Entropy and Guessing: Old and New Results

Igal Sason
(EE Department, Technion)

Workshop on Mathematical Data Science (MDS) 2019
Dürnstein, Austria
October 13-15, 2019

Guessing

The problem of guessing discrete random variables has found a variety of applications in

- Shannon theory,
- coding theory,
- cryptography,
- searching and sorting algorithms,
etc.

The central object of interest:
The distribution of the number of guesses required to identify a realization of a random variable, taking values on a finite or countably infinite set.

Guessing and Ranking functions

- X is a discrete random variable taking values on a finite or countably infinite set $\mathcal{X}=\{1, \ldots,|\mathcal{X}|\}$.

Guessing and Ranking functions

- X is a discrete random variable taking values on a finite or countably infinite set $\mathcal{X}=\{1, \ldots,|\mathcal{X}|\}$.
- One wishes to guess the value of X by repeatedly asking questions of the form "Is X equal to x ?" until X is guessed correctly.

Guessing and Ranking functions

- X is a discrete random variable taking values on a finite or countably infinite set $\mathcal{X}=\{1, \ldots,|\mathcal{X}|\}$.
- One wishes to guess the value of X by repeatedly asking questions of the form "Is X equal to x ?" until X is guessed correctly.
- A guessing function is a 1 -to- 1 function $g: \mathcal{X} \rightarrow \mathcal{X}$ where the number of guesses is equal to $g(x)$ if $X=x \in \mathcal{X}$.

Guessing and Ranking functions

- X is a discrete random variable taking values on a finite or countably infinite set $\mathcal{X}=\{1, \ldots,|\mathcal{X}|\}$.
- One wishes to guess the value of X by repeatedly asking questions of the form "Is X equal to x ?" until X is guessed correctly.
- A guessing function is a 1-to- 1 function $g: \mathcal{X} \rightarrow \mathcal{X}$ where the number of guesses is equal to $g(x)$ if $X=x \in \mathcal{X}$.
- For $\rho>0, \mathbb{E}\left[g^{\rho}(X)\right]$ is minimized by selecting g to be a ranking function g_{X}, for which $g_{X}(x)=k$ if $P_{X}(x)$ is the k-th largest mass.

Guessing and Shannon Entropy (Massey, ISIT '94)

Average number of successive guesses with an optimal strategy satisfies

$$
\mathbb{E}\left[g_{X}(X)\right] \geq \frac{1}{4} \exp (H(X))+1
$$

provided $H(X) \geq 2$ bits. It is tight within a factor of $\frac{4}{\mathrm{e}}$ when X is geometrically distributed.

Guessing and Shannon Entropy (McEliece and Yu, ISIT '95)

If X takes no more than $M<\infty$ possible values, then

$$
\mathbb{E}\left[g_{X}(X)\right] \leq\left(\frac{M-1}{2 \log M}\right) H(X)
$$

This upper bound on the number of guesses is tight if and only if X is equiprobable with $P_{X}(x)=\frac{1}{M}$ for each x, or if X is deterministic.

Can we Get Bounds on the ρ-th Moments $(\rho>0)$ by Using a Generalized Information-Theoretic Measure of Shannon's Entropy?

1961

ON MEASURES OF ENTROPY AND INFORMATION

ALFRED RENYI

Rényi entropy

$$
\begin{aligned}
& H_{\alpha}(X)=\frac{1}{1-\alpha} \log \sum_{x \in \mathcal{A}} P_{X}^{\alpha}(x), \quad \alpha \in(0,1) \cup(1, \infty) \\
& H_{1}(X)=H(X) \\
& H_{\infty}(X)=\min _{x \in \mathcal{A}} \log \frac{1}{P_{X}(x)} \\
& H_{0}(X)=\log \left|\left\{x \in \mathcal{A}: P_{X}(x)>0\right\}\right| \\
& H_{2}(X)=\log \frac{1}{\sum_{x \in \mathcal{A}} P_{X}^{2}(x)}
\end{aligned}
$$

Applications of Rényi Entropy

- Random search (Rényi, 1965).
- Statistical physics (Tsallis, 1988).
- Secret-key generation (Renner-Wolf, 2005).
- Data compression (Campbell, 1965).
- Hypothesis testing and coding theorems (Csiszár, 1995).
- Guessing (Arikan, 1996).

