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On Universal Properties of Capacity-Approaching
LDPC Code Ensembles

Igal Sason,Member

Abstract

This paper is focused on the derivation of some universal properties of capacity-approaching low-density parity-check
(LDPC) code ensembles whose transmission takes place over memoryless binary-input output-symmetric (MBIOS) channels.
Properties of the degree distributions, graphical complexity and the number of fundamental cycles in the bipartite graphs are
considered via the derivation of information-theoretic bounds. These bounds are expressed in terms of the target block/ bit
error probability and the gap (in rate) to capacity. Most of the bounds are general for any decoding algorithm, and some others
are proved under belief propagation (BP) decoding. Provingthese bounds under a certain decoding algorithm, validatesthem
automatically also under any sub-optimal decoding algorithm. A proper modification of these bounds makes them universal for
the set of all MBIOS channels which exhibit a given capacity.Bounds on the degree distributions and graphical complexity apply
to finite-length LDPC codes and to the asymptotic case of an infinite block length. The bounds are compared with capacity-
approaching LDPC code ensembles under BP decoding, and theyare shown to be informative and are easy to calculate. Finally,
some interesting open problems are considered.

Index Terms

Belief propagation (BP), bipartite graphs, complexity, cycles, density evolution (DE), linear programming (LP) bounds, low-
density parity-check (LDPC) codes, maximum-likelihood (ML) decoding, memoryless binary-input output-symmetric (MBIOS)
channels, sphere-packing bounds, stability.

I. INTRODUCTION

Low-density parity-check (LDPC) codes form a class of powerful error-correcting codes which are efficiently
encoded and decoded with low-complexity algorithms. Theselinear block codes, originally introduced by Gallager
in the early sixties [14], are characterized by sparse parity-check matrices which facilitate their low-complexity
decoding with iterative message-passing algorithms. In spite of the seminal work of Gallager, LDPC codes were
ignored for a long time. Following the breakthrough in coding theory, made by the introduction of turbo codes
[5] and the rediscovery of LDPC codes [25] in the mid 1990s, itwas realized that an efficient design of these
codes enables to closely approach the channel capacity while maintaining reasonable decoding complexity. This
breakthrough attracted many coding-theorists during the last decade (see, e.g., [9], [37], [55]).

The asymptotic analysis of LDPC code ensembles under iterative message-passing decoding algorithms relies on
the density evolution(DE) approach which was developed by Richardson and Urbanke(see [34], [35], [37]). This
technique is commonly used for optimizing the degree distributions of capacity-approaching LDPC code ensembles
where the target is to maximize the achievable rate for a given channel model or to maximize the threshold for
a given code rate subject to some constraints on the degree distributions [2]. Some approximate techniques which
optimize the degree distributions of LDPC code ensembles under further practical constraints are of interest (e.g.,
an optimization for obtaining a good tradeoff between the asymptotic gap to capacity and the decoding complexity
[3]). For the binary erasure channel (BEC), the DE approach is much simplified since it leads to a one-dimensional
analysis. As a result of this significant simplification, some explicit expressions for capacity-achieving sequences of
LDPC code ensembles have been derived for the BEC (see, e.g.,[24], [29], [37] and [48]). For general memoryless
binary-input output-symmetric (MBIOS) channels, as of yetthere are no closed-form expressions for capacity-
achieving LDPC code ensembles under iterative decoding, and the DE technique serves as a numerical tool for
the design of capacity-approaching LDPC code ensembles in the limit where their block length tends to infinity.
Although maximum-likelihood (ML) decoding is prohibitively complex, capacity-achieving sequences of LDPC

This research work was supported by the Israel Science Foundation (grant no. 1070/07).
Igal Sason is with the Department of Electrical Engineeringat the Technion – Israel Institute of Technology, Haifa 32000, Israel (e-mail:

sason@ee.technion.ac.il).



2 TO APPEAR IN THE IEEE TRANSACTIONS ON INFORMATION THEORY, JULY 2009.

code ensembles have been constructed under ML decoding for any MBIOS channel where the analysis relies on
upper bounds on the decoding error probability which are based on the distance spectra of these ensembles (see
[18], [19], [39], and [40, Theorem 2.2]).

Consider right-regular LDPC codes (i.e., LDPC codes where the degree of the parity-check nodes is fixed to a
certain valueaR), and assume that their transmission takes place over a binary symmetric channel (BSC). In his
thesis, Gallager derived an upper bound on the maximal achievable rate of these codes where it is required to
obtain vanishing block error probability as we let the blocklength tend to infinity (see [14, Theorem 3.3]). This
information-theoretic bound holds under ML decoding or anysub-optimal decoding algorithm. This bound shows
that right-regular LDPC codes cannot achieve the channel capacity on a BSC, even under ML decoding. Based
on this bound, the inherent gap between the achievable rate and the channel capacity is well approximated by an
expression which decreases to zero exponentially fast inaR. Burshteinet al. have generalized Gallager’s bound for
general LDPC code ensembles whose transmission takes placeover an MBIOS channel [7]. An improved upper
bound on the achievable rates of LDPC code ensembles was obtained by Wiechman and Sason [53], followed by a
generalization of this bound to the case where the transmission takes place over a set of parallel MBIOS channels
[41]. This work partially relies on the analysis in [53] (seeSection II for relevant background).

Khandekar and McEliece suggested to measure the encoding and decoding complexity of codes defined on graphs
in terms of the achievable gap (in rate) to capacity, and theyalso had some conjectures regarding the behavior of
the complexity as the gap to capacity vanishes [21]. Following their approach, the tradeoff between the performance
and complexity is analyzed in the literature for LDPC code ensembles and some other variants of codes defined
on graphs (see, e.g., [18], [19], [31], [32], [40], [41], [42], [53] and references therein).

In this paper, we consider some properties of capacity-approaching LDPC code ensembles whose transmission
takes place over MBIOS channels. One question which is addressed in this paper is the following:

Question 1:How do the degree distributions of capacity-approaching LDPC code ensembles behave as a function
of the achievable gap (in rate) to capacity ?

The behavior of the degree distributions of capacity-approaching LDPC code ensembles is addressed in this work
via the derivation of some information-theoretic bounds. Some of them hold under ML decoding or any sub-
optimal decoding algorithm, and some other bounds are proved under belief propagation (BP) decoding where we
refer to the sum-product decoding algorithm (see [22] and [37, Chapter 2]). For the characterization of the degree
distributions for capacity-approaching LDPC code ensembles, a special consideration is given to the fraction of
degree–2 variable nodes (L2) and the fraction of edges connected to these nodes(λ2). This focus was partially
motivated by the influence ofλ2 on the satisfiability of the stability condition; this condition is necessary for
achieving vanishing bit error probability under iterativemessage-passing decoding when we let the block length
tend to infinity [34]. Also, some previously reported information-combining bounds on the performance of LDPC
code ensembles under iterative decoding are sensitive to this quantity (see, e.g., [49]). This motivates a study of
the behavior ofL2 andλ2 for capacity-approaching LDPC code ensembles, where the bounds on these quantities
are expressed in terms of the gap between the channel capacity and the achievable rates of these code ensembles
under BP decoding. We also demonstrate the tightness of these bounds for the BEC by considering the right-regular
sequence of capacity-achieving LDPC code ensembles proposed by Shokrollahi [48].

General upper bounds on the degree distributions of capacity-approaching LDPC code ensembles are derived
in this paper for the case where the transmission takes placeover an MBIOS channel. The bounds are expressed
in terms of the gap (in rate) to capacity with a target bit (or block) error probability. These linear programming
(LP) upper bounds on the degree distributions of LDPC code ensembles are general with respect to the decoding
algorithm, and they also hold for ensembles of finite-lengthcodes or for the asymptotic case of an infinite block
length. We note that two LP problems are formulated in [1] foroptimizing the degree distributions of finite-length
LDPC code ensembles whose transmission takes place over a BEC, and also a convex optimization problem is
formulated in [3] for optimizing the degree distributions of LDPC code ensembles with the goal of obtaining a good
tradeoff between performance and decoding complexity. It is noted that the LP-based optimizations in [1] and [3]
hold under BP decoding, whereas the LP bounds which are derived in this paper are information-theoretic bounds
which hold under ML decoding or any sub-optimal decoding algorithm. Although the degree distributions of the
parity-check nodes are often set to be regular (or almost regular), and the irregularity often refers to the degree
distributions of the variable nodes, this is not necessarily the case for capacity-approaching ensembles. For example,
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[32, Section VI] introduces some capacity-achieving sequences of accumulate-repeat-accumulate code ensembles
for the BEC, which also possess a bounded complexity per information bit under BP decoding; they are designed
in a way where the degree distributions of the LDPC code ensembles after a proper graph reduction (as explained
in [32, Section II]) are self-matched and are both irregular. The irregularity of the parity-check degree distributions
in the design of LDPC codes appears to be useful in various cases under BP decoding, e.g., the optimization
of finite-length LDPC code ensembles whose transmission takes place over the BEC [1], the heavy-tail Poisson
distribution introduced in [24] and [48] which gives rise tocapacity-achieving degree distributions for the BEC, the
design of bilayer LDPC code ensembles for a degraded relay AWGN channel [4], and the design of LDPC code
ensembles for unequal error protection [43].

It is well known that linear block codes which are represented by cycle-free bipartite (Tanner) graphs have poor
performance even under ML decoding [12]. The bipartite graphs of capacity-approaching LDPC codes should have
cycles. Hence, another question which is addressed in this paper, as a continuation to a previous study in [12] and
[40] (see also [37, Problems 4.52 and 4.53]), is the following:

Question 2:How does the average cardinality of the fundamental system of cycles of bipartite graphs behave
as a function of the achievable gap to capacity of the underlying LDPC code ensembles ?

The fundamental tradeoff between the graphical complexityand performance of codes defined on graphs is of
interest, especially for codes of finite-length. In this paper, we address the following question:

Question 3:Consider the representation of a finite-length binary linear block code by an arbitrary bipartite graph.
How simple can such a graphical representation be as a function of the channel model, target block error probability,
and code rate (which is below capacity) ?

We note that the graphical complexity referred to in this paper measures the total number of edges used for the
representation of finite-length codes by bipartite graphs.By referring to the total number of edges, the graphical
complexity is strongly related to the decoding complexity per iteration. This differs from the graphical complexity
in [3], [18], [31] and [32] which measures the number of edgesper information bit in the asymptotic case where
we let the block length tend to infinity. Although it may appear at first glance that the aforementioned distinction
is just a matter of normalization, this is not the case: the reason is that given the target block error probability and
the required gap to capacity for achieving this target with any finite-length block code, one needs first to calculate
the minimal block length which potentially allows to fulfillthese requirements. It is done in this work via the
calculation of classical and recent sphere-packing bounds(see [44], [45], [51] and [54]).

A universal design of LDPC code ensembles which enables these codes to operate reliably over a multitude of
channels is of great theoretical and practical interest. Werefer the reader to recent studies on universal LDPC codes
(see, e.g., [13], [30], [38] and [47]). A simple modificationof the bounds derived in this paper makes them universal
in the sense that they hold for the set of MBIOS channels whichexhibit a given channel capacity. The universality
of the bounds derived in this paper stems also from the fact that they do not depend on the full characterization
of the LDPC code ensembles, but only on the gap between the channel capacity and the design rates of these
ensembles, and they also depend on the target bit/ block error (or erasure) probability. The bounds derived in this
work are expressed in closed form and are easily calculated.

This paper is structured as follows: Section II provides some preliminary material and notation, Section III
introduces the new information-theoretic bounds of this paper, Section IV then provides their proofs followed by
some discussions, and Section V formulates some algorithmsrelated to the bounds derived in this paper, it discusses
their implications, and provides numerical results. Finally, Section VI summarizes this work, and it provides some
interesting open problems which are related to this research.

II. PRELIMINARIES

We introduce in this section some preliminary material and notation which serve for the analysis in this paper.

A. LDPC Code Ensembles

LDPC codes are linear block codes which are characterized bysparse parity-check matrices. A parity-check
matrix is represented by a bipartite graph where the variable and parity-check nodes are on the left and right
sides of this graph, respectively. An edge connects a variable node with a parity-check node in this graph if the
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corresponding parity-check equation involves the code symbol which is represented by this variable node (it is
illustrated in Fig. 1). The requirement for a sparse parity-check matrix is equivalent to the requirement that the
number of edges in the corresponding bipartite graph scaleslinearly with the block length.

We move to consider ensembles of binary LDPC codes. Following standard notation, letλi andρi denote the
fraction of edges attached, respectively, to variable and parity-check nodes of degreei. Let Λi and Γi denote,
respectively, the fraction of variable and parity-check nodes of degreei. The LDPC code ensemble is characterized
by a triple(n, λ, ρ), wheren designates the block length of the codes, andλ(x) ,

∑
i λix

i−1 andρ(x) ,
∑

i ρix
i−1

represent, respectively, the left and right degree distributions from the edge perspective. Equivalently, this ensemble
is also characterized by the triple(n,Λ,Γ) whereΛ(x) ,

∑
i Λix

i andΓ(x) ,
∑

i Γix
i represent, respectively, the

left and right degree distributions from the node perspective. We denote by LDPC(n, λ, ρ) (or LDPC(n,Λ,Γ)) the
ensemble whose bipartite graphs are constructed accordingto the corresponding pairs of degree distributions. The
connections between the edgesE emanating from the variable nodes to the parity-check nodesare constructed by
first numbering the connectors on the left and on the right sides of the graph. The number of connectors is the same
on both sides of the graph, and it is equal to|E| = n

∑
i iΛi = m

∑
i iΓi wheren andm designate the number of

variable nodes and parity-check nodes, respectively. Finally, the edges which connect the variable nodes with the
parity-check nodes of the bipartite graph are determined byusing a permutationπ : {1, . . . , |E|} → {1, . . . , |E|}
which is chosen uniformly at random, and associates connector numberi on the left side of this graph with the
connector whose number isπ(i) on the right. The degree distributions with respect to the nodes and edges of a
bipartite graph are related via the following equations:

Λ(x) =

∫ x
0 λ(u)du
∫ 1
0 λ(u)du

, Γ(x) =

∫ x
0 ρ(u)du
∫ 1
0 ρ(u)du

(1)

λ(x) =
Λ′(x)

Λ′(1)
, ρ(x) =

Γ′(x)

Γ′(1)
. (2)

For an LDPC code ensemble, whose codes are represented by parity-check matrices of dimensionm×n, thedesign
rate is defined asRd , 1− m

n . This forms a lower bound on the rate of any code from this ensemble, and the rate
is equal to the design rate if the particular parity-check matrix representing this code is full rank (i.e., there are no
redundant parity-check equations in this matrix). The design rate is expressed in terms of the degree distributions
in the following two forms:

Rd = 1 −
∫ 1
0 ρ(x)dx
∫ 1
0 λ(x)dx

= 1 − Λ′(1)
Γ′(1)

. (3)

Note that

aL = Λ′(1) =
1

∫ 1
0 λ(x)dx

(4)

aR = Γ′(1) =
1

∫ 1
0 ρ(x)dx

(5)

designate the average left and right degrees (i.e., the average degrees of the variable and parity-check nodes,
respectively).

B. Functionals Related to Memoryless Binary-Input Output-Symmetric Channels

Consider an MBIOS channel whose channel input and channel output are designated byX andY , respectively,
and let pY |X(·|·) be its transition probability. The associated log-likelihood ratio (LLR) l(y) when the channel
output isY = y is given by

l(y) = ln

(
pY |X(y|0)
pY |X(y|1)

)
.

The LLR associated with the random variableY is defined asL = l(Y ). Let a designate the conditionalpdf of the
random variableL given that the channel input isX = 0 (to be referred as theL-density function). This density
function satisfies the symmetry propertya(l) = el a(−l) for every l ∈ R [35].
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This paper relies on the following two functionals (variousother functionals are presented in [37, Section 4.1]).
Lemma 1: [Capacity functional] Consider an MBIOS channel whose symmetricL-density function is denoted

by a. Then the capacity of this channel in units of bits per channel use,C = C(a), is given by

C =

∫ ∞

−∞
a(l)

(
1 − log2(1 + e−l)

)
dl. (6)

An equivalent form of the capacity is given by

C =

∫ ∞

0
a(l)(1 + e−l)

(
1 − h2

( 1

1 + el

))
dl. (7)

This lemma is proved in [37, page 193].
Definition 1: [The Bhattacharyya functional] The Bhattacharyya constant which is associated with the sym-

metric L-density functiona is given by

B(a) ,

∫ ∞

−∞
a(l)e−

l

2 dl. (8)

The analysis in this paper relies partially on thestability condition. This condition applies to the asymptotic case
where we let the block length tend to infinity, and it forms a necessary condition for successful decoding in the
sense that it requires that the fixed point of zero error rate be stable. Consider an LDPC code ensemble with a
given pair of degree distributions(λ, ρ) whose transmission takes place over an MBIOS channel, characterized by
its L-density functiona. Then, the stability condition under BP decoding gets the form (see [37, Theorem 4.125])

B(a)λ2ρ
′(1) < 1. (9)

The reader is referred to [37, Section 4.9] for a proof.

C. Lower Bound on the Conditional Entropy for Binary Linear Block Codes Transmitted over MBIOS Channels

We start this section by outlining in Section II-C.1 the derivation of a lower bound on the conditional entropy
of the transmitted codeword given the received sequence at the output of an MBIOS channel. Section II-C.1 relies
on [53, Section IV] and its appendices where it is assumed that the code is represented by a full-rank parity-check
matrix (the same assumption is also made in [37, Section 4.11]). Section II-C.2 revisits the derivation in Section II-
C.1 in order to extend the bound for the case where the binary linear block code is represented by a parity-check
matrix which is not necessarily full-rank; this extension was hinted briefly in [53, Section V] (along the lines of
the section on numerical results), and we take this occasionto give a rigorous proof which serves as a crucial
preparatory step towards the analysis in the continuation to this paper.

1) The analysis for a full-rank parity-check matrix:We assume in the following that the transmission of a binary
linear block code takes place over an MBIOS channel. LetC be a binary linear block code of lengthn and rateR,
and letX andY be the transmitted codeword and received sequence, respectively. Assume that the codewords of
C have no bits which are set a-priori to zero. We assume that thecodeC is represented by a parity-check matrix
H which is full rank. In the following,C designates the capacity of the communication channel in units of bits
per channel use.

• Define an equivalent channel whose output is the LLR of the original channel.
• The LLR is represented by a pair which includes its sign and absolute value.
• For the characterization of the equivalent channel, let thefunction a designate theL-density function.
• We randomly generate an i.i.d. sequence{Li}n

i=1 with respect to theL-density functiona, and define

Ωi , |Li|, Θi ,





0 if Li > 0

1 if Li < 0

0 or 1 equally likely if Li = 0

.

Note that{Θi} is a sequence which represents the signs of the LLR (conditioned onX = 0).
• The output of the equivalent channel is̃Y = (Ỹ1, . . . , Ỹn) where

Ỹi = (Φi,Ωi), i = 1, . . . , n

andΦi = Θi + Xi (modulo-2 addition). This channel is memoryless.
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• The output of this channel at timei is Ỹi ∈ {0, 1} × R+. Note thatΦi is a binary random variable which is
affected by the channel inputXi, andΩi is a non-negative random variable which is not affected byXi.

