
ACCEPTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY, REVISED FEBRUARY 2009. 1

Bounds on the Number of Iterations for Turbo-Like
Ensembles over the Binary Erasure Channel

Igal Sason,Member, IEEEand Gil Wiechman,Student Member, IEEE

Abstract

This paper provides simple lower bounds on the number of iterations which is required for successful message-
passing decoding of some important families of graph-basedcode ensembles (including low-density parity-check
codes and variations of repeat-accumulate codes). The transmission of the code ensembles is assumed to take place
over a binary erasure channel, and the bounds refer to the asymptotic case where we let the block length tend to
infinity. The simplicity of the bounds derived in this paper stems from the fact that they are easily evaluated and are
expressed in terms of some basic parameters of the ensemble which include the fraction of degree-2 variable nodes,
the target bit erasure probability and the gap between the channel capacity and the design rate of the ensemble.
This paper demonstrates that the number of iterations whichis required for successful message-passing decoding
scales at least like the inverse of the gap (in rate) to capacity, provided that the fraction of degree-2 variable nodes
of these turbo-like ensembles does not vanish (hence, the number of iterations becomes unbounded as the gap to
capacity vanishes).

Index terms– Accumulate-repeat-accumulate (ARA) codes, area theorem, binary erasure channel (BEC), density
evolution (DE), extrinsic information transfer (EXIT) charts, iterative message-passing decoding, low-density parity-
check (LDPC) codes, stability condition.

I. INTRODUCTION

During the last decade, there have been many developments inthe construction and analysis of low-complexity
error-correcting codes which closely approach the Shannoncapacity limit of many standard communication channels
with feasible complexity. These codes are understood to be codes defined on graphs, together with the associated
iterative decoding algorithms. Graphs serve not only to describe the codes themselves, but more importantly, they
structure the operation of their efficient sub-optimal iterative decoding algorithms.

Proper design of codes defined on graphs enables to asymptotically achieve the capacity of the binary erasure
channel (BEC) under iterative message-passing decoding. Capacity-achieving sequences of ensembles of low-density
parity-check (LDPC) codes were originally introduced by Shokrollahi [29] and by Luby et al. [13], and a systematic
study of capacity-achieving sequences of LDPC ensembles was presented by Oswald and Shokrollahi [19] for the
BEC. Analytical bounds on the maximal achievable rates of LDPC ensembles were derived by Barak et al. [6]
for the asymptotic case where the block length tends to infinity; this analysis provides a lower bound on the gap
between the channel capacity and the achievable rates of LDPC ensembles under iterative decoding. The decoding
complexity of LDPC codes under iterative message-passing decoding scales linearly with the block length, though
their encoding complexity may be super-linear with the block length. However, the class of repeat-accumulate
codes and their more recent variants (see, e.g., [1], [10] and [21]) exhibit the ’interleaver gain’ phenomenon, and
their encoding and decoding complexities scale both linearly with the block length. Due to the simplicity of the
density evolution analysis for the BEC, suitable constructions of capacity-achieving ensembles of variants of repeat-
accumulate codes were devised in [10], [20], [21] and [26]. All these works rely on the density evolution analysis
for the BEC, and provide an asymptotic analysis which refersto the case where we let the block length of these
code ensembles tend to infinity.

Rateless capacity-achieving codes for the BEC were introduced by Luby [14], and later improved by Shokrollahi
[30]. The innovation of this approach enables to achieve thecapacity of the BEC without the knowledge of the
channel parameter.
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The performance analysis of finite-length LDPC code ensembles whose transmission takes place over the BEC
was introduced by Di et al. [8]. This analysis considers sub-optimal iterative message-passing decoding as well as
optimal maximum-likelihood decoding. In [2], an efficient approach to the design of LDPC codes of finite length
was introduced by Amraoui et al.; this approach is specialized for the BEC, and it enables to design such code
ensembles which perform well under iterative decoding witha practical constraint on the block length. In [23],
Richardson and Urbanke initiated the analysis of the distribution of the number of iterations needed for the decoding
of LDPC ensembles of finite block length which are communicated over the BEC.

For general channels, the number of iterations is an important factor in assessing the decoding complexity
of graph-based codes under iterative message-passing decoding. The second factor determining the decoding
complexity of such codes is the complexity of the Tanner graph which is used to represent the code; this latter
quantity, defined as the number of edges in the graph per information bit, serves as a measure for the decoding
complexity per iteration.

The extrinsic information transfer (EXIT) charts, pioneered by ten Brink ([31], [32]), form a powerful tool for an
efficient design of codes defined on graphs by tracing the convergence behavior of their iterative decoders. EXIT
charts provide a good approximative engineering tool for tracing the convergence behavior of soft-input soft-output
iterative decoders; they suggest a simplified visualization of the convergence of these decoding algorithms, based
on a single parameter which represents the exchange of extrinsic information between the constituent decoders. For
the BEC, the EXIT charts coincide with the density evolutionanalysis (see [22]) which is simplified in this case
to a one-dimensional analysis.

A numerical approach for the joint optimization of the design rate and decoding complexity of LDPC ensembles
was provided in [4]; it is assumed there that the transmission of these code ensembles takes place over a memoryless
binary-input output-symmetric (MBIOS) channel, and the analysis refers to the asymptotic case where we let the
block length tend to infinity. For the simplification of the numerical optimization, a suitable approximation of the
number of iterations was used in [4] to formulate this joint optimization as a convex optimization problem. Due
to the efficient tools which currently exist for a numerical solution of convex optimization problems, this approach
suggests an engineering tool for the design of good LDPC ensembles which possess an attractive tradeoff between
the decoding complexity and the asymptotic gap to capacity (where the block length of these code ensembles is
large enough). This numerical approach however is not amenable for drawing rigorous theoretical conclusions on
the tradeoff between the number of iterations and the performance of the code ensembles. A different numerical
approach for approximating the number of iterations for LDPC ensembles operating over the BEC is addressed in
[15].

A different approach for characterizing the complexity of iterative decoders was suggested by Khandekar and
McEliece (see [11], [12], [16]). Their questions and conjectures were related to the tradeoff between the asymptotic
achievable rates and the complexity under iterative message-passing decoding; they initiated a study of the encoding
and decoding complexity of graph-based codes in terms of theachievable gap (in rate) to capacity. It was conjectured
there that for a large class of channels, if the design rate ofa suitably designed ensemble forms a fraction1− ε of
the channel capacity, then the decoding complexity scales like 1

ε
ln 1

ε
. The logarithmic term in this expression was

attributed to the graphical complexity (i.e., the decodingcomplexity per iteration), and the number of iterations
was conjectured to scale like1

ε
. There is one exception: For the BEC, the complexity under the iterative message-

passing decoding algorithm behaves likeln 1
ε

(see [13], [25], [26] and [29]). This is true since the absolute reliability
provided by the BEC allows every edge in the graph to be used only once during the iterative decoding. Hence, for
the BEC, the number of iterations performed by the decoder serves mainly to measure the delay in the decoding
process, while the decoding complexity is closely related to the complexity of the Tanner graph which is chosen to
represent the code. The graphical complexity required for LDPC and systematic irregular repeat-accumulate (IRA)
code ensembles to achieve a fraction1 − ε of the capacity of a BEC under iterative decoding was studiedin [25]
and [26]. It was shown in these papers that the graphical complexity of these ensembles must scale at least like
ln 1

ε
; moreover, some explicit constructions were shown to approach the channel capacity with such a scaling of the

graphical complexity. An additional degree of freedom which is obtained by introducing state nodes in the graph
(e.g., punctured bits) was exploited in [20] and [21] to construct capacity-achieving ensembles of graph-based codes
which achieve an improved tradeoff between complexity and achievable rates. Surprisingly, these capacity-achieving
ensembles under iterative decoding were demonstrated to maintain a bounded graphical complexityregardless of
the erasure probability of the BEC. A similar result of a bounded graphical complexity for capacity-achieving
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ensembles over the BEC was also obtained in [9].
This paper provides simple lower bounds on the number of iterations which is required for successful message-

passing decoding of graph-based code ensembles. The transmission of these ensembles is assumed to take place
over the BEC, and the bounds refer to the asymptotic case where the block length tends to infinity. The simplicity
of the bounds derived in this paper stems from the fact that they are easily evaluated and are expressed in terms of
some basic parameters of the considered ensemble; these include the fraction of degree-2 variable nodes, the target
bit erasure probability and the gap between the channel capacity and the design rate of the ensemble. The bounds
derived in this paper demonstrate that the number of iterations which is required for successful message-passing
decoding scales at least like the inverse of the gap (in rate)to capacity, provided that the fraction of degree-2
variable nodes of these turbo-like ensembles does not vanish (hence, the number of iterations becomes unbounded
as the gap to capacity vanishes). The behavior of these lowerbounds matches well with the experimental results
and the conjectures on the number of iterations and complexity, as provided by Khandekar and McEliece (see [11],
[12] and [16]). Note that lower bounds on the number of iterations in terms of the target bit erasure probability
can be alternatively viewed as lower bounds on the achievable bit erasure probability as a function of the number
of iterations performed by the decoder. As a result of this, the simple bounds derived in this paper provide some
insight on the design of stopping criteria for iteratively decoded ensembles over the BEC (for other stopping criteria
see, e.g., [3], [27]).