$H_{\alpha}(X)$ and Guessing Moments

Theorem (Arikan '96)

Let X be a discrete random variable taking values on $\mathcal{X}=\{1, \ldots, M\}$. Let $g_{X}(\cdot)$ be a ranking function of X. Then, for $\rho>0$,

$$
\begin{aligned}
& \frac{1}{\rho} \log \mathbb{E}\left[g_{X}^{\rho}(X)\right] \geq H_{\frac{1}{1+\rho}}(X)-\log \left(1+\log _{\mathrm{e}} M\right), \\
& \frac{1}{\rho} \log \mathbb{E}\left[g_{X}^{\rho}(X)\right] \leq H_{\frac{1}{1+\rho}}(X) .
\end{aligned}
$$

$H_{\alpha}(X)$ and Guessing Moments

Theorem (Arikan '96)

Let X be a discrete random variable taking values on $\mathcal{X}=\{1, \ldots, M\}$. Let $g_{X}(\cdot)$ be a ranking function of X. Then, for $\rho>0$,

$$
\begin{aligned}
& \frac{1}{\rho} \log \mathbb{E}\left[g_{X}^{\rho}(X)\right] \geq H_{\frac{1}{1+\rho}}(X)-\log \left(1+\log _{\mathrm{e}} M\right), \\
& \frac{1}{\rho} \log \mathbb{E}\left[g_{X}^{\rho}(X)\right] \leq H_{\frac{1}{1+\rho}}(X) .
\end{aligned}
$$

Arikan's result yields an asymptotically tight error exponent:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E}\left[g_{X^{n}}^{\rho}\left(X^{n}\right)\right]=\rho H_{\frac{1}{1+\rho}}(X), \quad \forall \rho>0
$$

when X_{1}, \ldots, X_{n} are i.i.d. $\quad\left[X^{n}:=\left(X_{1}, \ldots, X_{n}\right)\right]$.

Bounds on Guessing Moments with Side Information

- Having side information $Y=y$ on X, we refer to the conditional ranking function $g_{X \mid Y}(\cdot \mid y)$.
- $\mathbb{E}\left[g_{X \mid Y}^{\rho}(X \mid Y)\right]$ is the ρ-th moment of the number of guesses required for correctly identifying the unknown object X on the basis of Y.

The Arimoto-Rényi Conditional Entropy

Let $P_{X Y}$ be defined on $\mathcal{X} \times \mathcal{Y}$, where X is a discrete random variable. The Arimoto-Rényi conditional entropy of order $\alpha \in[0, \infty]$ of X given Y is defined as

- If $\alpha \in(0,1) \cup(1, \infty)$, then

$$
\begin{aligned}
H_{\alpha}(X \mid Y) & =\frac{\alpha}{1-\alpha} \log \mathbb{E}\left[\left(\sum_{x \in \mathcal{X}} P_{X \mid Y}^{\alpha}(x \mid Y)\right)^{\frac{1}{\alpha}}\right] \\
& =\frac{\alpha}{1-\alpha} \log \sum_{y \in \mathcal{Y}} P_{Y}(y) \exp \left(\frac{1-\alpha}{\alpha} H_{\alpha}(X \mid Y=y)\right)
\end{aligned}
$$

where the last equality applies if Y is a discrete random variable.

- Continuous extension at $\alpha=0,1, \infty$ with $H_{1}(X \mid Y)=H(X \mid Y)$.

