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Abstract—This work introduces new strong data-processing
and majorization inequalities for f-divergences, and it studies
some of their applications in information theory and statistics.
The full paper version [16] will be published soon in the Entropy
journal, including all proofs and further results, discussions,
and information-theoretic applications. One application refers to
the performance analysis of list decoding with either fixed or
variable list sizes. Another application is related to a study of
the quality of approximating a probability mass function, induced
by the leaves of a Tunstall tree, by an equiprobable distribution.
The compression rates of finite-length Tunstall codes are further
analyzed for asserting their closeness to the Shannon entropy of
a memoryless and stationary discrete source.

Index Terms — Contraction coefficient, data-processing inequal-
ities, f-divergences, hypothesis testing, list decoding, majorization,
Rényi information measures, Tsallis entropy, Tunstall trees.

I. INTRODUCTION

Divergences are non-negative measures of the dissimilarity
between pairs of probability measures which are defined on
the same measurable space. They play a key role in the
development of information theory, probability theory, statis-
tics, learning, signal processing, and other related fields. One
important class of divergence measures is defined by means of
convex functions f, and it is called the class of f-divergences.
It unifies fundamental and independently-introduced concepts
in several branches of mathematics such as the chi-squared test
for the goodness of fit in statistics, the total variation distance
in functional analysis, the relative entropy in information
theory and statistics, and it is also closely related to the Rényi
divergence which generalizes the relative entropy. The class of
f-divergences was independently introduced in the sixties by
Ali and Silvey [2], and Csiszar [5]. This class satisfies pleasing
features such as the data-processing inequality, convexity,
continuity and duality properties, and it finds nice applications
in information theory and statistics (see, e.g., [6], [7], [8], [17],
(191, [20], [21D).

The full paper version of this work [16] is a research paper
which is focused on the derivation of data-processing and
majorization inequalities for f-divergences, and a study of
some of their potential applications in information theory and
statistics. Preliminaries are next provided.

II. PRELIMINARIES

A. Preliminaries and Related Works

We provide here definitions which serve as a background
to the presentation in this paper. We first provide a definition

for the family of f-divergences.

Definition 1: [9, p. 4398] Let P and () be probability
measures, let ;4 be a dominating measure of P and @ (i.e.,
P,Q < p), and let p := % and q := %. The f-divergence
from P to @ is given, independently of p, by

Dy(P||Q) := /qf(g) du, (1)

where
7(0) = Jim 1(0), @
0f(8> =0, 3)
Of(g> = lim tf(‘j) ~ a lim %“) a>0. @

Definition 2: Let (Qx be a probability distribution which
is defined on a set X, and that is not a point mass, and
let Wy x: X — Y be a stochastic transformation. The
contraction coefficient for f-divergences is defined as

1 (Qx, Wy x) = sup Dy (Py|Qy)

, (5)
Px: Dy (Px | Qx)e(0,00) D (Px[|@x)

where, for all y € ),
Py (y) = (PxWy|x) (y) == /XdPx(x) Wy x (ylz), (6)

Qv () = (QxWypx) (4) == /X AQux () Wy x (ylz). (7)

Contraction coefficients for f-divergences play a key role
in strong data-processing inequalities (see [1], [12], [13]).

Definition 3: Pearson’s x2-divergence from P to @ is de-
fined to be the f-divergence from P to ) (see Definition 1)
with f(t) = (t —1)? or f(t) =t>—1 forall t > 0,

X*(P||Q) := Ds(P||Q) (8)
N2
:/udﬂ )

q

2
=/3w—1
q

independently of the dominating measure u (i.e., P,Q < p,
e.g., p=P+Q).

(10)



Neyman’s x2-divergence from P to Q) is the Pearson’s x2-
divergence from @) to P, i.e., it is equal to

X (QIIP) = Dy(P|Q)

with g(t) = @ or g(t) = ¢ —t forall t > 0.