This paper is structured as follows: Section II presents some preliminary background, definitions and notation,
Section III introduces the main results of this paper and discusses some of their implications, the proofs of these
statements and some further discussions are provided in Section IV. Finally, Section V summarizes this paper.
Proofs of some technical statements are relegated to the appendices.

II. PRELIMINARIES

This section provides preliminary background and introduces notation for the rest of this paper.

A. Graphical Complexity of Codes Defined on Graphs

As noted in Section I, the decoding complexity of a graph-based code under iterative message-passing decoding
is closely related to its graphical complexity, which we nowdefine formally.

Definition 2.1 (Graphical Complexity):Let C be a binary linear block code of lengthn and rateR, and letG
be an arbitrary representation ofC by a Tanner graph. Denote the number of edges inG by E. The graphical
complexity ofG is defined as the number of edges inG per information bit of the codeC, i.e., ∆(G) , E

nR
.

Note that the graphical complexity depends on the specific Tanner graph which is used to represent the code. An
analysis of the graphical complexity for some families of graph-based codes is provided in [9], [20], [21], [25],
[26].

B. Accumulate-Repeat-Accumulate Codes

Accumulate-repeat-accumulate (ARA) codes form an attractive coding scheme of turbo-like codes due to the
simplicity of their encoding and decoding (where both scalelinearly with the block length), and due to their
remarkable performance under iterative decoding [1]. By some suitable constructions of puncturing patterns, ARA
codes with small maximal node degree are presented in [1]; these codes perform very well even for short to
moderate block lengths, and they suggest flexibility in the design of efficient rate-compatible codes operating on
the same ARA decoder.

Ensembles of irregular and systematic ARA codes, which asymptotically achieve the capacity of the BEC
with bounded graphical complexity, are presented in [21]. This bounded complexity result stays in contrast to
LDPC ensembles, which have been shown to require unbounded graphical complexity in order to approach channel
capacity, even under maximum-likelihood decoding (see [25]). In this section, we present ensembles of irregular
and systematic ARA codes, and give a short overview of their encoding and decoding algorithms; this overview
is required for the later discussion. The material contained in this section is taken from [21, Section II], and is
introduced here briefly in order to make the paper self-contained.

From an encoding point of view, ARA codes are viewed as interleaved and serially concatenated codes. The
encoding of ARA codes is done as follows: first, the information bits are accumulated (i.e., differentially encoded),
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and then the bits are repeated a varying number of times (by anirregular repetition code) and interleaved. The
interleaved bits are partitioned into disjoint sets (whosesize is not fixed in general), and the parity of each set of
bits is computed (i.e., the bits are passed through an irregular single parity-check (SPC) code). Finally, the bits are
accumulated a second time. A codeword of systematic ARA codes is composed of the information bits and the
parity bits at the output of the second accumulator.

Since the iterative decoding algorithm of ARA codes is performed on the appropriate Tanner graph (see Fig. 1),
this leads one to view them as sparse-graph codes from a decoding point of view.

Following the notation in [21], we refer to the three layers of bit nodes in the Tanner graphs as ‘systematic
bits’ which form the systematic part of the codeword, ‘punctured bits’ which correspond to the output of the first
accumulator and are not a part of the transmitted codeword, and ‘code bits’ which correspond to the output of the
second accumulator and form the parity-bits of the codeword(see Fig. 1). Denoting the block length of the code by
n and its dimension byk, each codeword is composed ofk systematic bits andn− k code bits. The two layers of
check nodes are referred to as ‘parity-check 1’ nodes and ‘parity-check 2’ nodes, which correspond to the first and
the second accumulators of the encoder, respectively. An ensemble of irregular ARA codes is defined by the block
lengthn and the degree distributions of the ‘punctured bit’ and ‘parity-check 2’ nodes. Following the notation in
[21], the degree distribution of the ‘punctured bit’ nodes is given by the power series

L(x) ,

∞∑

i=1

Lix
i (1)

whereLi designates the fraction of ‘punctured bit’ nodes whose degree isi. Similarly, the degree distribution of
the ‘parity-check 2’ nodes is given by

R(x) ,

∞∑

i=1

Rix
i (2)

whereRi designates the fraction of these nodes whose degree isi. In both cases, degree of a node only refers
to edges connecting the ‘punctured bit’ and the ‘parity-check 2’ layers, without the extra two edges which are
connected to each of the ‘punctured bit’ nodes and ‘parity-check 2’ nodes from the accumulators (see Fig. 1).
Considering the distributions from the edge perspective, we let

λ(x) ,

∞∑

i=1

λix
i−1, ρ(x) ,

∞∑

i=1

ρix
i−1 (3)

designate the degree distributions from the edge perspective; here,λi (ρi) designates the fraction of edges connecting
‘punctured bit’ nodes to ‘parity-check 2’ nodes which are adjacent to ‘punctured bit’ (‘parity-check 2’) nodes of
degreei. The design rate of a systematic ARA ensemble is given byR = aR

aL+aR
where

aL ,
∑

i

iLi = L′(1) =
1

∫ 1

0
λ(t)dt

aR ,
∑

i

iRi = R′(1) =
1

∫ 1

0
ρ(t)dt

(4)

designate the average degrees of the ‘punctured bit’ and ‘parity-check 2’ nodes, respectively.
Iterative decoding of ARA codes is performed by passing messages on the edges of the Tanner graph in a layer-

by-layer approach. Each decoding iteration starts with messages for the ‘systematic bit’ nodes to the ‘parity-check 1’
nodes, the latter nodes then use this information to calculate new messages to the ‘punctured bit’ nodes and so
the information passes through layers down the graph and back up until the iteration ends with messages from the
‘punctured bit’ nodes to the ‘parity-check 1’ nodes. The final phase of messages from the ‘parity-check 1’ nodes
to the ‘systematic bit’ nodes is omitted since the latter nodes are of degree one and so the outgoing message is
not changed by incoming information. Assume that the code istransmitted over a BEC with erasure probabilityp.
Since the systematic bits receive input from the channel, the probability of erasure in messages from the ‘systematic
bit’ nodes to the ‘parity-check 1’ nodes is equal top throughout the decoding process. For other messages, we
denote byx(l)

i wherei = 0, 1, . . . , 5 the probability of erasure of the different message types atdecoding iteration
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Fig. 1. Tanner graph of an irregular and systematic accumulate-repeat-accumulate code. This figure is reproduced from [21].

numberl (where we start counting at zero). The variablex
(l)
0 corresponds to the probability of erasure in message

from the ‘parity-check 1’ nodes to the ‘punctured bit’ nodes, x
(l)
1 tracks the erasure probability of messages from

the ‘punctured bit’ nodes to the ‘parity-check 2’ nodes and so on. The density evolution (DE) equations for the
decoder based on the Tanner graph in Figure 1 are given in [21], and we repeat them here:

x
(l)
0 = 1 −

(
1 − x

(l−1)
5

)
(1 − p)

x
(l)
1 =

(
x

(l)
0

)2
λ
(
x

(l−1)
4

)

x
(l)
2 = 1 − R

(
1 − x

(l)
1

) (
1 − x

(l−1)
3

)
l = 1, 2, . . .

x
(l)
3 = p x

(l)
2

x
(l)
4 = 1 −

(
1 − x

(l)
3

)2
ρ
(
1 − x

(l)
1

)

x
(l)
5 = x

(l)
0 L

(
x

(l)
4

)
. (5)

The stability condition for systematic ARA ensembles is derived in [21, Section II.D] and states that the fixed point
x

(l)
i = 0 of the iterative decoding algorithm is stable if and only if

p2 λ2

(
ρ′(1) +

2pR′(1)

1 − p

)
≤ 1 . (6)

C. Big-O notation

The termsO, Ω andΘ are widely used in computer science to describe asymptotic relationships between functions
(for formal definitions see e.g., [34]). In our context, we refer to the gap (in rate) to capacity, denoted byε, and
discuss in particular the case where0 ≤ ε � 1 (i.e., sequences of capacity-approaching ensembles). Accordingly,
we define

• f(ε) = O
(
g(ε)

)
means that there are positive constantsc andδ, such that0 ≤ f(ε) ≤ c g(ε) for all 0 ≤ ε ≤ δ.

• f(ε) = Ω
(
g(ε)

)
means that there are positive constantsc andδ, such that0 ≤ c g(ε) ≤ f(ε) for all 0 ≤ ε ≤ δ.

• f(ε) = Θ
(
g(ε)

)
means that there are positive constantsc1, c2 andδ, such that0 ≤ c1 g(ε) ≤ f(ε) ≤ c2 g(ε)

for all 0 ≤ ε ≤ δ.

Note that for all the above definitions, the values ofc, c1, c2 and δ must be fixed for the functionf and should
not depend onε.
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III. M AIN RESULTS

In this section, we present lower bounds on the required number of iterations used by a message-passing decoder
for code ensembles defined on graphs. The communication is assumed to take place over a BEC, and we consider
the asymptotic case where the block length of these code ensembles tends to infinity.

Definition 3.1: Let
{
Cm

}
m∈N

be a sequence of code ensembles. Assume a common block length(nm) of the
codes inCm which tends to infinity asm grows. Let the transmission of this sequence take place overa BEC
with capacityC. The sequence

{
Cm

}
is said toachieve a fraction1− ε of the channel capacity under some given

decoding algorithmif the asymptotic rate of the codes inCm satisfiesR ≥ (1− ε)C and the achievable bit erasure
probability under the considered algorithm vanishes asm becomes large.
In the continuation, we consider a standard iterative message-passing decoder for the BEC, and address the number
of iterations which is required in terms of the achievable fraction of the channel capacity under this decoding
algorithm.