• Due to the symmetry of the communication channel, thepdf of the absolute value of the LLR satisfies

fΩ(ω) =

{
a(ω) + a(−ω) = (1 + e−ω) a(ω) if ω > 0,

a(0) if ω = 0.

The conditional entropy of the transmitted codeword given the received sequence at the output of the MBIOS
channel satisfies

H(X|Y) = H(X|Ỹ)

= H(X) + H(Ỹ|X) − H(Ỹ)

= nR + nH(Ỹ1|X1) − H(Ỹ)

= nR + n[H(Ỹ1) − I(X1; Ỹ1)] − H(Ỹ) (10)

and

I(X1; Ỹ1) = I(X1;Y1) ≤ C (11)

H(Ỹ1) = H(Φ1,Ω1)

= H(Ω1) + H(Φ1|Ω1)

= H(Ω1) + 1. (12)

The last transition in (12) is due to the fact that given the absolute value of the LLR, its sign is equally likely to
be positive or negative. The entropyH(Ω1) is not expressed explicitly as it will cancel out.

The entropy of the vector̃Y satisfies

H(Ỹ) = H
(
Φ1,Ω1, . . . ,Φn,Ωn

)

= H(Ω1, . . . ,Ωn) + H
(
Φ1, . . . ,Φn | Ω1, . . . ,Ωn

)

= nH(Ω1) + H
(
Φ1, . . . ,Φn | Ω1, . . . ,Ωn

)
. (13)

• Define the syndrome vectorS , (Φ1, . . . ,Φn)HT . SinceH is assumed to be a full-rank parity-check matrix
of C thenS ∈ {0, 1}n(1−R), i.e., the syndromeS is composed ofn(1 − R) binary components.

• Let M be the index of the vector(Φ1, . . . ,Φn) in the coset which corresponds to the syndromeS.
• H(M) = nR since all the codewords are transmitted with equal probability, and we get

H
(
Φ1, . . . ,Φn |Ω1, . . . ,Ωn

)

= H(S,M |Ω1, . . . ,Ωn

)

≤ H(M) + H
(
S |Ω1, . . . ,Ωn

)

≤ nR +

n(1−R)∑

j=1

H
(
Sj |Ω1, . . . ,Ωn

)
. (14)

• SinceXHT = 0 for every codewordX ∈ C, and alsoΦi = Xi + Θi for all i, thenS = (Θ1, . . . ,Θn)HT is
independent of the transmitted codeword.

Combining (10)–(14) gives

H(X|Y) ≥ n(1 − C) −
n(1−R)∑

j=1

H(Sj

∣∣Ω1, . . . ,Ωn) (15)

where

• Sj = 1 if and only if Θi = 1 for an odd number of indicesi in the j-th parity-check equation.
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• Due to the symmetry of the channel

P (αi) , Prob(Θi = 1
∣∣Ωi = αi)

=
a(−αi)

a(αi) + a(−αi)
=

1

1 + eαi
.

In order to calculate the conditional entropy of a single component of the syndrome, the following lemma is used:
Lemma 2: If the j-th component of the syndromeS involvesk variables whose indices are{i1, . . . , ik} then

Prob(Sj = 1
∣∣Ωi1 = α1, . . . ,Ωik

= αk)

=
1

2

[
1 −

k∏

m=1

(
1 − 2P (αm)

)]

where
1 − 2P (α) = tanh

(α

2

)
.

The proof of this lemma follows from [14, Lemma 4.1].

• For a parity-check node of degreek, the conditional entropyH(Sj

∣∣Ω1, . . . ,Ωn) is equal to thek-dimensional
integral

∫ ∞

0
. . .

∫ ∞

0
h2

(
1

2

[
1 −

k∏

m=1

tanh
(αm

2

)]
)

k∏

m=1

fΩ(αm) dα1 . . . dαk

wherefΩ is thepdf of the absolute value of the LLR, andh2 is the binary entropy function to the base 2.
• Using the following Taylor series expansion ofh2:

h2(x) = 1 − 1

2 ln 2

∞∑

p=1

(1 − 2x)2p

p(2p − 1)
, 0 ≤ x ≤ 1 (16)

then, for a parity-check node of degreek, the abovek-dimensional integral is transformed to the following
infinite sum of one-dimensional integrals (see [53, Appendix II]):

H(Sj

∣∣Ω1, . . . ,Ωn)

= 1 − 1

2 ln 2

∞∑

p=1

{
1

p(2p − 1)
·
(∫ ∞

0
a(l)(1 + e−l) tanh2p

( l

2

)
dl

)k}
. (17)

For an arbitrary full-rank parity-check matrix of a binary linear block codeC, let Γk designate the fraction of
the parity-checks involvingk variables, and letΓ(x) ,

∑
k Γkx

k. The combination of (15) and (17) leads to the
following lower bound on the conditional entropy of the transmitted codeword given the received sequence at the
channel output:

H(X|Y)

n
≥ R − C +

1 − R

2 ln 2

∞∑

p=1

Γ(gp)

p(2p − 1)
(18)

where

gp ,

∫ ∞

0
a(l)(1 + e−l) tanh2p

(
l

2

)
dl, p ∈ N. (19)

The above lower bound on the conditional entropy holds for any representation of the code by a full-rank parity-
check matrix. The symmetry condition for MBIOS channels states thata(l) = e la(−l) for all l ∈ R, and therefore
(19) gives that

gp = E

[
tanh2p

(
L

2

)]
, p ∈ N (20)

whereE designates the statistical expectation with respect to theL-density functiona, andL is a random variable
which stands for the LLR at the output of the channel given that the input bit is zero. Eq. (20) implies that the
non-negative sequence{gp}p≥1 is monotonically non-increasing and it only depends on the communication channel
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(but not on the code). Note also that, from (20),0 ≤ gp < 1 for all p ∈ N (unless the channel is perfect, which
then implies thatgp = 1 for all values ofp).

We note that the conditional entropy on the LHS of (18) depends only on the code and the communication
channel, but its lower bound on the RHS of (18) depends also onthe specific representation of the code by a
bipartite graph.

The lower bound in (18) improves the bound in [7, Eq. (15)], except for the binary symmetric channel (BSC)
where they both coincide. The reason is that the derivation of (18) relies on the un-quantized soft output of the
channel whereas the derivation of the bound in [7, Eq. (15)] relies on a two-level quantization of this output (which
therefore does not loosen the bound for a BSC).

2) An adaptation of the analysis to LDPC codes which are not necessarily represented by full-rank parity-check
matrices: The derivation of the lower bound in (18) relies on the assumption that the parity-check matrix is full
rank. Though it seems like a feasible requirement for specific binary linear block codes, this poses a problem when
considering ensembles of LDPC codes. In the latter case, a parity-check matrix which corresponds to a randomly
chosen bipartite graph with a given pair of degree distributions may not be full rank.1 To this end, we present the
following lemma:

Lemma 3:For (regular and irregular) ensembles of binary LDPC codes,the inequality in (18) stays valid for
every code from the ensemble with the following modifications:

• The rateR of the code is replaced with the design rate (Rd) of the ensemble.
• The sequence{Γk} denotes the degree distribution of the parity-check nodes of the ensemble (where the

representation of a code by a parity-check matrix, with the given degree distribution, possibly includes some
linearly dependent rows).

Proof: See Appendix I.

D. Sphere-Packing Bounds

Sphere-packing bounds are commonly used for the study of theperformance limitations of finite-length error-
correcting codes over memoryless symmetric channels. For atutorial on classical sphere-packing bounds, the reader
is referred to [39, Chapter 5]. This paper relies on the following sphere-packing bounds (see Section V-D):

• The SP59 bound: The 1959 sphere-packing (SP59) bound of Shannon [44] serves for the evaluation of the
performance limits of block codes whose transmission takesplace over an AWGN channel. This lower bound
on the decoding error probability is expressed in terms of the block length and the rate of the code; however, it
does not take into account the modulation used, but only assumes that the modulated signals have equal energy.
It is often used as a reference for quantifying the sub-optimality of error-correcting codes under some practical
decoding algorithms (see [39, Chapter 5] and references therein). An efficient algorithm for the calculation of
the SP59 bound is introduced in [54, Section IV.C].

• The ISP bound: This sphere-packing bound was recently derived in [54, Section III]. The ISP bound applies to
all memoryless symmetric channels. For codes of finite blocklength, it improves the classical sphere-packing
bound of Shannon, Gallager and Berlekamp [45] and the sphere-packing bound of Valembois and Fossorier
[51] where this improvement is especially pronounced for short to moderate block lengths. We note that the
ISP bound in [54] is not uniformly tighter than the SP59 boundfor equi-energy signals transmitted over an
AWGN channel.

Comparisons between the sphere-packing bounds in [44], [51] and [54, Section III] are shown in [54, Section V].

E. Cycles in Graphs

We consider in this paper the cycles in bipartite graphs which represent capacity-approaching LDPC code
ensembles. To this end, we define and exemplify some notions which are relevant to the analysis in this paper.

1A concentration of the code rate to the design rate of LDPC code ensembles is proved asymptotically (for an infinite block length) under
some conditions (see [27] and [37, Lemma 3.22]). However, weare interested in a lower bound on the conditional entropy which also holds
for finite-length binary linear block codes regardless of this asymptotic concentration property.
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Definition 2: [Cycle and cycle length]A cycle in an un-directed graph is a closed path. The length of a cycle
is the number of edges on this closed path. Thegirth of an un-directed graph is defined as the shortest length of
its cycles.

Definition 3: [Tree] A tree is a connected graph that has no cycles.
From Definition 3, a removal of any edge from a tree makes the graph disconnected. An important property of
trees is that any two vertices are connected by a single path.

Every graphG has subgraphs that are trees. This motivates the following definition:
Definition 4: [Spanning tree] A spanning treeof a connected graphG is a tree which spans all the vertices

of G. Note that by repeatedly removing edges which originally create cycles in the graph, it follows that every
connected graph has a spanning tree.

Definition 5: [Number of components of a graph]Let G be a possibly disconnected graph. Thenumber of
componentsof G is the minimal number of its connected subgraphs whose unionforms the graphG (clearly, a
connected graph has a single component).

Definition 6: [Cycle rank] Let G be an un-directed graph with|VG | vertices,|EG | edges andC(G) components.
The cycle rankof G, denoted byβ(G), is defined as the maximal number of edges which can be removedfrom
the graph without increasing its number of components (notethat each component becomes a spanning tree after
the removal of these edges).
From Definition 6, the cycle rank of a graph is a measure of the edge redundancy with respect to the connectedness
of this graph. The cycle rank satisfies the following equality (see [16, p. 154]):

β(G) = |EG | − |VG | + C(G). (21)

Definition 7: [Full spanning forest] Let G be an un-directed graph. Afull spanning forestF of the graphG is
the subgraph ofG that results from removing theβ(G) edges from Definition 6. Clearly, the number of components
of F andG is the same. Note that a graph may have a multiplicity of full spanning forests.

Definition 8: [Fundamental cycle] Let F be a full spanning forest of an un-directed graphG, and lete be an
edge in the relative complement ofF . The cycle of the subgraphF ∪ {e} (whose existence and uniqueness is
guaranteed by [16, Theorem 3.1.11]) is called afundamental cycleof G which is associated withF .

Remark 1:Each of the edges in the relative complement of a full spanning forestF gives rise to adifferent
fundamental cycle of the graphG.

Definition 9: [Fundamental system of cycles]Thefundamental system of cyclesof a graphG which is associated
with a full spanning forestF is the set of all fundamental cycles ofG associated withF .

Remark 2:From Remark 1, the cardinality of the fundamental system of cycles of G associated with a full
spanning forest of this graph is equal to the cycle rankβ(G).

Example 1: [Fundamental system of cycles in a bipartite graph]This example refers to the bipartite graph
in Fig. 1. This graph is connected, but it is clearly not a tree. As an example, consider the cycle〈v9, c4, v10, c5, v9〉
whose length is 4. Since the number of vertices in this graph is 15 and the number of its edges is 30, then from
(21), the cycle rank of this connected graph is30 − 15 + 1 = 16.

In order to get a spanning tree of the graph in Fig. 1, we removerepeatedly 16 edges which create cycles while
preserving the connectivity of the graph.

The parity-check matrix̃H = [h̃i,j ] in Fig. 2, with 16 bolded zero entries which correspond to theremoved edges
from the original graph in Fig. 1, represents a spanning treeof this graph. To exemplify its connectivity, note that
the variable nodesv5 andv6 are connected by the path〈v6, c2, v3, c1, v1, c4, v5〉 which is of length 6. This path can
be observed directly from the parity-check matrix̃H = [h̃i,j] by alternate horizontal and vertical moves through
the ones ofH̃; explicitly, this path is determined by a horizontal move from h̃2,6 to h̃2,3, a vertical move tõh1,3,
a horizontal move tõh1,1, a vertical move tõh4,1 and finally a horizontal move tõh4,5. In a similar way, it can be
verified that every two vertices in the bipartite graph ofH̃ are connected, and it spans all the 15 vertices of the graph
in Fig. 1 (since there is no row or column iñH which is a zero vector). Hence, this graph is indeed a spanning tree
of the bipartite graph in Fig. 1. This spanning tree enables to obtain a set of 16 fundamental cycles by returning
back a single bolded zero in Fig. 2 (among its 16 bolded zeros)to 1. For example, by setting̃h1,6 = 1 (which is
equivalent to returning the edge which connectsv6 with c1), we get the fundamental cycle〈v3, c2, v6, c1, v3〉.
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Fig. 1. A parity-check matrixH and the corresponding bipartite graph. For illustrating this relationship, column 8 and row 2 ofH are
bolded; the corresponding variable and parity-check nodes, and the attached edges are also bolded (this figure appears in [36]).
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Fig. 2. A parity-check matrix which corresponds to a spanning tree of the bipartite graph in Fig. 1. As compared to the parity-check matrix
H in Fig. 1, the new parity-check matrix̃H is obtained by changing the values of the bolded 16 entries from 1 to 0.

F. Notation

We consider in this paper sequences of capacity-approaching LDPC code ensembles, and refer to the case where
the fractional gap (in rate) to capacity(ε) vanishes. Accordingly, based on standard notation [56], wedefine

• f(ε) = O
(
g(ε)

)
means that there are positive constantsc andδ, such that0 ≤ f(ε) ≤ c g(ε) for all 0 ≤ ε ≤ δ.

• f(ε) = Ω
(
g(ε)

)
means that there are positive constantsc andδ, such that0 ≤ c g(ε) ≤ f(ε) for all 0 ≤ ε ≤ δ.

Note that the values ofc andδ must be fixed, and should not depend onε.
Throughout the paper

h2(x) , −x log2(x) − (1 − x) log2(1 − x), 0 ≤ x ≤ 1

denotes the binary entropy function to the base 2, andh−1
2 : [0, 1] →

[
0, 1

2

]
is the inverse of the restriction ofh2 to[

0, 1
2

]
. We also denote the block error probability and the bit errorprobability of a code byPB andPb, respectively

(for the BEC, the error probability is replaced with an erasure probability). Note thatPb refers to the bit error
probability of the information bits.

This paper is focused on the analysis for MBIOS channels. Forbasic definitions and examples of MBIOS
channels, the reader is referred to [37, Section 4.1] (whichuses a slightly different abbreviation: BMS channels).

For further notation used throughout this paper, Section II-A provides the setting and notation for the degree
distributions and the design rate of LDPC code ensembles, Section II-B provides the notation for the capacity and
Bhattacharyya functionals, Section II-C presents the notation for the lower bound on the conditional entropy (see
(18)–(20)), and Section II-E provides the terminology and notation used here in the context of cycles in bipartite
graphs.

III. N EW INFORMATION-THEORETIC BOUNDS

This section introduces information-theoretic bounds which are related to the degree distributions, graphical
complexity, and the number of fundamental systems of cyclesin the bipartite graphs of LDPC code ensembles.

Theorem 1:[On the average degree of the parity-check nodes]Let C be a binary linear block code of block
length n whose transmission takes place over an MBIOS channel. LetG be a bipartite graph which corresponds
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to a full-rank parity-check matrix ofC. Let C designate the capacity of the channel, in bits per channel use, and
a be theL-density function of this channel. Assume that the code rateis (at least) a fraction1 − ε of the channel
capacity (where0 < ε < 1), and the code achieves a block error probabilityPB or a bit error probabilityPb under
some decoding algorithm. Then, the average right degree of the bipartite graph (i.e., the average degree of the
parity-check nodes inG) satisfies

aR ≥

2 ln


 1

1−2h−1
2

(
1−C−δ

1−(1−ε)C

)




ln
(

1
g1

) (22)

whereg1 is given in (19) (and it depends only on the channel), and

δ ,

{
PB + h2(PB)

n for a block error probabilityPB

h2(Pb) for a bit error probabilityPb
. (23)

Furthermore, among all the MBIOS channels which exhibit a given capacityC and for which a target block error
probability (PB) or a bit error probability(Pb) is obtained under some decoding algorithm, a universal lower bound
on aR holds by replacingg1 on the RHS of (22) withC.

For the BEC, the following tightened version of (22) holds:

aR ≥
ln
(
1 + p−Pb

(1−p)ε+Pb

)

ln
(

1
1−p

) (24)

wherep is the erasure probability of the channel, andPb is the bit erasure probability at the decoder.

Remark 3: [The relation of Theorem 1 to the bound in [53]] In the particular case wherePb vanishes, the
bound in (22) forms a tightened version of the bound given in [53, Eq. (77)]. This point is clarified in Discussion 1
which succeeds the proof of Theorem 1 (see page 17). In the limit where the gap (in rate) to capacity vanishes
(and with vanishingPb), the lower bounds on the average right degree in (22) and [53, Eq. (77)] both grow like
the logarithm of the inverse of this gap, and they therefore possess the same asymptotic behavior where

aR , aR(ε) = Ω

(
ln

1

ε

)
. (25)

However, in spite of the similarity in the asymptotic behavior of the two lower bounds asε → 0, they may differ
significantly even for rather small values ofε (see Example 3 on p. 27).

Theorem 1 also provides a universal lower bound on the average right degree for the set of all MBIOS channels
with a given capacityC. This theorem states the conditions where the bound in (22) gets its extreme values among
all MBIOS channels which exhibit a given capacity.

Remark 4: [Adaptation of Theorem 1 to LDPC code ensembles]As is clarified in Discussion 2 (see page 17),
Theorem 1 can be adapted to hold for an arbitrary ensemble of(n, λ, ρ) LDPC codes. In this case, the requirement
of a full-rank parity-check matrix of a particular codeC from this ensemble is relaxed by requiring that the design
rate of the LDPC code ensemble is equal to a fraction1− ε of the channel capacity. In this case,Pb andPB stand
for the average bit and block error (or erasure) probabilities of the ensemble under some decoding algorithm.

