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Abstract

This paper derives new bounds on the difference of the entropies of two discrete random variables in
terms of the local and total variation distances between their probability mass functions. The derivation of
the bounds relies on maximal coupling, and they apply to discrete random variables which are defined over
finite or countably infinite alphabets. Loosened versions of these bounds are demonstrated to reproduce
some previously reported results. The use of the new bounds is exemplified for the Poisson approximation,
where bounds on the local and total variation distances follow from Stein’s method.
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I. INTRODUCTION

The question of quantifying the continuity (or lack of it) of entropy, with respect to natural
topologies on discrete probability distributions is fundamental. This question has been studied in
the literature for the topology induced by the total variation distance, and there it is well known
that the entropy is continuous when the alphabet is finite, but it is not necessarily continuous
when the alphabet is countably infinite. The interplay between the difference of the entropies
of two discrete random variables and their total variation distance has been extensively studied
(see, e.g., [8, Theorem 17.3.3], [9], [10, Lemma 1], [15]–[17], [21], [25]–[29], [33], [37], [38]).

New bounds on the difference of the entropies of two discrete random variables are derived in
this work. The bounds apply to random variables with finite or countably infinite alphabet, and
they improve some previously reported bounds. The derivation of the new bounds relies on the
notion of maximal coupling, which is also known to be useful for the derivation of error bounds
via Stein’s method (see, e.g., [31, Chapter 2] and [32]). Stein’s method also serves to exemplify
the use of the new bounds in the context of the Poisson approximation. The link between Stein’s
method and information theory was pioneered in [6] in the context of the compound Poisson
approximation, and a recent work [22] (that was done independently and in parallel to this work)
further links between information theory and Stein’s method for discrete probability distributions.

To set definitions and notation, we introduce essential terms that serve to derive the new
bounds in this paper.

Definition 1: A coupling of a pair of two random variables (X,Y ) is a pair of two random
variables (X̂, Ŷ ) with the same marginal probability distributions as of (X,Y ).

Definition 2: For a pair of random variables (X,Y ), a coupling (X̂, Ŷ ) is called a maximal
coupling if P(X̂ = Ŷ ) gets its maximal value among all the couplings of (X,Y ).

Definition 3: Let X and Y be discrete random variables that take values in a set A, and let
PX and PY be their respective probability mass functions. The local distance and total variation
distance between X and Y are, respectively,

dloc(X,Y ) , sup
u∈A
|PX(u)− PY (u)| (1)

dTV(X,Y ) ,
1

2

∑
u∈A
|PX(u)− PY (u)|. (2)

The local distance is the l∞ distance between the probability mass functions, and the total
variation distance is half the l1 distance. The factor of one-half on the right-hand side of (2)
normalizes the total variation distance to get values between zero and one. It is noted that the
notation in the literature is not consistent, with a factor 2 on the right-hand side of (2) often
being present or not. It is easy to show (see, e.g., [13, Lemma 5.4 on pp. 133–134]) that with
this definition

dTV(X,Y ) = sup
B⊆A
|P(X ∈ B)− P(Y ∈ B)|.

From the last equality and the definition of the local distance in (1), it follows that dloc(X,Y ) ≤
dTV(X,Y ).

A basic property that links between maximal coupling and the total variation distance is that if
(X̂, Ŷ ) is a maximal coupling of (X,Y ) then P(X̂ 6= Ŷ ) = dTV(X,Y ). Throughout this paper,
the term ‘distribution’ refers to the probability mass function of a discrete random variable
defined over a finite or countably infinite alphabet.

The following theorem is a basic result on maximal coupling that also suggests, as part of
its proof, a construction for maximal coupling (see, e.g., [31, Chapter 2]). We later rely on
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this particular construction to derive in Section III some new bounds on the entropy of discrete
random variables.

Theorem 1: Let X and Y be discrete random variables that take values in a set A, and let
their respective probability mass functions be

PX(x) = P(X = x), PY (y) = P(Y = y), ∀x, y ∈ A.

Then, the maximal coupling of (X,Y ) satisfies

P(X̂ = Ŷ ) =
∑
u∈A

min{PX(u), PY (u)}. (3)

Proof: Let B , {u ∈ A : PX(u) < PY (u)}, and let Bc , A \ B. Then, for every coupling
(X̂, Ŷ ) of (X,Y ),

P(X̂ = Ŷ )

= P(X̂ = Ŷ , Ŷ ∈ B) + P(X̂ = Ŷ , Ŷ ∈ Bc)

≤ P(X̂ ∈ B) + P(Ŷ ∈ Bc)

= P(X ∈ B) + P(Y ∈ Bc)

=
∑
u∈B

PX(u) +
∑
u∈Bc

PY (u)

=
∑
u∈B

min{PX(u), PY (u)}+
∑
u∈Bc

min{PX(u), PY (u)}

=
∑
u∈A

min{PX(u), PY (u)} , p. (4)

The following provides a construction of a coupling (X̂, Ŷ ) that achieves the bound in (4)
with equality, so it forms a maximal coupling of (X,Y ). Let U , V , W and J be independent
discrete random variables, where

P(J = 0) = 1− p, P(J = 1) = p (5)

so J ∼ Bernoulli(p), and let U , V , W have the following probability mass functions:

PU (u) =
min{PX(u), PY (u)}

p
, ∀u ∈ A (6)

PV (v) =
PX(v)−min{PX(v), PY (v)}

1− p
, ∀ v ∈ A (7)

PW (w) =
PY (w)−min{PX(w), PY (w)}

1− p
, ∀w ∈ A. (8)

If J = 1, let X̂ = Ŷ = U , and if J = 0 let X̂ = V and Ŷ = W . For every x, y ∈ A

PX̂(x)

= pP(X̂ = x | J = 1) + (1− p)P(X̂ = x | J = 0)

= pPU (x) + (1− p)PV (x)

= PX(x)

and similarly PŶ (y) = PY (y), so (X̂, Ŷ ) is indeed a coupling of (X,Y ). Furthermore,

P(X̂ = Ŷ ) ≥ P(J = 1) = p (9)
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so, from (4) and (9), it follows that the proposed construction for (X̂, Ŷ ) forms a maximal
coupling of (X,Y ) and also P(X̂ = Ŷ ) = p.

The following result is a simple consequence of Theorem 1 (see, e.g., [31, Chapter 2]), and
it is also used for the derivation of the new bounds on the entropy in Section III.

Theorem 2: Let X and Y be two discrete random variables that take values in a set A. If
(X̂, Ŷ ) is a maximal coupling of (X,Y ) then

P(X̂ 6= Ŷ ) = dTV(X,Y ). (10)

Proof: This follows from (2) and (3), and the equality min{a, b} = a+b−|a−b|
2 for all

a, b ∈ R.
This work refines bounds on the difference of the entropies of two discrete random variables

via the use of maximal couplings, leading to sharpened bounds that depend on both the local
and total variation distances. The reader is also referred to a recent work in [21] that derived
bounds for information measures by relying on the notion of the minimum entropy coupling.

The main observation of this work is that if the local distance between two probability
distributions on a finite alphabet is smaller than the total variation distance, then the bounds
on the entropy difference can be significantly strengthened. The second observation made in this
work is that there is an extension of the new bound to countably infinite alphabets, where just
knowing the total variation distance between two distributions does not imply anything about the
difference of the respective entropies. The new bound that follows from the second observation
is applied in this work to obtain refined bounds on the entropy of sums of independent (possibly
non-identically distributed) Bernoulli random variables that arise in numerous applications. The
application of the new bounds to the Poisson approximation is facilitated by using bounds on
the total variation and local distances which follow from Stein’s method, and the improvement
that is obtained by these bounds is exemplified in this work. For comparison, a looser version of
the new bounds was earlier applied in [33] to get bounds on the entropy of sums of dependent
and non-identically distributed Bernoulli random variables.

The continuation of this paper is structured as follows: Section II introduces a known bound,
due to Zhang [38], on the difference of the entropies of two discrete random variables in terms
of the total variation distance. A shortened proof that is based on maximal coupling serves to
motivate the derivation of some refined bounds. These new bounds, proved in Section III via
maximal coupling, depend on both the local and total variation distances. Section IV exemplifies
the use of the new bounds with a link to Stein’s method, and it also compares them with some
previously known bounds. Finally, the paper is concluded in Section V. Throughout this paper,
the logarithms and the entropies are to the base e.