Theorem 3.1:[Lower bound on the number of iterations for LDPC ensembles transmitted over the BEC].
Let

{
(nm, λ, ρ)

}
m∈N

be a sequence of LDPC ensembles whose transmission takes place over a BEC with erasure
probability p. Assume that this sequence achieves a fraction1 − ε of the channel capacity under message-passing
decoding. LetL2 = L2(ε) be the fraction of variable nodes of degree 2 for this sequence. In the asymptotic case
where the block length tends to infinity, letl = l(ε, p, Pb) denote the number of iterations which is required to
achieve an average bit erasure probabilityPb over the ensemble. Under the mild condition thatPb < p L2(ε), the
required number of iterations satisfies the lower bound

l(ε, p, Pb) ≥ 2

1 − p

(√
p L2(ε) −

√
Pb

)2 1

ε
. (7)

Corollary 3.1: Under the assumptions of Theorem 3.1, if the fraction of degree-2 variable nodes stays strictly
positive as the gap (in rate) to capacity vanishes, i.e., if

lim
ε→0

L2(ε) > 0

then the number of iterations which is required in order to achieve an average bit erasure probabilityPb < p L2(ε)
under iterative message-passing decoding scales at least like the inverse of this gap to capacity, i.e.,

l(ε, p, Pb) = Ω

(
1

ε

)
.

Discussion 3.1:[Effect of messages’ scheduling on the number of iterations] The lower bound on the number
of iterations as provided in Theorem 3.1 refers to theflooding schedulewhere in each iteration, all the variable
nodes and subsequently all the parity-check nodes send messages to their neighbors. Though it is the commonly
used scheduling used by iterative message-passing decoding algorithms, an alternative scheduling of the messages
may provide a faster convergence rate for the iterative decoder. As an example, [28] considers the convergence rate
of a serial schedulingwhere instead of sending all the messages from the variable nodes to parity-check nodes and
then all the messages from check nodes to variable nodes, as done in the flooding schedule, these two phases are
interleaved. Based on the density evolution analysis whichapplies to the asymptotic case of an infinite block length,
it is demonstrated in [28] that under some assumptions, the required number of iterations for LDPC decoding over
the BEC with serial scheduling is reduced by a factor of two (as compared to the flooding scheduling). It is noted
that the main result of Theorem 3.1 is the introduction of a rigorous and simple lower bound on the number of
iterations for LDPC ensembles which scales like the reciprocal of the gap between the channel capacity and the
design rate of the ensemble. Though such a scaling of this bound is proved for the commonly used approach
of flooding scheduling, it is likely to hold also for other efficient approaches of scheduling. It is also noted that
this asymptotic scaling of the lower bound on the number of iterations supports the conjecture of Khandekar and
McEliece [11].

Discussion 3.2:[On the dependence of the bounds on the fraction of degree-2 variable nodes] The lower
bound on the number of iterations in Theorem 3.1 becomes trivial when the fraction of variable nodes of degree 2
vanishes. Let us focus our attention on sequences of ensembles which approach the channel capacity under iterative
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message-passing decoding (i.e.,ε → 0). For the BEC, several such sequences have been constructed(see e.g. [13],
[29]). Asymptotically, as the gap to capacity vanishes, allof these sequences known to date satisfy the stability
condition with equality; this property is known as the flatness condition [29]. In [24, Lemma 7], the asymptotic
fraction of degree 2 variable nodes for capacity-approaching sequences of LDPC ensembles over the BEC is
calculated. This lemma states that for such sequences whichsatisfy the following two conditions as the gap to
capacity vanishes:

• The stability condition is satisfied with equality (i.e., the flatness condition holds)
• The limit of the ratio between the standard deviation and theexpectation of the right degree exists and is finite

the asymptotic fraction of degree–2 variable nodes does notvanish. In fact, for various sequences of capacity
approaching LDPC ensembles known to date (see [13], [19], [29]), the ratio between the standard deviation and the
expectation of the right degree-distribution tends to zero; in this case, [24, Lemma 7] implies that the fraction of
degree-2 variable nodes tends to1

2 irrespectively of the erasure probability of the BEC, as canbe verified directly
for these code ensembles.

Discussion 3.3:[Concentration of the lower bound] Theorem 3.1 applies to the required number of iterations
for achieving an average bit erasure probabilityPb where this average is taken over the LDPC ensemble whose block
length tends to infinity. Although we consider an expectation over the LDPC ensemble, note thatl is deterministic as
it is the smallest integer for which the average bit erasure probability does not exceed a fixed value. As shown in the
proof (see Section IV), the derivation of this lower bound relies on the density evolution technique which addresses
the average performance of the ensemble. Based on concentration inequalities, it is proved that the performance of
individual codes from the ensemble concentrates around theaverage performance over the ensemble as we let the
block length tend to infinity [22, Appendix C]. In light of this concentration result and the use of density evolution
in Section IV (which applies to the case of an infinite block length), it follows that the lower bound on the number
of iterations in Theorem 3.1 is valid with probability 1 for individual codes from the ensemble. This also holds for
the ensembles of codes defined on graphs considered in Theorems 3.2 and 3.3.

Discussion 3.4:[On the number of required iterations for showing a mild improvement in the erasure
probability during the iterative process] Note that for capacity-approaching LDPC ensembles, the lower bound
on the number of iterations tells us that even for successfully starting the iteration process and reducing the bit
erasure probability by a factor which is below the fraction of degree-2 variable nodes, the required number of
iterations already scales like1

ε
. This is also the behavior of the lower bound on the number of iterations even

when the bit erasure probability should be made arbitrarilysmall; this lower bound therefore indicates that for
capacity-approaching LDPC ensembles, a significant numberof the iterations is performed for the starting process
of the iterative decoding where the bit erasure probabilityis merely reduced by a factor of12 as compared to the
erasure probability of the channel (see Discussion 3.2 as a justification for the one-half factor). This conclusion is
also well interpreted by the area theorem and the asymptoticbehavior of the two EXIT curves (for the variable
nodes and the parity-check nodes) in the limit whereε → 0; as the gap to capacity vanishes, both curves tend to
be a step function jumping from0 to 1 at the origin, so the iterations progress very slowly at the initial stages of
the decoding process.

In the asymptotic case where we let the block length tend to infinity and the transmission takes place over the
BEC, suitable constructions of capacity-achieving systematic ARA ensembles enable a fundamentally improved
tradeoff between their graphical complexity and their achievable gap (in rate) to capacity under iterative decoding
(see [21]). The graphical complexity of these systematic ARA ensembles remains bounded (and quite small) as the
gap to capacity for these ensembles vanishes under iterative decoding; this stays in contrast to un-punctured LDPC
code ensembles [25] andsystematicirregular repeat-accumulate (IRA) ensembles [26] whose graphical complexity
necessarily becomes unbounded as the gap to capacity vanishes (see [21, Table I]). This observation raises the
question whether the number of iterations which is requiredto achieve a desired bit erasure probability under
iterative decoding, can be reduced by using systematic ARA ensembles. The following theorem provides a lower
bound on the number of iterations required to achieve a desired bit erasure probability under iterative message-
passing decoding; it shows that similarly to the parallel result for LDPC ensembles (see Theorem 3.1), the required
number of iterations for systematic ARA codes scales at least like the inverse of the gap to capacity.

Theorem 3.2:[Lower bound on the number of iterations for systematic ARA ensembles transmitted over
the BEC]. Let

{
(nm, λ, ρ)

}
m∈N

be a sequence of systematic ARA ensembles whose transmission takes place over
a BEC with erasure probabilityp. Assume that this sequence achieves a fraction1−ε of the channel capacity under
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message-passing decoding. LetL2 = L2(ε) be the fraction of ‘punctured bit’ nodes of degree 2 for this sequence
(where the two edges related to the accumulator are not takeninto account). In the asymptotic case where the
block length tends to infinity, letl = l(ε, p, Pb) designate the required number of iterations to achieve an average
bit erasure probabilityPb of the systematic bits. Under the mild condition that1−

√
1 − Pb

p
< p L2(ε), the number

of iterations satisfies the lower bound

l(ε, p, Pb) ≥ 2p(1 − ε)



√

p L2(ε) −

√√√√1 −
√

1 − Pb

p




2

1

ε
. (8)

As noted in Section II-B, systematic ARA codes can be viewed as serially concatenated codes where the systematic
bits are associated with the outer code. These codes can be therefore decoded iteratively by using a turbo-like decoder
for interleaved and serially concatenated codes. The following proposition states that the lower bound on the number
of iterations in Theorem 3.2 is also valid for such an iterative decoder.

Proposition 3.1: [Lower bound on the number of iterations for systematic ARA codes under turbo-like
decoding]. Under the assumptions and notation of Theorem 3.2, the lower bound on the number of iterations in
(8) is valid also when the decoding is performed by a turbo-like decoder for uniformly interleaved and serially
concatenated codes.
The reader is referred to Appendix I for a detailed proof. Thefollowing theorem which refers to irregular repeat-
accumulate (IRA) ensembles is proved in a conceptually similar way to the proof of Theorem 3.2.