Remark 5: [The graphical complexity of finite-length LDPC codes]In Section V-D, we apply Theorem 1 and
sphere-packing bounds on the decoding error probability (see [44], [45], [51], [54]) to obtain information-theoretic
lower bounds on the graphical complexity of finite-length LDPC codes. These bounds are expressed as a function
of the target block error probability and the gap between thedesign rate of the code and the channel capacity.
We note that in this context, the graphical complexity measures the number of edges used for the representation
of finite-length codes by bipartite graphs. By referring to the total number of edges, the graphical complexity is
strongly related to the decoding complexity per iteration.The bounds are compared with capacity-approaching
LDPC code ensembles under BP decoding, and they are shown to be informative (see Section V-D).

Based on Remark 4 and the background which is provided in Section II-E, the following result is derived:
Corollary 1: [On the asymptotic average cardinality of the fundamental system of cycles of LDPC code

ensembles]Let
{(

n, λ, ρ
)}

be a sequence of LDPC code ensembles whose transmission takes place over an MBIOS
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channel. Let the design rate of these ensembles be a fraction1− ε of the channel capacityC, and assume that the
average bit error/ erasure probability of this sequence vanishes under some decoding algorithm as we let the block
length(n) tend to infinity. Consider the average cardinality of the fundamental system of cycles in bipartite graphs
from the LDPC code ensemble(n, λ, ρ) where the graphs are chosen uniformly at random (from Remark2, the
cardinality of the fundamental system of cycles in a graphG is equal to its cycle rankβ(G)). Then, the following
asymptotic lower bound holds:

lim inf
n→∞

ELDPC(n,λ,ρ)

[
β(G)

]

n

≥
(1 − C) ln

(
g1

[
1 − 2h−1

2

(
1−C

1−(1−ε)C

)]−2
)

ln
(

1
g1

) − 1 (26)

whereg1 is introduced in (19). For a BEC whose erasure probability isp, a tightened bound gets the form:

lim inf
n→∞

ELDPC(n,λ,ρ)

[
β(G)

]

n
≥ p ln

(
1 − p + p

ε

)

ln
(

1
1−p

) − 1. (27)

Remark 6:Corollary 1 provides two results which are of the typeΩ
(
ln 1

ε

)
.

Theorem 2:[On the degree distributions of capacity-approaching LDPCcode ensembles]Let
(
n, λ, ρ

)
(or

(n,Λ,Γ)) be an ensemble of LDPC codes whose transmission takes placeover an MBIOS channel. Assume that the
design rate of the ensemble is equal to a fraction1− ε of the channel capacityC, and letPb designate the average
bit error (or erasure) probability of the ensemble under ML decoding or any sub-optimal decoding algorithm. Then,
the following properties hold for an arbitrary finite (and fixed) degreei

Λi(ε) = O(1) (28)

Γi(ε) = O
(
εC + h2(Pb)

)
(29)

λi(ε) = O

(
1

ln 1
εC+h2(Pb)

)
(30)

ρi(ε) = O

(
εC + h2(Pb)

ln 1
εC+h2(Pb)

)
. (31)

For the case where the transmission takes place over the BEC,the bounds above are tightened by replacingh2(Pb)
with Pb.

Remark 7: [On the connection between Theorems 1 and 2]Theorem 2 implies that for every capacity-
approaching LDPC code ensemble whose bit error probabilityvanishes and also for an arbitrary finite degreei in
their bipartite graphs, the fraction of edges attached to variable nodes or parity-check nodes of degreei tends to zero
as the gap to capacity(ε) vanishes. This conclusion is consistent with Theorem 1 which states that the average left
and right degrees of the bipartite graphs scale at least likeln 1

ε ; hence, these average degrees necessarily become
unbounded as the gap to capacity vanishes.

Corollary 2: Under the assumptions of Theorem 2, if the asymptotic bit error/ erasure probability vanishes then
the following properties hold for an arbitrary finite degreei

Λi = O(1) , Γi = O(ε) ,

λi = O

(
1

ln 1
ε

)
, ρi = O

(
ε

ln 1
ε

)
.

Remark 8: [Linear programming upper bounds on the degree distributions of LDPC code ensembles]
Theorem 2 and Corollary 2 provide asymptotic results for thedegree distributions of LDPC code ensembles in
the limit where the gap to capacity vanishes (i.e.,ε → 0). Section V-C provides linear programming (LP) upper
bounds on the degree distributions which are expressed in terms of the target average bit error probability, and
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the (possibly non-zero) gap between the channel capacity and the design rate of the ensemble for achieving this
target. Similarly to Theorem 2 and Corollary 2, the LP boundsin Section V-C hold under ML decoding, and are
therefore general in terms of the decoding algorithm. We note that these LP bounds apply to finite-length LDPC
code ensembles and to the asymptotic case of an infinite blocklength. Analytical solutions for these LP bounds are
provided in Section V-C, and these bounds are also compared with some capacity-achieving sequences of LDPC
code ensembles for the BEC under BP decoding. Additional LP bounds are derived to hold for the set of all the
MBIOS channels which exhibit a given capacity, and that alsoachieve a target bit error probability. These universal
LP bounds are compared with the LP bounds which refer to specific MBIOS channels (see Section V-C).

We turn now our attention to sequences of LDPC code ensembleswhich asymptotically achieve vanishing
bit error probability under BP decoding. The following theorem gives upper bounds on the fraction of degree-2
variable nodes(Λ2) and the fraction of edges attached to these nodes(λ2) for an arbitrary sequence of LDPC code
ensembles whose transmission takes place over an MBIOS channel. It relies on information-theoretic arguments and
the stability condition. We note thatλ2 is involved in the stability condition (see (9)). Moreover,some previously
reported information-combining bounds on the performanceof LDPC code ensembles under BP decoding are
sensitive to the value ofλ2 (see, e.g., [49]).

Theorem 3:[On the fraction of degree-2 variable nodes and the fractionof edges attached to these nodes for
LDPC code ensembles]Let

{(
nm, λ(x), ρ(x)

)}
m≥1

be a sequence of LDPC code ensembles whose transmission
takes place over an MBIOS channel. Assume that this sequenceasymptotically achieves a fraction1 − ε of the
channel capacity under BP decoding with vanishing bit errorprobability. Then, the fraction of degree-2 variable
nodes satisfies

Λ2 <
1 − C

2B(a)

(
1 +

εC

1 − C

)

·




1 +
ln
(

1
g1

)

ln

(
g1[

1−2h−1
2

(
1−C

1−(1−ε)C

)]2

)




(32)

and the fraction of edges attached to these nodes satisfies

λ2 <
ln
(

1
g1

)

B(a) ln

(
g1[

1−2h−1
2

(
1−C

1−(1−ε)C

)]2
) (33)

where the Bhattacharyya constantB(a) and the parameterg1 are introduced in (8) and (19), respectively. Consider
the set of all the MBIOS channels with a given capacityC and a Bhattacharyya constantB(a), for which the bit
error probability vanishes under BP decoding. Then, universal upper bounds onΛ2 and λ2 hold for this set of
channels by replacingg1 on the RHS of (32) and (33), respectively, withC.

For a BEC with an erasure probabilityp, the following tightened bounds hold:

Λ2 <
1

2

(
1 +

ε(1 − p)

p

)
1 +

ln
(

1
1−p

)

ln
(
1 − p + p

ε

)


 (34)

and

λ2 <
ln
(

1
1−p

)

p ln
(
1 − p + p

ε

) . (35)

Corollary 3: Under the assumptions of Theorem 3, in the limit where the gapto capacity vanishes under BP
decoding (i.e.,ε → 0), the fraction of degree-2 variable nodes satisfies

Λ2 ≤ 1 − C

2B(a)
(36)
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where this upper bound is necessarily not larger than1
2 . Note that this forms a universal upper bound on the fraction

of degree-2 variable nodes for all MBIOS channels with a given capacityC and a Bhattacharyya constantB(a)
for which the bit error probability vanishes under BP decoding, and for which the gap to capacity vanishes.

In the continuation to this paper, sufficient conditions forthe tightness of (36) are considered (see Lemma 7 on
page 24).

Remark 9:Note that for capacity-achieving sequences of LDPC code ensembles whose transmission takes place
over the BEC, the bound in (36) is particularized to1

2 regardless of the erasure probability of this channel. This
is indeed the case for some sequences of LDPC code ensembles which achieve the capacity of the BEC under BP
decoding (see, e.g., [24], [29], [48]).

Corollary 4: [A looser and simpler version of the upper bound onλ2] The bound (33) implies that

λ2 <
1

[
c1 + c2 ln

(
1
ε

)]+ (37)

for some constantsc1 and c2 which only depend on the MBIOS channel, and where[x]+ , max(x, 1); the
coefficientc2 of the logarithm in (37) is given by

c2 =
B(a)

ln
(

1
g1

) (38)

and it is strictly positive.
In the following proposition, it is shown that for the BEC, the bounds in (35) and (37) are tight under BP

decoding.
Proposition 1: [On the tightness of the upper bound onλ2 for capacity-achieving sequences of LDPC code

ensembles over the BEC]The bounds in (35) and (37) are tight for the capacity-achieving sequence of right-regular
LDPC code ensembles over the BEC in [48]. For this sequence,λ2 , λ2(ε) vanishes asε → 0 similarly to the
upper bound in (37) with the same coefficientc2 in (38).

IV. PROOFS ANDDISCUSSIONS

A. Proof of Theorem 1

Let X be a random codeword from the binary linear block codeC, and letY designate the output of the
communication channel whenX is transmitted. Based on the assumption that the codeC is represented by a full-
rank parity-check matrix andG is the corresponding bipartite graph which represents thiscode, then inequality (18)
holds. Sincef(t) = xt is convex for anyx ≥ 0 then Jensen’s inequality gives

Γ(x) =
∑

i

Γix
i ≥ x

∑
i i Γi = xaR , x ≥ 0 .

Substituting the inequality above in (18) implies that

H(X|Y)

n
≥ R − C +

1 − R

2 ln 2

∞∑

k=1

gaR
k

k(2k − 1)
. (39)

Lemma 4:
gk ≥ (g1)

k , ∀k ∈ N. (40)

Proof: For k ≥ 1, Jensen’s inequality and (20) give

gk = E

[
tanh2k

(L

2

)]

≥
(

E

[
tanh2

(L

2

)])k

= (g1)
k .
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The substitution of (40) in (39) gives

H(X|Y)

n
≥ R − C +

1 − R

2 ln 2

∞∑

k=1

(gaR
1 )k

k(2k − 1)
. (41)

The substitutionx = 1−√
u

2 in (16) gives

1

2 ln 2

∞∑

k=1

uk

k(2k − 1)
= 1 − h2

(
1 −√

u

2

)
, ∀u ∈ [0, 1]. (42)

Since0 ≤ tanh2(x) < 1 for all x ∈ R, we get from (20) that0 ≤ g1 ≤ 1 (this property holds for the entire
sequence{gk}∞k=1). Substituting (42) into (41) gives the following lower bound on the conditional entropy:

H(X|Y)

n
≥ 1 − C − (1 − R)h2

(
1 − g

aR/2
1

2

)
. (43)

On the other hand, Fano’s inequality provides the upper bound

H(X|Y)

n
≤
{

R PB + h2(PB)
n

R h2(Pb)
(44)

where, for the bound which is expressed in terms of the bit error probability Pb, one can assume without any
loss of generality that the firstnR bits of the code are its information bits, and their knowledge is sufficient for
determining the codeword.

In order to make the statement also valid for code ensembles (to be clarified in Discussion 2), we rely on the
inequalityR ≤ 1, and loosen the bound in (44) to get

H(X|Y)

n
≤ δ (45)

whereδ is introduced in (23). Combining (43) and (45) gives

δ ≥ 1 − C − (1 − R)h2

(
1 − g

aR/2
1

2

)
. (46)

Since the RHS of (46) is monotonically increasing inR, then following our assumption thatR ≥ (1 − ε)C, the
bound is loosened by replacingR with (1 − ε)C. This gives the inequality

h2

(
1 − g

aR/2
1

2

)
≥ 1 − C − δ

1 − (1 − ε)C
.

Since the binary entropy functionh2 is monotonically increasing on[0, 1
2 ] then

g
aR
2

1 ≤ 1 − 2h−1
2

(
1 − C − δ

1 − (1 − ε)C

)

which gives the lower bound onaR in (22).
Let us now consider the particular case where the transmission is over the BEC. Note that for a BEC with

erasure probabilityp, gk = 1− p for all k ∈ N (in this case we haveL ∈ {0,+∞} with probabilitiesp and1− p,
respectively, and the equalitytanh(+∞) = 1 is exploited in (20)). Therefore (39) is particularized to

H(X|Y)

n
≥ R − C +

(1 − R)(1 − p)aR

2 ln 2

∞∑

k=1

1

k(2k − 1)
.

Substitutingu = 1 in (42) gives the equality

1

2 ln 2

∞∑

k=1

1

k(2k − 1)
= 1 (47)
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and
H(X|Y)

n
≥ R − C + (1 − R)(1 − p)aR . (48)

Note that the RHS of (48) is monotonic increasing as a function of the rateR. Following the assumption that
R ≥ (1 − ε)C whereC = 1 − p is the capacity of the BEC, we get

H(X|Y)

n
≥ −ε(1 − p) +

(
1 − (1 − ε)(1 − p)

)
(1 − p)aR . (49)

Similarly to (44) and (45), we get for the BEC

H(X|Y)

n
≤ Pb (50)

where the decoder findsXi with probability 1 − Pb; otherwise, the bitXi is not determined by the decoder, and
its conditional entropy (given the sequenceY) is upper bounded by 1 bit. Combining (49) with (50) gives

Pb ≥ −ε(1 − p) +
(
1 − (1 − ε)(1 − p)

)
(1 − p)aR . (51)

Finally, the lower bound on the average right degree in (24) follows from (51) by simple algebra. Note that in the
case wherePb = 0, the resulting lower bound coincides with the result obtained in [40, p. 1619] (though it was
derived there in a different way), and it gets the form

aR ≥
ln
(
1 + p

(1−p)ε

)

ln
(

1
1−p

) . (52)

We wish now to show that among all the MBIOS channels which exhibit a given capacityC, the lower bound
on the average degree of the parity-check nodes as given in (22) attains its maximal and minimal values for a BSC
and BEC, respectively.

Lemma 5: [Extreme values ofg1 among all MBIOS channels with a given capacity]Among all the MBIOS
channels with a given capacityC, the value ofg1 satisfies

C ≤ g1 ≤
(
1 − 2h−1

2 (1 − C)
)2

(53)

and these upper and lower bounds ong1 are attained for a BSC and BEC, respectively.
Proof: See Appendix II.

Remark 10:This lemma is in fact equivalent to the statement in [20, Theorem 1] with the extreme values derived
in its proof (note that (20) implies that the sequence{gk} is equal to the sequence{m2k} in [20], from which the
equivalence between Lemma 5 and [20, Theorem 1] follows directly). In Appendix II, we present an alternative
proof which is more elementary.2

Remark 11:The ratio between the upper and lower bounds ong1 (see Lemma 5) is equal toη(C) =

(
1−2h−1

2 (1−C)
)2

C .
Based on (42), one can verify thatη is a monotonic decreasing function of the capacity where it tends to
2 ln 2 ≈ 1.386 whenC → 0, and it is 1 (i.e., the upper and lower bounds coincide) forC = 1.

Consider the set of all MBIOS channels with a given capacityC for which a target block error probability
(PB)) or bit error probability(Pb) is obtained under some decoding algorithm. To complete the proof of the last
statement in Theorem 1, note that among this set of channels,the lower bound in (22) is maximized or minimized
by maximizing or minimizing the value ofg1, respectively. It therefore follows from Lemma 5 that a universal
bound onaR for the above set of channels holds by replacingg1 on the RHS of (22) withC. The gives the following
universal lower bound:

aR ≥

2 ln


 1

1−2h−1
2

(
1−C−δ

1−(1−ε)C

)




ln
(

1
C

) . (54)

2The author was un-aware of [20] until its publication as a journal paper. The alternative proof on Lemma 5 was found independently of
this work.
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Discussions on Theorem 1 via its Proof

In the following we discuss Theorem 1 via its proof, and consider some of the generalizations of this theorem.
Discussion 1:[A discussion on the bounds in Theorem 1 and [53, Eq. (77)]]If the bit error probability

vanishes, the lower bound in (22) forms a tightened version of [53, Eq. (77)]. We note that both bounds are based
on (18) but the difference in their derivation follows since[53] relies on the fact that the RHS of (18) is an infinite
sum of non-negative terms, and a simple lower bound is obtained in [53] by truncating this sum after its first term.
In the proof of Theorem 1, on the other hand, a tightened lowerbound on the average right degree(aR) is derived
by applying Jensen’s inequality to the RHS of (18) (see (41)), and calculating exactly the resulting bound via (42).
In this context, see Remark 3 on page 11. The additional dependence of the bound in (22) onPb makes Theorem 1
valid for codes of finite block length, whereas the bound in [53, Eq. (77)] can be only applied to the asymptotic
case of vanishing bit error (or erasure) probability by letting the block length tend to infinity.

Discussion 2:[An adaptation of Theorem 1 for LDPC code ensembles]The statement in Theorem 1 can
be adapted for finite-length LDPC code ensembles whose transmission takes place over an MBIOS channel. First,
from Section II-C.2, the lower bound on the conditional entropy (18) holds for every code from this ensemble if we
relax the requirement of a full-rank parity-check matrix, and instead replace the rateR of the code by the design
rateRd of the ensemble. Similarly to the derivation of (43), we get

H(X|Y)

n
≥ 1 − C − (1 − Rd)h2

(
1 − g

aR/2
1

2

)
.

Assume thatRd ≥ (1 − ε)C. Since the RHS of the above inequality is monotonic increasing with Rd, then for
every code in this ensemble

H(X|Y)

n
≥ 1 − C −

(
1 − (1 − ε)C

)
h2

(
1 − g

aR/2
1

2

)
. (55)

Note that this lower bound on the conditional entropy is global in the sense that it does not depend on the code from
the (n, λ, ρ) LDPC code ensemble; all these codes are represented by bipartite graphs whose common value ofaR

is equal to
(∫ 1

0 ρ(x) dx
)−1

. Note also that the parameterg1 does not depend on the code. Taking the expectation
over the LDPC code ensemble gives

E

[
H(X|Y)

n

]
≥ 1 − C −

(
1 − (1 − ε)C

)
h2

(
1 − g

aR/2
1

2

)
. (56)

Note that0 ≤ g1 < 1 (unlessg1 = 1 when the capacity of the binary-input channel is 1 bit per channel use which
implies that the channel is noiseless).

The loosening of the bound in the transition from (44) to (45)is due to the fact that an upper bound on the
rate R of a code from this ensemble is required; since binary codes are considered, a trivial upper bound on the
rate is 1 bit per channel use (note that the rate of an arbitrarily chosen code from this ensemble may exceed the
channel capacity). Due to the concavity of the binary entropy function, Jensen’s inequality gives

E

[
H(X|Y)

n

]
≤
{

PB + h2(PB)
n

h2(Pb)
(57)

wherePB , E
[
PB
]

and Pb , E
[
Pb
]

designate the average block and bit error probabilities, respectively, of the
ensemble. Combining (56) and (57) leads to an adaptation of Theorem 1 for LDPC code ensembles with the
following modifications:

• The parity-check matrices of the codes are not required to befull-rank (which otherwise would be problematic
for LDPC code ensembles).