II. A PROOF OF A KNOWN BOUND ON THE ENTROPY OF DISCRETE RANDOM VARIABLES

VIA COUPLING

The following theorem relies on a bound that first appeared in [38, Eq. (4)] and proved by
coupling. It was later introduced in [17, Theorem 6] by re-proving the inequality in a different
way (without coupling), and it was also strengthened there by showing an explicit case where
the following bound is tight. As is proved in [38, Section 3], the bound on the entropy difference
that is introduced in the following theorem improves the bound in [8, Theorem 17.3.3] or [9,
Lemma 2.7].

Theorem 3: Let X and Y be two discrete random variables that take values in a finite set A,
and let |A| = M . Then,

|H(X)−H(Y )| ≤ dTV(X,Y ) log(M − 1) + h
(
dTV(X,Y )

)
(11)
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where h denotes the binary entropy function. Furthermore, there is a case where the bound is
tight.

The following proof of Theorem 3 exemplifies the use of maximal coupling in proving an
information-theoretic result.

Proof: Let (X̂, Ŷ ) be a maximal coupling of (X,Y ). Since H(X) = H(X̂) and H(Y ) =
H(Ŷ ) (note that the marginal probability mass functions of (X,Y ) and (X̂, Ŷ ) are the same),
it follows from Fano’s inequality and Theorem 2 (see (10)) that∣∣H(X)−H(Y )

∣∣
=
∣∣H(X̂)−H(Ŷ )

∣∣
=
∣∣H(X̂|Ŷ )−H(Ŷ |X̂)

∣∣
≤ max

{
H(X̂|Ŷ ), H(Ŷ |X̂)

}
≤ P(X̂ 6= Ŷ ) log(M − 1) + h

(
P(X̂ 6= Ŷ )

)
= dTV(X,Y ) log(M − 1) + h

(
dTV(X,Y )

)
.

This proves the bound in (11) (see [38, Eq. (4)]). If dTV(X,Y ) ≤ ε for some ε ∈
[
0, 1 − 1

M

]
,

the replacement of dTV(X,Y ) in the last bound by ε is valid; this holds since the function
f(x) , x log(M −1)+h(x) is monotonic increasing over the interval [0, 1− 1

M ] (since f ′(x) =
log(M − 1) + log

(
1−x
x

)
> 0 for 0 < x < 1− 1

M ). Otherwise, if ε > 1− 1
M ,∣∣H(X)−H(Y )

∣∣ ≤ max
{
H(X), H(Y )

}
≤ log(M).

Cases where the bound is tight [17]: If ε ∈ [0, 1− 1
M ], the bound is tight when

X ∼ PX =

(
1− ε, ε

M − 1
, . . . ,

ε

M − 1

)
Y ∼ PY = (1, 0, . . . , 0)

which implies that

dTV(X,Y ) = ε,

|H(X)−H(Y )| = H(X) = h(ε) + ε log(M − 1).

If ε ∈ (1− 1
M , 1] then the bound is tight when

X ∼
( 1

M
, . . . ,

1

M

)
, Y ∼ (1, 0, . . . , 0)

so, dTV(X,Y ) = 1− 1
M < ε and |H(X)−H(Y )| = log(M).

III. NEW BOUNDS ON THE ENTROPY OF DISCRETE RANDOM VARIABLES VIA COUPLING

In the cases where the known bound in Theorem 3 was shown to be tight in [17] (see the last
part of the proof in Section II), it is easy to verify that the local distance is equal to the total
variation distance. However, as is shown in the following, if it is not the case (i.e., the local
distance is smaller than the total variation distance), then the bound in Theorem 3 is necessarily
not tight. Furthermore, this section provides new bounds that depend on both the total variation
and local distances. If these two distances are equal then the new bound is particularized to
the bound in Theorem 3 but otherwise, the new bound improves the bound in Theorem 3. The
general approach for proving the following new inequalities relies on the construction of the
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maximal coupling that is introduced in the proof of Theorem 1. The new results are stated and
proved in the following.

Theorem 4: Let X and Y be two discrete random variables that take values in a finite set A,
and let |A| = M . Then,

|H(X)−H(Y )| ≤ dTV(X,Y ) log(Mα− 1) + h
(
dTV(X,Y )

)
(12)

where
α ,

dloc(X,Y )

dTV(X,Y )
(13)

denotes the ratio of the local and total variation distances (so, α ∈ [ 2
M , 1]), and h denotes the

binary entropy function. Furthermore, if the probability mass functions of X and Y satisfy the
condition that 1

2 ≤
PX
PY
≤ 2 whenever PX , PY > 0, then the bound in (12) is tightened to

|H(X)−H(Y )| ≤ dTV(X,Y ) log

(
Mα− 1

4

)
+ h
(
dTV(X,Y )

)
. (14)

Remark 1: Since, in general, α ≤ 1 then the case where α = 1 is the worst case for the bound
in (12). In the latter case, it is particularized to the bound in Theorem 3 (see [17, Theorem 6]
or [38, Eq. (4)]).

Remark 2: If α ≤ 1
N for some integer N (since α ∈

[
2
M , 1

]
then N ∈ {1, . . . , bM2 c}), the

bound in (12) implies that

|H(X)−H(Y )| ≤ dTV(X,Y ) log

(
M −N
N

)
+ h
(
dTV(X,Y )

)
. (15)

The bounds in (15) and [17, Theorem 7] are similar but they hold under different conditions. The
bound in [17, Theorem 7] requires that PX , PY ≤ 1

N everywhere, whereas the bound in (15)
holds under the requirement that the ratio α of the local and total variation distances satisfies
α ≤ 1

N . None of these conditions implies the other.
We prove in the following Theorem 4.

Proof: Assume without loss of generality (w.l.o.g.) that H(X)−H(Y ) ≥ 0 (note that the
terms |H(X) − H(Y )|, dloc(X,Y ) and dTV(X,Y ) are invariant under a switch of X and Y ).
Let (X̂, Ŷ ) be the maximal coupling of (X,Y ) according to the construction in the proof of
Theorem 1. Then,

|H(X)−H(Y )|
= H(X)−H(Y )

= H(X̂)−H(Ŷ )

= H(X̂|J)−H(Ŷ |J) + I(X̂; J)− I(Ŷ ; J). (16)

The conditional entropy H(X̂|J) satisfies

H(X̂|J)

= P(J = 0)H(X̂|J = 0) + P(J = 1)H(X̂|J = 1)
(a)
= dTV(X,Y )H(V |J = 0) +

(
1− dTV(X,Y )

)
H(U |J = 1)

(b)
= dTV(X,Y )H(V ) +

(
1− dTV(X,Y )

)
H(U) (17)
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where equality (a) holds since J ∼ Bernoulli(p) with

p = P(J = 1) = P(X̂ = Ŷ ) = 1− dTV(X,Y )

(see the proof of Theorem 1 and the result in Theorem 2), and because X̂ is equal to V or U when
J gets that values zero or one, respectively. Furthermore, equality (b) holds since U, V,W, J
are independent random variables (due to the construction shown in the proof of Theorem 1).
Similarly,

H(Ŷ |J) = dTV(X,Y )H(W ) +
(
1− dTV(X,Y )

)
H(U). (18)

Combining (16)–(18) yields that

|H(X)−H(Y )| = dTV(X,Y ) (H(V )−H(W )) + I(X̂; J)− I(Ŷ ; J). (19)

From (7) and (8), it follows that

PV (a)PW (a) = 0, ∀ a ∈ A (20)

and also, for every a ∈ A,

PV (a) + PW (a)

=
PX(a) + PY (a)− 2 min{PX(a), PY (a)}

dTV(X,Y )

=
|PX(a)− PY (a)|

dTV(X,Y )

≤ dloc(X,Y )

dTV(X,Y )
, α. (21)

In the following, we derive upper bounds on H(V )−H(W ) and I(X̂; J)− I(Ŷ ; J), and rely
on (19) to get an upper bound on |H(X)−H(Y )|. Let A , {a1, . . . , aM}, and

si , PV (ai), ti , PW (ai), ∀ i ∈ {1, . . . ,M}.