Theorem 3.3:[Lower bound on the number of iterations for IRA ensembles transmitted over the BEC].
Let

{
(nm, λ, ρ)

}
m∈N

be a sequence of (systematic or non-systematic) IRA ensembles whose transmission takes
place over a BEC with erasure probabilityp. Assume that this sequence achieves a fraction1 − ε of the channel
capacity under message-passing decoding. LetL2 = L2(ε) be the fraction of ‘information bit’ nodes of degree 2
for this sequence. In the asymptotic case where the block length tends to infinity, letl = l(ε, p, Pb) designate the
required number of iterations to achieve an average bit erasure probabilityPb of the information bits. For systematic
codes, ifPb < p L2(ε), then the number of iterations satisfies the lower bound

l(ε, p, Pb) ≥ 2(1 − ε)

(√
p L2(ε) −

√
Pb

)2 1

ε
. (9)

For non-systematic codes, ifPb < L2(ε), then

l(ε, p, Pb) ≥ 2(1 − ε)

(√
L2(ε) −

√
Pb

)2 1

ε
. (10)

IV. D ERIVATION OF THE BOUNDS ON THENUMBER OF ITERATIONS

A. Proof of Theorem 3.1

Let
{
x(l)

}
l∈N

designate the expected fraction of erasures in messages from the variable nodes to the check nodes
at the l’th iteration of the message-passing decoding algorithm (where we start counting atl = 0). From density
evolution, in the asymptotic case where the block length tends to infinity, x(l) is given by the recursive equation

x(l+1) = p λ
(
1 − ρ

(
1 − x(l))) , l ∈ N (11)

with the initial condition

x(0) = p (12)

wherep designates the erasure probability of the BEC. Consideringa sequence of{(nm, λ, ρ)} LDPC ensembles
where we let the block lengthnm tend to infinity, the average bit erasure probability after the l’th iteration is given
by

P
(l)
b = p L

(
1 − ρ(1 − x(l))

)
(13)
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Fig. 2. Plot of the functionsc(x) andv(x) for an ensemble of LDPC codes which achieves vanishing bit erasure probability under iterative
message-passing decoding when communicated over a BEC whose erasure probability is equal top. The horizontal and vertical lines track
the evolution of the expected fraction of erasure messages from the variable nodes to the check nodes at each iteration ofthe message-passing
decoding algorithm.

whereL designates the common left degree distribution of the ensembles from the node perspective. Since the
function f(x) = p λ

(
1 − ρ(1 − x)

)
is monotonically increasing, Eqs. (11)–(13) imply that an average bit erasure

probability of Pb is attainable under iterative message-passing decoding ifand only if

p λ
(
1 − ρ(1 − x)

)
< x , ∀x ∈ (x∗, p] (14)

wherex∗ is the unique solution of

Pb = p L
(
1 − ρ(1 − x∗)

)
.

Let us define the functions

c(x) , 1 − ρ(1 − x), v(x) =

{
λ−1

(
x
p

)
0 ≤ x ≤ p

1 p < x ≤ 1
. (15)

From the condition in (14), an average bit erasure probability of Pb is attained if and only ifc(x) < v(x) for all
x ∈ (x∗, p]. Since we assume that vanishing bit erasure probability is achievable under message-passing decoding, it
follows thatc(x) < v(x) for all x ∈ (0, p]. Figure 2 shows a plot of the functionsc(x) andv(x) for an ensemble of
LDPC codes which achieves vanishing bit erasure probability under iterative decoding as the block length tends to
infinity. The horizontal and vertical lines, labeled

{
hl

}
l∈N

and
{
vl

}
l∈N

, respectively, are used to track the expected
fraction of erased messages from the variable nodes to the parity-check nodes at each iteration of the message-
passing decoding algorithm. From (11) and (12), the expected fraction of erased left to right messages in thel’th
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decoding iteration (where we start counting at zero) is equal to the x value at the left tip of the horizontal linehl.
The right-angled triangles shaded in gray will be used laterin the proof.

The first step in the proof of Theorem 3.1 is calculating the area bounded by the curvesc(x) andv(x). This is
done in the following lemma which is based on the area theoremfor the BEC [5].

Lemma 4.1: ∫ 1

0

(
v(x) − c(x)

)
dx =

C − R

aL
(16)

whereC = 1−p is the capacity of the BEC,R is the design rate of the ensemble, andaL is the average left degree
of the ensemble.

Proof: The proof of this equality is straightforward. Alternatively, the reader is referred to the matching
condition in [22, Section 3.14.4] which is justified via the area theorem in [5].

Let us consider the two sets of right-angled triangles shownin two shades of gray in Figure 2. The set of triangles
which are shaded in dark gray are defined so that one of the legsof triangle numberi (counting from right to left
and starting at zero) is the vertical linevi, and the slope of the hypotenuse is equal toc′(0) = ρ′(1). Sincec(x) is
concave for allx ∈ [0, 1], these triangles are guaranteed to be above the curve of the functionc. Since the slope of
the hypotenuse isρ′(1), the area of thei’th triangle in this set is

Ai =
1

2
|vi|

( |vi|
ρ′(1)

)
=

|vi|2
2ρ′(1)

(17)

where|vi| is the length ofvi. We now turn to consider the second set of triangles, which are shaded in light gray.
Note that the functionλ(x) is monotonically increasing and convex in[0, 1] and also thatλ(0) = 0 andλ(1) = 1.
This implies thatλ−1 is concave in[0, 1] and thereforev(x) is concave in[0, p]. The triangles shaded in light gray
are defined so that one of the legs of triangle numberi (again, counting from the right and starting at zero) is the
vertical linevi and the slope of the hypotenuse is given by

v′(0) =
1

p

(
λ−1

)
′

(0) =
1

pλ′(0)
=

1

pλ2

where the second equality follows sinceλ(0) = 0. The concavity ofv(x) in [0, p] guarantees that these triangles
are below the curve of the of functionv. The area of thei’th triangle in this second set of triangles is given by

Bi =
1

2
|vi| (|vi| pλ2) =

pλ2 |vi|2
2

. (18)

Sincev(x) is monotonically increasing withx, the dark-shaded triangles lie below the curve of the function v.
Similarly, the monotonicity ofc(x) implies that the light-shaded triangles are above the curveof the functionc.
Hence, both sets of triangles form a subset of the domain bounded by the curves ofc(x) and v(x). By their
definitions, thei’th dark triangle is on the right ofvi, and thei’th light triangle lies to the left ofvi; therefore,
the triangles do not overlap. Combining (17), (18) and the fact that the triangles do not overlap, and applying
Lemma 4.1, we get

C − R

aL
=

∫ 1

0

(
v(x) − c(x)

)
dx

≥
∞∑

i=0

(Ai + Bi)

≥ 1

2

(
1

ρ′(1)
+ pλ2

) l−1∑

i=0

|vi|2 (19)

where l is an arbitrary natural number. Since we assume that the bit erasure probability vanishes under iterative
message-passing decoding, the stability condition implies that

1

ρ′(1)
≥ p λ2 . (20)
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Substituting (20) andR = (1 − ε)C in (19) gives

Cε ≥ aL pλ2

l−1∑

i=0

|vi|2. (21)

The definition ofhl andvl in Figure 2 implies that for an arbitrary iterationl

1 − ρ(1 − x(l)) = c(x(l)) = 1 −
l∑

i=0

|vi| .

Substituting the last equality in (13) yields that the average bit erasure probability after iteration numberl − 1 can
be expressed as

P
(l−1)
b = p L

(
1 −

l−1∑

i=0

|vi|
)

. (22)

Let l designate the number of iterations required to achieve an average bit erasure probabilityPb over the ensemble
(where we let the block length tend to infinity), i.e.,l is the smallest integer which satisfiesP

(l−1)
b ≤ Pb since we

start counting atl = 0. Although we consider an expectation over the LDPC ensemble, note thatl is deterministic as
it is the smallest integer for which the average bit erasure probability does not exceedPb. SinceL is monotonically
increasing, (22) provides a lower bound on

∑l−1
i=0 |vi| of the form

l−1∑

i=0

|vi| ≥ 1 − L−1
(

Pb

p

)
. (23)

From the Cauchy-Schwartz inequality, we get
(

l−1∑

i=0

|vi|
)2

≤
l−1∑

i=0

1
l−1∑

i=0

|vi|2 = l

l−1∑

i=0

|vi|2. (24)

Combining the above inequality with (21) and (23) gives the inequality

Cε ≥
aL pλ2

(
1 − L−1

(
Pb
p

))2

l

which provides the following lower bound on the number of iterationsl:

l ≥
aL pλ2

(
1 − L−1

(
Pb
p

))2

(1 − p)ε
. (25)

To continue the proof, we derive a lower bound on1−L−1(x) for x ∈ (0, 1). Since the fraction of variable nodes
of degreei is non-negative for alli = 2, 3, . . ., we have

L(x) =
∑

i

Lix
i ≥ L2x

2, x ≥ 0.

Substitutingt = L(x) gives
t ≥ L2 ·

(
L−1(t)

)2
, ∀t ∈ (0, 1)

which is transformed into the following lower bound on1 − L−1(x):

1 − L−1(x) ≥ 1 −
√

x

L2
, ∀x ∈ (0, 1) . (26)

Under the assumptionPb
p

< L2, substituting (26) in (25) gives

l ≥
aL pλ2

(√
L2 −

√
Pb
p

)2

L2 (1 − p)ε

=
aL λ2

(√
p L2 −

√
Pb
)2

L2 (1 − p)ε
. (27)
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The lower bound in (7) is obtained by substituting the equality L2 = λ2 aL
2 into (27).