For the presentation of our majorization inequalities for f-
divergences and related entropy bounds, essential definitions
and basic results are next provided (see, e.g., [11]). Let P be
a probability mass function defined on a finite set X, let ppax
be the maximal mass of P, and let Gp(k) be the sum of the
k largest masses of P for k € {1,...,|X|} (hence, it follows
that Gp(1) = pmax and Gp(|X|) = 1).

Definition 4: Consider discrete probability mass functions
P and @ defined on a finite set X. It is said that P is
majorized by ) (or ) majorizes P), and it is denoted by
P < Q, if Gp(k) < Gg(k) for all k € {1,...,|X|} (recall
that Gp(|X]) = Go(|X]) = 1.

A unit mass majorizes any other distribution; on the other
hand, the equiprobable distribution on a finite set is majorized
by any other distribution defined on the same set.

Definition 5: Let P,, denote the set of all the probability
mass functions that are defined on A4, := {1,...,n}. A
function f: P, — R is said to be Schur-convex if for every
P,QQ € P, such that P < @Q, we have f(P) < f(Q).
Likewise, f is said to be Schur-concave if — f is Schur-convex,
ie., P,Q € P, and P < @ imply that f(P) > f(Q).

Finally, what is the connection between data processing
and majorization, and why these types of inequalities are
both considered in the same manuscript ? This connection is
provided in the following fundamental well-known result (see,
e.g., [11, Theorem B.2]):

Proposition 1: Let P and () be probability mass functions
defined on a finite set A. Then, P < @ if and only if there
exists a doubly-stochastic transformation Wy x: A — A (i.e.,
Z WY‘X(y|x) =1 for all y € A, and Z Wy x(ylz) =1

for all z € A with Wy x(-|-) > 0) such that

(1)

In other words, P < @ if and only if in their representation
as column vectors, there exists a doubly-stochastic matrix W
(i.e., a square matrix with non-negative entries such that the
sum of each column or each row in W is equal to 1) such
that P = WQ.

B. Contributions

This work (see the full paper version in [16]) is focused on
the derivation of data-processing and majorization inequalities
for f-divergences, and it applies these inequalities to informa-
tion theory and statistics.

The starting point for obtaining strong data-processing in-
equalities in this paper relies on the derivation of lower and
upper bounds on the difference D;(Px||Qx) — D (Py|Qy)
where (Px,Qx) and (Py,Qy) denote, respectively, pairs
of input and output probability distributions with a given

stochastic transformation Wy |x (e, Px — Wy x —
Py, Qx — Wyx — Qy). These bounds are expressed
in terms of the respective difference in the Pearson’s or
Neyman’s x2-divergence, and they hold for all f-divergences
(see Theorem 1).

This paper also derives majorization inequalities for f-
divergences where part of these inequalities rely on the earlier
data-processing inequalities (see Theorem 3). A different ap-
proach, which relies on the concept of majorization, serves to
derive tight bounds on the maximal value of an f-divergence
from a probability mass function P to an equiprobable dis-
tribution; the maximization is carried over all P with a fixed
finite support where the ratio of their maximal to minimal
probability masses does not exceed a given value (see The-
orem 4). These bounds lead to accurate asymptotic results
which apply to general f-divergences, and they strengthen and
generalize recent results of this type with respect to the relative
entropy [4], and the Rényi divergence [15].

As an application of the data-processing inequalities for f-
divergences, the setup of list decoding is further studied in
[16], reproducing in a unified way some known bounds on
the list decoding error probability, and deriving new bounds
for fixed and variable list sizes.

As an application of the majorization inequalities in this
paper, we study in [16] properties of a measure which is
used to quantify the quality of approximating probability
mass functions, induced by the leaves of a Tunstall tree, by
an equiprobable distribution. An application of majorization
inequalities for the relative entropy is used to derive a sufficient
condition, expressed in terms of the principal and secondary
real branches of the Lambert W function, for asserting the
proximity of compression rates of finite-length (lossless and
variable-to-fixed) Tunstall codes to the Shannon entropy of a
memoryless and stationary discrete source.