From (20) and (21),
siti = 0, si + ti ≤ α, ∀ i ∈ {1, . . . ,M}

and H(V ) − H(W ) = −
∑M

i=1 si log(si) +
∑M

i=1 ti log(ti). Hence, for fixed α and M (since
|A| = M , then α ∈ [ 2

M , 1]),
H(V )−H(W ) ≤ g(α) (22)

where g(α) is the solution of the optimization problem

maximize

(
−

M∑
i=1

si log(si) +

M∑
i=1

ti log(ti)

)
subject to

si, ti ≥ 0, si + ti ≤ α
siti = 0, ∀ i ∈ {1, . . . ,M}

M∑
i=1

si =

M∑
i=1

ti = 1
(23)

with the 2M variables s1, t1, . . . sM , tM . Fortunately, this non-convex optimization problem
admits a closed-form solution.
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Lemma 1: The solution of the non-convex optimization problem in (23), denoted by g(α), is
the following:

g(α) = log
(
M −

⌈
1

α

⌉)
+ α

⌊ 1

α

⌋
logα+

(
1− α

⌊ 1

α

⌋)
log

(
1− α

⌊ 1

α

⌋)
(24)

with the convention that 0 log 0 means 0.
Proof: Let’s first show that the solution on the right-hand side of (24) forms an upper bound

on g(α), and then show that this upper bound is tight.
For the derivation of the upper bound, note that due to the above constraints,

1 =

M∑
i=1

ti
(a)
≤ α

∣∣{i ∈ {1, . . . ,M} : ti > 0}
∣∣

⇒
∣∣{i ∈ {1, . . . ,M} : ti > 0}

∣∣ ≥ 1

α
(b)⇒
∣∣{i ∈ {1, . . . ,M} : si > 0}

∣∣ ≤M − 1

α

(c)⇒
∣∣{i ∈ {1, . . . ,M} : si > 0}

∣∣ ≤M − ⌈ 1

α

⌉
(25)

where inequality (a) holds since si+ ti ≤ α and si, ti ≥ 0 for every i ∈ {1, . . . ,M}, (b) follows
from the constraint that si ti = 0 for every i, and (c) holds since the cardinality of the support
of {si} is an integer, and

⌊
M − 1

α

⌋
= M −

⌈
1
α

⌉
. Hence,

−
M∑
i=1

si log(si) ≤ log
(
M −

⌈
1

α

⌉)
and the solution of the optimization problem in (23) satisfies

g(α) ≤ log
(
M −

⌈ 1

α

⌉)
+ f(α) (26)

where f(α) solves the optimization problem

maximize
M∑
i=1

ti log(ti)

subject to
0 ≤ ti ≤ α, ∀ i ∈ {1, . . . ,M}
M∑
i=1

ti = 1
(27)

with the M optimization variables t1, . . . , tM . Note that the objective function in (27) is convex,
and the feasible set is a bounded polyhedron. Furthermore, the maximum of a convex function
over a bounded polyhedron is attained at one of its vertices (see, e.g., [30, Corollary 32.3.3];
this property follows from the convex-hull description of a bounded polyhedron and Jensen’s
inequality). Since the objective function and the feasible set in (27) are invariant to a permutation
of the variables t1, . . . , tM , then an optimal point is given by

t1 = . . . = tl = α, l ,
⌊ 1

α

⌋
tl+1 = 1− α

⌊ 1

α

⌋
, tl+2 = . . . = tM = 0
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where l ≤ M
2 (since α ∈ [ 2

M , 1]); as requested, ti ∈ [0, α] for i ∈ {1, . . . ,M}. This implies that
the solution of the optimization problem in (27) is given by

f(α) = α
⌊ 1

α

⌋
logα+

(
1− α

⌊ 1

α

⌋)
log

(
1− α

⌊ 1

α

⌋)
. (28)

From (26) and (28), it follows that the right-hand side of (24) forms an upper bound on g(α). It
remains to show that this bound is tight. To this end, we separate into the following two cases:

Case 1: Suppose that N , 1
α is an integer. In this case, the upper bound on g(α) (see (26)

and (28)) gets the simplified form

g(α) ≤ log
(
M − 1

α

)
+ logα = log(Mα− 1).

This upper bound on g(α) is achieved by the point (s1, t1, . . . , sM , tM ) where

t1 = . . . = tN = α, tN+1 = . . . = tM = 0

s1 = . . . = sN = 0, sN+1 = . . . = sM =
1

M −N
.

Note that this point is included in the feasible set of the optimization problem in (23) since
1

M−N = α
Mα−1 ≤ α where the last inequality holds because α ∈ [ 2

M , 1]. The value of the
objective function in (23) at this point is equal to

−
M∑
i=1

si log(si) +

M∑
i=1

ti log(ti)

= log
(
M − 1

α

)
+ logα = log(Mα− 1)

so this upper bound on g(α) is tight if 1
α is an integer.

Case 2: Suppose that 1
α is not an integer. In this case, let l ,

⌊
1
α

⌋
so l + 1 =

⌈
1
α

⌉
, and

consider the (2M)-dimensional vector (s1, t1, . . . , sM , tM ) where

t1 = . . . = tl = α, tl+1 = 1− α
⌊ 1

α

⌋
tl+2 = . . . = tM = 0

s1 = . . . = sl+1 = 0 (29)

sl+2 = . . . = sM =
1

M − l − 1
=

1

M −
⌈
1
α

⌉ .
To verify that it is included in the feasible set of (23), note that due to the constraints of this
optimization problem

1 =

M∑
i=1

si≤α
∣∣{i ∈ {1, . . . ,M} : si > 0}

∣∣
⇒
∣∣{i ∈ {1, . . . ,M} : si > 0}

∣∣ ≥ 1

α

⇒
∣∣{i ∈ {1, . . . ,M} : si > 0}

∣∣ ≥ ⌈ 1

α

⌉
and, by combining it with (25), it follows that⌈

1

α

⌉
≤
∣∣{i ∈ {1, . . . ,M} : si > 0}

∣∣ ≤M − ⌈ 1

α

⌉
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so
⌈
1
α

⌉
≤ M

2 . This implies that for j ∈ {l + 2, . . . ,M} (note also that α ∈ [ 2
M , 1])

sj =
1

M − l − 1

=
1

M −
⌈
1
α

⌉
≤ 2

M
≤ α

and tl+1 = 1 − α
⌊
1
α

⌋
≤ α, so the vector is indeed included in the feasible set of (23). The

value of the objective function in (23) at the selected point in (29) is equal to

−
M∑
i=1

si log(si) +

M∑
i=1

ti log(ti)

= log
(
M −

⌈
1

α

⌉)
+ α

⌊ 1

α

⌋
logα+

(
1− α

⌊ 1

α

⌋)
log

(
1− α

⌊ 1

α

⌋)
= g(α)

so the upper bound on g(α) from (26) and (28) is tight, and this completes the proof of Lemma 1.

Corollary 1: The solution of the non-convex optimization problem in (23) satisfies the in-
equality

g(α) ≤ log(Mα− 1)

and this bound is tight if and only if 1
α is an integer.

Proof: From Lemma 1 (see Eq. (24)), it follows that

g(α)

≤ log
(
M − 1

α

)
+ α

⌊ 1

α

⌋
logα+

(
1− α

⌊ 1

α

⌋)
log

(
1− α

( 1

α
− 1
))

= log
(
M − 1

α

)
+ log(α)

= log(Mα− 1)

and the above inequality turns to be an equality if and only if 1
α is an integer.