• The requirement on the rate a code is replaced by the same requirement on the design rate of the LDPC code
ensemble where we refer to the average block and bit error probabilities of this ensemble.

Note that the adaptation of the statement in Theorem 1 for LDPC code ensembles whose transmission takes place
over the BEC is more direct. For a BEC, sinceh2(Pb) on the LHS of (46) is replaced byPb on the LHS of (51),
then there is no need for Jensen’s inequality as in (57).
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Discussion 3:[Adaptation of Theorem 1 for punctured LDPC code ensembles]In the following, we consider
an adaptation of Theorem 1 for LDPC code ensembles with random or intentional puncturing where the transmission
takes place over an MBIOS channel. To this end, the reader is referred to [41, Section V] where lower bounds are
derived on the average right degree and the graphical complexity of such ensembles. The derivation of these bounds
relies on a lower bound [41, Eqs. (2) and (3)] which generalizes (18) to the case of statistically independent parallel
MBIOS channels. This lower bound was particularized in [41,Sections II–IV] for the two settings of randomly
and intentionally punctured LDPC code ensembles which are communicated over a single MBIOS channel. The
concept of the proof of Theorem 1 enables to tighten the lowerbounds on the average right degree and the graphical
complexity, as presented in [41, Section V], for both randomly and intentionally punctured LDPC code ensembles.
More explicitly, by comparing the proof of (22) with the derivation of [53, Eq. (77)] under the assumption of
vanishing bit error probability, one notices that the tightening of the bound in the former case is enabled by
combining Lemma 4 with the equality in (42) (instead of the truncation of a non-negative infinite series after its
first term, as was done for the derivation of the looser bound in [53]). This difference can be exploited exactly in
the same way in connection with the results from [41, SectionV] for improving the tightness of the lower bounds
on the average right degree and the graphical complexity forpunctured LDPC code ensembles.

Proof of Corollary 1

The following lemma relies on the background material in Section II-E, and it serves for proving Corollary 1.
Lemma 6: [Cardinality of the fundamental system of cycles]Under the assumptions of Theorem 1, the

cardinality of the fundamental system of cycles of a bipartite graphG, associated with a full spanning forest ofG,
is larger than

n
[
(1 − R)(aR − 1) − 1

]
(58)

whereaR can be replaced by the lower bounds in (22) and (24) for a general MBIOS channel and a BEC, respectively.
From (25), the cardinality of the fundamental system of cycles of the bipartite graphG which is associated with a
full spanning forest of this graph isΩ

(
ln 1

ε

)
.

Proof: From Remark 2 (see Section II-E), the cardinality of the fundamental system of cycles of a bipartite
graphG, which is associated with a full spanning forest ofG, is equal to the cycle rankβ(G). From Eq. (21),
β(G) > |EG | − |VG | where |EG | and |VG | designate the number of edges and vertices. Specializing this for a
bipartite graphG which represents a full-rank parity-check matrix of a binary linear block code, the number of
vertices satisfies|VG | = n(2−R) (since there aren variable nodes andn(1−R) parity-check nodes in the graph)
and the number of edges satisfies|EG | = n(1 − R)aR. Combining these equalities gives the lower bound on the
cardinality of the fundamental system of cycles in (58).

The proof of (26) and (27) is based on Remark 4 and Lemma 6. By substitutingPb = 0 in (22), one obtains the
following lower bound on the average right degree as the average bit error probability of the LDPC code ensemble
vanishes:

aR ≥

2 ln


 1

1−2h−1
2

(
1−C

1−(1−ε)C

)




ln
(

1
g1

) . (59)

Since the average bit error probability of the ensemble is assumed to vanish as the block length tends to infinity,
then asymptotically with probability 1, the code rate of an arbitrary code from the considered ensemble does not
exceed the channel capacity. By substituting the lower bound on aR from (59) and an upper bound onR (i.e.,
R ≤ C) into (58), the asymptotic result in (26) follows readily. Asimilar proof of the tightened bound for the BEC
in (27) follows by substitutingPb = 0 in (24). This concludes the proof of Corollary 1.

B. Proof of Theorem 2

Eq. (28) is trivial (though it is demonstrated in the continuation that, for degree-2 variable nodes, this result is
asymptotically tight as the gap to capacity vanishes).

We turn now to consider the degrees of the parity-check nodes. Similarly to Discussion 2 (which succeeds the
proof of Theorem 1), we denote byX a random codeword from the LDPC code ensemble

(
n, λ, ρ

)
where the
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randomness is over the selected code from the ensemble and the codeword which is selected from the code. LetY

designate the output of the communication channel whenX is transmitted. From (18) and its adaptation to LDPC
code ensembles (see Section II-C.2)

H(X|Y)

n

≥ Rd − C +
1 − Rd

2 ln 2

∞∑

k=1

Γ(gk)

k(2k − 1)

= −εC +
1 − (1 − ε)C

2 ln 2

∞∑

i=1

{
Γi

∞∑

k=1

gi
k

k(2k − 1)

}
(60)

where the last equality follows from the equalityΓ(x) =
∑

i Γix
i (see Section II-A) and also since, by assumption,

the design rate of the LDPC code ensemble forms a fraction1 − ε of the channel capacity. Applying Lemma 4 to
the RHS of (60), we get

H(X|Y)

n

≥ −εC +
1 − (1 − ε)C

2 ln 2

∞∑

i=1

{
Γi

∞∑

k=1

(
gi
1

)k

k(2k − 1)

}

= −εC +
(
1 − (1 − ε)C

) ∞∑

i=1

{[
1 − h2

(
1 − g

i/2
1

2

)]
Γi

}

where the last equality follows from (42). Combining (45) with the last result gives

h2(Pb) ≥ −εC +
(
1 − (1 − ε)C

) ∞∑

i=1

[
1 − h2

(
1 − g

i/2
1

2

)]
Γi

and therefore ∞∑

i=1

{[
1 − h2

(
1 − g

i/2
1

2

)]
Γi

}
≤ εC + h2(Pb)

1 − (1 − ε)C
(61)

wherePb designates the average bit error probability of the ensemble under the considered decoding algorithm.
Since all the terms in the sum on the LHS of (61) are non-negative, this sum is lower bounded by itsi-th term, for
any degreei. This provides the following upper bound on the fraction of parity-check nodes of any finite degreei:

Γi ≤ εC + h2(Pb)

1 − (1 − ε)C

1

1 − h2

(
1−gi/2

1

2

)

≤
(
εC + h2(Pb)

)

 1

1 − C

1

1 − h2

(
1−gi/2

1

2

)


 . (62)

This completes the proof of (29) for a general MBIOS channel.Let us now consider the particular case where the
transmission is over a BEC with an erasure probabilityp. In this case,gk = 1 − p for all k ∈ N (this equality
follows directly from (19)), and the channel capacity is equal to 1 − p bits per channel use. Therefore, (60) is
particularized to

H(X|Y)

n

≥ −ε(1 − p) +
1 − (1 − ε)(1 − p)

2 ln 2

·
∞∑

i=1

[
Γi (1 − p)i

∞∑

k=1

1

k(2k − 1)

]

= −ε(1 − p) +
(
1 − (1 − ε)(1 − p)

) ∞∑

i=1

Γi (1 − p)i (63)
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where the above equality holds since
∑∞

k=1
1

k(2k−1) = 2 ln 2. Applying the upper bound on the conditional entropy
(50) to the LHS of (63), we get

Pb ≥ −ε(1 − p) +
(
p + ε (1 − p)

) ∞∑

i=1

Γi (1 − p)i

wherePb denotes the average bit erasure probability of the ensemble, and therefore
∞∑

i=1

{
Γi(1 − p)i

}
≤ ε (1 − p) + Pb

p + ε (1 − p)
. (64)

Since the sum on the LHS of (64) is of non-negative terms, thenwe get

Γi ≤
(
ε (1 − p) + Pb

) ( 1

p (1 − p)i

)
(65)

so h2(Pb) in (29) is replaced for the BEC withPb.
We turn now to consider the pair of degree distributions fromthe edge perspective. The average left degree(aL)

of the LDPC code ensemble satisfies
1

aL
=

∞∑

i=2

λi

i
(66)

which implies that for any degreei of the variable nodes

λi ≤
i

aL
. (67)

Since the design rate of the LDPC code ensemble is assumed to be a fraction1 − ε of the channel capacity, then
the average right and left degrees satisfy

aL =
(
1 − (1 − ε)C

)
aR

≥ (1 − C)aR. (68)

Substituting (68) on the RHS of (67) and applying the lower bound onaR in (22) gives

λi ≤
i ln
(

1
g1

)

2(1 − C) ln


 1

1−2h−1
2

(
1−C−h2(Pb)

1−(1−ε)C

)




. (69)

Using the power series for the binary entropy function in (16) and truncating the sum on the RHS after the first
term gives

1 − h2(x) ≥ (1 − 2x)2

2 ln 2

and substitutingu = h2(x) yields
(
1 − 2h−1

2 (u)
)2 ≤ 2 ln 2 · (1 − u), ∀ 0 ≤ u ≤ 1. (70)

Combining (69) and (70) gives

λi ≤
i ln
(

1
g1

)

(1 − C) ln

(
1

2 ln 2
1

1− 1−C−h2(Pb)

1−(1−ε)C

)

=
i ln
(

1
g1

)

(1 − C) ln
(

1
2 ln 2

1−(1−ε)C
εC+h2(Pb)

)

≤
i ln
(

1
g1

)

(1 − C)
[
ln
(

1
εC+h2(Pb)

)
+ ln

(
1−C
2 ln 2

)]
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which completes the proof of (30) for general MBIOS channels. For the BEC, we substitute (68) and the lower
bound on the average right degree in (24) into the RHS of (67) to get

λi ≤
i ln
(

1
1−p

)

p ln
(
1 + p−Pb

ε (1−p)+Pb

)

=
i ln
(

1
1−p

)

p ln
(

ε (1−p)+p
ε (1−p)+Pb

)

≤
i ln
(

1
1−p

)

p
[
ln
(

1
ε (1−p)+Pb

)
+ ln(p)

] . (71)

Hence,h2(Pb) in (30) is replaced byPb when the communication channel is a BEC. Considering the right degree
distribution of the ensemble, we have

1

aR
=

∞∑

i=1

ρi

i
.

By following the same steps as in (66)–(71), one obtains an upper bound onρi for any degreei of the parity-
check nodes. The asymptotic behavior of the resulting upperbound onρi is similar to the upper bound onλi as
given in (71). However, as we show in the following, a tighterupper bound on the fraction of edges connected to
parity-check nodes of degreei is derived from the equality

ρi =
iΓi

aR
. (72)

Substituting (22) and (62) in the above equality, we get

ρi ≤
εC + h2(Pb)

1 − C

ln
(

1
g1

)

2 ln


 1

1−2h−1
2

(
1−C−h2(Pb)

1−(1−ε)C

)




· i

1 − h2

(
1−gi/2

1

2

) . (73)

Applying (70) to the denominator of the second term on the RHSof (73) gives

ρi ≤
εC + h2(Pb)

1 − C

ln
(

1
g1

)

ln

(
1

2 ln 2
1

1− 1−C−h2(Pb)

1−(1−ε)C

) i

1 − h2

(
1−gi/2

1

2

)

=
εC + h2(Pb)

1 − C

ln
(

1
g1

)

ln
(

1
2 ln 2

1−(1−ε)C
εC+h2(Pb)

) i

1 − h2

(
1−gi/2

1

2

)

≤
ln
(

1
g1

)

1 − C

εC + h2(Pb)

ln
(

1
ε C+h2(Pb)

)
+ ln

(
1−C
2 ln 2

)
i

1 − h2

(
1−g

i/2
1

2

) .

This proves (31) regarding the fraction of edges connected to parity-check nodes of an arbitrary finite degreei. For
a BEC, a substitution of (24) and (65) in (72) gives

ρi ≤
i
[
ε (1 − p) + Pb

]

p(1 − p)i

ln
(

1
1−p

)

ln
(
1 + p−Pb

ε (1−p)+Pb

) .

Followed by some straightforward algebra, this proves (31)for the BEC whenh2(Pb) is replaced withPb.
Remark 12:[Note on Theorem 2 and Corollary 2] Consider the capacity-achieving sequence of right-regular

LDPC code ensemble as introduced in [48]. The gap to capacity(ε) can be made arbitrarily small for this sequence
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(even under BP decoding), althoughρi = 1 for some integeri. At first glance, it looks contradictory to Corollary 2
(see p. 12) which states thatρi is upper bounded by an expression which scales likeε

ln 1

ε

for any finite degreei, and
it therefore should tend to zero as the gap to capacity vanishes. However, the right degree of this sequence scales
like ln 1

ε (see [48] and [40, Theorem 2.3]), hence the indexi for which ρi = 1 becomes unbounded asε → 0. Note
that Corollary 2 applies on the other hand to finite and bounded degreesi in the limit where the gap to capacity
vanishes. Moreover, as we letε → 0 for this capacity-achieving and right-regular sequence, thenρi is identically
zero for all finite and bounded degreesi.

Remark 13:[On the degree distribution of the parity-check nodes for the set of MBIOS channels with a
given capacity] Consider the set of all MBIOS channels of a given capacityC, and consider a required bit error
probability pb. By combining the inequality constraint (61) with the extreme values ofg1 in Lemma 5 (see (53)),
we obtain the following universal inequality constraint which should hold for this set of channels:

∞∑

i=1

{[
1 − h2

(
1 − C

i

2

2

)]
Γi

}
≤ εC + h2(Pb)

1 − (1 − ε)C
. (74)

We refer later to this inequality when we consider linear programming bounds for the degree distributions of
capacity-approaching LDPC code ensembles (see Section V).

C. Proof of Theorem 3

Consider bipartite graphs which correspond to an LDPC code ensemble with pair of degree distributions(λ, ρ).
The average degrees of the variable nodes and the parity-check nodes of these graphs are given in (4) and (5),
respectively. Hence, the fraction of degree-2 variable nodes is given by

Λ2 =
λ2 aL

2
=

λ2

2
∫ 1
0 λ(x)dx

(75)

and the design rate of this ensemble is given by (3). Using (3), we rewrite
∫ 1
0 λ(x)dx at the denominator of (75)

as ∫ 1

0
λ(x)dx =

1

1 − Rd

∫ 1

0
ρ(x)dx . (76)

By assumption, the considered sequence of ensembles achieves vanishing bit error probability under BP decoding,
and hence the stability condition in (9) is satisfied. Combining (9), (75) and (76) leads to the following upper bound
on Λ2:

Λ2 <
1 − Rd

2B(a) ρ′(1)
∫ 1
0 ρ(x)dx

. (77)

From the convexity off(t) = xt for x > 0, Jensen’s inequality gives
∫ 1

0
ρ(x)dx

=

∫ 1

0

∑

i

ρix
i−1dx

≥
∫ 1

0
x
∑

i ρi (i−1)dx

=

∫ 1

0
x ρ′(1)dx

=
1

ρ′(1) + 1

which implies that

ρ′(1) ≥ 1
∫ 1
0 ρ(x)dx

− 1 = aR − 1 . (78)
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Substituting (78) in (77) and sinceRd = (1 − ε)C then

Λ2 <
1 − Rd

2B(a)

(
1 +

1

ρ′(1)

)

≤ 1 − Rd

2B(a)

(
1 +

1

aR − 1

)

=
1 − C

2B(a)

(
1 +

εC

1 − C

)(
1 +

1

aR − 1

)
. (79)

Since the RHS of (79) is monotonically decreasing with the average right degree (aR), this bound still holds when
aR is replaced by a lower bound. For allm ∈ N, let Pb,m designate the average bit error probability of the LDPC
code ensemble

(
nm, λ(x), ρ(x)

)
under BP decoding. Applying Theorem 1 wherePb,m vanishes asm → ∞ gives

aR ≥
2 ln

(
1

1−2h−1
2

(
1−C

1−(1−ε)C

)
)

ln
(

1
g1

) . (80)

The upper bound in (32) follows by substituting (80) in (79).
We now turn to derive the upper bound on the fraction of edges which are connected to degree-2 variable nodes.

Since the considered sequence of LDPC code ensembles achieves vanishing bit error probability under BP decoding,
then the stability condition (9) implies that

λ2 = λ′(0) <
1

ρ′(1)B(a)

whereB(a) is given in (8). Combining this with (78) gives

λ2 <
1

(aR − 1)B(a)
(81)

whereaR designates the common average right degree of the sequence of ensembles. The upper bounds onλ2 in
(33) and (35) are obtained by substituting (80) and (52) (these are the lower bounds onaR derived in Theorem 1
for vanishing bit error/ erasure probability), respectively, in (81).

Consider the set of all MBIOS channels with a given capacityC and a Bhattacharyya constantB(a), for which
the bit error probability of the BP decoder vanishes for the considered sequence of LDPC code ensembles. Universal
upper bound onΛ2 andλ2 follow directly by combining the bounds in (32) and (33), respectively, with Lemma 5
(note that the upper bound on the RHS of (32) is a monotonic decreasing function ofg1; this bound therefore
attains its maximal value at the minimal value ofg1, i.e., wheng1 = C). Therefore, the universal upper bounds
on Λ2 andλ2 hold for all the channels from the above set by substitutingg1 = C on the RHS of (32) and (33),
respectively.

For a transmission over the BEC, the improved upper bound on the degree-2 variable nodes follows by substituting
the lower bound in (24) (where the bit erasure probabilityPb vanishes) into (79). Note that for a BEC with erasure
probability p, 1 − C = B(a) = p and 1−C

2B(a) = 1
2 . Similarly, the upper bound on the fraction of edges which are

attached to degree-2 variable nodes follows by substituting (24) andB(a) = p into (81).

Discussion 4:[On the tightness of the upper bound(36) on the fraction of degree-2 variable nodes for
capacity-achieving LDPC code ensembles over MBIOS channels] In the following, the tightness of the bound
in (36) is considered:

Lemma 7: [On the asymptotic fraction of degree 2 variable nodes for capacity-achieving sequences of
LDPC code ensembles]Let (nm, λm, ρm) be a sequence of LDPC code ensembles whose transmission takes place
over an MBIOS channel of capacityC (in bits per channel use). Assume that this sequence is capacity-achieving
under BP decoding, and also that the flatness condition is asymptotically satisfied for this sequence (i.e., the stability
condition in (9) is satisfied asymptotically with equality). Let us also assume that the limit of the ratio between the
standard deviation and the expectation of the right degree distribution in the LDPC code ensemble(nm, λm, ρm)
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is finite asm → ∞, and denote this limit byK. Then, the asymptotic fraction of degree-2 variable nodes in this
sequence is equal to

lim
m→∞

Λ
(m)
2 =

1 − C

2(1 + K2)B(a)
(82)

whereB(a) is introduced in (8).

Proof: See Appendix III.

As a particular case of Lemma 7, ifK = 0 (this happens, e.g., when the right degree is fixed), then theasymptotic
fraction of degree-2 variable nodes in (82) coincides with the upper bound in (36).