Taking the limit where the average bit erasure probability tends to zero on both sides of (7) gives the following
lower bound on the number of iterations:

l(ε, p, Pb → 0) ≥ 2p

1 − p

L2(ε)

ε
.

B. Proof of Theorem 3.2

We begin the proof by considering the expected fraction of erasure messages from the ‘punctured bit’ nodes to
the ‘parity-check 2’ nodes (see Fig. 1). The following lemmaprovides a lower bound on the expected fraction of
erasures in thel’th decoding iteration in terms of this expected fraction atthe preceding iteration.

Lemma 4.2:Let (n, λ, ρ) be an ensemble of systematic ARA codes whose transmission takes place over a BEC
with erasure probabilityp. Then, in the limit where the block length tends to infinity, the expected fraction of
erasure messages from the ‘punctured bit’ nodes to the ‘parity-check 2’ nodes at thel’th iteration satisfies

x
(l)
1 ≥ λ̃

(
1 − ρ̃

(
1 − x

(l−1)
1

))
, l = 1, 2, . . . (28)

where the tilted degree distributions̃λ and ρ̃ are given as follows (see [21]):

λ̃(x) ,

(
p

1 − (1 − p)L(x)

)2

λ(x) (29)

ρ̃(x) ,

(
1 − p

1 − pR(x)

)2

ρ(x) (30)

andL andR designate the degree distributions of the ARA ensemble fromthe node perspective.
Proof: See Appendix II.A.

From Fig. 1, it can be readily verified that the probabilitiesx0 andx1 for erasure messages at iteration number
zero are equal to 1, i.e.,

x
(0)
0 = x

(0)
1 = 1. (31)

Let us look at the RHS of (28) as a function ofx, and observe that it is monotonically increasing over the interval
[0, 1]. Let us compare the performance of a systematic ARA ensemblewhose degree distributions are(λ, ρ) with
an LDPC ensemble whose degree distributions are given by(λ̃, ρ̃) (see (29) and (30)) under iterative message-
passing decoding. Given the initial conditionx

(0)
1 = 1, the following conclusion is obtained by recursively applying

Lemma 4.2: For any iteration, the erasure probability for messages delivered from ‘punctured bit’ nodes to ‘parity-
check 2’ nodes of the ARA ensemble (see Fig. 1) is lower bounded by the erasure probability of the left-to-right
messages of the LDPC ensemble; this holds even if the a-priori information from the BEC is not used by the
iterative decoder of the LDPC ensemble (note that the coefficient of λ̃ in the RHS of (28) is equal to one). Note
that unless the fraction of ‘parity-check 2’ nodes of degree1 is strictly positive (i.e.,R1 > 0), the iterative decoding
cannot be initiated for both ensembles (unless some the values of some ’punctured bits’ of the systematic ARA
ensemble are known, as in [21]). Hence, the comparison abovebetween the ARA and LDPC ensembles is of interest
under the assumption thatR1 > 0; this property is implied by the assumption of vanishing biterasure probability
for the systematic ARA ensemble under iterative message-passing decoding.

In [21, Section II.C.2], a technique called ‘graph reduction’ is introduced. This technique transforms the Tanner
graph of a systematic ARA ensemble, transmitted over a BEC whose erasure probability isp, into a Tanner graph
of an equivalent LDPC ensemble (where this equivalence holds in the asymptotic case where the block length tends
to infinity). The variable and parity-check nodes of the equivalent LDPC code evolve from the ‘punctured bit’ and
‘parity-check 2’ nodes of the ARA ensemble, respectively, and their degree distributions (from the edge perspective)
are given bỹλ andρ̃, respectively. It is also shown in [21] thatλ̃ andρ̃ are legitimate degree distribution functions,
i.e., all the derivatives at zero are non-negative andλ̃(1) = ρ̃(1) = 1. As shown in [21, Eqs. (9)–(12)], the left and
right degree distributions of the equivalent LDPC ensemblefrom the node perspective are given, respectively, by

L̃(x) =

∫ x

0
λ̃(t)dt

∫ 1

0
λ̃(t)dt

=
p L(x)

1 − (1 − p)L(x)
(32)
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and

R̃(x) =

∫ x

0
ρ̃(t)dt

∫ 1

0
ρ̃(t)dt

=
(1 − p)R(x)

1 − pR(x)
. (33)

Let P
(l)
b designate the average erasure probability of the systematic bits after thel’th decoding iteration (where

we start counting atl = 0). For LDPC ensembles, a simple relationship between the erasure probability of the
code bits and the erasure probability of the left-to-right messages at thel’th decoding iteration is given in (13). For
systematic ARA ensembles, a similar, though less direct, relationship exists between the erasure probability of the
systematic bits after thel’th decoding iteration andx(l)

1 ; this relationship is presented in the following lemma.
Lemma 4.3:Let (n, λ, ρ) be an ensemble of systematic ARA codes whose transmission takes place over a BEC

with erasure probabilityp. Then, in the asymptotic case where the block length tends toinfinity, the average erasure
probability of the systematic bits after thel’th decoding iteration,P (l)

b , satisfies the inequality

1 −

√√√√
1 − P

(l)
b

p
≥ L̃

(
1 − ρ̃

(
1 − x

(l)
1

))
(34)

whereρ̃ and L̃ are defined in (30) and (32), respectively (similarly to their definitions in [21]).
Proof: See Appendix II.B.

Remark 4.1:We note that whenP (l)
b is very small, the LHS of (34) satisfies

1 −

√√√√
1 − P

(l)
b

p
≈ P

(l)
b

2p
,

so (34) takes a similar form to (13) which refers to the erasure probability of LDPC ensembles.
Consider the number of iterations required for the message-passing decoder, operating on the Tanner graphs of the
systematic ARA ensemble, to achieve a desired bit erasure probability Pb. Combining Lemmas 4.2 and 4.3, and
the initial condition in (31), a lower bound on this number ofiterations can be deduced. More explicitly, it is lower
bounded by the number of iterations which is required to achieve a bit erasure probability of1 −

√
1 − Pb

p
for

the LDPC ensemble whose degree distributions are(λ̃, ρ̃) and where the erasure probability of the BEC is equal
to 1. It is therefore tempting to apply the lower bound on the number of iterations in Theorem 3.1, which refers to
LDPC ensembles, as a lower bound on the number of iterations for the ARA ensemble. Unfortunately, the LDPC
ensemble with the tilted pair of degree distributions(λ̃, ρ̃) is transmitted over a BEC whose erasure probability is
1, so the channel capacity is equal to zero and the multiplicative gap to capacity is meaningless. This prevents a
direct use of Theorem 3.1; however, the continuation of the proof follows similar lines in the proof of Theorem 3.1.

Let x∗ denote the unique solution in[0, 1] of the equation

1 −
√

1 − Pb

p
= L̃

(
1 − ρ̃ (1 − x∗)

)
. (35)

From (28), (31) and (34), a necessary condition for achieving a bit erasure probabilityPb of the systematic bits is
that

λ̃
(
1 − ρ̃(1 − x)

)
< x , ∀x ∈ (x∗, 1] . (36)

In the limit where the fixed point of the iterative decoding process is attained, the inequalities in (28), (31) and
(34) are replaced by equalities; hence, (36) also forms a sufficient condition. Analogously to the case of LDPC
ensembles, as in the proof of Theorem 3.1, we define the functions

c̃(x) = 1 − ρ̃(1 − x) and v(x) = λ̃−1(x) . (37)

Due to the monotonicity of̃λ in [0, 1], the necessary and sufficient condition for attaining an erasure probability
Pb of the systematic bits in (36) can be rewritten as

c̃(x) < ṽ(x) , ∀x ∈ (x∗, 1] .
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Since we assume that the sequence of ensembles asymptotically achieves vanishing bit erasure probability under
message-passing decoding, it follows that

c̃(x) < ṽ(x) , ∀x ∈ (0, 1] .

The next step in the proof is calculating the area of the domain bounded by the curves̃c(x) and ṽ(x). This is done
in the following lemma which is analogous to Lemma 4.1.

Lemma 4.4: ∫ 1

0

(
ṽ(x) − c̃(x)

)
dx =

C − R

(1 − R) aR
(38)

whereṽ and c̃ are introduced in (37),C = 1− p is the capacity of the BEC,R is the design rate of the systematic
ARA ensemble, andaR is defined in (4) and it designates the average degree of the ‘parity-check 2’ nodes when
the edges that are connected to the ‘code bit’ nodes are ignored.