By combining (22) and Corollary 1, it follows that

H(V )−H(W ) ≤ log(Mα− 1)

and therefore from (19)

|H(X)−H(Y )| ≤ dTV(X,Y ) log(Mα− 1) + I(J ; X̂)− I(J ; Ŷ ). (30)

Finally, the bound in (12) follows from the inequality

I(J ; X̂)− I(J ; Ŷ ) ≤ H(J) = h
(
dTV(X,Y )

)
. (31)

We move to derive a refinement of the bound in (12) when 1
2 ≤

PX
PY
≤ 2. In this case, the

starting point is the inequality in (30) where it is aimed to improve the upper bound in (31). To
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this end,

I(J ; X̂)− I(J ; Ŷ )

= H(J |Ŷ )−H(J |X̂)

≤ H(J)−H(J |X̂)

= h
(
dTV(X,Y )

)
−H(J |X̂) (32)

and, from [18, Theorem 11],

H(J |X̂) ≥ 2 log 2 P
(
J 6= JMAP(X̂)

)
(33)

where JMAP(X̂) is the maximum a-posteriori (MAP) estimator of J based on X̂ (note that the
minimum on the left-hand side of [18, Eq. (110)] is achieved by the MAP estimator). In the
following, the estimator JMAP(X̂) on the right-hand side of (33) is calculated.

1) If X̂ /∈ supp(PV ) then a.s. J = 1 (otherwise, J = 0 and X̂ = V , so X̂ ∈ supp(PV ) a.s.). Hence,

X̂ /∈ supp(PV ) ⇒ JMAP(X̂) = 1.

From (7), it follows that X̂ /∈ supp(PV ) if and only if PX(X̂) ≤ PY (X̂).
2) If X̂ ∈ supp(PV ) then, from (7), PX(X̂) > PY (X̂). Hence, from (6) and (7) with p = 1 −

dTV(X,Y ),

PU (X̂) =
PY (X̂)

1− dTV(X,Y )

PV (X̂) =
PX(X̂)− PY (X̂)

dTV(X,Y )
.

Since U, V, J are independent, then from (5)

P(J = 1, X̂) = P(J = 1)PU (X̂) = PY (X̂)

P(J = 0, X̂) = P(J = 0)PV (X̂) = PX(X̂)− PY (X̂)

so, if X̂ ∈ supp(PV ), then

JMAP(X̂) =

{
1 if PX(X̂)

2 ≤ PY (X̂) < PX(X̂)

0 if PY (X̂) < PX(X̂)
2 .

To conclude, the MAP estimator of J that is based on the observation X̂ is given by

JMAP(X̂) =

{
1 if PX(X̂)

2 ≤ PY (X̂)

0 if PY (X̂) < PX(X̂)
2 .

It therefore implies that if PY
PX
≥ 1

2 whenever PX > 0, then JMAP(X̂) = 1 independently of X̂ ,
so in this case

P
(
J 6= JMAP(X̂)

)
= P(J = 0) = dTV(X,Y ).

Hence, from (32), (33) and the last equality, if PY
PX
≥ 1

2 whenever PX > 0 then

I(J ; X̂)− I(J ; Ŷ ) ≤ h
(
dTV(X,Y )

)
− 2 log 2 · dTV(X,Y ).

A combination of the last inequality with (30) finally gives the refined bound in (14). Since it
was assumed at the beginning of the proof that H(X) ≥ H(Y ) while it is not necessarily known
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in advance which entropy is larger, the requirement on PY
PX

can be symmetrized by requiring
that 1

2 ≤
PX
PY
≤ 2 whenever PX , PY > 0. This completes the proof of Theorem 4.

Corollary 2: Let X and Y be two discrete random variables that take values in a finite set
A, and let |A| = M . Assume that for some positive constants ε1, ε2

dTV(X,Y ) ≤ ε1 ≤ 1− 1

Mε2
, (34)

dloc(X,Y )

dTV(X,Y )
≤ ε2 ≤ 1. (35)

Then,
|H(X)−H(Y )| ≤ ε1 log(Mε2 − 1) + h(ε1). (36)

Proof: From (12), (13), (35), and since α ≤ ε2

|H(X)−H(Y )| ≤ dTV(X,Y ) log(Mε2 − 1) + h
(
dTV(X,Y )

)
.

The function q(ε) , εc + h(ε) is monotonic increasing over the interval
[
0, ec

1+ec

]
(q′(ε) =

c + log
(
1−ε
ε

)
> 0 if and only if 0 < ε < ec

1+ec ). Referring to the right-hand side of the above
inequality, let c , log(Mε2 − 1), so ec

1+ec = 1− 1
Mε2

. Hence, if the conditions in (34) and (35)
are satisfied then the inequality in (36) holds.

Remark 3: By considering the pair of probability mass functions PX,Y and PX×PY (without
abuse of notation, let H(PX) , H(X)), then

H(PX × PY )−H(PX,Y )

= H(X) +H(Y )−H(X,Y )

= I(X;Y ).

Hence, Theorem 4 and Corollary 2 provide bounds on the mutual information between two
discrete random variables of finite support, where these bounds are expressed in terms of the
local and total variation distances between the joint distribution of (X,Y ) and the product of
its marginal distributions. The specialization of Theorem 4 to this setting tightens the bound in
[38, Theorem 1], and the former bound is particularized to the latter known bound in the case
where the local and total variation distances are equal (which is the extreme case).

Remark 4: The bound in [38, Theorem 1] was improved in [27, Proposition 1] without any
further assumptions. It is noted that by introducing the additional requirement where there exists
some constant ε2 ∈ [0, 1] such that for every y ∈ Y

dloc(PX , PX|Y=y)

dTV(PX , PX|Y=y)
≤ ε2

then it enables to refine the bound in [27, Proposition 1]. This follows by combining the proof of
[27, Proposition 1] with (36) (see Corollary 2) where Eq. (36) replaces the use of [38, Eq. (4)]
in [27, Eq. (35)]. The same thing also applies to [28, Proposition 2], referring to its proof in
[28, p. 305].

For countably infinite alphabets, just knowing the total variation distance between two distri-
butions does not imply anything about the difference of entropies (i.e., one has discontinuity of
the entropy). The following theorem shows that is one of the distributions is finitely supported,
and some knowledge of the tail behavior of the other distribution is available, then having bounds
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on the local and total variation distances allows one to bound the difference of the entropies
even in this case.

Theorem 5: Let A = {a1, a2, . . .} be a countable infinite set. Let X and Y be discrete random
variables where X takes values in the set X = {a1, . . . , am} for some m ∈ N, and Y takes
values in the set A. Assume that for some η1, η2, η3 > 0, the local and total variation distances
between X and Y satisfy

η2 ≤ dTV(X,Y ) ≤ η1, dloc(X,Y ) ≤ η3 (37)

where η3 ≤ η2 ≤ η1 < 1. Let M be an integer such that
∞∑
i=M

PY (ai) ≤ η3, M ≥ max

{
m+ 1,

η2
(1− η1)η3

}
(38)

and let η4 > 0 satisfy

−
∞∑
i=M

PY (ai) logPY (ai) ≤ η4. (39)

Then, the following inequality holds:

|H(X)−H(Y )| ≤ η1 log

(
Mη3
η2
− 1

)
+ h(η1) + η4. (40)

Remark 5: The inequality η3 ≤ η2 ≤ η1 < 1 (after (37)) is easily satisfied since dloc(X,Y ) ≤
dTV(X,Y ) ≤ 1; so, if dTV(X,Y ) < 1 then it is possible to choose η1, η2 and η3 that satisfy
this inequality.

