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Introduction

f -Divergences

f -divergences form a general class of divergence measures which are
commonly used in information theory, learning theory and related fields.

I. Csiszár, “Eine Informationstheoretische Ungleichung und ihre Anwendung
auf den Bewis der Ergodizität von Markhoffschen Ketten,” Publ. Math.
Inst. Hungar. Acad. Sci., vol. 8, pp. 85–108, Jan. 1963.
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Mathematicarum Hungarica, vol. 2, pp. 329–339, Jan. 1967.

I. Csiszár, “A class of measures of informativity of observation channels,”
Periodica Mathematicarum Hungarica, vol. 2, pp. 191–213, Mar. 1972.
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series B, vol. 28, no. 1, pp. 131–142, Jan. 1966.
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Introduction

This Talk is Restricted to the Discrete Setting

f : (0,∞) 7→ R is a convex function with f(1) = 0;

P,Q are probability mass functions defined on a (finite or countably
infinite) set X .

f -Divergence: Definition

The f -divergence from P to Q is given by

Df (P‖Q) :=
∑
x∈X

Q(x) f

(
P (x)

Q(x)

)
with the convention that

f(0) := lim
t↓0

f(t),

0f
(0
0

)
:= 0, 0f

(a
0

)
:= lim

t↓0
tf
(a
t

)
= a lim

u→∞

f(u)

u
, a > 0.
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Introduction

f -divergences: Examples

Relative entropy

f(t) = t log t, t > 0 =⇒ Df (P‖Q) = D(P‖Q),

f(t) = − log t, t > 0 =⇒ Df (P‖Q) = D(Q‖P ).

Total variation (TV) distance

f(t) = |t− 1|, t ≥ 0

⇒Df (P‖Q) = |P −Q| :=
∑
x∈X
|P (x)−Q(x)| .

Chi-Squared Divergence

f(t) = (t− 1)2, t ≥ 0

⇒Df (P‖Q) = χ2(P‖Q) :=
∑
x∈X

(
P (x)−Q(x)

)2
Q(x)

.
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Introduction

f -divergences: Examples (cont.)

Eγ divergence (Polyanskiy, Poor and Verdú, IEEE T-IT, 2010)

For γ ≥ 1,
Eγ(P‖Q) := Dfγ (P‖Q) (1)

with fγ(t) = (t− γ)+, for t > 0, and (x)+ := max{x, 0}.
E1(P‖Q) = 1

2 |P −Q| =⇒ Eγ divergence generalizes TV distance.

Eγ(P‖Q) = max
E∈F

(
P (E)− γ Q(E)

)
.

Other Important f -divergences

Triangular Discrimination (Vincze-Le Cam distance ’81; Topsøe 2000);

Jensen-Shannon divergence (Lin 1991; Topsøe 2000);

DeGroot statistical information (DeGroot ’62; Liese & Vajda ’06); see later.

Marton’s divergence (Marton 1996; Samson 2000).
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Introduction

Data-Processing Inequality for f -Divergences

Let

X and Y be finite or countably infinite sets;

PX and QX be probability mass functions that are supported on X ;

WY |X : X → Y be a stochastic transformation;

Output distributions:

PY := PXWY |X , QY := QXWY |X ;

f : (0,∞)→ R be a convex function with f(1) = 0.

Then,

Df (PY ‖QY ) ≤ Df (PX‖QX).
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Introduction

Contraction Coefficient for f -Divergences

Let

QX be a probability mass function defined on a set X , and which is
not a point mass;

WY |X : X → Y be a stochastic transformation.

The contraction coefficient for f -divergences is defined as

µf (QX ,WY |X) := sup
PX :Df (PX‖QX)∈(0,∞)

Df (PY ‖QY )
Df (PX‖QX)

.
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Introduction

Strong Data Processing Inequalities (SDPI)

If µf (QX ,WY |X) < 1, then

Df (PY ‖QY ) ≤ µf (QX ,WY |X)Df (PX‖QX).