Proof: From (37)
∫ 1

0

(
ṽ(x) − c̃(x)

)
dx

=

∫ 1

0
λ̃−1(x)dx − 1 +

∫ 1

0
ρ̃(1 − x)dx

=

(
1 −

∫ 1

0
λ̃(x)dx

)
− 1 +

∫ 1

0
ρ̃(x)dx

=

∫ 1

0
ρ̃(x)dx −

∫ 1

0
λ̃(x)dx (39)

where the second equality is obtained via integration by parts (note that̃λ(0) = 0 and λ̃(1) = 1). From (32), we
get ∫ 1

0
λ̃(x)dx =

1

L̃′(1)
=

p

L′(1)
=

p

aL
(40)

(see also [21, Eq. (23)]) whereaL is defined in (4), and it designates the average degree of the ‘punctured bit’
nodes in Fig. 1 when the edges that are connected to the ‘parity-check 1’ nodes are ignored. Similarly, (33) gives

∫ 1

0
ρ̃(x)dx =

1

R̃′(1)
=

1 − p

R′(1)
=

1 − p

aR
(41)

(see also [21, Eq. (24)]). Substituting (40) and (41) into (39) gives
∫ 1

0

(
ṽ(x) − c̃(x)

)
dx

=
1 − p

aR
− p

aL

(a)
=

1

aR

[
1 − p

(
aL + aR

aL

)

︸ ︷︷ ︸
1

1−R

]

=
1

aR

1 − R − p

1 − R

=
C − R

(1 − R) aR
(42)

where(a) follows since the design rate of the systematic ARA ensembleis given byR = aR
aL+aR

(see Fig. 1).
To continue the proof, we consider a plot similar to the one inFigure 2 with the exception thatc(x) andv(x)

are replaced bỹc(x) and ṽ(x), respectively. Note that in this case the horizontal lineh0 is reduced to the point
(1, 1). Consider the two sets of gray-shaded right-angled triangles. The triangles shaded in dark gray are defined
so that the height of triangle numberi (counting from right to left and starting at zero) is the vertical line vi and
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the slope of their hypotenuse is equal toc̃′(0) = ρ̃′(1). Sincec̃(x) is concave, these triangles form a subset of the
domain bounded by the curvesc̃(x) and ṽ(x). The area of thei’th triangle in this set is given by

Ai =
1

2
|vi|

( |vi|
ρ̃′(1)

)
=

|vi|2
2 ρ̃′(1)

where |vi| is the length ofvi. The second set of right-angled triangles, which are shadedin light gray, are also
defined so that the height of thei’th triangle (counting from right to left and starting at zero) is the vertical line
vi, but the triangle lies to the left ofvi and the slope of its hypotenuse is equal to

ṽ′(0) =
(
λ̃−1

)
′

(0) =
1

λ̃′(0)
=

1

p2λ′(0)
=

1

p2λ2

where the second equality follows sinceλ̃(0) = 0 and the third equality follows from the definition of̃λ in (29).
Sinceλ̃ is monotonically increasing and convex over the interval[0, 1] and it satisfies̃λ(0) = 0 andλ̃(1) = 1, then
it follows that v(x) = λ̃−1(x) is concave over this interval. Hence, the triangles shaded in light gray also form a
subset of the domain bounded by the curvesc(x) andv(x). The area of thei’th light-gray triangle is given by

Bi =
1

2
|vi|

(
|vi| p2λ2

)
=

p2λ2 |vi|2
2

Applying Lemma 4.4 and the fact that the triangles in both sets do not overlap, we get

C − R

(1 − R) aR
≥ 1

2

(
1

ρ̃′(1)
+ p2λ2

) l−1∑

i=0

|vi|2 (43)

where l is an arbitrary natural number. Since the sequence of ensembles asymptotically achieves vanishing bit
erasure probability under iterative message-passing decoding, the stability condition for systematic ARA codes (see
(6) or equivalently [21, Eq. (14)]) implies that

p2λ2 ≤ 1

ρ′(1) + 2pR′(1)
1−p

=
1

ρ̃′(1)
(44)

where the last equality follows from (30). Substituting (44) in (43) gives

C − R

(1 − R) aR
≥ p2λ2

l−1∑

i=0

|vi|2 . (45)

Let x(l) denote thex value of the left tip of the horizontal linehl. The value ofx(l) satisfies the recursive equation

x(l+1) = λ̃
(
1 − ρ̃

(
1 − x(l))), ∀ l ∈ N (46)

with x(0) = 1. As was explained above (immediately following Lemma 4.2),from (28), (31), and the monotonicity
of the functionf(x) = λ̃

(
1− ρ̃(1− x)

)
over the interval[0, 1], we get thatx(l) ≤ x

(l)
1 for l ∈ N. The definition of

hl andvl in Figure 2 implies that

1 − ρ̃
(
1 − x(l)) = c̃

(
x(l)) = 1 −

l∑

i=0

|vi| . (47)

Starting from (34) and applying the monotonicity ofL̃ and ρ̃ gives

1 −

√√√√
1 − P

(l−1)
b

p
≥ L̃

(
1 − ρ̃

(
1 − x

(l−1)
1

))

≥ L̃
(
1 − ρ̃

(
1 − x(l−1)))

= L̃

(
1 −

l−1∑

i=0

|vi|
)
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where the last equality follows from (47). SincẽL is strictly monotonically increasing in[0, 1], then

l−1∑

i=0

|vi| ≥ 1 − L̃−1

(
1 −

√√√√
1 − P

(l−1)
b

p

)
. (48)

Applying the Cauchy-Schwartz inequality (as in (24)) to theRHS of (45), we get

C − R

(1 − R) aR
≥ p2λ2

l−1∑

i=0

|vi|2

≥ p2λ2

l

(
l−1∑

i=0

|vi|
)2

≥ p2λ2

l


1 − L̃−1

(
1 −

√√√√
1 − P

(l−1)
b

p

)


2

where the last inequality follows from (48). Since the design rateR is assumed to be a fraction1−ε of the capacity
of the BEC, the above inequality gives

Cε ≥
p2λ2 (1 − R) aR

(
1 − L̃−1

(
1 −

√
1 − P

(l−1)

b
p

))2

l

wherel is an arbitrary natural number. Letl designate the number of iterations required to achieve an average bit
erasure probabilityPb of the systematic bits, i.e.,l is the smallest integer which satisfiesP

(l−1)
b ≤ Pb (since we

start counting the iterations atl = 0). Note thatl is deterministic since it refers to the smallest number of iterations
required to achieve a desired average bit erasure probability over the ensemble. From the inequality above and the
monotonicity ofL̃, we obtain that

Cε ≥
p2λ2 (1 − R) aR

(
1 − L̃−1

(
1 −

√
1 − Pb

p

))2

l

which provides a lower bound on the number of iterations of the form

l ≥
p2λ2(1 − R) aR

(
1 − L̃−1

(
1 −

√
1 − Pb

p

))2

Cε

=
p2λ2(1 − ε) aL

(
1 − L̃−1

(
1 −

√
1 − Pb

p

))2

ε
(49)

where the last equality follows sinceaR
aL

= R
1−R

(see Fig. 1) andR = (1 − ε)C. To continue the proof, we derive
a lower bound on1 − L̃−1(x). Following the same steps which lead to (26) gives the inequality

1 − L̃−1(x) ≥ 1 −
√

x

L̃2

, ∀ x ≥ 0 (50)

where (32) implies that

L̃2 =
L̃′′(0)

2
=

p L′′(0)

2
= p L2 . (51)

Under the assumption that1 −
√

1 − Pb
p

< p L2, substituting (50) and (51) in (49) gives

l ≥
pλ2(1 − ε) aL

(√
p L2 −

√
1 −

√
1 − Pb

p

)2

L2 ε
. (52)

Finally, the lower bound on the number of iterations in (8) follows from (52) by substitutingL2 = λ2 aL
2 .
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Considering the case wherePb → 0 on both sides of (8) gives

l(ε, p, Pb → 0) ≥ 2p2 (1 − ε)
L2(ε)

ε
.

V. SUMMARY AND CONCLUSIONS

In this paper, we consider the number of iterations which is required for successful message-passing decoding
of code ensembles defined on graphs. In the considered setting, we let the block length of these ensembles tend to
infinity, and the transmission takes place over a binary erasure channel (BEC).

In order to study the decoding complexity of these code ensembles under iterative decoding, one needs also
to take into account the graphical complexity of the Tanner graphs of these code ensembles. For the BEC, this
graphical complexity is closely related to the total numberof operations performed by the iterative decoder. For
various families of code ensembles, Table I compares the number of iterations and the graphical complexity which
are required to achieve a given fraction1 − ε (whereε can be made arbitrarily small) of the capacity of a BEC
with vanishing bit erasure probability. The results in Table I are based on lower bounds and some achievability
results which are related to the graphical complexity of various families of code ensembles defined on graphs (see
[20], [21], [25], [26]); the results related to the number ofiterations are based on the lower bounds derived in this
paper.

Code Number of decoding iterations Graphical complexity
family as function ofε as function ofε

LDPC Ω
(

1

ε

)
(Theorem 3.1) Θ

(
ln 1

ε

)
[25, Theorems 2.1 and 2.3]

Systematic IRA Ω
(

1

ε

)
(Theorem 3.3) Θ

(
ln 1

ε

)
[26, Theorems 1 and 2]

Non-systematic IRA Ω
(

1

ε

)
(Theorem 3.3) Θ(1) [20]

Systematic ARA Ω
(

1

ε

)
(Theorem 3.2) Θ(1) [21]

TABLE I
NUMBER OF ITERATIONS AND GRAPHICAL COMPLEXITY REQUIRED TO ACHIEVE A FRACTION 1 − ε OF THE CAPACITY OF A BEC WITH

VANISHING BIT ERASURE PROBABILITY UNDER ITERATIVE MESSAGE-PASSING DECODING.