$H_{\alpha}(X \mid Y)$ and Guessing Moments

Theorem (Arikan '96)

Let X and Y be discrete random variables taking values on the sets $\mathcal{X}=\{1, \ldots, M\}$ and \mathcal{Y}, respectively. For all $y \in \mathcal{Y}$, let $g_{X \mid Y}(\cdot \mid y)$ be a ranking function of X given that $Y=y$. Then, for $\rho>0$,

$$
\begin{aligned}
& \frac{1}{\rho} \log \mathbb{E}\left[g_{X \mid Y}^{\rho}(X \mid Y)\right] \geq H_{\frac{1}{1+\rho}}(X \mid Y)-\log \left(1+\log _{\mathrm{e}} M\right), \\
& \frac{1}{\rho} \log \mathbb{E}\left[g_{X \mid Y}^{\rho}(X \mid Y)\right] \leq H_{\frac{1}{1+\rho}}(X \mid Y)
\end{aligned}
$$

$H_{\alpha}(X \mid Y)$ and Guessing Moments

Theorem (Arikan '96)

Let X and Y be discrete random variables taking values on the sets $\mathcal{X}=\{1, \ldots, M\}$ and \mathcal{Y}, respectively. For all $y \in \mathcal{Y}$, let $g_{X \mid Y}(\cdot \mid y)$ be a ranking function of X given that $Y=y$. Then, for $\rho>0$,

$$
\begin{aligned}
& \frac{1}{\rho} \log \mathbb{E}\left[g_{X \mid Y}^{\rho}(X \mid Y)\right] \geq H_{\frac{1}{1+\rho}}(X \mid Y)-\log \left(1+\log _{\mathrm{e}} M\right), \\
& \frac{1}{\rho} \log \mathbb{E}\left[g_{X \mid Y}^{\rho}(X \mid Y)\right] \leq H_{\frac{1}{1+\rho}}(X \mid Y) .
\end{aligned}
$$

Arikan's result yields an asymptotically tight error exponent:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{E}\left[g_{X^{n} \mid Y^{n}}^{\rho}\left(X^{n} \mid Y^{n}\right)\right]=\rho H_{\frac{1}{1+\rho}}(X \mid Y)
$$

when $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are i.i.d. $\quad\left[X^{n}:=\left(X_{1}, \ldots, X_{n}\right)\right]$.

Some Recent Results on Guessing

Guessing with Distributed Encoders

Figure: Guessing with distributed encoders f_{n} and g_{n}.
A. Bracher, A. Lapidoth and C. Pfister, "Guessing with distributed encoders," Entropy, March 2019.

Guessing with Distributed Encoders

Analog of Slepian-Wolf coding (distributed lossless source coding).

- Two dependent sources generate a pair of sequences $X^{n}:=\left(X_{1}, \ldots, X_{n}\right)$ and $Y^{n}:=\left(Y_{1}, \ldots, Y_{n}\right)$
- The pairs $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}$ are taken from a finite alphabet $\mathcal{X} \times \mathcal{Y}$.

Guessing with Distributed Encoders

Analog of Slepian-Wolf coding (distributed lossless source coding).

- Two dependent sources generate a pair of sequences $X^{n}:=\left(X_{1}, \ldots, X_{n}\right)$ and $Y^{n}:=\left(Y_{1}, \ldots, Y_{n}\right)$
- The pairs $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}$ are taken from a finite alphabet $\mathcal{X} \times \mathcal{Y}$.
- Each of the two sequences is observed by a different encoder, which produces a rate-limited description to the sequence it observes:

The sequence X^{n} is described by one of $\left[\exp \left(n R_{X}\right)\right\rfloor$ labels. The sequence Y^{n} is described by one of $\left\lfloor\exp \left(n R_{Y}\right)\right\rfloor$ labels.

$$
\begin{array}{ll}
f_{n}: \mathcal{X}^{n} \rightarrow\left\{1, \ldots,\left\lfloor\exp \left(n R_{X}\right)\right\rfloor\right\}, & R_{X} \geq 0 \\
g_{n}: \mathcal{Y}^{n} \rightarrow\left\{1, \ldots,\left\lfloor\exp \left(n R_{Y}\right)\right\rfloor\right\}, & R_{Y} \geq 0
\end{array}
$$

Guessing with Distributed Encoders

Analog of Slepian-Wolf coding (distributed lossless source coding).

