind of a simple extension can be done from bipartite
(irregular) graphs to general graphs (Galvin & Zhao, 2011).
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Our Contribution

1 An extension of Kahn’s IT proof technique to handle irregular
bipartite graphs.
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2 When the bipartite graph is regular on one side, but it may be
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Number of Independent Sets

Our Contribution

1 An extension of Kahn’s IT proof technique to handle irregular
bipartite graphs.

2 When the bipartite graph is regular on one side, but it may be
irregular in the other, the extended entropy-based proof technique
yields the tight bound by Sah et al. (2019).

3 Providing a variant of the proof of Zhao’s inequality (this variant also
involves entropy).

A Recent Publication

I. Sason, “A generalized information-theoretic approach for bounding the
number of independent sets in bipartite graphs,” Entropy, vol. 23, no. 3,
paper 270, pp. 1–14, March 2021.

I. Sason Oberwolfach, Germany March 13 - 19, 2022 25 / 36



Number of Independent Sets

Outline of our Analysis

Our IT proof follows the same recipe of Kahn’s proof, with

some complications that arise from the non-regularity of the bipartite
graphs,

a slightly more complicated variant of Shearer’s lemma.
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Outline of our Analysis

Our IT proof follows the same recipe of Kahn’s proof, with

some complications that arise from the non-regularity of the bipartite
graphs,

a slightly more complicated variant of Shearer’s lemma.

It deviates from Khan’s proof already at its starting point, by a proper
adaptation to the general setting of irregular bipartite graphs.
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Number of Independent Sets

Outline of our Analysis

Consider a general bipartite graph G with a number of vertices
|V(G)| = n, and where none of its vertices is isolated.

Label the vertices by the elements of [1 : n].

Let L and R be the vertices of the two types in V(G) (called,
respectively, the left and right vertices in G).

V(G) = L ∪R is a disjoint union.

Let DL and DR be, respectively, the sets of all possible degrees of
vertices in L and R.

Let XL = (Xi)i∈L and XR = (Xi)i∈R.

For all d ∈ DL, let
▶ Ld be the set of vertices in L with degree d,
▶ Rd be the set of vertices in R that are adjacent to vertices in Ld.
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Outline of our Analysis (Cont.)

H(Xn) = H(XL, XR)

= H(XL) + H(XR|XL)

≤
∑
d∈DL

H(XLd
) + H(XR|XL)

≤
∑
d∈DL

H(XLd
) +

∑
d∈DL

H(XRd
|XL)

=
∑
d∈DL

{
H(XLd

) + H(XRd
|XL)

}
,
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Outline of our Analysis (Cont.)

H(Xn) = H(XL, XR)

= H(XL) + H(XR|XL)

≤
∑
d∈DL

H(XLd
) + H(XR|XL)

≤
∑
d∈DL

H(XLd
) +

∑
d∈DL

H(XRd
|XL)

=
∑
d∈DL

{
H(XLd

) + H(XRd
|XL)

}
,

Although the first summand on the RHS of last equality is an entropy of
XLd

, the conditioning on XL (rather than just on XLd
) in the second

term is essential for the analysis, while it also leads to a stronger upper
bound on H(Xn) (since Ld ⊆ L).
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Outline of our Analysis (Cont.)

Due to the irregularity of the bipartite graph, for r ∈ Rd, the set N (r) is
not necessarily a subset of Ld. The following variant of Shearer’s lemma is
therefore crucial in our analysis.
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Outline of our Analysis (Cont.)

Due to the irregularity of the bipartite graph, for r ∈ Rd, the set N (r) is
not necessarily a subset of Ld. The following variant of Shearer’s lemma is
therefore crucial in our analysis.

A Variant of Shearer’s Lemma

The inequality in Shearer’s lemma holds even if the sets S1, . . . ,Sm are
not necessarily included in [1 : n].

Proof

Define the subsets S ′
j ≜ Sj ∩ [1 : n] for all j ∈ [1 : m].