Theorems 3.1–3.3 demonstrate that for various attractive families of code ensembles (including low-density parity-
check (LDPC) codes, systematic and non-systematic irregular repeat-accumulate (IRA) codes, and accumulate-
repeat-accumulate (ARA) codes), the number of iterations which is required to achieve a desired bit erasure
probability scales at least like the inverse of the gap between the channel capacity and the design rate of the
ensemble. This conclusion holds provided that the fractionof degree-2 variable nodes in the Tanner graph does not
tend to zero as the gap to capacity vanishes.

When the graphical complexity of these families of ensembles is considered, the results are less homogenous.
More explicitly, assume a sequence of LDPC codes (or ensembles) whose block length tends to infinity, and consider
the case where their transmission takes place over a memoryless binary-input output-symmetric channel. It follows
from [25, Theorem 2.1] that if a fraction1− ε of the capacity of this channel is achieved with vanishing bit error
(erasure) probability under ML decoding (or any sub-optimal decoding algorithm), then the graphical complexity
of an arbitrary representation of the codes using bipartitegraphs scales at least likeln 1

ε
. For systematic IRA codes

which are transmitted over the BEC and decoded by a standard iterative message-passing decoder, a similar result on
their graphical complexity is obtained in [26, Theorem 1]. In [25, Theorem 2.3], the lower bound on the graphical
complexity of LDPC ensembles is achieved for the BEC (up to a small additive constant), even under iterative
message-passing decoding, by the right-regular LDPC ensembles of Shokrollahi [29]. Similarly, [26, Theorem 2]
presents an achievability result of this form for ensemblesof systematic IRA codes transmitted over the BEC; the
graphical complexity of these ensembles scales logarithmically with 1

ε
. For ensembles of non-systematic IRA and

systematic ARA codes, however, the addition of state nodes in their standard representation by Tanner graphs allows
to achieve an improved tradeoff between the gap to capacity and the graphical complexity; suitable constructions of
such ensembles enable to approach the capacity of the BEC with vanishing bit erasure probability under iterative
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decoding while maintaininga bounded graphical complexity(see [20] and [21]). We note that the ensembles in
[21] have the additional advantage of being systematic, which allows a simple decoding of the information bits.

The lower bounds on the number of iterations in Theorems 3.1–3.3 become trivial when the fraction of degree-
2 variable nodes vanishes. As noted in Discussion 3.2, for all known capacity-approaching sequences of LDPC
ensembles, this fraction tends to12 as the gap to capacity vanishes. For some ensembles of capacity approaching
systematic ARA codes presented in [21], the fraction of degree-2 ‘punctured bit’ nodes (as introduced in Fig. 1) is
defined to be zero (see [21, Table I]). For these ensembles, the lower bound on the required number of iterations in
Theorem 3.2 is ineffective. However, this is mainly a resultof our focus on the derivation of simple lower bounds
on the number of iterations which do not depend on the full characterization of the degree distributions of the code
ensembles. Following the proofs of Theorems 3.1 and 3.2, andfocusing on the case where the fraction of degree-2
variable nodes vanishes, it is possible to derive lower bounds on the number iterations which are not trivial even in
this case; these bounds, however, require the knowledge of the entire degree distribution of the examined ensembles.

The simple lower bounds on the number of iterations of graph-based ensembles, as derived in this paper, scale
like the inverse of the gap in rate to capacity and also dependon the target bit erasure probability. The behavior
of these lower bounds matches well with the experimental results and the conjectures on the number of iterations
and complexity, as provided by Khandekar and McEliece (see [11], [12] and [16]). In [12, Theorem 3.5], it was
stated that for LDPC and IRA ensembles which achieve a fraction 1− ε of the channel capacity of a BEC with a
target bit erasure probability ofPb under iterative message-passing decoding, the number of iterations grows like
O
(

1
ε

)
. In light of the outline of the proof of this statement, as suggested in [12, p. 71], it implicitly assumes that

the flatness condition is satisfied for these code ensembles and also that the target bit erasure probability vanishes;
under these assumptions, the reasoning suggested by Khandekar in [12, Section 3.6] serves to support the behavior
of the simple and rigorous lower bounds which are derived in this paper.

The matching condition for generalized extrinsic information transfer (GEXIT) curves serves to conjecture in [17,
Section XI] that the number of iterations scales like the inverse of the achievable gap in rate to capacity (see also
[18, p. 92]); this conjecture refers to LDPC ensembles whosetransmission takes place over a general memoryless
binary-input output-symmetric (MBIOS) channel. Focusingon the BEC, the derivation of the lower bounds on the
number of iterations (see Section IV) makes the heuristic reasoning of this scaling rigorous. It also extends the
bounds to various graph-based code ensembles (e.g., IRA andARA ensembles) under iterative message-passing
decoding, and makes them universal for the BEC in the sense that they are expressed in terms of some basic
parameters of the ensembles which include the fraction of degree-2 variable nodes, the target bit erasure probability
and the asymptotic gap between the channel capacity and the design rate of the ensemble (but the bounds here do
not depend explicitly on the degree distributions of the code ensembles). An interesting and challenging direction
which calls for further research is to extend these lower bounds on the number of iterations for general MBIOS
channels; as suggested in [17, Section XI], a consequence ofthe matching condition for GEXIT curves has the
potential to lead to such lower bounds on the number of iterations which also scale like the inverse of the gap to
capacity for general MBIOS channels.

Acknowledgment

This work was initiated during a visit of the first author at EPFL in Lausanne, Switzerland, and it benefited from
a short unpublished write-up which was jointly written by S.Dusad, C. Measson, A. Montanari and R. Urbanke.
This included preliminary steps towards the derivation of alower bound on the number of iterations for LDPC
ensembles. The first author also wishes to acknowledge H. D. Pfister for various discussions prior to this work
on accumulate-repeat-accumulate codes; the ‘graph reduction’ principle presented in [21] for the binary erasure
channel was helpful in the derivation of Theorems 3.2 and 3.3.

APPENDICES

APPENDIX I. PROOF OFPROPOSITION3.1

We begin the proof by considering an iterative decoder of systematic ARA codes by viewing them as interleaved
and serially concatenated codes. The outer code of the systematic ARA code consists of the first accumulator which
operates on the systematic bits (see the upper zigzag in Fig.1), followed by the irregular repetition code. The inner
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code consists of the irregular SPC code, followed by the second accumulator (see the lower zigzag in Fig. 1). These
two constituent codes are joined by an interleaver which permutes the repeated bits at the output of the outer code
before they are used as input to the inner encoder; for the considered ARA ensemble, we assume that the interleaver
is chosen uniformly at random over all interleavers of the appropriate length. The turbo-like decoding algorithm is
based on iterating extrinsic information between bitwise MAP decoders of the two constituent codes (see e.g., [7]).
Each decoding iteration begins with an extrinsic bitwise MAP decoding for each non-systematic output bit of the
outer code (these are the bits which serve as input to the inner code) based on the information regarding these bits
received from the extrinsic bitwise MAP decoder of the innercode in the previous iteration and the information on
the systematic bits received from the communication channel. In the second stage of the iteration, this information
is passed from the outer decoder to an extrinsic bitwise MAP decoder of the inner code and is used as a-priori
knowledge for decoding the input bits of the inner code. A Tanner graph for turbo-like decoding of systematic ARA
codes is presented in Figure 3. Considering the asymptotic case where the block length tends to infinity, we denote
the probability of erasure messages from the outer decoder to the inner decoder and vice versa at thel’th decoding
iteration byx

(l)
0 andx

(l)
1 , respectively. Keeping in line with the notation in the proofs of Theorems 3.1 and 3.2, we

begin counting the iterations atl = 0. Since there is no a-priori information regarding the non-systematic output
bits of the outer decoder (which are permuted to form the input bits of the inner decoder, as shown in Fig. 3) we
have

x
(−1)
0 = x

(−1)
1 = 1. (I.1)

DE

p

x random permutation

outer code

inner code

0 x1

x0,ox1,o

x1,ix0,i

parity
checks 1

punctured
bits

parity
checks 2

code
bits

bits
systematic

Fig. 3. Tanner graph of a systematic accumulate-repeat-accumulate (ARA) code for turbo-like decoding as an interleaved and serially
concatenated code.