Remark 14:We note that the property proved in Lemma 7 for the non-vanishing asymptotic fraction of degree-2
variable nodesof capacity-achieving sequences of LDPC code ensembles is reminiscent of another information-
theoretic property which was proved by Shokrollahi with respect to the non-vanishing fraction of degree-2output
nodesfor capacity-achieving sequences of Raptor codes whose transmission takes place over an MBIOS channel
(see [11, Theorem 11 and Proposition 12]).

Proof of Corollary 3: The upper bound (36) on the fraction of degree-2 variable nodes for capacity-achieving
LDPC code ensembles follows directly by letting the gap to capacity ε tend to zero in (32). We wish to show that
the upper bound in (36) is necessarily not larger than1

2 for all MBIOS channels, and it is equal to12 for a BEC
regardless of the erasure probability of this channel. To this end, we prove the following lemma:

Lemma 8:For every MBIOS channel, the sum of its capacity and its Bhattacharyya constant is at least 1. The
minimal value of this sum is attained for a BEC, irrespectively of the erasure probability of this channel, and is
equal to 1.

Proof: See Appendix IV.

Combining Lemma 8 and the RHS of (36) implies that the fraction of degree-2 variable nodes for an arbitrary
capacity-achieving sequence of LDPC code ensembles under BP decoding is upper bounded by12 . Note that this
maximal value is attained for a BEC (see also Remark 9 on page 14). This completes the proof of Corollary 3.

In the following, we compare two upper bounds on the fractionof edges connected to degree-2 variable nodes.
One of these bounds is given in Theorem 3, and the other bound follows along the lines of the proof of Theorem 2.

Discussion 5:[Comparison between two upper bounds onλ2: ML versus iterative decoding] In the proof of
Theorem 2, we derive an upper bound on the fraction of edges connected to variable nodes of degreei for ensembles
of LDPC codes which achieve a bit error (or erasure) probability Pb under an arbitrary decoding algorithm (see
(69) and the tightened version (71) of this bound for the BEC). Referring to degree-2 variable nodes and letting
Pb vanish, (69) gives

λ2 ≤
ln
(

1
g1

)

(1 − C) ln

(
1

1−2h−1
2

(
1−C

1−R

)
) (83)

whereR = (1 − ε)C. It is interesting to see that there is some similarity between the two upper bounds onλ2

as given in (33) and (83). In the following, we compare between the two bounds onλ2 by calculating the ratio
between the bound in (33) which relies on the stability condition, and the bound in (83) which follows along the
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lines of the proof of Theorem 2. This gives

ln
(

1
g1

)

B(a) ln

(
g1[

1−2h−1
2

(
1−C

1−R

)]2
)

·

(
1 − C

)
ln

(
1

1−2h−1
2

(
1−C

1−R

)
)

ln
(

1
g1

)

=
1 − C

B(a)

ln

(
1

1−2h−1
2

(
1−C

1−R

)
)

ln

(
g1[

1−2h−1
2

(
1−C

1−R

)]2
)

=
1 − C

B(a)

ln

(
1

1−2h−1
2

(
1−C

1−R

)
)

ln(g1) + 2 ln

(
1

1−2h−1
2

(
1−C

1−R

)
) . (84)

Hence, as the gap to capacity vanishes (i.e.,ε → 0), the expression in (84) for the ratio between the two boundson
λ2 tends to 1−C

2B(a) . By Lemma 8,B(a)+C −1 ≥ 0, which implies that1−C
2B(a) ≤ 1

2 . Hence, the upper bound onλ2 in
(33) improves the bound in (83) by at least a factor of 2 (wherethe former bound is given in Theorem 3, and the
latter bound follows along the lines of the proof of Theorem 2). We note that the basis of the comparison between
these two upper bounds onλ2 is the assumption of vanishing bit error probability under BP decoding, though the
bound in (83) also holds with the weaker requirement of vanishing bit error probability under ML decoding.

Proof of Corollary 4: See Appendix V.

Proof of Proposition 1:See Appendix VI.

V. IMPLICATIONS OF THE INFORMATION-THEORETIC BOUNDS AND NUMERICAL RESULTS

We provide here some implications of the information-theoretic bounds and numerical results which refer to the
following issues:

• Examination of the tightness of the bounds provided in Section III by comparing these bounds to the asymptotic
performance of some LDPC code ensembles under BP decoding (referring here to the sum-product decoding).
In order to make this comparison more conclusive, we comparethe new bounds with previously reported
bounds (see Section V-A) in order to exemplify their practicality.

• Information-theoretic lower bound on the cardinality of the fundamental system of cycles of LDPC code
ensembles, expressed in terms of the achievable gap to capacity (see Section V-B).

• Linear programming (LP) bounds on the degree distributionsof capacity-approaching LDPC code ensembles.
The bounds refer to the case where the communication takes place over an MBIOS channel, as well as universal
bounds which are valid for the set of all MBIOS channels whichexhibit a given capacityC. These bounds are
valid under ML decoding (and hence, they are also valid underany sub-optimal decoding algorithm). These
LP bounds are solved analytically, and are also compared with the degree distributions of capacity-approaching
LDPC code ensembles under BP decoding (see Section V-C).

• Lower bounds on the graphical complexity of binary linear block codes which are represented by an arbitrary
bipartite graph and whose transmission takes place over an MBIOS channel. The graphical complexity is
measured by the total number of edges in the graph, and the bound provides a quantitative measure of the
minimal number of edges required for this graphical representation as a function of the target block error
probability and the gap (in rate) to capacity. This bound refers to codes of finite-length, and is valid under ML
decoding (or any sub-optimal decoding). It can be also applied to LDPC code ensembles, and then it provides a
lower bound on the decoding complexity per iteration of a BP decoder. Comparison of the information-theoretic
lower bound on the graphical complexity in terms of the achievable gap to capacity with a target block error
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probability with some efficient finite-length LDPC codes which are provided in the literature enables to evaluate
the maximal potential gain that can be attained by future design of such finite-length codes in terms of the
tradeoff between performance and graphical complexity (see Section V-D).

A. Numerical Results for the Asymptotic Analysis under BP Decoding

The following sub-section relies on the theoretic results provided in Section III, and it exemplifies the use of
these results in the context of capacity-approaching sequences of LDPC code ensembles whose transmission takes
place over an MBIOS channel, and whose bit error probabilityvanishes under BP decoding. As representatives of
MBIOS channels, the considered communication channels arethe binary erasure channel (BEC), binary symmetric
channel (BSC) and the binary-input AWGN channel (BIAWGNC) (as presented in [37, Example 4.1]).

Example 2: [BEC] Consider a sequence of LDPC code ensembles(n, λ, ρ) where the block length(n) tends to
infinity and the pair of degree distributions is given by

λ(x) = 0.409x + 0.202x2 + 0.0768x3 + 0.1971x6 + 0.1151x7

ρ(x) = x5.

The design rate of this ensemble isR = 0.5004, and the threshold under BP decoding is (see [37, Theorem 3.59])

pBP = inf
x∈(0,1]

x

λ
(
1 − ρ(1 − x)

) = 0.4810

so the minimum capacity of a BEC over which it is possible to transmit with vanishingPb under BP decoding is
C = 1 − pBP = 0.5190 bits per channel use, and the multiplicative gap to capacityis ε = 1 − R

C = 0.0358. The
lower bound on the average right degree in (24) with vanishing bit erasure probability (i.e.,Pb = 0) gives that the
average right degree should be at least 5.0189. By imposing aprior assumption that the LDPC code ensemble has
a fixed right degree (as is the case with the above LDPC code ensemble), then it follows that this right degree
cannot be below 6. Hence, the lower bound is attained in this case with equality. An upper bound on the fraction
of edges which are connected to degree-2 variable nodes(λ2) is calculated from (81) withB(a) = pBP = 0.4810,
and the above lower bound onaR (for LDPC code ensembles of a fixed right degree) which is equal to 6; this
gives from (81) thatλ2 ≤ 0.4158 as compared to the exact value which is equal to 0.409. The exact value of the
fraction of degree-2 variable nodes is

Λ2 =
λ2 aL

2
=

λ2 (1 − R) aR

2
= 0.6130

as compared to the upper bound in (79), combined with the tight lower boundaR ≥ 6, which givesΛ2 ≤ 0.6232.
We note that without the prior assumption about the fixed right degree, the universal bounds giveaR ≥ 5.0189 and
λ2 < 0.5173 so these bounds are clearly loosened.

Example 3: [Comparison of the lower bound on the average right degree from Theorem 1 and Discussion 2
with the bound in [53]] In the following, we exemplify the practical use of the lowerbound on the average right
degree of LDPC code ensembles, as given in Theorem 1 and its adaptation to LDPC code ensembles in Discussion 2,
and compare it with the previously reported bound in [53, Section IV]. Consider the case where the communications
takes place over a BIAWGNC. The LDPC code ensembles in each sequence are specified by the following pairs
of degree distributions, followed by their corresponding design rates and thresholds under BP decoding:

Ensemble 1:

λ(x) = x, ρ(x) = x19, Rd = 0.9000.

σBP = 0.4156590.

Ensemble 2:

λ(x) = 0.4012x + 0.5981x2 + 0.0007x29, ρ(x) = x24

Rd = 0.9000, σBP = 0.4741840.

These code ensembles are taken from the data base in [2]. From[37, Example 4.38] which expresses the capacity of
the BIAWGNC in terms of the standard deviationσ of the Gaussian noise, the minimum capacity of a BIAWGNC
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TABLE I

BOUNDS VS. EXACT VALUES OF λ2 AND aR FOR TWO SEQUENCES OFLDPC CODE ENSEMBLES OF DESIGN RATE1
2

TRANSMITTED OVER

THE BIAWGNC. THE SEQUENCES ARE GIVEN IN[8, TABLE II] AND ACHIEVE VANISHING BIT ERROR PROBABILITY UNDER THE BELIEF

PROPAGATION(BP) DECODING ALGORITHM WITH THE INDICATED GAPS TO CAPACITY.

LDPC Gap to Lower bound Upper bound
ense- capacity aR on aR λ2 on λ2

mble (ε) (Theorem 1) (Theorem 3)

1 3.72 · 10−3 10.938 9.249 0.170 0.205
2 2.22 · 10−3 12.000 10.129 0.153 0.185

over which it is possible to communicate with vanishing bit error probability under BP decoding isC = 0.9685
and 0.9323 bits per channel use for Ensembles 1 and 2, respectively. The corresponding gap (in rate) to capacity
ε = 1 − Rd

C is equal toε = 7.07 · 10−2 and 3.46 · 10−2, respectively. Therefore, for the first ensemble which
is a (2,20) regular LDPC code ensemble, the new lower bound onthe average right degree which follows from
Discussion 2 is equal to 9.949 whereas the lower bound from [53, Section IV] (i.e., the un-numbered equation
before [53, Eq. (77)]) is equal to 2.392. For the second ensemble whose fixed right degree is equal to 25, the new
lower bound on the average right degree is 16.269 whereas thelower bound from [53] is 14.788. This shows that
the improvement obtained in Theorem 1 followed by Discussion 2 is of practical use.

We note that the gap which still exists between the lower bounds on the average right degrees and the actual
values ofaR for the above two ensembles is partially attributed to the fact that this information-theoretic lower
bound holds even under ML decoding, although we apply this bound here under the sub-optimal BP decoding
algorithm. The gaps to capacity under ML decoding are smaller than those calculated under BP decoding, and
smaller values ofε provide improved lower bounds onaR.

Example 4: [BIAWGNC] Table I considers two sequences of LDPC code ensembles of design rate 1
2 which are

taken from [8, Table II]. The transmission of these ensembles is assumed to take place over the BIAWGNC. The
pair of degree distributions of the ensembles in each sequence is fixed and the block length of these ensembles tends
to infinity. The LDPC code ensembles in each sequence are specified by the following pairs of degree distributions:

Ensemble 1:

λ(x) = 0.170031x + 0.160460x2 + 0.112837x5

+0.047489x6 + 0.011481x9 + 0.091537x10

+0.152978x25 + 0.036131x26 + 0.217056x99

ρ(x) =
1

16
x9 +

15

16
x10.

Ensemble 2:

λ(x) = 0.153425x + 0.147526x2 + 0.041539x5

+0.147551x6 + 0.047938x17 + 0.119555x18

+0.036379x54 + 0.126714x55 + 0.179373x199

ρ(x) = x11.

The asymptotic thresholds of the considered LDPC code ensembles under BP decoding are calculated with the DE
technique, and these calculations provide the thresholdsσBP = 0.97592 and 0.97704, respectively. The minimum
capacity of a BIAWGNC which enables to communicate Ensembles 1 and 2 with vanishing bit error probability
under BP decoding is thereforeC = 0.5019 and 0.5011 bits per channel use, respectively (it is calculated via the
power series expansion of the capacity of a BIAWGNC as given in [37, page 194]). This leads to the indicated
gaps (in rate) to capacity as given in Table I. The value ofλ2 for each sequence of LDPC code ensembles (where
we let the block length tend to infinity) is compared with the upper bound in Theorem 3 which corresponds to
BP decoding. Note that for calculating the bound in Theorem 3, the Bhattacharyya constant in (8) is given by
B(a) = exp

(
−REb

N0

)
for the BIAWGNC whereEb

N0
designates the energy per information bit over the one-sided

noise spectral density, and we substitute here the threshold value of Eb
N0

under BP decoding. The average right
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TABLE II

COMPARISON OF THEORETICAL BOUNDS AND ACTUAL VALUES OFλ2 AND aR FOR TWO SEQUENCES OFLDPC CODE ENSEMBLES

TRANSMITTED OVER THEBSC. THE SEQUENCES ARE TAKEN FROM[2] AND ACHIEVE VANISHING BIT ERROR PROBABILITY UNDER THE

BELIEF PROPAGATION(BP) DECODING ALGORITHM WITH THE INDICATED GAPS TO CAPACITY.

LDPC Gap to Lower bound Upper bound
ense- capacity aR on aR λ2 on λ2

mble (ε) (Theorem 1) (Theorem 3)

1 1.85 · 10−2 5.172 4.301 0.291 0.371
2 6.18 · 10−3 11.000 9.670 0.160 0.185

degree of each sequence is also compared with the lower boundin Theorem 1. These comparisons exemplify that
for the examined LDPC code ensembles, both of the theoretical bounds are informative.

Example 5: [BSC] Table II considers two sequences of LDPC code ensembles, taken from [2], where the pair
of degree distributions of the ensembles in each sequence isfixed and the block length of these ensembles tends to
infinity. The transmission of these ensembles is assumed to take place over the BSC. The LDPC code ensembles
in each sequence are specified by the following pairs of degree distributions and design rates:

Ensemble 1:

λ(x) = 0.291157x + 0.189174x2 + 0.0408389x4

+0.0873393x5 + 0.00742718x6 + 0.112581x7

+0.0925954x15 + 0.0186572x20 + 0.124064x32

+0.016002x39 + 0.0201644x44

ρ(x) = 0.8x4 + 0.2x5

R = 0.250

Ensemble 2:

λ(x) = 0.160424x + 0.160541x2 + 0.0610339x5

+0.153434x6 + 0.0369041x12 + 0.020068x15

+0.0054856x16 + 0.128127x19 + 0.0233812x24

+0.05285542x34 + 0.0574104x67 + 0.0898442x68

+0.0504923x85

ρ(x) = x10

R = 0.500.

The thresholds of the above LDPC code ensembles under BP decoding are equal topBSC = 0.2120 and 0.1090,
respectively. Hence, for Ensembles 1 and 2, the minimum capacity of a BSC which enables to communicate with
vanishing bit error probability under BP decoding isC = 0.2547 and 0.5031 bits per channel use. Since of the
design rates of these two ensembles areRd = 0.250 and 0.500, respectively, then the gaps to capacity are givenin
Table II. The value ofλ2 for each sequence is compared with the upper bound given in Theorem 3. Note that for
calculating the bound in Theorem 3, the Bhattacharyya constantB(a) introduced in (8) satisfiesB(a) =

√
4p(1 − p)

for a BSC whose crossover probability is equal top, and we substitute here the threshold value ofp under BP
decoding. Also, for the calculation of this bound for such a BSC, Eq. (97) gives thatg1 = (1− 2p)2. The average
right degree of each sequence is also compared with the lowerbound in Theorem 1. These comparisons show that
for the considered sequences of LDPC code ensembles, both ofthe theoretical bounds are fairly tight; the upper
bound onλ2 is within a factor of 1.3 from the actual value for the two sequences of LDPC code ensembles while
the lower bound on the average right degree is not lower than83% of the corresponding actual values. The LDPC
code ensembles referred to in Table II were obtained in [2] bythe DE technique with the goal of minimizing the
gap to capacity under a constraint on the maximal degree.
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Fig. 3. Plot of the asymptotic lower bounds in Corollary 1 (see Eqs. (26) and (27)) for memoryless binary-input output-symmetric (MBIOS)
channels. These lower bounds correspond to the average cardinality of the fundamental system of cycles for bipartite graphs representing
codes from an arbitrary LDPC code ensemble; the above quantity is normalized with respect to the block length of the ensemble, and the
asymptotic result refers to the case where we consider a sequence of LDPC code ensembles whose block lengths tend to infinity. The bounds
are plotted versus the achievable gap (in rate) between the channel capacity and the design rate of the LDPC code ensembles. This figure
shows the bounds for the binary symmetric channel (BSC), binary-input AWGN channel (BIAWGNC) and the binary erasure channel (BEC)
where it is assumed that the design rate of the LDPC code ensembles is equal to one-half bit per channel use.

B. On the Fundamental System of Cycles for Capacity-Approaching Sequences of LDPC Code Ensembles

Corollary 1 considers an arbitrary sequence of LDPC code ensembles, specified by a pair of degree distributions,
whose transmission takes place over an MBIOS channel. This corollary refers to the asymptotic case where we
let the block length of the ensembles in this sequence tend toinfinity and the bit error (or erasure) probability
vanishes; the design rate of these ensembles is assumed to bea fraction 1 − ε of the channel capacity (for an
arbitrary ε ∈ (0, 1)). In Corollary 1, Eq. (26) applies to a general MBIOS channeland a tightened version of this
bound is given in (27) for the BEC. Based on these results, theasymptotic average cardinality of the fundamental
system of cycles for bipartite graphs representing codes from LDPC code ensembles as above, where this average
cardinality is normalized with respect to the block length,grows at least likeln 1

ε . We consider here the BSC, BEC,
and BIAWGNC as three representatives of the class of MBIOS channels, and assume that the design rate of the
LDPC code ensembles is fixed to one-half bit per channel use. It is shown in Fig. 3 that for a given gap(ε) to the
channel capacity and for a fixed design rate, the extreme values of this lower bounds correspond to the BSC and
BEC (which attain the maximal and minimal values, respectively). This observation is consistent with the last part
of the statement in Corollary 1.