The subsets S ′
1, . . . ,S ′

m are all included in [1 : n], and every element
i ∈ [1 : n] continues to be included in at least k ≥ 1 of these subsets.

⇒ Shearer’s Lemma can be applied to the subsets S ′
1, . . . ,S ′

m.

S ′
j ⊆ Sj ⇒ H(XS′

j
) ≤ H(XSj ) for j ∈ [1 : m], proving our claim.
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Outline of our Analysis (Cont.)

This gives, after some analysis (following the recipe of Kahn’s proof),

log
∣∣I(G)

∣∣ = H(Xn)

≤
∑
d∈DL

{
1

d

∑
r∈Rd

{
Hb(ωr) + ωr log

(
2d

2dr − 1

)
+ log(2dr − 1)

}}

with

Qr ≜ 1{S ∩ N (r) = ∅},
ωr ≜ Pr[Qr = 1].
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Outline of our Analysis (Cont.)

This gives, after some analysis (following the recipe of Kahn’s proof),

log
∣∣I(G)

∣∣ = H(Xn)

≤
∑
d∈DL

{
1

d

∑
r∈Rd

{
Hb(ωr) + ωr log

(
2d

2dr − 1

)
+ log(2dr − 1)

}}

with

Qr ≜ 1{S ∩ N (r) = ∅},
ωr ≜ Pr[Qr = 1].

Maximization over ωr ∈ [0, 1] term-by-term (for each d ∈ DL) gives∣∣I(G)
∣∣ ≤ ∏

d∈DL

∏
r∈Rd

(
2d + 2dr − 1

) 1
d .
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Outline of our Analysis (Cont.)

The bound is tight if G is a bipartite graph that is d-regular on one side
(w.o.l.o.g., it can be assumed to be regular on the left side), and it may be
irregular on the other side:∏

r∈R

(
2d + 2dr − 1

) 1
d =

∏
r∈R

((
2d + 2dr − 1

) 1
d dr

)dr

=
∏

(u,v)∈E(G)

(
2du + 2dv − 1

) 1
du dv .
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Outline of our Analysis (Cont.)

The bound is tight if G is a bipartite graph that is d-regular on one side
(w.o.l.o.g., it can be assumed to be regular on the left side), and it may be
irregular on the other side:∏

r∈R

(
2d + 2dr − 1

) 1
d =

∏
r∈R

((
2d + 2dr − 1

) 1
d dr

)dr

=
∏

(u,v)∈E(G)

(
2du + 2dv − 1

) 1
du dv .

We prove, however, that this approach leads to a loose bound if the
bipartite graph is irregular on both sides of the graph

I. Sason Oberwolfach, Germany March 13 - 19, 2022 31 / 36



Number of Walks of a Given Length in Bipartite Graphs

Number of Walks of a Given Length in Bipartite Graphs

Lower bounds on the number of walks of a given length in bipartite
graphs rely on the work by Alon, Hoory and Linial on the Moore
bound and its extension (2002).

Its later IT formulation is due to Babu and Radhakrishnan (2014).
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Number of Walks of a Given Length in Bipartite Graphs

Lower bounds on the number of walks of a given length in bipartite
graphs rely on the work by Alon, Hoory and Linial on the Moore
bound and its extension (2002).

Its later IT formulation is due to Babu and Radhakrishnan (2014).

Contribution

New bounds, expressed in terms of entropies of probability mass functions
that are induced by the degree distributions of the bipartite graph.
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Lower Bounds on the Number of Walks of a Given Length

Proposition

Let

G be a bipartite graph,

U and V be the left and right vertices of G.

|U| = m and |V| = n.
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Number of Walks of a Given Length in Bipartite Graphs

Lower Bounds on the Number of Walks of a Given Length

Proposition

Let

G be a bipartite graph,

U and V be the left and right vertices of G.

|U| = m and |V| = n.