IIT. MAIN RESULTS ON f—DIVERGENCES

A. Data-processing inequalities for f-divergences

Strong data-processing inequalities are provided in the fol-

lowing, bounding the difference D¢(Px||Qx)— D¢ (Py|Qy)
and ratio % where (Px,Qx) and (Py, Qy) denote,

respectlvely, pairs of input and output probability distributions
with a given stochastic transformation.

Theorem 1: Let X and ) be finite or countably infinite
sets, let Px and QQx be probability mass functions that are
supported on X, and let

Px ()

_ o Px(z)
& = ilel?( Ox(@) € [1, 00]. (13)

Let Wy |x: X — ) be a stochastic transformation such that
for every y € ), there exists x € X with Wy x(y|z) > 0,



and let (see (6) and (7))
Py := PxWy x,
Qy = QxWyx.

Furthermore, let f: (0,00) — R be a convex function with
f(1) = 0, and let the non-negative constant cy := c¢(1,&2)
satisfy

(14)
5)

L) = fi(u) > 2¢ (v—u), Vu,veZ, u<v (16)
where f! denotes the right-side derivative of f, and
1:= I(£17§2) = [61762] N (0700) (17)
Then,
a)
Dy(Px|Qx) — D (Py|Qy)
> cr(61,&) DE(Px1Qx) — X (Py[1Qy)] (18)
>0, (19)

where equality holds in (18) if Dy(-|-) is Pearson’s x?-
divergence with ¢y = 1.

b) If f is twice differentiable on Z, then the largest possible
coefficient in the right side of (16) is given by

cp(é, &) =% inf  f7(1).

(20)
teZ(£1,€2)

¢) Under the assumption in Item b), the following dual
inequality also holds:

Dy(Px|@Qx) — Df(Py|Qy)
> e-(£.2) [C@x1IPx) - (@1 Py)]
>0,

21
(22)

where f*: (0,00) — R is the dual convex function which
is given by

1
f*(t) :ztf(t>, Vit >0, 23)
and the coefficient in the right side of (21) satisfies
AL L)=L  inf {0 24
° (52’ 51) 2 75611(1511752){ / ( )} )

with the convention that E% = oo if & = 0. Equality

holds in (21) if Dy(-|-) is Neyman’s x>-divergence (i.e.,
D¢(P||Q) := x*(Q||P) for all P and Q) with ¢y~ = 1.
d) Under the assumption in Item b), if

ef(&1,&) =5 sup f"(t) < oo, (25)
teT(&1,82)
then,
Df(PXHQX) - Df(PYHQY)
<ep(61,&) C(Px[Qx) — P (PrllQy)] . (26)

Furthermore,
Dy (Px||Qx) — Dy(Py[|Qy)
<ep(& &) DE@xIPY) - 2@y IPY)]

where the coefficient in the right side of (27) satisfies

1 1 1 3 g
er(&d) =3 e £0),
which is assumed to be finite. Equalities hold in (26) and
(27) if Dy(-||-) is Pearson’s or Neyman’s x>-divergence
with ey =1 or ep- = 1, respectively.

e) The lower and upper bounds in (18), (21), (26) and (27)
are locally tight. More precisely, let {P)((")} be a sequence
of probability mass functions defined on X and pointwise
converging to () x which is supported on X', and let P}(,")
and @y be the probability mass functions defined on Y
via (14) and (15) with inputs P)(gl) and Qx, respectively.
Suppose that

27)

(28)

P (@)

Jm it 5 7y =1 @
(n)

i sup X ®) _ (30)

n—o0 rex QX (33)

If f has a continuous second derivative at unity, then

 D(PY[1Qx) — Dy (P]|Qy)

e 2 (PQx) — 3B Qy)

DY Qx) - Dy(P Q)

" R @QxIPY) — X2 (Qv |IBYY)

and these limits indicate the local tightness of the lower
and upper bounds in Items a)—d).