C. Linear Programming Bounds for the Degree Distributions of LDPC Code Ensembles

This sub-section provides LP bounds on the degree distributions of LDPC code ensembles. These bounds, which
are based on Sections III and IV, are formulated in terms of the target bit error probability and the gap (in rate)
to capacity required to achieve this target. The following LP bounds refer to the node and the edge perspectives
of the pair of degree distributions, and they provide upper bounds on the fraction of edges or nodes up to degree
k wherek is a parameter. Similarly to Theorem 2, the LP bounds which are introduced in this section hold under
ML decoding, and are therefore general in terms of the decoding algorithm. These LP bounds apply to finite-
length LDPC code ensembles as well as to the asymptotic case of an infinite block length. Analytical solutions for
these LP bounds are provided in Section V-C, and these boundsare also compared with some capacity-achieving
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sequences of LDPC code ensembles for the BEC under BP decoding. The following LP bounds are separated into
four categories:

• LP1: ’LP1’ forms an LP upper bound on the degree distribution of the parity-check nodes for LDPC code
ensembles whose transmission takes place over an MBIOS channel. Its first version gives an upper bound on
the fraction of parity-check nodes up to degreek (wherek ≥ 1 is an integer) as a function of the achievable
rate (and its gap to the channel capacity) with a given bit error probability Pb. By combining (61) with the
trivial constraints for an arbitrary degree distribution,the following optimization problem follows:

maximize
k∑

i=1
Γi, k = 1, 2, . . .

subject to




∞∑
i=1

{[
1 − h2

(
1−g

i
2
1

2

)]
Γi

}
≤ ε C+h2(Pb)

1−(1−ε)C

∞∑
i=1

Γi = 1

Γi ≥ 0, i = 1, 2, . . .

where the optimization variables are{Γi}i≥1. From (1), the following equality holds:

Γi =
ρi

i

( ∞∑

j=1

ρj

j

)−1
. (85)

The substitution of this equality in the first constraint of the above LP bound gives the following optimization
problem for the degree distribution of the parity-check nodes from the edge perspective (i.e., we get an upper
bound on the fraction of edges which are connected to parity-check nodes up to degreek ≥ 1):

maximize
k∑

i=1
ρi, k = 1, 2, . . .

subject to




∞∑
i=1

{[
1 − h2

(
1−g

i
2
1

2

)]
ρi

i

}
≤ ε C+h2(Pb)

1−(1−ε)C

∞∑
i=1

ρi

i

∞∑
i=1

ρi = 1

ρi ≥ 0, i = 1, 2, . . .

where the optimization variables are{ρi}i≥1. These two LP bounds on the parity-check degree distribution
(from the node and edge perspectives) rely both on Theorems 1and 2, and are therefore valid under ML
decoding (hence, they also hold under any other decoding algorithm). These bounds hold for finite-length
codes and also for the asymptotic case of an infinite block length.
An analytical solution of the LP1 bound is given in Appendix VIII. This bound is tightened in Appendix VIII
for the BEC, followed by its analytical solution.

• LP2: ’LP2’ provides a universal LP upper bound on the degree distribution of the parity-check nodes for
LDPC code ensembles as a function of the required achievablerate (and its gap to the channel capacity) with
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a required bit error probabilityPb. This bound follows from (74) and (85), and it gets the form:

maximize
k∑

i=1
ρi, k = 1, 2, . . .

subject to




∞∑
i=1

{[
1 − h2

(
1−C

i
2

2

)]
ρi

i

}
≤ ε C+h2(Pb)

1−(1−ε)C

∞∑
i=1

ρi

i

∞∑
i=1

ρi = 1

ρi ≥ 0, i = 1, 2, . . .

where the optimization variables are{ρi}i≥1, and the bound holds under the same conditions as of the previous
item. However, as opposed to the LP1 bound, the LP2 bound is universal since it holds for all MBIOS channels
which exhibit a given capacityC. Note that the LP2 bound is similar to the LP1 bound, except ofreplacing
the parameterg1 in the LP1 bound with the channel capacityC. This follows directly by comparing (61) and
(74). Note that the transition from (61) to (74) follows fromLemma 5 which implies that among all MBIOS
channels with a given capacityC, the channel which attains the minimal value ofg1 is the BEC, and the
minimal value ofg1 is equal toC.
The analytical solution of the LP2 bound follows directly from the analysis in Appendix VIII for the LP1
bound, by replacingg1 in the LP1 bound with the channel capacityC in the LP2 bound.

• LP3: ’LP3’ provides an LP upper bound on the degree distributionof the variable nodes (from the edge
perspective) for LDPC code ensembles whose transmission takes place over an MBIOS channel. This bound
provides an upper bound on the fraction of edges which are connected to variable nodes up to degreek for a
parameterk ≥ 2, and it is expressed in terms of the required achievable rate(and its gap to capacity) with a
given bit error probabilityPb. From (3) and (22), this LP bound gets the form

maximize
k∑

i=2
λi, k = 2, 3, . . .

subject to



∞∑
i=2

λi

i ≤ ln
(

1

g1

)

2(1−C)(1+ εC

1−C ) ln

(
1

1−2h
−1
2

(
1−C−h2(Pb)

1−(1−ε)C

)
)

∞∑
i=2

λi = 1

λi ≥ 0, i = 2, 3, . . .

where the optimization variables are{λi}i≥2. Since the bound relies on Theorem 1, then it is therefore
valid under ML decoding (or any other decoding algorithm). It holds for finite block-length as well as in the
asymptotic case where we let the block length tend to infinity. We note that the focus on the degree distribution
of the variable nodes from the edge perspective is due to Theorem 2 and Remark 9 (see p. 14).

• LP4: ’LP4’ provides a universal LP upper bound on the degree distribution of the variable nodes for LDPC
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algorithm. All these curves refer to a target bit error probability of Pb = 10

−10. The two LP1 bounds (solid lines) refer to binary-input
AWGN (BIAWGN) channels for whichEb

N0
= 0.300 and 0.188 dB, so the corresponding channel capacities areC = 0.5086 and 0.5001 bits

per channel use, respectively; the corresponding gaps (in rate) to capacity are therefore equal toε = 1.68 ·10−2 and1.42 ·10−4 , respectively.
The two universal LP2 bounds (dashed lines) correspond to all the MBIOS channels which exhibit a given capacity, whose value coincides
in each case with the capacity of the considered BIAWGN channel.

code ensembles (from the edge perspective). It is based on (3) and (54) which give the following problem:

maximize
k∑

i=2
λi, k = 2, 3, . . .

subject to



∞∑
i=2

λi

i ≤ ln
(

1

C

)

2(1−C)(1+ εC

1−C ) ln

(
1

1−2h
−1
2

(
1−C−h2(Pb)

1−(1−ε)C

)
)

∞∑
i=2

λi = 1

λi ≥ 0, i = 2, 3, . . .

where the optimization variables are{λi}i≥2. This bound holds for all MBIOS channels with a given capacity
C.

The universal (LP2) bound is compared in Figure 4 to the LP1 bound for the BIAWGN channel with the same
capacity. It is shown in this figure that the difference between these two bounds is not large. Note that the universal
bound is attained for the BEC with the same capacity as of the BIAWGN channel.

Remark 15:[A discussion on the constraints given in the LP1 and LP2 bounds and the un-necessity of
adding the constraint in Theorem 1] We prove in Appendix VII that adding the constraint which is imposed by
the lower bound on the average right degree (i.e., the lower bound onaR =

∑∞
i=1 iΓi) does not affect the LP1

and LP2 bounds introduced here. This simplifies the formulation of the LP bounds serves for the derivation of
closed-form analytical solutions of these bounds later in this section.
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Remark 16:[The LP1 and LP2 bounds and their connection with the asymptotic behavior as given in
Theorem 2] As shown via the upper bounds in Fig. 4, the fraction of edges which are connected to parity-check
nodes of low degree is small, especially when the achievablegap to capacity vanishes. This is consistent with the
theoretical result in Theorem 2 and Corollary 2 which statesthat the fraction of parity-check nodes of any finite
degree scales at most likeε and the fraction of edges connected to parity-check nodes ofany finite degree scales at
most like ε

ln 1

ε

whereε designates the gap in rate to capacity, so both quantities tend to zero as the gap to capacity
vanishes.

For solving the LP1 and LP2 bounds which are introduced in this section we originally used [15], a package for
specifying and solving convex optimization problems [6]. It enables to solve these problems on a standard PC in
a fraction of a second. However, it is still nice to get an analytic solution of these LP bounds.

Analytical solutions for the LP1 and LP2 bounds: The LP1 problem can be expressed in the following
equivalent form:

maximize
k∑

i=1
ρi, k = 1, 2, . . .

subject to




∞∑
i=1

diρi ≤ 0

di , 1
i

[
1 − h2

(
1−g

i
2
1

2

)
− ε C+h2(Pb)

1−(1−ε)C

]

∞∑
i=1

ρi = 1

ρi ≥ 0, i = 1, 2, . . .

An analytical solution for the LP1 bound is obtained in Appendix VIII (via the use of strong Lagrange duality).
In the following, the final solution of the LP1 bound is presented. To this end, note that for indicesi large

enough,di < 0 and alsolimi→∞ di = 0. Let d∗ , mini≥1 di be the minimal value of this sequence, and leti = l

be the corresponding index ofdi which achieves this minimal value of the sequence{di}. Clearly, d∗ < 0. The
resulting closed-form solution for the LP1 bound gets the following form (see Appendix VIII):

• For values ofk below the lower bound on the average right degree in (22), it is equal to− d∗

dk−d∗
.

• For values ofk larger or equal to the lower bound on the average right degreein (22), it is equal to 1.

A similar solution is obtained for the LP2 bound where the only difference is thatg1 in the definition of the
sequence{di} is replaced by the channel capacityC. These analytical solutions match the numerical solutions
obtained via [15].

Example 6: [A comparison of the LP1 bound and capacity-achieving LDPC code ensembles over the BEC]
In the following, we compare the LP1 bound for the BEC and the degree distributions of two capacity-achieving
sequences of LDPC code ensembles under iterative message-passing decoding.

The first capacity-achieving sequence for the BEC refers to the heavy-tail Poisson distribution, and it was
introduced in [24, Section IV], [48] (see also [37, Problem 3.20]). The second capacity-achieving sequence refers
to the right-regular LDPC code ensembles [48], based also onthe analysis in the proof of Proposition 1 (see
Section IV).

This first capacity-achieving sequence is obtained via the pair of degree distributions

λ̂α(x) = − 1

α
· ln(1 − x) =

1

α

∞∑

i=1

xi

i

ρα(x) = eα(x−1) = e−α
∞∑

i=0

αixi

i!

which satisfies the equalitŷλα(1 − ρα(1 − x)) = x for all α > 0. Starting with the heavy-tail Poisson distribution
as above and proceeding along the lines in [37, Section 3.15], the following two steps are performed for the
construction of capacity-approaching LDPC code ensemblesfor the BEC:
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• The degree distribution̂λα(x) is truncated so that it consists of the firstN terms of its Taylor series expansion
(up to and including the termxN−1).

• The truncated power serieŝλ(N)
α (x) is normalized so that it is equal to 1 atx = 1. The left degree distribution

(from the edge perspective) is then equal toλ
(N)
α (x) = λ̂(N)

α (x)

λ̂(N)
α (1)

. The right degree distribution,ρα(x), is not
modified.

This procedure provides the following degree distributions:

λi =
1

H(N − 1) (i − 1)
, i = 2, 3, . . . N

ρi =
e−ααi−1

(i − 1)!
, i = 1, 2, . . . (86)

whereH(k) ,
∑k

i=1
1
i for k ≥ 1 is a truncated harmonic sum. From (3), straightforward calculus shows that the

design rate of the corresponding LDPC code ensemble is equalto

Rd(α,N) = 1 −
∫ 1
0 ρα(x) dx

∫ 1
0 λ

(N)
α (x) dx

= 1 − N H(N − 1) (1 − e−α)

(N − 1)α
. (87)

We need to determine the parametersα andN so that the design rate in (87) forms (at least) a fraction1 − ε of
the capacity of the BEC. Letp designate the erasure probability of the channel, and letr = (1 − ε)(1 − p) be
the lower bound on the required design rate. We need to chooseα andN to satisfy the inequalityRd(α,N) ≥ r

with vanishing bit erasure probability under BP decoding. Similarly to the calculations in [37, Example 3.88], the
satisfiability of the inequality

λ̂
(N)
α (1)

1 − λ̂
(N)
α (1)

( ∫ 1
0 ρα(x) dx

∫ 1
0 λ̂

(N)
α (x) dx

− 1

)
≤ ε

implies this requirement, and straightforward algebra gives the inequality
H(N−1)

α

1 − H(N−1)
α

(
N(1 − e−α)

N − 1
− 1

)
≤ ε. (88)

By choosingα to satisfy the equalityH(N−1)
α = 1− r and replacing1− e−α by 1, we get from (88) the following

stronger requirement:
1 − r

r

1

N − 1
≤ ε (89)

which then provides a proper choice forN . To conclude, the parametersα andN are chosen to be

α =
H(N − 1)

1 − r
, N =

⌈
1 − r

εr

⌉
+ 1. (90)

In the following, we calculate the heavy-tail Poisson distribution in (86) with the choice of parameters in (90). The
resulting degree distribution of the parity-check nodes (from the edge perspective) is compared with the LP1 bound
for the BEC where the analytical solution of this bound is given in Appendix VIII.

Comparisons between the heavy-tail Poisson distribution and the LP1 bound are shown in Figure 5. We note that
the LP1 bound is an upper bound on the parity-check degree distribution which is valid under ML decoding (and
hence, it is general for any decoding algorithm), whereas the heavy-tail Poisson distribution is designed to achieve
a certain gap to capacity under BP decoding. We also show in this figure the fixed degree of the parity-check nodes
for the right-regular LDPC code ensemble; this calculationis done via (112), (113), (118) where the right degree
is equal toaR = d 1

αe + 1. Although the latter case corresponds to a step function, the degree where this function
switches from zero to one provides an indication to the reasonable tightness of the LP1 upper bound with respect
to the value of the parity-check degreek where this upper bound is close to 1.

The following analysis compares between the behavior of theupper bound onρi as given in Corollary 2 with the
behavior of the heavy-tail Poisson distribution in the limit where the gap to capacity vanishes under BP decoding:
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Fig. 5. A comparison between the LP1 bound, the heavy-tail Poisson degree distribution in (86) and (90), and the parity-check degree
distribution of the right-regular LDPC ensemble (it is calculated via (112), (113), (118) where the right degree is equal to aR = d 1

α
e + 1).

This comparison refers to a BEC whose capacity is one-half (upper plot) and three-quarters (lower plot) bits per channeluse, and the setting
where 99.9% of the channel capacity is achieved under BP decoding with vanishing bit erasure probability. The stair functions correspond
to the fraction of edges which are attached to parity-check nodes whose degrees are at mostk for a positive integerk.

Note that the truncated harmonic sumH(k) scales like the logarithm ofk (more precisely,H(k) ≈ ln(k) + γ for
k � 1 whereγ ≈ 0.5772 is Euler’s constant), and the value ofN as given in (90) becomes un-bounded as the gap
to capacity vanishes (since it is inversely proportional toε). Hence, for small values of the gap to capacity (i.e.,
whenε � 1), we get from (90)

α ≈ ln 1−r
εr

1 − r
, N ≈ 1 − r

εr
+ 1

and therefore (86) yields that the fraction of edges which are attached to parity-check nodes of a given degreei

scales likeε
1

1−r

(
ln 1

ε

)i−1
for i ≥ 1. The upper bound onρi as given in Corollary 2 scales likeε

ln 1

ε

, where this
bound is even valid under ML decoding. For a comparison between this general upper bound and the behavior of
the Poisson distribution when the gap to capacity vanishes,we note that for any rater < 1, a positive integeri and
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ε � 1, the inequalityε
1

1−r

(
ln 1

ε

)i−1 � ε
ln 1

ε

holds, as expected from a comparison of a degree distribution with a
general upper bound. Moreover, it follows from the asymptotic analysis that for small design rates (i.e.,r � 1), the
Poisson distribution gets closer to the LP1 bound in the limit whereε → 0 (as exemplified in Fig. 5 by comparing
the upper and lower plots which correspond to a capacity of1

2 and 3
4 bits per channel use, respectively).

Analytical solutions for the LP3 and LP4 bounds: Consider an LP problem of the form

maximize
k∑

i=2
λi, k = 2, 3, . . .

subject to



∞∑
i=2

λi

i ≤ α

∞∑
i=2

λi = 1

λi ≥ 0, i = 2, 3, . . .

If kα ≤ 1 then the optimal solution is obtained by settingλk = kα, λj = 1 − kα for somej → ∞ where all the
otherλi’s are set to zero. This gives a solution which is equal to

∑k
i=1 λi = λk = kα. If kα > 1 then the optimal

solution is obtained by settingλk = 1 and all the otherλi’s to be zero. Hence, the solution of this LP problem is
given bymin{kα, 1} which implies that the closed-form solutions of the LP3 and LP4 bounds are given by

min





1,
k ln
(

1
g1

)

2(1 − C)
(
1 + εC

1−C

)
ln

(
1

1−2h−1
2

(
1−C−h2(Pb)

1−(1−ε)C

)
)





(91)

and

min





1,
k ln
(

1
C

)

2(1 − C)
(
1 + εC

1−C

)
ln

(
1

1−2h−1
2

(
1−C−h2(Pb)

1−(1−ε)C

)
)





(92)

respectively.
Based on the observations in Theorems 2 and 3, the fraction ofedges connected to variable nodes of small degree

is expected to be significantly larger than the fraction of edges which are connected to parity-check nodes of the
same degree. This is shown in the following example:

Example 7 (LP3 bound): Consider LDPC code ensembles whose design rate is one-half bit per channel use,
and whose transmission takes place over a BIAWGN channel. Lets assume that we wish to find upper bounds
on the fraction of edges up to degreek (for a parameterk ≥ 2) for the setting of a bit error probability of (at
most)Pb = 10−10 under ML decoding (or any sub-optimal decoding algorithm) at Eb

N0
= 0.188 dB. This implies a

gap to capacity which is equal toε = 1.42 · 10−4. From (91), we obtain the following inequalities (also verified
numerically via [15]):

λ2 ≤ 0.2683

λ2 + λ3 ≤ 0.4025

λ2 + λ3 + λ4 ≤ 0.5367

λ2 + λ3 + λ4 + λ5 ≤ 0.6709

λ2 + λ3 + λ4 + λ5 + λ6 ≤ 0.8051

λ2 + λ3 + λ4 + λ5 + λ6 + λ7 ≤ 0.9392

λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 ≤ 1.0000.

A comparison of these numerical results with those presented in Fig. 4 for the same value ofEb
N0

shows a big
difference between the two upper bounds on the sequences{λi} and{ρi}. This difference is well expected in light
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of the bounds in Corollary 2 where for every finite degreei, the upper bounds onλi andρi scale like 1
log 1

ε

and
ε

log 1

ε

, respectively. We note that this difference is not an artifact of the bounding technique, as is demonstrated in
Proposition 1 for the BEC.