Proof: Let Ỹ be a random variable that is defined to be equal to Y if Y ∈ {a1, . . . , aM−1},
and it is set to be equal to aM if Y = ai for some i ≥M . Hence, the probability mass function
of Ỹ is related to that of Y as follows:

PỸ (ai) =

{
PY (ai) if i ∈ {1, . . . ,M − 1}∑∞

j=M PY (aj) if i = M .
(41)

Since PX(ai) = 0 for every i > m and also M ≥ m + 1 (see the second inequality in (38)),
then it follows from (41) that

dTV(X, Ỹ )

=
1

2

m∑
i=1

|PX(ai)− PỸ (ai)|+
1

2

M∑
i=m+1

PỸ (ai)

=
1

2

m∑
i=1

|PX(ai)− PY (ai)|+
1

2

∞∑
i=m+1

PY (ai)

= dTV(X,Y ). (42)

Hence, X and Ỹ are discrete random variables that take values in the set {a1, . . . , aM} (note
that it includes the set X ), and from (37) and (42)

0 < η2 ≤ dTV(X, Ỹ ) ≤ η1. (43)
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Furthermore, the local distance between X and Ỹ satisfies

dloc(X, Ỹ )

= max
i∈{1,...,M}

|PX(ai)− PỸ (ai)|

(a)
= max

{
max

i∈{1,...,M−1}
|PX(ai)− PY (ai)| ,

∞∑
i=M

PY (ai)

}
(b)
≤ max{dloc(X,Y ), η3}
(c)
= η3 (44)

where (a), (b) and (c) above follow from the equality in (41) (note also that m ≤ M − 1), the
first inequality in (38) and the second inequality in (37), respectively. From (43) and (44)

dTV(X, Ỹ ) ≤ η1 , ε1 (45)

dloc(X, Ỹ )

dTV(X, Ỹ )
≤ η3
η2

, ε2 (46)

where 0 < ε1 < 1 and 0 < ε2 ≤ 1 (since, by assumption, 0 < η3 ≤ η2 ≤ η1 < 1). The integer
M is set to satisfy the inequality M ≥ η2

η3(1−η1) (see (38)), so from (45) and (46)

ε1 ≤ 1− 1

Mε2
.

Hence, it follows from Theorem 4 that

|H(X)−H(Ỹ )| ≤ η1 log
(Mη3
η2
− 1
)

+ h(η1). (47)

Since Ỹ is a deterministic function of Y then H(Y ) ≥ H(Ỹ ), and from (41)

|H(Ỹ )−H(Y )|
= H(Y )−H(Ỹ )

= −
∞∑
i=M

PY (ai) logPY (ai) +

( ∞∑
i=M

PY (ai)

)
log

( ∞∑
i=M

PY (ai)

)

≤ −
∞∑
i=M

PY (ai) logPY (ai) ≤ η4. (48)

Finally, the bound in (40) follows from (47), (48) and the triangle inequality.
Corollary 3: In the setting of X and Y in Theorem 5, assume that dTV(X,Y ) ≤ η for some

η ∈ (0, 1). Let M , max
{
m+ 1, 1

1−η

}
, and assume that for some µ > 0

−
∞∑
i=M

PY (ai) logPY (ai) ≤ µ

then |H(X)−H(Y )| ≤ η log(M − 1) + h(η) + µ.
Proof: This follows from Theorem 5 by setting η2 = η3 = dloc(X,Y ) (note that dloc(X,Y ) ≤

dTV(X,Y )), and then η1 and η4 are replaced by η and µ, respectively.
Remark 6: The result in Corollary 3 can be obtained by a simplification of the proof of

Theorem 5 where (47) is replaced by the bound in [38, Eq. (4)] (see (11)), without the refinement
which takes the local distance into consideration.
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IV. EXAMPLES

In the following, we exemplify the use of the new bounds in Section III, and also compare
them with some previously known bounds.

Example 1: Let X be a discrete random variable that gets values in the set A = {a1, . . . , aM}.
Let’s express its arbitrary probability mass function in the form

PX(ai) =
1 + uiξi
M

∀ i ∈ {1, . . . ,M} (49)

where

ui ∈ {−1, 1}, ξi ≥ 0,

0 ≤ 1 + uiξi ≤M, ∀ i ∈ {1, . . . ,M}

and
M∑
i=1

uiξi = 0

where the latter equality is equivalent to
∑M

i=1 PX(ai) = 1.
In the following, we derive a lower bound on the entropy H(X). Let Y be a random variable

that takes the values from A with equal probability, so H(Y ) = logM . The local and total
variation distances between X and Y are equal to

dTV(X,Y ) =
1

2M

M∑
i=1

ξi =
ξ
(M)
avg

2

dloc(X,Y ) =
1

M
max

1≤i≤M
ξi =

ξ
(M)
max

M

where ξ
(M)
avg and ξ

(M)
max denote the average and maximal values of {ξi}Mi=1, respectively. From

(13)

αM ,
dloc(X,Y )

dTV(X,Y )
=

2ξ
(M)
max

Mξ
(M)
avg

so
αM =

2KM

M

where

KM ,
ξ
(M)
max

ξ
(M)
avg

. (50)

From (12) (where also H(Y ) = logM ≥ H(X)), it follows that

logM − ξ
(M)
avg log(2KM − 1)

2
− h
(
ξ
(M)
avg

2

)
≤ H(X) ≤ logM

and, since the binary entropy function is bounded between 0 and log 2, the above inequality can
be loosened to

1− ξ
(M)
avg

2

log(2KM − 1)

logM
− log 2

logM
≤ H(X)

logM
≤ 1 (51)

which implies (since KM ≥ 1) that

lim
M→∞

ξ
(M)
avg logKM

logM
= 0 ⇒ lim

M→∞

H(X)

logM
= 1. (52)
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For comparison, the bound in Theorem 3 gives that

1− ξ
(M)
avg

2
· log(M − 1)

logM
− 1

logM
· h
(
ξ
(M)
avg

2

)
≤ H(X)

logM
≤ 1 (53)

which implies that

lim
M→∞

ξ
(M)
avg = 0 ⇒ lim

M→∞

H(X)

logM
= 1. (54)

The latter condition in (54) is stronger than (52). To see this, note that 1 ≤ KM ≤ M
2 (since

2
M ≤

dloc(X,Y )
dTV(X,Y ) ≤ 1). On the other hand, as a concrete example for the case where the condition

in (52) holds whereas the condition in (54) does not hold, let M be an arbitrary even number,
and

ui = (−1)i, ξi = β ∈ (0, 1], i ∈ {1, . . . ,M}

where, indeed,
∑M

i=1 uiξi = β
∑M

i=1(−1)i = 0. In this case, PX(ai) = 1−β
M for odd numbers

i ∈ {1, . . . ,M}, and PX(ai) = 1+β
M for even numbers i. Furthermore, in this case KM = 1 for

every even M , so the condition in (52) holds by letting the even number M tend to infinity. On
the other hand, the condition in (54) is not satisfied since limM→∞ ξ

(M)
avg = β > 0. The upper

and lower bounds in (53) tend to 1 and 1− β
2 , respectively, so the gap between these asymptotic

bounds is increased linearly with β. Therefore, Theorem 4 gives a simple lower bound on the
entropy H(X) in terms of the average and maximal values of {ξi}Mi=1, which improves the lower
bound on the entropy that follows from the known bound in Theorem 3 (see (53)).

For comparison, the bound in [17, Theorem 7] is also applied to this example. In this case,
since PX , PY ≤ 1+ξmax

M then PX and PY are less than or equal to 1
NM

with NM ,
⌊

M
1+ξ

(M)
max

⌋
.

Similarly to the above analysis, it is easy to verify from [17, Theorem 7] that

lim
M→∞

ξ
(M)
avg log

(
ξ
(M)
max

)
logM

= 0 ⇒ lim
M→∞

H(X)

logM
= 1. (55)

Since
ξ
(M)
avg log

(
ξ
(M)
max

)
logM

≥
ξ
(M)
avg log

(
ξ
(M)
avg
)

logM
≥ − log e

e logM

where the right-hand side of this inequality holds since the function f(x) = x log x for x > 0
achieves its minimal value at x = 1

e , it follows that if the limit on the left-hand side of (55) is
zero then also

lim
M→∞

ξ
(M)
avg log

(
ξ
(M)
avg
)

logM
= 0.

Therefore, the definition of KM in (50) gives that

lim
M→∞

ξ
(M)
avg logKM

logM

= lim
M→∞

ξ
(M)
avg log

(
ξ
(M)
max

)
logM

− lim
M→∞

ξ
(M)
avg log

(
ξ
(M)
avg
)

logM
= 0.

This shows that the conclusion in (52) implies the one in (55).
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A special case of (49) with numerical results: As a special case of the probability mass
function in (49), let M = 2m for some m ∈ N, let ui = (−1)i for i ∈ {1, . . . ,M}, and ξi = β
for some β ∈ [0, 1]. In this special case,

PX(ai) =

{
2−m (1− β) if i ∈ {1, 3, . . . , 2m − 1}
2−m (1 + β) if i ∈ {2, 4, . . . , 2m}.