Proof: See [16]. |

In continuation to [10, Theorem 8], we next provide an

upper bound on the contraction coefficient for another subclass

of f-divergences. Although the first part of the next result

is stated for finite or countably infinite alphabets, it is clear

from its proof that it also holds in the general alphabet setting.

Connections to the literature are provided in [16].
Theorem 2: Let f: (0,00) — R satisfy the conditions:

o f is a convex function, differentiable at 1, f(1) = 0, and
f(0) :== lim f(¢) < oo
t—0+
o The function g: (0,00) — R, defined by g(t) :=
M for all ¢ > 0, is convex.
Let

=4f"(1), (31

=1f"(1), (32)

I (OES (OTIED)
te(€1,1)U(1,€2) (t - 1)2
where, for Px and QQx which are non-identical probability
mass functions, &; € [0,1) and & € (1, 00] are given in (12)
and (13). Then, in the setting of (14) and (15),
Dy (Py [[Qy) ré,&)  X(PrlQy)
Dy(Px@x) = F0) + £/(1) 2(Px[Qx)’

H(fla&) =

(33)

< (34)



Consequently, if ()x is finitely supported on X,

Mf(QX, WY\X)
1

< H(Q ;
ST+ rm T\ minQx (@)

Proof: See [16]. [ |

We refer the reader to a parametric subclass of f-

divergences with interesting properties which is introduced in
[16], and which satisfies the conditions of Theorem 2.

(35)

) 2 (Q@x, Wy x)-

B. f-divergence Inequalities via Majorization

Let U,, denote an equiprobable probability mass function
on {1,...,n} with n € N, ie., Uy(i) := % for all
i € {1,...,n}. By majorization theory and Theorem I, the
next result strengthens the Schur-convexity property of the f-
divergence Dy (-||U,) (see [3, Lemma 1]).

Theorem 3: Let P and () be probability mass functions
which are supported on {1,...,n}, and suppose that P < Q.
Let f: (0,00) — R be twice differentiable and convex with
f(1) =0, and let gyax and gmin be, respectively, the maximal
and minimal positive masses of (). Then,

a)
nef(”‘]mim”%ﬂa)() (”QH% - HP”§)
> Dy (Q||Un) — Dy(P||U,) (36)
> nc g (Ngmin, ngmax) (1QI3 = [IP3) >0, (37)

where ¢4 (-, -) and e (-, -) are given in (20) and (25), respec-
tively, and || - ||2 denotes the Euclidean norm. Furthermore,
(36) and (37) hold with equality if D¢(-||-) = x*(-|-).

b) If P < @ and ﬁ < p for an arbitrary p > 1, then

,1)2
0<lol2—p|2< L1
<l —IIPls < I

Proof: See [16]. | |

(38)

The next result provides upper and lower bounds on
f-divergences from any probability mass function to an
equiprobable distribution. It relies on majorization theory, and
it follows in part from Theorem 3.

Theorem 4: Let P,, denote the set of all the probability
mass functions that are defined on A, := {1,...,n}. For
p > 1, let P,(p) be the set of all Q € P,, which are supported
on A, with Z=2x < p and let f: (0,00) — R be a convex

in

function withq}l"‘(l) = 0. Then,

a) The set P,(p), for any p > 1, is a non-empty, convex and
compact set.

b) For a given Q € P, which is supported on A, the f-
divergences Dy (-|Q) and Dy(Q|-) attain their maximal
values over the set P, (p).

¢) For p > 1 and an integer n > 2, let

ug(n, p) == ol D¢(Q||Uy), (39)
ve(n,p) := max Dy(U,|Q), (40)

QEPn(p)

let

1 1
Ta(p) i= | ——, =, 41
0= | 1) 1)
and let the probability mass function Qs € P,(p) be
defined on the set A,, as follows:

Pﬁa JE€ {15""i3}’
Qs(j) =41 —(n+iglp—1)—1)8, j=ig+1,
B, ig+2<j<n
(42)
where
‘ 1—np J
= . 43
K {(p— 1)3 43
Then,
ug(n,p) = e Dy (QpllUn), (44)
vp(n, p) = pax Dy (Un||Qp). (45)

d) For p > 1 and an integer n > 2, let the non-negative

function gJ(f) ) [0,1] — R4 be given by

9% (x)