- Two dependent sources generate a pair of sequences $X^{n}:=\left(X_{1}, \ldots, X_{n}\right)$ and $Y^{n}:=\left(Y_{1}, \ldots, Y_{n}\right)$
- The pairs $\left\{\left(X_{i}, Y_{i}\right)\right\}_{i=1}^{n}$ are taken from a finite alphabet $\mathcal{X} \times \mathcal{Y}$.
- Each of the two sequences is observed by a different encoder, which produces a rate-limited description to the sequence it observes:

The sequence X^{n} is described by one of $\left\lfloor\exp \left(n R_{X}\right)\right\rfloor$ labels. The sequence Y^{n} is described by one of $\left\lfloor\exp \left(n R_{Y}\right)\right\rfloor$ labels.

$$
\begin{array}{ll}
f_{n}: \mathcal{X}^{n} \rightarrow\left\{1, \ldots,\left\lfloor\exp \left(n R_{X}\right)\right\rfloor\right\}, & R_{X} \geq 0 \\
g_{n}: \mathcal{Y}^{n} \rightarrow\left\{1, \ldots,\left\lfloor\exp \left(n R_{Y}\right)\right\rfloor\right\}, & R_{Y} \geq 0
\end{array}
$$

- The two rate-limited descriptions are provided to a guessing device, which produces guesses of the form $\left(\hat{x}^{n}, \hat{y}^{n}\right)$ until $\left(\hat{x}^{n}, \hat{y}^{n}\right)=\left(x^{n}, y^{n}\right)$.

Achievable Rate Pairs

For a fixed $\rho>0$, a rate pair $\left(R_{X}, R_{Y}\right) \in \mathbb{R}_{+}^{2}$ is called achievable if there exists a sequence of distributed encoders and guessing functions $\left\{f_{n}, g_{n}, G_{n}\right\}$ such that the ρ-th moment of the number of guesses tends to 1 as we let n tend to infinity.

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[G_{n}\left(X^{n}, Y^{n} \mid f_{n}\left(X^{n}\right), g_{n}\left(Y^{n}\right)\right)^{\rho}\right]=1
$$

Exact Characterization of the Rate Region

Let $\left\{X_{i}, Y_{i}\right\}_{i=1}^{\infty}$ be i.i.d. according to $P_{X Y}$. Consider the rate region $\mathcal{R}(\rho)$ which is defined to be the set of rate tuples $\left(R_{X}, R_{Y}\right)$ such that

$$
\begin{aligned}
& R_{X} \geq H_{\frac{1}{1+\rho}}(X \mid Y), \\
& R_{Y} \geq H_{\frac{1}{1+\rho}}(Y \mid X) \\
& R_{X}+R_{Y} \geq H_{\frac{1}{1+\rho}}(X, Y)
\end{aligned}
$$

Then, all rate pairs in the interior of $\mathcal{R}(\rho)$ are achievable, while those outside $\mathcal{R}(\rho)$ are not achievable.

An Important Difference From Slepian-Wolf Coding

- Slepian-Wolf coding allows separate encoding with the same sum-rate as with joint encoding, $H(X, Y)$.
- This is not necessarily true in the setting of guessing with distributed encoders.
- Specifically, for $\rho>0$, if

$$
H_{\frac{1}{1+\rho}}(X \mid Y)+H_{\frac{1}{1+\rho}}(Y \mid X)>H_{\frac{1}{1+\rho}}(X, Y)
$$

then the single-rate constraints on R_{X} and R_{Y} together impose a stronger constraint on the sum-rate than the third constraint on $R_{X}+R_{Y}$. It then requires a larger sum-rate than joint encoding.