Let Y be a random variable that gets all the values in the set {a1, . . . , aM} with equal probability
(i.e., 2−m). Then, the local and total variation distances between X and Y are

dloc(X,Y ) =
β

M
, dTV(X,Y ) =

β

2

so, from (13), α = 2
M . The entropies of X and Y are

H(X) = (m− 1) log 2 + h
(1− β

2

)
, H(Y ) = m log 2

so, H(Y )−H(X) = log 2− h
(1−β

2

)
independently of m.

For comparison, the known bound in Theorem 3 that only depends on the total variation
distance between X and Y (with no further knowledge about their probability mass functions)
gives

H(Y )−H(X) ≤ mβ

2
· log 2 + h

(β
2

)
+
β

2
· log(1− 2−m)

so this upper bound increases almost linearly with m, in contrast to the exact value that is
independent of m. The new bound in (12), which depends on both the local and total variation
distances between X and Y (but again, without any further information on their probability
mass functions) gives

H(Y )−H(X)

≤ dTV(X,Y ) log(Mα− 1) + h
(
dTV(X,Y )

)
= h

(β
2

)
. (56)

Similarly to the exact value, but in contrast to the former bound, the latter bound is independent
of m. Furthermore, if β → 0 and mβ →∞, then the exact value of H(Y )−H(X) as well as the
latter bound (that follows from Theorem 4) tend to zero, whereas the former bound that follows
from Theorem 3 tends to infinity. This shows the difference in the two bounds, exemplifying
the possible advantage of taking into account the local distance in addition to the total variation
distance.

For β ∈ [0, 12 ], the condition 1
2 ≤

PX
PY
≤ 2 is fulfilled, so the tightened bound in (14) gives

that
0 ≤ H(Y )−H(X) ≤ h

(β
2

)
− β log 2. (57)

If β = 1
2 , H(Y ) − H(X) = log 2 − h

(
1
2

)
= 0.131 nats, the upper bound in (56) is equal to

0.562 nats, and the tightened version of this bound in (57) is equal to 0.216 nats.
It is noted that since PX is majorized by PY (see [18, Definition 1 on p. 5934]), then according

to [18, Theorem 3]
H(Y )−H(X) ≥ D(PX ||PY )

and since PY refers to a uniform distribution over a set of cardinality M = 2m then H(Y ) =
m log 2, and

D(PX ||PY ) = m log 2−H(PX)
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so, the above lower bound is achieved here with equality.

In Example 1, the probability mass function of the discrete random variable X was known
explicitly. However, in many interesting applications, this is not necessarily the case. If the exact
distribution of X is not available or is numerically hard to compute, a derivation of some good
bounds on the local and total variation distances between X and another random variable Y with
a known probability mass function can be valuable to get a rigorous bound on the difference
|H(X)−H(Y )| via Theorems 4 or 5. As a result of the calculation of such a bound on the entropy
difference, it provides bounds on the entropy of X in terms of another entropy (the entropy of Y )
which is assumed to be easily calculable. For example, assume that X =

∑n
i=1Xi is expressed

as a sum of Bernoulli random variables that are either independent or weakly dependent, and
may be also non-identically distributed. Let Xi ∼ Bernoulli(pi), and assume that

∑n
i=1 pi = λ

where all of the pi’s are much smaller than 1. In this case, the approximation of X by a Poisson
distribution with mean λ (according to the law of small numbers [20]) raises the question: How
close is H(X) to the entropy of the Poisson distribution with mean λ ? (note that the latter
entropy of the Poisson distribution is calculated efficiently in [2]). This question is especially
interesting because the support of the Poisson distribution is the infinite countable set of non-
negative integers, and the entropy is known not to be continuous when the support is not finite;
hence, a small total variation distance does not yield in general a small difference of the two
entropies. This question was addressed in [33] via the use of Corollary 3, combined with an
upper bound on the total variation distance between X and Y ; the latter bound is calculated via
the use of the Chen-Stein method (see, e.g., [31, Chapter 2]).

Example 2 (Poisson approximation): In the following, we wish to tighten the bounds on the
entropy of a sum of independent Bernoulli random variables that are not necessarily identically
distributed. The bound provided in [33, Corollary 1] relies on an upper bound on the total
variation distance between this sum and a Poisson random variable with the same mean (see
[4, Theorem 1] or [5, Theorem 2.M]). In order to tighten the bound on the entropy in the
considered setting, we further rely on a new lower bound on the total variation distance (see
[34, Theorem 1 and Corollary 1]) and an upper bound on the local distance (see [5, Theorem 2.Q
and Corollary 9.A.2]). The latter two bounds provide an upper bound on the ratio of the local
and total variation distances, which enables to apply the bound in Theorem 5; it improves the
bound in Corollary 3 which solely relies on an upper bound on the total variation distance. It is
noted that the latter looser bound, which relies on Corollary 3 was used in [33] for estimating the
entropy of a sum of Bernoulli random variables in the more general setting where the summands
are possibly dependent.

Let X =
∑n

i=1Xi be a sum of independent Bernoulli random variables such that Xi ∼
Bernoulli(pi) for every i ∈ {1, . . . , n}. Let Y ∼ Po(λ), where λ = E[X] =

∑n
i=1 pi, be

a Poisson random variable with mean λ. From [4, Theorem 1] (or [5, Theorem 2.M]), the
following upper bound on the total variation distance holds:

dTV(X,Y ) ≤
(

1− e−λ

λ

) n∑
i=1

p2i . (58)

Furthermore, from [34, Corollary 1], the following lower bound on the total variation distance
holds:

dTV(X,Y ) ≥ k
n∑
i=1

p2i (59)
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where

k ,
e

2λ

1− 1
θ

(
3 + 7

λ

)
θ + 2e−1/2

(60)

θ , 3 +
7

λ
+

1

λ
·
√

(3λ+ 7)
[
(3 + 2e−1/2)λ+ 7

]
. (61)

An upper bound on the local distance between a sum of independent Bernoulli random
variables and a Poisson distribution with the same mean λ follows as a special case of [5,
Corollary 9.A.2] by setting l = 1 (so that the distribution Ql in this corollary is specialized for
l = 1 to the Poisson distribution Po(λ), according to [5, Eq. (1.12) on p. 177]). Since the upper
bound on the right-hand side of the inequality in [5, Corollary 9.A.2] does not depend on the
(time) index j, it follows that the same bound also holds while referring to

dloc(X,Y ) , sup
j∈N0

∣∣P(X = j)− Po(λ){j}
∣∣.

Based on the notation used in this corollary, it implies that if
(
1−e−λ
λ

) ∑n
i=1 p

2
i ≤ 1

8 then the
local distance between a sum of independent Bernoulli random variables Xi ∼ Bernoulli(pi)
and a Poisson random variable with mean λ =

∑n
i=1 pi is upper bounded by

dloc(X,Y )

≤ 4
(
2 max
j∈N0

P(Y = j)
)(1− e−λ

λ

) n∑
i=1

p2i

(a)
≤ 4 min

{√
2

eλ
, 2e−λ I0(λ)

}(
1− e−λ

λ

) n∑
i=1

p2i (62)

where inequality (a) holds due to [5, Proposition A.2.7 on pp. 262–263], and I0 denotes the
modified Bessel function of order zero. Since an upper bound on the total variation distance
also forms an upper bound on the local distance, then a combination of (58) and (62) gives that

dloc(X,Y ) ≤ min

{
1, 4

√
2

eλ
, 8e−λ I0(λ)

} (
1− e−λ

λ

) n∑
i=1

p2i . (63)

We now apply Theorem 5 to get rigorous bounds on the entropy H(X) by estimating how close
it is to H

(
Po(λ)

)
. Note that the improvement in the tightness of the bound in Theorem 5, in

comparison to the looser bound in Corollary 3, is more significant when the ratio α of the local
and total variation distances is close to zero. This happens to be the case if λ� 1 where due to
the asymptotic expansion of I0 (see [1, Eq. (9.7.1) on p. 377] or [12, Eq. (8.451.5) on p. 973])

I0(λ) ≈ eλ√
2πλ

(
1 +

1

8λ
+

9

128λ2
+ . . .