Pk be the set of walks of length k ∈ N in G (edges may be repeated).

dr denote the degree of a vertex r ∈ V(G).

P and Q be PMFs defined, respectively, on U and V as follows:

P(u) ≜
du

|E(G)|
, u ∈ U ,

Q(v) ≜
dv

|E(G)|
, v ∈ V.
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Number of Walks of a Given Length in Bipartite Graphs

Lower Bounds on the Number of Walks of a Given Length (cont.)

1) If k is odd, then∣∣Pk

∣∣ ≥ |E(G)|k exp
(
−1

2(k − 1)[H(P ) + H(Q)]
)

≥ |E(G)|k

(mn)
k−1
2

.
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Number of Walks of a Given Length in Bipartite Graphs

Lower Bounds on the Number of Walks of a Given Length (cont.)

1) If k is odd, then∣∣Pk

∣∣ ≥ |E(G)|k exp
(
−1

2(k − 1)[H(P ) + H(Q)]
)

≥ |E(G)|k

(mn)
k−1
2

.

2) If k is even, then∣∣Pk

∣∣ ≥ |E(G)|k exp
(
−(12k − 1)[H(P ) + H(Q)]

)
· exp(−min{H(P ),H(Q)}

)
≥ |E(G)|k

(mn)
k
2
−1 min{m,n}

.
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Number of Walks of a Given Length in Bipartite Graphs

Lower Bounds on the Number of Walks of a Given Length (cont.)

1) If k is odd, then∣∣Pk

∣∣ ≥ |E(G)|k exp
(
−1

2(k − 1)[H(P ) + H(Q)]
)

≥ |E(G)|k

(mn)
k−1
2

.

2) If k is even, then∣∣Pk

∣∣ ≥ |E(G)|k exp
(
−(12k − 1)[H(P ) + H(Q)]

)
· exp(−min{H(P ),H(Q)}

)
≥ |E(G)|k

(mn)
k
2
−1 min{m,n}

.

The last inequality on each of the two cases holds with equality if the
bipartite graph G is regular.
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Number of Walks of a Given Length in Bipartite Graphs

Lower Bounds on the Number of Walks of a Given Length (cont.)

Derivation of these lower bounds:

I. Sason, “Entropy-based proofs of combinatorial results on bipartite
graphs,” Proceedings of ISIT 2021, pp. 3225-3230, July 2021.
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Open Problems

Counting Independent Sets

It is left for future work to study if our analysis (I.S., Entropy, March ’21)

can be adapted to yield a tight bound on the number of independent
sets of a bipartite graph when both sides of the graph are irregular;

can be used to get bounds on the size of a random independent set.
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can be adapted to yield a tight bound on the number of independent
sets of a bipartite graph when both sides of the graph are irregular;

can be used to get bounds on the size of a random independent set.

Number of Trails and Paths of a Given Length (cont.)

In a paper by Alon, Hoory and Linial (2002), a certain non-returning
walk was considered for graphs of minimum degree at least 2.

It is left for a future study to examine an adaptation of our analysis to
yield similar bounds on the number of

▶ k-length trails (i.e., walks with no repeated edges);
▶ k-length paths (i.e., walks with no repeated edges & vertices).
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Open Problems

Counting Independent Sets

It is left for future work to study if our analysis (I.S., Entropy, March ’21)

can be adapted to yield a tight bound on the number of independent
sets of a bipartite graph when both sides of the graph are irregular;

can be used to get bounds on the size of a random independent set.

Number of Trails and Paths of a Given Length (cont.)

In a paper by Alon, Hoory and Linial (2002), a certain non-returning
walk was considered for graphs of minimum degree at least 2.

It is left for a future study to examine an adaptation of our analysis to
yield similar bounds on the number of

▶ k-length trails (i.e., walks with no repeated edges);
▶ k-length paths (i.e., walks with no repeated edges & vertices).

Thanks a lot, Amos and Prakash, for the organization & invitation !
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