Improving Arikan's Bounds in the Non-Asymptotic Setting

Result (I.S. \& S. Verdú, IEEE T-IT, June 2018)

Theorem

Given a discrete random variable X taking values on a set \mathcal{X}, an arbitrary non-negative function $g: \mathcal{X} \rightarrow(0, \infty)$, and a scalar $\rho \neq 0$, then

$$
\begin{aligned}
& \sup _{\beta \in(-\rho,+\infty) \backslash\{0\}} \frac{1}{\beta}\left[H_{\frac{\beta}{\beta+\rho}}(X)-\log \sum_{x \in \mathcal{X}} g^{-\beta}(x)\right] \\
\leq & \frac{1}{\rho} \log \mathbb{E}\left[g^{\rho}(X)\right] \\
\leq & \inf _{\beta \in(-\infty,-\rho) \backslash\{0\}} \frac{1}{\beta}\left[H_{\frac{\beta}{\beta+\rho}}(X)-\log \sum_{x \in \mathcal{X}} g^{-\beta}(x)\right] .
\end{aligned}
$$

Theorem: Consequence of the Result

Let $g: \mathcal{X} \rightarrow \mathcal{X}$ be an arbitrary guessing function. Then, for every $\rho \neq 0$,

$$
\frac{1}{\rho} \log \mathbb{E}\left[g^{\rho}(X)\right] \geq \sup _{\beta \in(-\rho, \infty) \backslash\{0\}} \frac{1}{\beta}\left[H_{\frac{\beta}{\beta+\rho}}(X)-\log u_{M}(\beta)\right]
$$

where $u_{M}(\beta)$ is an upper/ lower bound on $\sum_{n=1}^{M} \frac{1}{n^{\beta}}$ for $\beta>0$ or $\beta<0$, respectively.

Theorem: Consequence of the Result

Let $g: \mathcal{X} \rightarrow \mathcal{X}$ be an arbitrary guessing function. Then, for every $\rho \neq 0$,

$$
\frac{1}{\rho} \log \mathbb{E}\left[g^{\rho}(X)\right] \geq \sup _{\beta \in(-\rho, \infty) \backslash\{0\}} \frac{1}{\beta}\left[H_{\frac{\beta}{\beta+\rho}}(X)-\log u_{M}(\beta)\right]
$$

with

$$
u_{M}(\beta)= \begin{cases}\log _{\mathrm{e}} M+\gamma+\frac{1}{2 M}-\frac{5}{6\left(10 M^{2}+1\right)} & \beta=1, \\ \min \left\{\zeta(\beta)-\frac{(M+1)^{1-\beta}}{\beta-1}-\frac{(M+1)^{-\beta}}{2}, u_{M}(1)\right\} & \beta>1, \\ 1+\frac{1}{1-\beta}\left[\left(M+\frac{1}{2}\right)^{1-\beta}-\left(\frac{3}{2}\right)^{1-\beta}\right] & |\beta|<1, \\ \frac{M^{1-\beta}-1}{1-\beta}+\frac{1}{2}\left(1+M^{-\beta}\right) & \beta \leq-1 .\end{cases}
$$

- $\gamma \approx 0.5772$ is Euler's constant;
- $\zeta(\beta)=\sum_{n=1}^{\infty} \frac{1}{n^{\beta}}$ is Riemann's zeta function for $\beta>1$.

Lower Bound: Special Case

Specializing to $\beta=1$, and using an upper bound on the harmonic sum:

$$
u_{M}(1)=\sum_{j=1}^{M} \frac{1}{j} \leq 1+\log _{\mathrm{e}} M, \quad M \geq 2
$$

we obtain

$$
\frac{1}{\rho} \log \mathbb{E}\left[g^{\rho}(X)\right] \geq H_{\frac{1}{1+\rho}}(X)-\log \left(1+\log _{\mathrm{e}} M\right)
$$

for $\rho \in(-1, \infty)$. The latter bound was obtained for $\rho>0$ by Arikan.