)
, ifλ� 1
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one gets from Eqs. (59)–(61) and (63), combined with the limit in [34, Eq. (47)], that

α =
dloc(X,Y )

dTV(X,Y )

(if λ�1)

≤
4
√

2
πλ

(
1−e−λ
λ

) n∑
i=1

p2i

e
6

(
1 +

√
1 + 2

3 · e−1/2
)−2 (

1−e−λ
λ

) n∑
i=1

p2i

=
24

e

√
2

π

(
1 +

√
1 +

2

3
· e−1/2

)2 √
1

λ

≈ 33.634√
λ

(64)

so, for large values of λ, the upper bound on the parameter α in (13) decays to zero like the
square-root of 1

λ .
As a possible application, consider a noiseless binary-adder multiple-access channel (MAC)

with n independent users where each user transmits binary symbols, and the channel output
is the algebraic sum of the input symbols. The capacity region of this MAC channel is an n-
dimensional polyhedron. One feature of this capacity region is the sum of the rates that is given
by RSUM ,

∑n
i=1Ri, and it is upper bounded by the joint mutual information between the input

symbols X1, . . . , Xn and the corresponding channel output Y =
∑n

i=1Xi, i.e.,

RSUM ≤ max
PX:PX=PX1 ...PXn

I(X1, . . . , Xn;Y )

where H(Y |X1, . . . , Xn) = 0 since the MAC is noiseless and the output symbol is the sum of the
n input symbols, and therefore I(X1, . . . , Xn;Y ) = H(Y ).1 Hence, in the considered setting, the
maximal sum rate is the maximal entropy of the sum of n independent binary random variables
where Xi ∼ Bernoulli(pi) for i ∈ {1, . . . , n}. Under the constraint that

∑n
i=1 E[Xi] ≤ λ,

it follows from the maximal entropy result in [14], [19] and [35] that the entropy of Y is
maximized when the n independent inputs are i.i.d. with mean p = λ

n , and consequently the
channel output Y is Binomially distributed with Y ∼ Binom

(
n, λn

)
. For a very large number

of users, the calculation of the entropy of the Binomial distribution is difficult, and it would be
much easier to calculate the entropy H

(
Po(λ)

)
for a Poisson distribution with mean λ (see [2]).

In the following, we make use of Theorem 5 to get an upper bound on the entropy difference

H
(
Po(λ)

)
−H

(
Binom

(
n,
λ

n

))
(65)

where, due to the maximal entropy result for the Poisson distribution (see, e.g., [14], [19] or
[35]), this difference is positive. Let X ∼ Binom

(
n, λn

)
be a sum of n i.i.d. Bernoulli random

variables with probability of success p = λ
n , and let Y ∼ Po(λ). From (58), the total variation

distance in this case is upper bounded by

dTV(X,Y ) ≤ λ(1− e−λ)

n
, η1. (66)

1The reader is referred to [7] for the consideration of the sum-rate for two noiseless multiple-access channels with
some similarity to the binary adder channel, see footnote in [7, p. 43].
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From (59) and (60), the following inequality holds:

dTV(X,Y ) ≥ e

2

1− 1
θ

(
3 + 7

λ

)
θ + 2e−1/2

λ

n
, η2 (67)

where θ is given in (61). Furthermore, for using Theorem 5, one needs an upper bound on the
local distance between the Poisson and Binomial distributions. Eq. (63) gives that

dloc(X,Y ) ≤ min

{
1, 4

√
2

πλ
, 8e−λ I0(λ)

}
λ
(
1− e−λ

)
n

, η3. (68)

Following the notation in Theorem 5, it follows that m = n+1. From (38), one needs to choose
an integer M such that

M ≥ max

{
n+ 2,

η2
η3(1− η1)

}
(69)

and ∞∑
j=M

Πλ(j) ≤ η3 (70)

where Πλ(j) , e−λ λj

j! for j ∈ N0 designates the probability mass function of Po(λ). Based on
Chernoff’s bound,

∞∑
j=M

Πλ(j)

= P(Y ≥M)

≤ inf
θ≥0

{
e−θM E

[
eθY
]}

= inf
θ≥0

{
e−θM eλ(e

θ−1)
}

= exp

{
−
[
λ+M log

(M
λe

)]}
. (71)

Let M ≥ λe2, then it follows from (70) and (71) that it is sufficient for M to satisfy the condition

exp
(
−(λ+M)

)
≤ η3.

Combining it with (69) leads to the following possible choice of M :

M , max

{
n+ 2,

η2
η3(1− η1)

, λe2, log

(
1

η3

)
− λ
}

(72)

where η1, η2 and η3 are introduced in (66), (67), and (68) respectively. Finally, for the use
of Theorem 5, one needs to choose η4 > 0 such that

∑∞
j=M

{
−Πλ(j) log

(
Πλ(j)

)}
≤ η4.

Straightforward calculation gives that
∞∑
j=M

{
−Πλ(j) log Πλ(j)

}
= −λ log λ

∞∑
j=M−1

Πλ(j) + λ

∞∑
j=M

Πλ(j) +

∞∑
j=M

Πλ(j) log(j!) . (73)
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From Stirling’s formula, the equality j! =
√

2πj
(
j
e

)j
eξj holds for every j ∈ N and for some

ξj ∈
(

1
12j+1 ,

1
12j

)
. This therefore implies that the third infinite sum on the right-hand side of

(73) satisfies
∞∑
j=M

Πλ(j) log(j!)

≤
∞∑
j=M

Πλ(j) log

(√
2πj

(
j

e

)j
e

1

12j

)

=
log(2π)

2

∞∑
j=M

Πλ(j) +

∞∑
j=M

Πλ(j)

[(
j +

1

2

)
log(j)− j

]
+

1

12

∞∑
j=M

Πλ(j)

j

≤ log(2π)

2

∞∑
j=M

Πλ(j) +

∞∑
j=M

{
j(j − 1) Πλ(j)

}
+

1

12

∞∑
j=M

Πλ(j)

(a)
=

log(2π)

2

∞∑
j=M

Πλ(j) + λ2
∞∑

j=M−2
Πλ(j) +

1

12

∞∑
j=M

Πλ(j)

≤
(

6 log(2π) + 1

12
+ λ2

) ∞∑
j=M−2

Πλ(j) (74)

where equality (a) follows from the identity

j(j − 1) Πλ(j) = λ2 Πλ(j − 2), ∀ j ≥ 2.

By combining (73) and (74), it follows that
∞∑
j=M

{
−Πλ(j) log Πλ(j)

}
≤
(
λ log

( e
λ

))
+

∞∑
j=M−1

Πλ(j) +

(
6 log(2π) + 1

12
+ λ2

) ∞∑
j=M−2

Πλ(j)

≤
[(
λ log

( e
λ

))
+

+ λ2 +
6 log(2π) + 1

12

] ∞∑
j=M−2

Πλ(j)

where M is introduced in (72), and (x)+ , max{x, 0} for every x ∈ R. From (71) and the last
inequality, it follows that η4 can be chosen to be

η4 ,

[(
λ log

( e
λ

))
+

+ λ2 +
6 log(2π) + 1

12

]
· exp

{
−
[
λ+ (M − 2) log

(
M − 2

λe

)]}
.(75)

At this stage, we are ready to apply Theorem 5 to derive a bound on the non-negative difference
of the entropies in (65). From Theorem 5, it follows that

0 ≤ H
(
Po(λ)

)
−H

(
Binom

(
n,
λ

n

))
≤ η1 log

(
Mη3
η2
− 1

)
+ h(η1) + η4. (76)

For comparison, it follows from Corollary 3 that the upper bound on the right-hand side of (76)
is replaced by

η1 log(M̃ − 1) + h(η1) + η4 (77)
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where
M̃ , max

{
n+ 2,

1

1− η1

}
. (78)

Note that the bound in (76) improves the bound in (77) if η3 < η2 (i.e., if the upper bound on
the local distance is smaller than the lower bound on the total variation distance). Furthermore,
the latter bound does not take into account the parameters η2 and η3. As a numerical example,
for n = 106 and p = 0.1, lets check the bound on the entropy difference in (65) for λ = np
(i.e., λ = 105). Eqs. (66)–(68), (72), (75) and (78) yield that

η1 = 10−1, η2 = 9.5 · 10−3, η3 = 1.0 · 10−3, η4 ≈ 0,

M = M̃ = 106 + 2

and the two bounds in (76) and (77) are, respectively, equal to 1.483 and 1.707 nats, respectively.
The value of H

(
Po(λ)

)
is 7.175 nats, so the entropy H

(
Binom(n, λn)

)
ranges between 5.693 to

7.175 nats. Note that for n = 106 and λ = 104, where p = λ
n is decreased from 10−1 to 10−2,

the upper bounds on (65) are decreased, respectively, to 0.183 and 0.194 nats, and H
(
Po(λ)

)
=

6.024 nats. The Poisson approximation is more accurate in the latter case, consistently with the
law of small numbers (see, e.g., [20]).