D. Bounds on the Graphical Complexity of Finite-Length Codes

In various applications, there is a need to design a communication system which fulfills several requirements on
the available bandwidth with acceptable delay for transmitting and processing the data while maintaining a certain
fidelity criterion in reconstructing the data. In this setting, one wishes to design a code which satisfies the delay
constraint (i.e., the block length is limited) while adhering to the required performance over the given channel. By
fixing the communication channel model and code rate (which is related to the bandwidth expansion caused by
the error-correcting code), sphere-packing bounds are transformed into lower bounds on the minimal block length
required to achieve a target block error probability at a certain gap to capacity using an arbitrary block code and
decoding algorithm. This issue is studied in [54, Section V].
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Fig. 6. A comparison between the graphical complexity of various efficient LDPC code ensembles and an information-theoretic lower
bound. The graphical complexity is measured by the number ofedges which are used to represent the codes (or code ensembles) by bipartite
graphs in order to achieve a fixed target block error probability over a given communication channel. It is assumed that the code is BPSK
modulated and transmitted over a binary-input AWGN channel. This figure refers to a target block error probability ofPB = 10

−5, and a
design rate of one-half bit per channel use. The information-theoretic lower bound is valid under maximum-likelihood (ML) decoding (and,
hence, it also holds under any sub-optimal decoding algorithm). For the comparison of the lower bound with various LDPC code ensembles,
we refer to both ML and belief-propagation (BP) decoding algorithms. The circled points refer to ML decoding, and they are based on the
tangential-sphere upper bound which is applied to the (6,12) regular LDPC code ensembles of Gallager for block lengths of 5040, 10080,
20160 and 40320 bits (these points rely on [50, Table II]). The other three points in this figure refer to LDPC code ensembles which are
decoded by a BP decoder. The point marked by‘+

′ refers to a non-punctured protograph LDPC code ensemble of block length 7360 bits
and of rate one-half (see [10, Fig. 9]). The other two points which are marked by‘×′ refer to irregular quasi-cyclic LDPC code ensembles
(see [23, Figs. 10 and 11]). The two information-theoretic lower bounds on the graphical complexity (’LB1’ and ’LB2’) rely, respectively,
on the sphere-packing bound of Shannon [44] and the recentlyintroduced sphere-packing bound in [54]. Both of these bounds also rely on
Theorem 1 which serves as a lower bound on the average right degree. The information-theoretic lower bound that is shown in this figure
is obtained by taking the maximum of the LB1 and LB2 bounds.

In the following, we refer to the graphical complexity of an arbitrary bipartite graph which represents a binary
linear block code. The graphical complexity has an operational meaning for an iterative message-passing decoder
since the number of edges is equal to the number of right-to-left and left-to-right messages which are delivered in
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each iteration. As opposed to [18], [31] and [32], we refer here to the graphical complexity offinite-length codes.
In order to evaluate an information-theoretic lower bound on the graphical complexity which is expressed in terms
of the target block error probability and the correspondingachievable gap to capacity, we rely here on the following
algorithm:

• Step 1: Sphere-packing bounds are used to calculate a lower bound on the minimal required block length in
terms of the achievable rate with a target block error probability and its gap to capacity. For a memoryless
symmetric channel, the lower bound on the minimal block length is calculated via the ISP bound (for finite-
length codes, this recent sphere-packing bound suggests a significant improvement over the bounds in [45]
and [51], see Section II-D and [54, Section III]). In addition, this lower bound is also compared with the 1959
sphere-packing (SP59) bound of Shannon (see Section II-D and [44]) for a binary-input AWGN channel where
the transmitted signals are assumed to have equal energy.

• Step 2: A lower bound on the average right degree is calculated via Theorem 1 for an arbitrary bipartite graph
which is used to represent a binary linear block code. Note that for an LDPC code whose parity-check matrix
is not necessarily full-rank, one can apply this lower boundby replacing the code rate with the design rate
(see Discussion 2 in Section IV). The calculation of this lower bound for a target block error probabilityPB

also stays valid if the block lengthn is replaced in (23) with a lower boundn′ (as calculated in the previous
step).

• Step 3:The total number of edges of a bipartite graph is a measure of its graphical complexity. For a bipartite
graph which refers to a design rate ofRd, the total number of edges is equal to|E| = (1−Rd)naR. Replacing
n andaR by the lower bounds calculated in Steps 1 and 2, respectively, gives a lower bound on the number
of edges.

The resulting lower bound on the total number of edges is general for every representation of a binary linear
block code by a parity-check matrix and its respective bipartite graph. This bound depends on the code rate (or
design rate), the communication channel, the achievable gap to capacity, and the target block error probability. This
lower bound holds for an arbitrary representation of the code by a bipartite graph.

According to the above description of the three steps used tocalculate the information-theoretic lower bound on
the graphical complexity, we calculate here two lower bounds on the graphical complexity:

• LB1: A lower bound which combines a lower bound on the block length calculated via the SP59 bound [44],
and a lower bound on the average right degree which is calculated via Theorem 1 for a target block error
probability PB and a given code rate (or design rate).

• LB2: A lower bound which combines a lower bound on the block length calculated via the ISP bound [54,
Section III], and the same lower bound on the average right degree.

We note that Steps 2 and 3 in the above algorithm are common forthe calculation of the LB1 and LB2 bounds,
and the only difference in the calculation of these two bounds is in Step 1 where the SP59 and ISP bounds are
used for the LB1 and LB2 bounds, respectively. The resultinglower bound (LB) on the graphical complexity is the
maximal value of the LB1 and LB2 bounds, i.e., LB= max(LB1, LB2). We note that the resulting lower bound
on the graphical complexity holds under ML decoding or any sub-optimal decoding algorithm.

The above algorithm is applied in Figure 6 to obtain a lower bound on the graphical complexity of an arbitrary
binary linear block code of rate one-half and with a target block error probability ofPB = 10−5. It is assumed
that the code is BPSK modulated, and the transmission takes place over a binary-input AWGN channel. The un-
bounded complexity in the limit where the gap to capacity vanishes is due to the infinite block length which is
required to obtain reliable communications at rates which are arbitrarily close to capacity. We note that thebounded
graphical complexity for the BEC, as demonstrated in [18], [31] and [32], is obtained by addressing the graphical
complexity per information bit, and by also allowing more complicated Tanner graphs which include state nodes
(e.g., punctured bits) in addition to the variable and parity-check nodes which are used for a representation of these
codes by bipartite graphs.

As shown in Figure 6, the bound LB2 is advantageous over LB1 for low values of Eb
N0

which are close to the
capacity limit; this phenomenon is even more pronounced forhigher code rates (above one-half bit per channel
use). This observation is partially due to the fact that the ISP bound depends on the particular type of modulation
used, in contrast to the SP59 bound which only assumes that the modulated signals have equal energy but does not
consider the particular modulation used.
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The lower bound on the graphical complexity is compared herewith some efficient LDPC codes (or code
ensembles) as reported in the literature. To this end, we refer to computer simulations under BP decoding, and also
to upper bounds on the block error probability under ML decoding. Although the number of edges is relevant for
the decoding complexity per iteration under BP decoding, some comparisons with ML decoding provide a better
assessment of the tightness of this information-theoreticlower bound. The circled points in Figure 6 are based
on the tangential-sphere upper bound3 which is applied to the (6,12) regular LDPC code ensembles ofGallager
for block lengths of 5040, 10080, 20160 and 40320 bits whose block error probability is upper bounded by10−5

(see [50, Table II]). The other three points which are shown in Figure 6 refer to LDPC code ensembles which are
decoded by a BP decoder. The point marked by‘+′ refers to a non-punctured protograph LDPC code ensemble
of block length of 7360 bits and a design rate of one-half (see[10, Fig. 9]). The other two points which are
marked by‘×′ refer to irregular quasi-cyclic LDPC code ensembles (see [23, Figs. 10 and 11]) where the graphical
complexity is obtained via the degree distributions which are given in [23, Examples 10 and 11]. To conclude, the
information-theoretic lower bound on the graphical complexity becomes un-bounded as the gap to capacity vanishes
(even under ML decoding). It also behaves in a similar way to the circled points in Figure 6 (where these points
refer to the performance of a regular LDPC code ensembles under ML decoding). Moreover, the comparison of this
lower bound in Figure 6 with some efficient LDPC code ensembles under BP decoding (where the corresponding
points are marked by‘+′ and‘×′) indicate the gain that can be potentially obtained by improved designs of efficient
LDPC codes and iterative decoding algorithms defined on graphs.

VI. OUTLOOK

This work considers some universal properties of capacity-approaching low-density parity-check (LDPC) code
ensembles whose transmission takes place over memoryless binary-input output-symmetric (MBIOS) channels.
Properties of the degree distributions, graphical complexity and the fundamental cycles of the bipartite graphs are
studied in this paper via the derivation of information-theoretic bounds (see Sections III and IV). The applications
of these bounds are exemplified in Section V.

In the following, we gather some interesting open problems which are related to this research work:
• The analysis in this paper relies (in part) on the lower bound(18) on the conditional entropy (see [53]). Note

that this bound depends on the right degree distribution (i.e., the degree distribution of the parity-check nodes),
but the dependence on the left degree distribution is ratherweak (according to Section II-C.2, this dependence is
made only through the design rate of the LDPC code ensemble).It would be interesting to improve this bound
by also having an explicit dependence on the left degree distribution. This goal can be obtained by improving
the weak link in the derivation of this bound, namely, by tightening the upper bound (14) on the conditional
entropy of the syndrome vector (which is expressed by the sumof the respective conditional entropies of the
components of the syndrome). Note that for the BSC, the boundin (18) coincides with the bound of Gallager
in [14, Section 3.8] (since the conditioning on the RHS of (14) becomes irrelevant for the BSC, due to the
fact that the absolute value of the LLR is a constant for this channel). A step towards the improvement of
Gallager’s bound for the BSC was done by Wadayama [52] where the entropy of the syndrome vector was
calculated exactly in terms of the coset weight distribution of the code (or the average coset weight distribution
of the ensemble). For a general MBIOS channel, the improvement of the bound in (18) is an open problem,
and it may provide an explicit dependence of the bound on the pair of degree distributions for a code which
is represented by a bipartite graph.

• Unlike the information-theoretic bound in (18), the boundspresented in [28] rely on statistical physics, and
therefore do not provide a bound on the conditional entropy which is valid for every binary linear block code
from the considered ensembles. It would be interesting to get some theory that unifies the information-theoretic
and statistical physics approaches, and provides bounds that are tight on the average and valid for each code.
We note that the bounds in [28] depend on both the left and right degree distributions for LDPC code ensembles
(though their computation is more complicated than the bound given in (18)).

• The asymptotic bounds in Corollary 1 address the average cardinality of the fundamental system of cycles for
bipartite graphs representing LDPC code ensembles where the results are directly linked to the average right
degree of these ensembles. Further study of the possible link between the statistical properties of the degree

3For a presentation of the tangential-sphere bound, originally introduced by Poltyrev [33], we refer the reader to [39, pp. 23–32].
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distributions of capacity-approaching LDPC code ensembles and some other graphical properties related to the
bipartite graphs of these ensembles is of interest.

• The graphical complexity of capacity-approaching LDPC codes is studied in this paper via an information-
theoretic lower bound which relies on both Theorem 1 and sphere-packing bounds (see Section V-D). The
graphical complexity is defined to be the number of edges in the bipartite graphs used to represent these
codes. A recent sphere-packing bound which was introduced in [54] is shown to be helpful for the calculation
of the lower bound on the graphical complexity, especially when the gap to capacity becomes small (see
the algorithm for the calculation of this bound in Section V-D and the results shown in Figure 6). Further
tightening of sphere-packing bounds for finite-length codes, especially for codes of short to moderate block
lengths, is of interest and it has the potential of further improving the resulting lower bound on the graphical
complexity. An improvement of the sphere-packing bounds introduced in [44] and [54] will also contribute to
the study of the sub-optimality of iteratively decoded codes for finite block lengths.

• The derivation of universal bounds on the number of iterations of code ensembles defined on graphs, measured
in terms of the achievable gap (in rate) to capacity, is of theoretical and practical interest. In a recent work
[42], this issue is addressed for the BEC. It is demonstratedin [42] that the number of iterations which is
required for successful message-passing decoding scales at least like the inverse of the achievable gap (in
rate) to capacity, provided that the fraction of degree-2 variable nodes of these turbo-like code ensembles does
not vanish (hence, the number of iterations becomes unbounded as the gap to capacity vanishes). Note that
Lemma 7 (see p. 24) provides a condition which ensures that the fraction of degree-2 variable nodes stays
strictly positive for capacity-achieving LDPC code ensembles. A generalization of such a lower bound on the
number of iterations for an arbitrary MBIOS channel is of interest. The matching condition for generalized
extrinsic information transfer (GEXIT) curves serves to conjecture in [26, Section XI] that, also for an arbitrary
MBIOS channel, this number of iterations scales like the inverse of the achievable gap to capacity.

• Extension of the results in this paper to channels with memory (e.g., finite-state channels) is of interest. In this
respect, the reader is referred to [17] which considers information-theoretic bounds on the achievable rates of
LDPC code ensembles for a class of finite-state channels.

• Extension of the results in this work to general ensembles ofmulti-edge type LDPC codes (see [37, Chapter 7])
is of interest.

APPENDIX I
PROOF OFLEMMA 3

The following proof deviates from the analysis in Section II-C.1, starting from (14).

• In the transition to the last line in (14), the conditional entropy H
(
S |Ω1, . . . ,Ωn

)
is upper bounded by the sum

of the conditional entropies of then(1−R) independent components of the syndromeS under the assumption
that the parity-check matrix is full-rank. In the general case where this parity-check matrix is not necessarily
full-rank, the rateR of the code may exceed the design rateRd due to a possible linear dependence of the
rows in this matrix. Therefore, we obtain an upper bound on the conditional entropy by summing over the
n(1 − Rd) components of the syndrome.

• In parallel to (14), we get the inequality

H
(
Φ1, . . . ,Φn |Ω1, . . . ,Ωn

)

≤ H(M) +

n(1−Rd)∑

j=1

H
(
Sj |Ω1, . . . ,Ωn

)
. (93)

• The entropy of the transmitted codewordX is equal to the entropy of the indexM of the received vector in
the appropriate coset, regardless of the rank ofH. Hence,H(X) in the second line of (10) can be replaced
by H(M), and we get

H(X|Y) = H(M) + n[H(Ỹ1) − I(X1; Ỹ1)] − H(Ỹ).
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• Combining (11)–(13), (93) and the last equality, we get the inequality (note that the entropyH(M) cancels
out)

H(X|Y) ≥ n(1 − C) −
n(1−Rd)∑

j=1

H(Sj

∣∣Ω1, . . . ,Ωn)

which is similar to (15) except that the sum on the RHS is over the n(1 − Rd) (possibly linearly-dependent)
components of the syndrome.

From this point, the analysis is similar to Section II-C.1 which then yields an extension of (18) withR replaced
by Rd when the parity-check matrix is not necessarily full-rank.

APPENDIX II
PROOF OFLEMMA 5

This lemma is proved by expressing the channel capacity as a non-negative infinite series which depends on the
sequence{gk}k≥1, and solving an optimization problem for the extreme valuesof g1 subject to a constraint on the
channel capacityC. To this end, we rely on the equality in (7) for the capacity ofan MBIOS channel:

C =

∫ ∞

0
a(l)(1 + e−l)

[
1 − h2

(
1

1 + e l

)]
dl

(a)
=

∫ ∞

0
a(l)(1 + e−l)

1

2 ln 2

∞∑

k=1

tanh2k
(

l
2

)

k(2k − 1)
dl

=
1

2 ln 2

∞∑

k=1

{∫∞
0 a(l)(1 + e−l) tanh2k

(
l
2

)
dl

k(2k − 1)

}

(b)
=

1

2 ln 2

∞∑

k=1

gk

k(2k − 1)
(94)

where equality (a) follows by substitutingx = 1
1+e l in (16), and equality (b) follows from (19); this provides an

expression for the channel capacity in terms of the non-negative sequence{gk}∞k=0 defined in (19). The representation
of the capacity as the infinite series in (94) follows in fact from the result which is obtained via [46, Propositions 3.1–
3.3] by referring to an equi-probable binary input, though the derivation here is more direct.

We start with the proof of the upper bound ong1, as given on the RHS of (53). Since we look for the maximal
value ofg1 among all MBIOS channels with a given capacityC, then we need to solve the optimization problem

maximize g1

subject to
1

2 ln 2

∞∑

k=1

gk

k(2k − 1)
= C. (95)

Based on Lemma 4, for every MBIOS channel,gk ≥ (g1)
k for all k ∈ N. Therefore

1

2 ln 2

∞∑

k=1

gk

k(2k − 1)

≥ 1

2 ln 2

∞∑

k=1

(g1)
k

k(2k − 1)

= 1 − h2

(
1 −√

g1

2

)
(96)

where the last equality is based on (42). The equality constraint in (95) and the inequality (96) yield that

1 − h2

(
1 −√

g1

2

)
≤ C

from which the RHS of (53) follows. Note that this upper boundon g1 is attained whengk = (g1)
k for all k ∈ N.

To show this equality, note that for a BSC with crossover probability p, the LLR at the channel output(L) is
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bimodal and it gets the valuesl1 = + ln
(1−p

p

)
and l2 = −l1 with probabilities1 − p andp, respectively. Eq. (20)

then gives

gk , E

[
tanh2k

(
L

2

)]

= (1 − p) tanh2k

(
l1

2

)
+ p tanh2k

(
− l1

2

)

= tanh2k

(
l1

2

)

=

(
el1 − 1

el1 + 1

)2k

= (1 − 2p)2k , ∀ k ∈ N. (97)

Hence for the BSC,gk = (g1)
k for all k ∈ N. The upper bound ong1 on the RHS of (53) is therefore achieved

for a BSC whose crossover probability isp = h−1
2 (1 − C).

The proof of the lower bound ong1 relies on (94). Since the sequence{gk}k≥1 is monotonically non-increasing
and non-negative (this property follows directly from (20)), then

C =
1

2 ln 2

∞∑

k=1

gk

k(2k − 1)

≤ g1

2 ln 2

∞∑

k=1

1

k(2k − 1)

= g1

where the last equality follows from (47). This lower bound on g1 is attained for a BEC (since for a BEC whose
erasure probability isp, (20) implies that the sequence{gk} is constant andg1 = 1 − p = C).