Improved Upper Bounds

We also derive improved upper bounds on the guessing moments, expressed as a function of Rényi entropies of X.

Numerical Results

Let X be geometrically distributed restricted to $\{1, \ldots, M\}$ with the probability mass function

$$
P_{X}(k)=\frac{(1-a) a^{k-1}}{1-a^{M}}, \quad k \in\{1, \ldots, M\}
$$

where $a=0.9$ and $M=32$. Table 1 compares $\mathbb{E}\left[g_{X}^{3}(X)\right]$ to its various lower and upper bounds (LBs and UBs, respectively).

Table: Comparison of $\mathbb{E}\left[g_{X}^{3}(X)\right]$ and bounds.

Arikan's LB	Improved LB	$\mathbb{E}\left[g_{X}^{3}(X)\right]$ exact value	Improved UB	Arikan's UB
268	2,390	2,507	6,374	23,861

Bounds on Guessing Moments with Side Information

- Our lower and upper bounds extend to allow side information Y for guessing the value of X.
- These bounds tighten the results by Arikan for all $\rho>0$.
- With side information Y, all bounds stay valid by the replacement of $H_{\alpha}(X)$ with the Arimoto-Rényi conditional entropy $H_{\alpha}(X \mid Y)$.

New Setup

Let

- $\alpha>0$;
- \mathcal{X} and \mathcal{Y} be finite sets of cardinalities

$$
|\mathcal{X}|=n, \quad|\mathcal{Y}|=m, \quad n>m \geq 2
$$

without any loss of generality, let

$$
\mathcal{X}=\{1, \ldots, n\}, \quad \mathcal{Y}=\{1, \ldots, m\}
$$

- $\mathcal{P}_{n}(n \geq 2)$ be the set of probability mass functions (pmf) on \mathcal{X};
- X be a RV taking values on \mathcal{X} with a pmf $P_{X} \in \mathcal{P}_{n}$;
- $\mathcal{F}_{n, m}$ be the set of deterministic functions $f: \mathcal{X} \rightarrow \mathcal{Y}$;
- $f \in \mathcal{F}_{n, m}$ is not one-to-one since $m<n$.

Majorization

Let

- X be a discrete RV with pmf P_{X}, which takes n possible values, and assume that

$$
P_{X}(1) \geq P_{X}(2) \geq \ldots \geq P_{X}(n)
$$

- $f \in \mathcal{F}_{n, m}$;
- Q_{X} be the pmf of $f(X)$; assume that

$$
\begin{aligned}
& Q_{X}(1) \geq P_{X}(2) \geq \ldots \geq Q_{X}(m) \\
& Q_{X}(m+1)=\ldots=Q_{X}(n)=0
\end{aligned}
$$

Then, P_{X} is majorized by Q_{X} :

$$
P_{X} \prec Q_{X} \quad\left(\sum_{i=1}^{k} P_{X}(i) \leq \sum_{i=1}^{k} Q_{X}(i), \forall k \in\{1, \ldots, n\}\right) .
$$

Solving the Maximum Rényi Entropy Problem

$$
\max _{Q \in \mathcal{P}_{m}: P_{X} \prec Q} H_{\alpha}(Q)
$$

with $X \in\{1, \ldots, n\}, m<n$, and $\alpha>0$.