Remark 7: Example 2 considers the use of Theorem 5 for the estimation of the entropy of a
sum of independent Bernoulli random variables. The more general case of the estimation of the
entropy (via rigorous bounds) for a sum of possibly dependent Bernoulli random variables was
considered in [33] by using the looser bound in Corollary 3 with an upper bound on the total
variation distance that follows from the Chen-Stein method (see [3, Theorem 1]). It is noted
that, in principle, also the sharper bound in Theorem 5 can be applied to obtain bounds on the
entropy for a sum of possibly dependent Bernoulli random variables. To this end, in addition
to the upper bound on the total variation distance in [3, Theorem 1], one needs to rely on a
lower bound on the total variation distance (see [5, Chapter 3]) and an upper bound on the local
distance (see [5, Theorem 2.Q on p. 42]). It is noted, however, that these distance bounds are
much simplified in the setting of independent summands (see Example 2).

Remark 8: The Chen-Stein method for the Poisson approximation was adapted in [23] to
the setting of the geometric distribution, and it yields a convenient method for assessing the
accuracy of the geometric approximation to the distribution of the number of failures preceding
the first success in dependent trials. A recent study of upper bounds on the total variation and
local distances for the geometric approximation (respectively, denoted by d1 and d2 in [24])
enables to apply the entropy bounds in Theorem 5 and Corollary 3 in a conceptually similar
way to Example 2. Furthermore, the entropy bound in Corollary 3 can be applied to compound
geometric and negative binomial approximations, based on upper bounds on the total variation
distance that were derived via Stein’s method in [11] and [36], respectively.

V. SUMMARY AND OUTLOOK

This paper is motivated by the fundamental question of quantifying the continuity (or lack
of it) of entropy, with respect to natural topologies on discrete probability distributions. This
question has been studied in the literature for the topology induced by the total variation distance,
and there it is well known that the entropy is continuous when the alphabet is finite, but not
when the alphabet is countably infinite (see, e.g., [17] and references therein). To set terminology,
the local and total variation distances are introduced in Definition 3 (see Section I): the local
distance between two discrete random variables is defined to be the l∞ distance between their
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probability mass functions, and the total variation distance is half the l1 distance; it is easy to
show that the local distance is less than or equal to the total variation distance.

A key tool in this paper is an explicit construction for maximal coupling, i.e., a coupling
(X̂, Ŷ ) of the random variables X and Y that maximizes the probability P(X̂ = Ŷ ). The notion
of maximal coupling is also known to be useful for the derivation of error bounds via Stein’s
method (see, e.g., [31, Chapter 2] and [32]). Stein’s method also serves in this paper to exemplify
the use of the new bounds in the context of the Poisson approximation [5]; this is done by using
good upper and lower bounds on the total variation distance (see [4] and [34]) and a good upper
bound on the local distance [5]. The link between Stein’s method and information theory was
pioneered in [6] in the context of the compound Poisson approximation, and it has been further
recently studied in [22].

This paper starts by introducing preliminary material in Sections I and II; Theorems 1–3 are
known results on maximal coupling, and a bound from [38] on the difference of the entropies
of two discrete random variables in terms of the total variation distance. Note that the proofs of
these known results are important for the analysis in this paper.

The new results in this paper are the following:
1) For two given distributions on a finite alphabet, if the local distance is strictly smaller than the

total variation distance, then Theorem 4 provides a new bound which can be significantly better
than the previously best known bound (Theorem 3) due to Zhang [38].

2) For countably infinite alphabets, a knowledge of the total variation distance between two dis-
tributions is not sufficient for establishing an informative bound on the difference of entropies
(i.e., one has discontinuity of entropy). Theorem 5 demonstrates that if one of the distributions is
finitely supported and some knowledge of the other distribution is available, then the knowledge
of the local and total variation distances (or bounds on these distances) allows one to bound the
difference of the entropies even in this case.

3) Refined bounds on the entropy of near-uniform random variables on large alphabets, as well as
of sums of independent Bernoulli random variables (which arise in numerous applications, see
[3] and references therein) are obtained in Section IV (see Examples 1 and 2). These refined
bounds are compared with previously known bounds. One special case where the entropy can
be explicitly evaluated and compared to various bounds is worked out, and it is shown that
Theorem 4 improves significantly the known bound in Theorem 3.

A natural question that arises in the context of this paper is what if one only has bounds on
the local distance ? A treatment of this problem (which does not exist in the literature) possibly
gives further insight into why the local distance is useful in combination of the total variation
distance. In the finite alphabet case, the two metrics are equivalent since

dloc(X,Y ) ≤ dTV(X,Y ) ≤ M

2
· dloc(X,Y )

and, hence, generate the same topology; so the bare continuity of entropy is guaranteed for finite
alphabets, and so is the discontinuity of the entropy for infinite alphabets. But are there tight
bounds on the difference of entropies just based on the local distance for finite alphabets ?

The following proposition suggests a simple bound on the difference of entropies of two
discrete random variables that are finitely supported, based only on their local distance:

Proposition 1: Let X and Y be discrete random variables that take values in a finite set A,
and let |A| = M . If dloc(X,Y ) ≤ 1

e , then

|H(X)−H(Y )| ≤ −M dloc(X,Y ) log
(
dloc(X,Y )

)
(79)

with the convention that 0 log 0 means 0.
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Proof: The derivation of this bound forms a small modification of the proof of [8, Theo-
rem 17.3.3]. Let PX and PY denote the probability mass functions of X and Y , respectively,
and let r(u) , |PX(u)− PY (u)| for every u ∈ A. From [8, Eqs. (17.27)–(17.30)], if r(u) ≤ 1

2
for every u ∈ A, then

|H(X)−H(Y )| ≤
∑
u∈A
−r(u) log r(u).

The bound in (79) now follows from the simple inequality r(u) ≤ dloc(X,Y ) for every u ∈ A
(by definition), and due to the fact that the function f(x) = −x log(x) is monotonic increasing
over the interval [0, 1e ].

Remark 9: The bound in (79) does not necessarily hold if dloc(X,Y ) > 1
e . As a counter

example, let A be a set of 3 elements, and let

PX =
(1

2
,
1

2
, 0
)
, PY = (0, 0, 1).

Then dloc(X,Y ) = 1 and H(X)−H(Y ) = log 2, so (79) is not satisfied due to the violation of
the condition on the local distance in Proposition 1.

Remark 10: A slight loosening of the bound in (79) gives that if dloc(X,Y ) ≤ 1
e , then

|H(X)−H(Y )| ≤M h
(
dloc(X,Y )

)
where h is the binary entropy function. In the simple case where the probability mass functions
of X and Y are equal to PX = (1−ε, ε) and PY = (1, 0), respectively, we have dloc(X,Y ) = ε;
if 0 < ε ≤ 1

e , the bound on |H(X)−H(Y )| is twice larger than its exact value that is equal to
h(ε). Even in this simple case, the bound on the difference of the entropies that only depends
on the local distance is not tight. On one hand, it will be of interest to derive tighter bounds on
the difference of entropies for finite alphabets that are just based on the local distance; on the
other hand, even the simple bound in Proposition 1 provides some insight into why the local
distance is useful in combination of the total variation distance for upper bounding the difference
of entropies for finite alphabets (see Theorem 4).
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