APPENDIX III
PROOF OFLEMMA 7

From the assumption in Lemma 7, the satisfiability of the flatness condition for this capacity-achieving sequence
gives that

lim
m→∞

B(a)λ
(m)
2 ρ′m(1) = 1 . (98)

From (75), the fraction of degree-2 variable nodes is given by

Λ
(m)
2 =

λ
(m)
2

2
∫ 1
0 λm(x)dx

, ∀m ∈ N (99)

and therefore

lim
m→∞

Λ
(m)
2

(a)
= lim

m→∞
1

2B(a) ρ′m(1)
∫ 1
0 λm(x)dx

(b)
= lim

m→∞
1 − Rm

2B(a) ρ′m(1)
∫ 1
0 ρm(x)dx

(c)
=

1 − C

2B(a)
lim

m→∞
1

ρ′m(1)
∫ 1
0 ρm(x)dx

(100)

where (a) relies on (98) and (99), (b) follows from (3) whereRm designates the design rate of them-th LDPC
code ensemble in this sequence, and (c) follows by the assumption that the sequence is capacity-achieving. Let
a

(m)
R designate the average right degree of the LDPC code ensemble(nm, λn, ρm). From (5), this implies that
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a
(m)
R =

(∫ 1
0 ρm(x) dx

)−1
and, from Theorem 1 followed by Discussion 2, the asymptoticaverage right degree of

the considered capacity-achieving sequence tends to infinity, i.e.,

lim
m→∞

a
(m)
R = ∞. (101)

We evaluate now the expression in (100). To this end, letρm(x) ,
∑

i ρ
(m)
i xi−1, and letΓ(m)

i designate the fraction
of parity-check nodes of degreei for LDPC code ensemble(nm, λm, ρm), then

ρ′m(1)

∫ 1

0
ρm(x)dx

=
ρ′m(1)

a
(m)
R

=

∑
i(i − 1)ρ

(m)
i

a
(m)
R

=

∑
i iρ

(m)
i − 1

a
(m)
R

=
1

a
(m)
R

(
∑

i

i

(
iΓ

(m)
i∑

j jΓ
(m)
j

)
− 1

)

=

∑
i i

2Γ
(m)
i(

a
(m)
R

)2 − 1

a
(m)
R

=




√∑
i i

2Γ
(m)
i −

(
a

(m)
R

)2

a
(m)
R




2

+ 1 − 1

a
(m)
R

. (102)

Consider any code from the LDPC code ensemble(nm, λm, ρm). Note that the first term in (102) is the square of
the ratio of the standard deviation and the average degree ofthe parity-check nodes for this code. Since we denote
the asymptotic limit of this ratio byK (where we assume that it exists and is finite) and also (101) holds, then we
get from (102) that

lim
m→∞

ρ′m(1)

∫ 1

0
ρm(x)dx = K2 + 1. (103)

This completes the proof of the theorem by combining (100) with (103).

APPENDIX IV
PROOF OFLEMMA 8

Let a denote the symmetricL-densitypdf of the transition probability of an MBIOS channel (see [37, Theo-
rem 4.26]). LetC = C(a) andB = B(a) be the corresponding capacity and Bhattacharyya constant,respectively.
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From (6), (8) and the symmetry ofa

C + B − 1

=

∫ ∞

−∞
a(l)e−

l

2 dl −
∫ ∞

−∞
a(l) log2(1 + e−l) dl

=

∫ ∞

−∞
a(l)e−

l

2 dl

−1

2

∫ ∞

−∞

[
a(l) log2(1 + e−l) + a(−l) log2(1 + el)

]
dl

=

∫ ∞

−∞
a(l)e−

l

2 dl

−1

2

∫ ∞

−∞
a(l)

[
log2(1 + e−l) + e−l log2(1 + el)

]
dl

=

∫ ∞

−∞
e−

l

2 a(l)g(l)dl

where the functiong is given by

g(l) = 1 − 1

2

[
e

l

2 log2(1 + e−l) + e−
l

2 log2(1 + el)
]
, l ∈ R.

In order to complete the proof, it suffices to show that the functiong is non-negative. The substitutionx = 1
1+el gives

g(l) = 1− h2(x)

2
√

x(1−x)
where the interval(−∞,+∞) for l is mapped into the interval(0, 1) for x. The non-negativity

of g follows from the inequalityh2(x) ≤ 2
√

x(1 − x) which is satisfied for0 ≤ x ≤ 1. The non-negativity of the
function g implies thatC + B ≥ 1.

Note that for a BEC with erasure probabilityp, the channel capacity is1 − p bits per channel use, and the
Bhattacharyya constant is equal top. Hence, the equalityC + B = 1 holds for every BEC, irrespectively of the
channel erasure probability.

APPENDIX V
PROOF OFCOROLLARY 4

A truncation of the power series on the LHS of (42) after its first term gives the inequality

1 − h2

(
1 −√

u

2

)
≥ u

2 ln 2
, 0 ≤ u ≤ 1.

Assigningu =
(
1 − 2h−1

2 (x)
)2

and rearranging terms gives

h−1
2 (x) ≥ 1

2

(
1 −

√
2 ln 2 (1 − x)

)
, 0 ≤ x ≤ 1. (104)

Assigning0 ≤ x , 1−C
1−(1−ε)C ≤ 1 in (104) gives

h−1
2

(
1 − C

1 − C(1 − ε)

)

≥ 1

2

(
1 −

√
2 ln 2

(
εC

1 − (1 − ε)C

))

≥ 1

2

(
1 −

√
2 ln 2

(
εC

1 − C

))

and therefore

1 − 2h−1
2

(
1 − C

1 − (1 − ε)C

)
≤
√

2 ln 2

(
εC

1 − C

)
. (105)
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Substituting (105) in (80) provides the following lower bound on the average right degree of the ensembles:

aR ≥ ln
(

1
2 ln 2

1−C
εC

)

ln
(

1
g1

) . (106)

As the average right degree of an LDPC code ensemble is not less than 2 (as otherwise, some bits are forced to
be zeros and can be deleted from all codewords), then it follows from (106) that

aR − 1 ≥


 ln

( g1

2 ln 2
1−C
εC

)

ln
(

1
g1

)




+

=


 ln

( g1

2 ln 2
1−C

C

)
+ ln

(
1
ε

)

ln
(

1
g1

)




+

. (107)

The proof is completed by combining (81) with (107).

APPENDIX VI
PROOF OFPROPOSITION1

When the transmission takes place over a BEC whose erasure probability isp, the constantc2 given in (38) takes
the form

c2 =
p

ln
(

1
1−p

) . (108)

The starting point of this proof follows the concept in [37, Example 3.88], and its continuation relies on the analysis
used for the proof of [40, Theorem 2.3]. For0 < α < 1, let

λ̂α(x) = 1 − (1 − x)α =

∞∑

k=1

(−1)k+1

(
α

k

)
xk , 0 ≤ x ≤ 1

ρα(x) = x
1

α . (109)

Note that all the coefficients in the power series expansion of λ̂α are positive for all0 < α < 1. Let us now define
the polynomialŝλ(N)

α andλ
(N)
α whereλ̂

(N)
α (x) is the truncated power series ofλ̂α(x) aroundx = 0, consisting of

all the terms up to (and including) the termxN−1, and the polynomial

λ(N)
α (x) ,

λ̂
(N)
α (x)

λ̂
(N)
α (1)

(110)

is normalized to satisfy the equalityλ(N)
α (1) = 1. The sequence of right-regular LDPC code ensembles in [48] is

of the form
{(

nm, λ
(N)
α (x), ρα(x)

)}
m≥1

where0 < α < 1 andN ∈ N are arbitrary parameters which need to be
selected properly. Assume that the transmission takes place over a BEC whose erasure probability isp. Based on
the proof of [40, Theorem 2.3], this sequence achieves a fraction 1− ε of the capacity of the BEC with vanishing
bit erasure probability under BP decoding whenα andN are chosen to satisfy

1

Nα
= 1 − p (111)

N = max

(⌈
1 − (1 − ε)(1 − p)k2(p)

ε

⌉
,
⌈
(1 − p)−

1

p

⌉)
(112)

where
k2(p) , (1 − p)

π2

6 e

(
π2

6
−γ
)

p
(113)

andγ is Euler’s constant (γ ≈ 0.5772). Combining (109) and (110), and using the equality

N−1∑

k=1

(−1)k+1

(
α

k

)
= 1 − N

α

(
α

N

)
(−1)N+1
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gives

λ(N)
α (x) =

∑N−1
k=1 (−1)k+1

(α
k

)
xk

1 − N
α (−1)N+1

(α
N

) .

Therefore, the fraction of edges adjacent to variable nodesof degree two is given by

λ2 =
α

1 − N
α (−1)N+1

(α
N

) . (114)

We now obtain upper and lower bounds onλ2. From [40, Eq. (67)] we have that

c(α,N)

Nα
<

N

α
(−1)N+1

(
α

N

)
≤ 1

Nα
(115)

where
c(α,N) , (1 − α)

π2

6 eα
(

π2

6
−γ+ 1

2N

)
. (116)

Substituting (115) in (114) and using (111), we get
α

1 − c(α,N) (1 − p)
< λ2 ≤ α

1 − (1 − p)
=

α

p
. (117)

Under the parameter assignments in (111) and (112), the parametersN andα satisfy

α =
ln
(

1
1−p

)

ln N
(118)

N ≥ 1 − (1 − p) k2(p)

ε
. (119)

Substituting (118) and (119) into the inequality on the RHS of (117) gives an upper bound onλ2 which takes the
form

λ2 ≤ α

p

≤
ln
(

1
1−p

)

p ln
(

1−(1−p) k2(p)
ε

)

=
1

c3 + c2 ln 1
ε

(120)

wherec2 is the coefficient of the logarithmic growth rate in1ε , which coincides here with (108), and

c3 ,
p ln

(
1 − (1 − p) k2(p)

)

ln
(

1
1−p

) (121)

is a constant which only depends on the BEC. We turn now to derive a lower bound onλ2, and then examine it in
the limit where the gap to capacity vanishes. From (112), we have that for small enough values ofε, the parameter
N satisfies

N =

⌈
1 − k2(p) (1 − p) (1 − ε)

ε

⌉

≤ 1 − k2(p) (1 − p) (1 − ε)

ε
+ 1. (122)

Substituting (118) and (122) into the inequality on the LHS of (117), we get

λ2 >
α

p

p

1 − c(α,N) (1 − p)

≥
ln
(

1
1−p

)

p ln
(

1−k2(p)(1−p)(1−ε)+ε
ε

) · p

1 − c(α,N) (1 − p)

=
1

c3 + c2 ln
(

1
ε

)
+ ε̃(ε, p)

p

1 − (1 − p) c(α,N)
(123)
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wherec2 is the coefficient of the logarithm in the denominator of (37)and it coincides with (108) for the BEC,c3

is given in (121), and

ε̃(ε, p) ,

p ln

(
1 +

ε
(
1+k2(p) (1−p)

)

1−k2(p) (1−p)

)

ln
(

1
1−p

)

which therefore implies that for0 ≤ p < 1
lim
ε→0

ε̃(ε, p) = 0. (124)

Using the lower bound on the parameterN in (119), in the limit whereε tends to zero, the parameterN tends
to infinity (since1 − (1 − p)k2(p) > 0 for all 0 < p < 1 wherek2 in introduced in (113)). Also, from (112) and
(118), we get

lim
ε→0

α = 0

which, from (116), yields that
lim
ε→0

c(α,N) = 1 . (125)

Substituting (124) and (125) in (123) yields that in the limit where the gap to capacity vanishes (i.e.,ε → 0), the
upper and lower bounds onλ2 in (120) and (123) coincide. Specifically, we have shown that

lim
ε→0

λ2(ε) · c2 ln

(
1

ε

)
= 1 .

Therefore, asε → 0, the upper bound onλ2 = λ2(ε) in Corollary 4 becomes tight for the sequence of right-regular
LDPC code ensembles in [48] with the parameters chosen in (111) and (112). We note that the setting of the
parametersN andα in (111) and (112) is identical to [40, p. 1615].

APPENDIX VII
A PROOF OFREMARK 15

We prove in the following the claim in Remark 15 which states that adding the constraint that is imposed by
the lower bound on the average right degree (i.e., the lower bound onaR =

∑∞
i=1 iΓi) does not affect the LP1

and LP2 bounds introduced in Section V-C. More explicitly, for the LP1 bound, we prove that the constraint on
{Γi}i≥1 which is imposed by (61) implies the lower bound on the average right degree as given in (22) and (23).

Proof: Eq. (61) gives the first constraint in the LP1 bound. By substituting x = 1−g
i
2
1

2 in (16), we get that the
following equality holds fori ≥ 1 (note that since0 ≤ g1 ≤ 1 then0 ≤ x ≤ 1 as required in (16)):

1 − h2

(
1 − g

i

2

1

2

)
=

1

2 ln 2

∞∑

p=1

g
pi
1

p(2p − 1)
.

Plugging this equality into the LHS of (61) gives

∞∑

i=1

{[
1 − h2

(
1 − g

i

2

1

2

)]
Γi

}

(a)
=

1

2 ln 2

∞∑

p=1

∞∑

i=1

Γig
pi
1

p(2p − 1)

(b)

≥ 1

2 ln 2

∞∑

p=1

g1
p
∑

i iΓi

p(2p − 1)

(c)
=

1

2 ln 2

∞∑

p=1

g1
paR

p(2p − 1)

(d)
= 1 − h2

(
1 − g

aR
2

1

2

)
. (126)
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where equality (a) is obtained by interchanging the order ofsummation, equality (b) follows from Jensen’s inequality,
equality (c) follows from expressing the average right degree by the equalityaR =

∑
i iΓi, and equality (d) follows

from (16). Combining (61) with (126) gives that

1 − h2

(
1 − g

aR
2

1

2

)
≤ εC + h2(Pb)

1 − (1 − ε)C

and then some straightforward algebra implies that

aR ≥
2 ln

(
1

1−2h−1
2 (

1−C−h2(Pb)

1−(1−ε)C
)

)

ln
(

1
g1

) .

This lower bound on the average right degree coincides with the bound in (22) and (23) which then completes our
proof for the LP1 bound. The same proof holds for the LP2 boundwhile referring to the lower bound given in
(23) and (54).

APPENDIX VIII
ANALYTICAL SOLUTION OF THE LP1 BOUND

The LP1 bound in Section V-C can be equivalently expressed asthe following minimization problem:

minimize −
k∑

i=1
ρi, k = 1, 2, . . .

subject to




∞∑
i=1

diρi ≤ 0

di , 1
i

[
1 − h2

(
1−g

i
2
1

2

)
− ε C+h2(Pb)

1−(1−ε)C

]
, i ≥ 1

∞∑
i=1

ρi ≤ 1

ρi ≥ 0, i = 1, 2, . . .

where we negated the objective function and turned the maximization into a minimization, and also the equality
constraint on

∑
i≥1 ρi was turned into an inequality constraint. By introducing the non-negative Lagrange multipliers

µ1 andµ2, respectively, to the first and second inequality constraints, and also introducing the non-negative Lagrange
multiplies {θi} to the non-negativity constraint on{ρi}, we get the Lagrangian

L({ρi}, µ1, µ2, {θi})

= −
k∑

i=1

ρi + µ1

∞∑

i=1

diρi + µ2

( ∞∑

i=1

ρi − 1

)
−

∞∑

i=1

θiρi

=

k∑

i=1

(
−1 + µ1di + µ2 − θi

)
ρi +

∞∑

i=k+1

(
µ1di + µ2 − θi

)
ρi

−µ2. (127)

By alternating again the sign of the objective function, we get the following dual LP problem:

minimizeµ2

subject to



−1 + µ1di + µ2 − θi = 0, i = 1, 2, . . . , k

µ1di + µ2 − θi = 0, i = k + 1, k + 2, . . .

µ1, µ2 ≥ 0

θi ≥ 0, i = 1, 2, . . .
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Strong duality holds for linear programming provided that the primal LP or its dual LP are feasible (see [6,
Problem 5.23]). Hence, strong duality holds for the LP1 problem.

Note that the sequence{di} (see the above primal problem) is positive if and only ifi < k0 wherek0 denotes
the lower bound on the average right degree as is given in (22). For k < k0, the sequence{di}k

i=1 is positive and
monotonic decreasing:

d1 > d2 > . . . ,> dk > 0, ∀ k < k0.

Also di ≤ 0 for i ≥ k0, and limi→∞ di = 0. Let

d∗ , min
i≥1

di (128)

where the minimum of the sequence{di} is attained for some indexi ≥ k0, and d∗ ≤ 0 (note that except for
the degenerate case whereg1 = 0, for which the channel is completely useless, the sequence{di} is negative for
i > k0, and it tends asymptotically to zero in the limit wherei → ∞).

Let k < k0. Due to the properties of the sequence{di} and the non-negativity constraint on{θi} in the dual LP
problem, the minimization of the objective function(µ2) can be simplified. To this end, one can remove all the
equality constraints from the dual LP problem except of the first equality constraint with the indexi = k, and the
second equality constraint with the indexi ≥ k0 for which the sequence{di} attains its minimal value(d∗). For
these two indices ofi, the Lagrange multipliersθi in the two equality constraints of the dual LP problem are set
to zero; this setting attains the minimal value ofµ2 (for the other equality constraints that were removed from the
dual LP problem, the correspondingθi’s are strictly positive; however, these equality constraints are redundant for
the minimization ofµ2 in the dual LP). Hence, fork < k0, the dual LP problem is simplified to

minimizeµ2

subject to




−1 + µ1dk + µ2 = 0

µ1d
∗ + µ2 = 0

µ1, µ2 ≥ 0

whose solution is
µ1 =

1

dk − d∗
, µ2 = − d∗

dk − d∗

and the optimal value of the dual LP is equal to− d∗

dk−d∗
which is indeed bounded between 0 and 1 (sinced∗ ≤ 0

anddk > 0 for k < k0).
For k ≥ k0, we get the following system of inequalities from the dual LPproblem:

{
−1 + µ1di + µ2 ≥ 0, for i = 1, 2, . . . , k
µ1di + µ2 ≥ 0, for i = k + 1, k + 2, . . .

Sincedk ≤ 0, then the optimal solution of the dual LP is obtained atµ1 = 0 and µ2 = 1, which then gives an
optimal value of 1 for the minimization ofµ2.

Remark 17:: Consider again the solution of the LP1 problem in the case wherek ≤ k0. From the solution of
the dual problem, it follows that it is obtained by settingρi to be zero, except for two indices. To this end, leti = l

be the index for which the sequence{di} achieves its negative minimal value(d∗), and let us choose the values
of ρk andρl to satisfy the two equalities:

dkρk + dlρl = 0

ρk + ρl = 1.

Sinced∗ = dl for somel > k0, then fork ≤ k0 and the above selection of{ρi}
k∑

i=1

ρi = ρk = − d∗

dk − d∗

which indeed coincides with the solution of the dual problem.
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A Tightened Version of the LP1 bound for the BEC and its Analytical Solution

A tightened version of the LP1 bound for the BEC is obtained via (64). By substituting the equality (85) into
the LHS of (64) and using the equalityC = 1 − p for a BEC gives

∞∑

i=1

ρiC
i

i
≤ εC + Pb

1 − (1 − ε)C

∞∑

i=1

ρi

i
.

This inequality constraint forms a tightened constraint for the BEC, as compared to the first inequality constraint
which was formulated in the LP1 problem for a general MBIOS channel. In order to use the analytical result
derived earlier in this appendix and adapt it to this case, weformulate the tightened version of the LP1 bound for
the BEC as follows:

minimize −
k∑

i=1
ρi, k = 1, 2, . . .

subject to




∞∑
i=1

diρi ≤ 0

di , 1
i

(
Ci − εC+Pb

1−(1−ε)C

)
, i = 1, 2, . . .

∞∑
i=1

ρi ≤ 1

ρi ≥ 0, i = 1, 2, . . .

Similarly to the above analysis in this appendix, the new sequence{di} is non-negative if and only ifi ≤ k0 where
k0 denotes the lower bound on the average right degree as is given in (24). Fork ≤ k0, the sequence{di}k

i=1

is non-negative and monotonic decreasing; moreover,di < 0 for i > k0, and limi→∞ di = 0. By using the same
notation ofd∗ in (128), we obtain that the tightened version of the LP1 bound for the BEC has the same analytical
solution as of the general LP1 bound, except for the change ofthe sequence{di} (and its corresponding minima
d∗).
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