Solution: $R_{m}\left(P_{X}\right)$

- If $P_{X}(1)<\frac{1}{m}$, then $R_{m}\left(P_{X}\right)$ is the equiprobable dist. on $\{1, \ldots, m\}$;
- Otherwise, $R_{m}\left(P_{X}\right):=Q_{X} \in \mathcal{P}_{m}$ with

$$
Q_{X}(i)= \begin{cases}P_{X}(i), & i \in\left\{1, \ldots, n^{*}\right\} \\ \frac{1}{m-n^{*}} \sum_{j=n^{*}+1}^{n} P_{X}(j), & i \in\left\{n^{*}+1, \ldots, m\right\}\end{cases}
$$

where n^{*} is the max. integer i s.t. $P_{X}(i) \geq \frac{1}{m-i} \sum_{j=i+1}^{n} P_{X}(j)$.

Intuitively

Intuitively

Intuitively

Theorem: Guessing Moments

Let

- $\left\{X_{i}\right\}_{i=1}^{k}$ be i.i.d. with $X_{1} \sim P_{X}$ taking values on a set $\mathcal{X},|\mathcal{X}|=n$;
- $Y_{i}=f\left(X_{i}\right)$, for every $i \in\{1, \ldots, k\}$, where $f \in \mathcal{F}_{n, m}$ is a deterministic function with $m<n$;

$$
g_{X^{k}}: \mathcal{X}^{k} \rightarrow\left\{1, \ldots, n^{k}\right\}, \quad g_{Y^{k}}: \mathcal{Y}^{k} \rightarrow\left\{1, \ldots, m^{k}\right\}
$$

be, respectively, ranking functions of the random vectors

$$
X^{k}:=\left(X_{1}, \ldots, X_{k}\right), \quad Y^{k}:=\left(Y_{1}, \ldots, Y_{k}\right) .
$$

Notation

For $m \in\{2, \ldots, n\}$, let

$$
\tilde{X}_{m} \sim R_{m}\left(P_{X}\right)
$$

Theorem: Guessing Moments (Cont.)

(1) For every deterministic function $f \in \mathcal{F}_{n, m}$, and for all $\rho>0$,

$$
\frac{1}{k} \log \frac{\mathbb{E}\left[g_{X^{k}}^{\rho}\left(X^{k}\right)\right]}{\mathbb{E}\left[g_{Y^{k}}^{\rho}\left(Y^{k}\right)\right]} \geq \rho\left[H_{\frac{1}{1+\rho}}(X)-H_{\frac{1}{1+\rho}}\left(\widetilde{X}_{m}\right)\right]-\frac{\rho \log (1+k \ln n)}{k}
$$

Theorem: Guessing Moments (Cont.)

(1) For every deterministic function $f \in \mathcal{F}_{n, m}$, and for all $\rho>0$,

$$
\frac{1}{k} \log \frac{\mathbb{E}\left[g_{X^{k}}^{\rho}\left(X^{k}\right)\right]}{\mathbb{E}\left[g_{Y^{k}}^{\rho}\left(Y^{k}\right)\right]} \geq \rho\left[H_{\frac{1}{1+\rho}}(X)-H_{\frac{1}{1+\rho}}\left(\widetilde{X}_{m}\right)\right]-\frac{\rho \log (1+k \ln n)}{k}
$$

(2) For the deterministic function $f^{*} \in \mathcal{F}_{n, m}$, constructed by Huffman algorithm, with $Y_{i}=f^{*}\left(X_{i}\right)$ for all $i \in\{1, \ldots, k\}$, we have

$$
I\left(X ; f^{*}(X)\right) \geq \max _{f \in \mathcal{F}_{n, m}} I(X ; f(X))-0.08607 \text { bits, }
$$

and, for all $\rho>0$,

$$
\begin{aligned}
& \frac{1}{k} \log \frac{\mathbb{E}\left[g_{X^{k}}^{\rho}\left(X^{k}\right)\right]}{\mathbb{E}\left[g_{Y^{k}}^{\rho}\left(Y^{k}\right)\right]} \\
& \leq \rho\left[H_{\frac{1}{1+\rho}}(X)-H_{\frac{1}{1+\rho}}\left(\widetilde{X}_{m}\right)+v\left(\frac{1}{1+\rho}\right)\right]+\frac{\rho \log (1+k \ln m)}{k}
\end{aligned}
$$

Theorem: Guessing Moments (Cont.)