Contraction coefficients for f -divergences play a key role in strong
data-processing inequalities:

Ahlswede and Gács (’76);

Cohen et al. (’93);

Raginsky (’16);

Polyanskiy and Wu (’16, ’17);

Makur, Polyanskiy and Wu (’18).
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New Results: SDPI for f -divergences

Theorem 1: SDPI for f -divergences

Let

ξ1 := inf
x∈X

PX(x)

QX(x)
∈ [0, 1], ξ2 := sup

x∈X

PX(x)

QX(x)
∈ [1,∞].

cf := cf (ξ1, ξ2) ≥ 0 and df := df (ξ1, ξ2) ≥ 0 satisfy

2cf ≤
f ′+(v)− f ′+(u)

v − u
≤ 2df , ∀u, v ∈ I, u < v

where f ′+ is the right-side derivative of f , and I := [ξ1, ξ2] ∩ (0,∞).

Then,
df
[
χ2(PX‖QX)− χ2(PY ‖QY )

]
≥ Df (PX‖QX)−Df (PY ‖QY )

≥ cf
[
χ2(PX‖QX)− χ2(PY ‖QY )

]
≥ 0.
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New Results: SDPI for f -divergences

Theorem 1: SDPI (Cont.)

If f is twice differentiable on I, then the best coefficients are given by

cf = 1
2 inf
t∈I(ξ1,ξ2)

f ′′(t), df = 1
2 sup
t∈I(ξ1,ξ2)

f ′′(t).
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New Results: SDPI for f -divergences

Theorem 1: SDPI (Cont.)

If f is twice differentiable on I, then the best coefficients are given by

cf = 1
2 inf
t∈I(ξ1,ξ2)

f ′′(t), df = 1
2 sup
t∈I(ξ1,ξ2)

f ′′(t).

This SDPI is Locally Tight

Let

lim
n→∞

inf
x∈X

P
(n)
X (x)

QX(x)
= 1, lim

n→∞
sup
x∈X

P
(n)
X (x)

QX(x)
= 1.

If f has a continuous second derivative at unity, then

lim
n→∞

Df (P
(n)
X ‖QX)−Df (P

(n)
Y ‖QY )

χ2(P
(n)
X ‖QX)− χ2(P

(n)
Y ‖QY )

= 1
2f
′′(1).
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New Results: SDPI for f -divergences

Advantage: Tensorization of the Chi-Squared Divergence

χ2(P1 × . . .× Pm ‖Q1 × . . .×Qm) =
m∏
i=1

(
1 + χ2(Pi‖Qi)

)
− 1.
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New Results: SDPI for f -divergences

Theorem 2: SDPI for f -divergences

Let f : (0,∞)→ R satisfy the conditions:

f is a convex function, differentiable at 1, f(1) = 0, and
f(0) := lim

t→0+
f(t) <∞;

The function g : (0,∞)→ R, defined by g(t) := f(t)−f(0)
t for all

t > 0, is convex.

Let

κ(ξ1, ξ2) := sup
t∈(ξ1,1)∪(1,ξ2)

f(t) + f ′(1) (1− t)
(t− 1)2

.

Then,

Df (PY ‖QY )
Df (PX‖QX)

≤ κ(ξ1, ξ2)

f(0) + f ′(1)
· χ

2(PY ‖QY )
χ2(PX‖QX)

.
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New Results: SDPI for f -divergences

Numerical Results

The tightness of the bounds (SDPI inequalities) in Theorems 1 and 2 was
exemplified numerically for transmission over a BEC and BSC.
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Application: List Decoding Error Bounds

List Decoding

Decision rule outputs a list of choices.

The extension of Fano’s inequality to list decoding, expressed in terms
of H(X|Y ), was initiated by Ahlswede, Gacs and Körner (’66).

Useful to prove converse results (jointly with the blowing-up lemma).

Generalized Fano’s Inequality for Fixed List Size

H(X|Y ) ≤ logM − d
(
PL ‖ 1−

L

M

)
where d(·‖·) denotes the binary relative entropy:

d(x‖y) := x log

(
x

y

)
+ (1− x) log

(
1− x
1− y

)
, x, y ∈ (0, 1).
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List Decoding Error Bounds

Theorem 3: Tightened Bound by Strong DPI (SDPI)

Let PXY be a probability measure defined on X × Y with |X | =M .