We now turn to calculate the erasure probabilityx
(l)
0 in an extrinsic bitwise MAP decoding of non-systematic

output bits of the outer code, given that the a-priori erasure probability of these bits isx(l−1)
1 . To this end, we

consider the Tanner graph of the outer code, shown in the top box of Figure 3. We note that this Tanner graph
contains no cycles, and therefore bitwise MAP decoding of this code can be performed by using the standard
iterative message-passing decoding algorithm until a fixed-point is reached. In such a decoder which operates on
the Tanner graph of the outer code, messages are transferredbetween the ‘punctured bit’ and the ‘parity-check 1’
nodes of the graph. Let us denote byx0,o(x) the probability of erasure in messages from the ‘punctured bit’
nodes to the ‘parity-check 1’ nodes at the fixed point of the iterative decoding algorithm, when the a-priori erasure
probability of the output bits isx. Similarly, we denote byx1,o(x) the erasure probability in messages from the
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’parity-check 1’ nodes to the ’punctured bit’ nodes at the fixed point, wherex is the a-priori erasure probability of
the non-systematic output bits. Based on the structure of the Tanner graph, we have

x0,o(x) = x1,o(x) · L(x) (I.2)

and
x1,o(x) = 1 − (1 − p)

(
1 − x0,o(x)

)
(I.3)

whereL is defined in (1) and it forms the degree distribution of the ‘punctured bit’ nodes from the node perspective,
andp denotes the erasure probability of the BEC. Substituting (I.2) into (I.3) gives

x1,o(x) =
p

1 − (1 − p)L(x)
. (I.4)

Therefore, the structure of the Tanner graph of the outer code implies that the erasure probabilityx(l)
0 in messages

from the outer decoder to the inner decoder at iteration number l of the turbo-like decoding algorithm is given by

x
(l)
0 =

(
x1,o

(
x

(l−1)
1

))2
λ
(
x

(l−1)
1

)

=



 p

1 − (1 − p)L
(
x

(l−1)
1

)




2

λ
(
x

(l−1)
1

)

= λ̃
(
x

(l−1)
1

)
(I.5)

where the second equality relies on (I.4), andλ̃ is introduced in (29)). We now employ a similar technique to
calculate the erasure probabilityx(l)

1 in an extrinsic bitwise MAP decoding of input bits of the inner code, given
that the a-priori erasure probability of these bits isx

(l)
0 . Since the Tanner of the inner code is also cycle-free (see

the lower box in Figure 3), extrinsic bitwise MAP decoding can be done by using the iterative decoder operating
on the Tanner graph of the inner code. We denote byx0,i(x) the erasure probability of messages from the ‘parity
check 2’ nodes to the ‘code bit’ nodes at the fixed point of the iterative decoding algorithm whenx is the a-priori
erasure probability of the input bits. Similarly,x1,i(x) designates the erasure probability of messages from the ‘code
bit’ nodes to the ‘parity check 2’ nodes at the fixed point of the decoding algorithm, whenx is the a-priori erasure
probability of the input bits. The structure of the Tanner graph implies that

x0,i(x) = 1 −
(
1 − x1,i(x)

)
R(1 − x) (I.6)

and
x1,i(x) = p x0,i(x) (I.7)

whereR is defined in (2). Substituting (I.6) into (I.7) gives

x1,i(x) =
p
(
1 − R(1 − x)

)

1 − p R(1 − x)
. (I.8)

Therefore, the erasure probabilityx(l)
1 in messages from the inner decoder to the outer decoder at iteration number

l of the turbo-like decoding algorithm is given by

x
(l)
1 = 1 −

(
1 − x1,i

(
x

(l)
0

))2
ρ
(
1 − x

(l)
0

)

= 1 −

 1 − p

1 − p R
(
1 − x

(l)
0

)




2

ρ
(
1 − x

(l)
0

)

= 1 − ρ̃
(
1 − x

(l)
0

)
(I.9)

where the second equality relies on (I.8), andρ̃ is the tilted degree distribution resulting from graph reduction (see
(30)). Combining (I.1), (I.5) and (I.9) gives

x
(0)
0 = λ̃

(
x

(−1)
1

)
= λ̃(1) = 1 ,

x
(l)
0 = λ̃

(
1 − ρ̃

(
1 − x

(l−1)
0

))
, l ∈ N . (I.10)
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Observing the proof of Theorem 3.2, we note thatx
(l)
0 = x(l) for all l = 0, 1, . . ., where is thex(l) value at the left

tip of the horizontal linehl in Figure 2 (see Eq. (46) on page 15).
Let P

(l)
b designate the average erasure probability of the systematic bits at the end of thel’th iteration of the

turbo-like decoder. From the definition of the turbo-like decoding algorithm,P (l)
b is the erasure probability of

bitwise MAP decoding for the input bits to the outer code, given that the a-priori erasure probability of the output
bits of this code is given byx(l)

1 . Based of the structure of the Tanner graph of the outer code in Figure 3, we get

P
(l)
b = p

[
1 −

(
1 − x0,o

(
x

(l)
1

))2
]

(I.11)

wherex0,o(x) in the fixed point erasure probability of messages from the ‘punctured bit’ nodes to the ‘parity-
check 1’ nodes in the case that the a-priori erasure probability of the non-systematic output bits of the code isx.
Substituting (I.3) in (I.2) gives

x0,o(x) =
p L(x)

1 − (1 − p)L(x)
.

Substituting the above equality into (I.11), we have

P
(l)
b = p

[
1 −

(
1 − L̃

(
x

(l)
1

))2
]

= p

[
1 −

(
1 − L̃

(
1 − ρ̃

(
1 − x

(l)
0

)))2
]

where the first equality follows from the definition ofL̃ in (32) and the second equality relies on (I.9). Using simple
algebra

1 −

√√√√
1 − P

(l)
b

p
= L̃

(
1 − ρ̃

(
1 − x

(l)
0

))
. (I.12)

Hence, the lower bound on the average erasure probability ofthe systematic bits at the end of thel’th iteration
of the standard iterative decoder for ARA codes in Lemma 4.3 is satisfied (with equality) also for the turbo-like
decoder.

Let l designate the required number of iterations for the turbo-like decoder to achieve an average erasure
probability Pb of the systematic bits. Eq. (I.12) implies thatl is the smallest natural number which satisfies

1 −
√

1 − Pb

p
≥ L̃

(
1 − ρ̃

(
1 − x

(l−1)
0

))
.

However, this is exactly the quantity for which we calculated the lower bound in the proof of Theorem 3.2 (see
Lemmas 4.2 and 4.3, and Eq. (31)). Therefore, the lower boundin Theorem 3.2 also holds when the considered
turbo-like algorithm is used to decode the systematic ARA codes as interleaved and serially concatenated codes.

APPENDIX II.

A. Proof of Lemma 4.2

The proof of Lemma 4.2 is based on the DE equations in (5) for systematic ARA ensembles. From the DE
equations forx(l)

2 andx
(l)
3 , we have

x
(l)
3 = p

[
1 − R

(
1 − x

(l)
1

) (
1 − x

(l−1)
3

)]

≥ p
[
1 − R

(
1 − x

(l)
1

) (
1 − x

(l)
3

)]

where the inequality follows since the decoding process does not add erasures, sox(l)
i is monotonically decreasing

with l (for i = 0, 1, . . . , 5). This gives

1 − x
(l)
3 ≤ 1 − p

1 − pR
(
1 − x

(l)
1

) . (II.1)
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Substituting (II.1) into the DE equation forx(l)
4 (see (5)) gives

x
(l)
4 ≥ 1 −



 1 − p

1 − pR
(
1 − x

(l)
1

)




2

ρ
(
1 − x

(l)
1

)

= 1 − ρ̃
(
1 − x

(l)
1

)
(II.2)

whereρ̃ is defined in (30). From (5), we get

x
(l)
5 =

[
1 −

(
1 − x

(l−1)
5

)
(1 − p)

]
L
(
x

(l)
4

)

≥
[
1 −

(
1 − x

(l)
5

)
(1 − p)

]
L
(
x

(l)
4

)

and solving for1 − x
(l)
5 gives

1 − x
(l)
5 ≤

1 − L
(
x

(l)
4

)

1 − (1 − p)L
(
x

(l)
4

) . (II.3)

Substituting (II.3) into the DE equation forx(l)
0 in (5) gives

x
(l)
0 ≥ p

1 − (1 − p)L
(
x

(l−1)
4

) .

Substituting this inequality into the DE equation forx
(l)
1 gives

x
(l)
1 ≥ λ̃

(
x

(l−1)
4

)
(II.4)

whereλ̃ is defined in (29). Finally (28) follows from (II.2), (II.4),and the monotonicity of̃λ over the interval[0, 1].

B. Proof of Lemma 4.3

From Fig. 1) and the DE equation forx(l)
5 in (5)

P
(l)
b = p

[
1 −

(
1 − x

(l)
5

)2
]

= p

[
1 −

(
1 − x

(l)
0 L

(
x

(l)
4

))2
]

. (II.5)

The DE equation (5) forx(l)
1 and (29) imply that

(
x

(l)
0

)2
=

x
(l)
1 p2

λ̃
(
x

(l−1)
4

) [
1 − (1 − p)L

(
x

(l−1)
4

)]2

≥


 p

1 − (1 − p)L
(
x

(l−1)
4

)




2

where the last inequality follows from (II.4), and then

x
(l)
0 ≥ p

1 − (1 − p)L
(
x

(l−1)
4

) . (II.6)

Substituting (II.6) in (II.5), we get

P
(l)
b ≥ p


1 −


1 −

p L
(
x

(l)
4

)

1 − (1 − p)L
(
x

(l−1)
4

)




2



≥ p


1 −


1 −

p L
(
x

(l)
4

)

1 − (1 − p)L
(
x

(l)
4

)




2

 (II.7)



SASON AND WIECHMAN: BOUNDS ON THE NUMBER OF ITERATIONS FOR TURBO-LIKE ENSEMBLES OVER THE BINARY ERASURE CHANNEL23

which follows sincex(l)
4 ≤ x

(l−1)
4 , and from (32)

P
(l)
b ≥ p

[
1 −

(
1 − L̃

(
x

(l)
4

))2
]

≥ p

{
1 −

[
1 − L̃

(
1 − ρ

(
x

(l)
1

))]2}
(II.8)

where the last inequality follows from (II.2). Finally, (34) follows directly from (II.8).
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