(0) For every $\rho>0$, the gap between the universal lower bound and the upper bound, for $f=f^{*}$, is at most

$$
\begin{aligned}
& \rho v\left(\frac{1}{1+\rho}\right)+\frac{2 \rho \log \left(1+k \log _{\mathrm{e}} n\right)}{k} \\
& \approx \frac{0.08607 \rho}{1+\rho}+O\left(\frac{\log k}{k}\right) \text { bits. }
\end{aligned}
$$

Letting $k \rightarrow \infty$, the gap is less than 0.08607 bits for all $\rho>0$, and the construction of the function $f^{*} \in \mathcal{F}_{n, m}$ does not depend on ρ.

Theorem: Guessing Moments (Cont.)

For every $\rho>0$,
(0) The gap between the universal lower bound on $\frac{1}{k} \log \frac{\mathbb{E}\left[g_{X k}^{\rho}\left(X^{k}\right)\right]}{\mathbb{E}\left[g_{Y k}^{\rho}\left(Y^{k}\right)\right]}$, for all $f \in \mathcal{F}_{n, m}$ (with $Y_{i}=f\left(X_{i}\right)$), and the upper bound with the specific function $f=f^{*} \in \mathcal{F}_{n, m}$, is at most

$$
\rho v\left(\frac{1}{1+\rho}\right)+\frac{2 \rho \log \left(1+k \log _{\mathrm{e}} n\right)}{k} \approx \frac{0.08607 \rho}{1+\rho}+O\left(\frac{\log k}{k}\right) \text { bits }
$$

while $f=f^{*}$ also almost achieves the maximal mutual information of $I(X ; f(X))$ up to a difference of 0.08607 bits.

Letting $k \rightarrow \infty$, the gap in the normalized ratio of the ρ-th guessing moments is less than 0.08607 bits for all $\rho>0$, and the construction of the function $f^{*} \in \mathcal{F}_{n, m}$ does not depend on ρ.

The Algorithm Relying on Huffman Coding

(1) Start from the PMF $P_{X} \in \mathcal{P}_{n}$ with $P_{X}(1) \geq \ldots \geq P_{X}(n)$;
(2) Merge successively pairs of probability masses by applying the Huffman algorithm;
(3) Stop the process in Step 2 when a probability mass function $Q \in \mathcal{P}_{m}$ is obtained (with $Q(1) \geq \ldots \geq Q(m)$);
(9) Construct the deterministic function $f^{*} \in \mathcal{F}_{n, m}$ by setting $f^{*}(k)=j \in\{1, \ldots, m\}$ for all probability masses $P_{X}(k)$, with $k \in\{1, \ldots, n\}$, being merged in Steps 2-3 into the node of $Q(j)$.

Journal Paper

I. S., "Tight bounds on the Rényi entropy via majorization with applications to guessing and compression," Entropy, vol. 20, no. 12, paper 896, pp. 1-25, November 2018.

Ongoing Activity in Guessing Problems

The topic of guessing from an IT perspective is very active these days.

- Noisy guesses (N. Merhav, arXiv:1910.00215).
- Asymptotic analysis of card guessing with feedback (P. Liu, arXiv:1908.07718).
- A unified framework for problems on guessing, source coding and task partitioning (A. Kumar et al., arXiv:1907.06889).
- Guessing individual sequences using finite-state machines (N. Merhav, arXiv:1906.10857).
- Optimal guessing under non-extensive framework and associated moment bounds (A. Ghosh, arXiv:1905.07729).
- Guessing probability in quantum key distribution (X. Wang et al., arXiv:1904.12075).
- Guessing random additive noise decoding with soft detection symbol reliability information (K. Duffey and M. Medard, arXiv:1902.03796).