Consider a decision rule L : Y →
(X
L

)
, where

(X
L

)
stands for the set of

subsets of X with cardinality L, and L < M is fixed.

Denote the list decoding error probability by PL := P
[
X /∈ L(Y )

]
.

If the L most probable elements from X are selected, given Y ∈ Y, then

H(X|Y ) ≤ logM − d
(
PL ‖ 1−

L

M

)
− log e

2
·
E
[
PX|Y (X|Y )

]
− 1−PL

L

sup
(x,y)∈X×Y

PX|Y (x|y)
.

Proof: Use Theorem 1 (our first SDPI) with f(t) = t log t, t > 0,
PX|Y=y, and QX|Y=y be equiprobable over {1, . . . ,M},

WZ|X,Y=y be 1 or 0 if X ∈ L(y) or X /∈ L(y), and average over Y .

Numerical experimentation exemplifies this improvement.
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List Decoding Error Bounds

Generalized Fano’s Inequality for Variable List Size (1975)

Let PXY be a probability measure defined on X × Y with |X | =M ;

Consider a decision rule L : Y → 2X ;

Let the (average) list decoding error probability be given by

PL := P
[
X /∈ L(Y )

]
with |L(y)| ≥ 1 for all y ∈ Y.

Then,

H(X|Y ) ≤ h(PL) + E[log |L(Y )|] + PL logM.
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List Decoding Error Bounds

Theorem: A Consequence of DPI for the Eγ-Divergence

For every γ ≥ 1,

PL ≥
1 + γ

2
− γE[|L(Y )|]

M
− 1

2
E

[∑
x∈X

∣∣∣∣PX|Y (x|Y )− γ

M

∣∣∣∣
]
.

Conditions for the bound to hold with equality are proved in the paper.
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List Decoding Error Bounds

Simple Example

X,Y are RVs getting values in X = {0, 1, 2, 3, 4}, Y = {0, 1}.
PXY is their joint probability mass function, given by

PXY (0, 0) = PXY (1, 0) = PXY (2, 0) =
1
8 ,

PXY (3, 0) = PXY (4, 0) =
1
16 ,

PXY (0, 1) = PXY (1, 1) = PXY (2, 1) =
1
24 ,

PXY (3, 1) = PXY (4, 1) =
3
16 .

L(0) = {0, 1, 2} and L(1) = {3, 4} are the lists in X , given Y ∈ Y.

Then,

If γ = 5
4 , the bound holds with equality and PL = 1

4 .

The generalized Fano’s inequality only gives PL ≥ 0.1206.
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Summary

Summary

We focus on strong data-processing inequalities for f -divergences.

We exemplify their utility for list decoding error bounds.

Another application (see paper): Variable-to-fixed Tunstall codes.

Majorization inequalities and an IT application presented at ITA ’20.

Journal Papers (Related Work)

I. S. and S. Verdú, “f -divergence inequalities,” IEEE T-IT, Nov. 2016.

I. S., “On f -divergences: integral representations, local behavior, and
inequalities,” Entropy, May 2018.

I. S., “On data-processing and majorization inequalities for f -divergences,”
Entropy, Oct. 2019.
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Summary

More on f -Divergences and f -Informativities

I-divergence (relative entropy), and generalization to f -divergences;

Mutual information, and generalization by means of f -informativities;

Risk lower bounds in estimation and learning problems;

Exact locus of the joint range of f -divergences & tensorization;

Contraction coefficients & strong data processing inequalities;

Statistical DeGroot information & important links to f -divergences;

Integral & variational representations of f -divergences & applications;

Sufficiency and ε-sufficiency of observation channels & implications;

Zakai & Ziv’s extension of rate-distortion theory with f -divergences;

Asymptotic methods in statistical decision theory with f -divergences;

Robustness of f -divergence based estimators.
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Thanks to Imre who introduced these information measures !

I. Sason IZS 2020, Zurich, Switzerland Feb. 26-28, 2020 20 / 20


	Introduction
	New Results: SDPI for f-divergences
	Application: List Decoding Error Bounds
	List Decoding Error Bounds
	Summary