= xf<1+(pp_1)x) +(1- x)f(H(pl—l)x)
(46)

for all = € [0, 1]. Then,

g (2) < uplnp) < max gf(x), @)

mer{r(l)z,i.}f,n} n z€[0,1]
(p) mY < < (p) 48
ey 5 () S 00 0) < 2 07 (0) - 49

with the convex function f*: (0,00) — R in (23).
e) The right-side inequalities in (47) and (48) are asymptoti-
cally tight (n — c0). Namely,

I = (?) 49
Jim_ug(n, p) max g (@), 49)
Jim vy (n, p) = max g (). (50)

f) If g () in (46) is differentiable on (0,1) and its derivative
is upper bounded by K(p) > 0, then for every integer
n>2

0< lim {us(n’,p)} —ug(n,p) < Kf(p). (51)

n’—o00 n
g) Let f(0) := tlirr(l)f(t) € (—o00,+00], and let n > 2 be an
—
integer. Then,

) (s
n

lim ws(n,p) = (1 - 1) f(0) +

p—r00 n



Furthermore, if f(0) < oo, f is differentiable on (0,n),

and K,, := sup |f’(t)’ < 00, then, for every p > 1,
te(0,n)
2K, (n—1)
0< i Y — <= 7 (53
_p,gnoo{w(n?p)} ug(n, p) < nip1 OV

h) For p > 1, let the function f be also twice differentiable,
and let M and m be constants such that the following

condition holds:

0<m< f'(t)< M, Vte([s,p]. (54)
Then, for all Q € P, (p),

0< 3m(nQl3 —1) (55)

< Dy(QIUn) (56)

< $M(n|QI3 1) (57)

_1\2
< Mlp—1) (58)
8p

with equalities in (56) and (57) for the x? divergence (with
M=m=2).

i) Let d > 0. If f"(t) < My € (0,00) for all ¢ > 0, then
Df(QHUn) <d for all Q € Pn(p), if
4d 8d  16d?
<1 —t —. 5
p=1l+—-— Mf M; M? (59)
Proof: See [16]. [ |

Tsallis entropy was introduced in [18] as a generalization
of the Shannon entropy (similarly to the Rényi entropy [14]),
and it was applied to statistical physics in [18].

Definition 6: [18] Let Px be a probability mass function
defined on a discrete set X. The Tsallis entropy of order o €
(0,1) U (1,00) of X, denoted by S, (X) or S,(Px), is
[Pxlla —1

Sa(X) = l-«a

. (60)
(Zre@)
continuously extended at orders 0, 1, and oo; at order 1,
coincides with the Shannon entropy in nats.
Theorem 3 enables to strengthen the Schur-concavity prop-
erty of the Tsallis entropy (see [11, Theorem 13.F.3.a.]).
Theorem 5: Let P and @) be probability mass functions
which are supported on a finite set, and let P < (). Then,
for all a > 0,
a)

where ||Px|lo == The Tsallis entropy is

OSL(O{,P,Q) SS@<P)_

where

L(a, P, Q) :=

SQ(Q) S U(Q,P,Q), (61)

3 aqnay (1Q15 — 11P13),
s agnz (1913 —11P13), € (2,00),

(62)

U, P,Q) : sagn 2 (1Q13 - 11P13),

3 0o (1Q1Z = 1P13),

a € (2,00),
(63)

if a € (0,2],

if o € (0,2,

b)

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

and the bounds in (62) and (63) are attained at o = 2.

SalP) = 5a(Q) _ . Sa(P) = 5u(@)
L(OZ,P, Q) P<Q U(OZ,P, Q)
where the inf. and sup. in (b) can be restricted to PMFs P

and Q (P # Q) supported on a binary alphabet.

= 1’
P<Q
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