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Motivation

Motivation

Cicalese et al. (IEEE T-IT, April ’18):

If X is a RV taking n possible values, and the support of f(X) is
equal to m with m < n, how close H

(
f(X)

)
can be to H(X) ?

I. Sason Technion, Haifa Feb. 2–7, 2020 2 / 15



Motivation

Motivation

Cicalese et al. (IEEE T-IT, April ’18):

If X is a RV taking n possible values, and the support of f(X) is
equal to m with m < n, how close H

(
f(X)

)
can be to H(X) ?

Their goal: computing

max
f

H
(
f(X)

)
= max

f

{
H
(
f(X)

)
−H

(
f(X)|X

)}
= max

f
I
(
X; f(X)

)
with max. over all functions mapping a set of cardinality n to a set of
cardinality m < n.

I. Sason Technion, Haifa Feb. 2–7, 2020 2 / 15



Motivation

Motivation

Cicalese et al. (IEEE T-IT, April ’18):

If X is a RV taking n possible values, and the support of f(X) is
equal to m with m < n, how close H

(
f(X)

)
can be to H(X) ?

Their goal: computing

max
f

H
(
f(X)

)
= max

f

{
H
(
f(X)

)
−H

(
f(X)|X

)}
= max
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I
(
X; f(X)

)
with max. over all functions mapping a set of cardinality n to a set of
cardinality m < n.

Useful in the context of data clustering.
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Motivation

Motivation (Cont.)

Generalizing this question to Hα

(
f(X)

)
for any α > 0 (not trivial).
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Motivation

Motivation (Cont.)

Generalizing this question to Hα

(
f(X)

)
for any α > 0 (not trivial).

Possible Applications to the Rényi Entropy of order α:

I Guessing (Arikan ’96);

I Lossless compression problems (Campbell ’65).

I. Sason Technion, Haifa Feb. 2–7, 2020 3 / 15



Bounds on the Rényi Entropy of a Function of a Discrete RV

Setting

Let

α > 0;

X and Y be finite sets of cardinalities

|X | = n, |Y| = m, n > m ≥ 2;

without any loss of generality, let

X = {1, . . . , n}, Y = {1, . . . ,m};

Pn (n ≥ 2) be the set of probability mass functions (pmf) on X ;

X be a RV taking values on X with a pmf PX ∈ Pn;

Fn,m be the set of deterministic functions f : X → Y;

f ∈ Fn,m is not one-to-one since m < n.
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Bounds on the Rényi Entropy of a Function of a Discrete RV

Bad News

For an arbitrary α > 0, the maximization problem

max
f∈Fn,m

Hα

(
f(X)) (2 ≤ m < n)

is strongly NP-hard.

Unless P = NP, there is no poly. time algorithm which, for any ε > 0,
computes an admissible deterministic function fε ∈ Fn,m such that

Hα

(
fε(X)

)
≥ (1− ε) max

f∈Fn,m
Hα

(
f(X)).
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Bounds on the Rényi Entropy of a Function of a Discrete RV

Good News

We can efficiently construct (by the use of Huffman algorithm) an
admissible function f∗ ∈ Fn,m s.t.

Hα

(
f∗(X)

)
≥ max

f∈Fn,m
Hα

(
f(X)

)
−v(α), α > 0

where

v(α) :=


log

(
α− 1

2α − 2

)
− α

α− 1
log

(
α

2α − 1

)
, α 6= 1,

log

(
2

e ln 2

)
≈ 0.08607 bits, α = 1.

v : (0,∞)→ (0, log 2) is monotonically increasing, continuous, and

lim
α↓0

v(α) = 0, lim
α→∞

v(α) = log 2 (1 bit).
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Bounds on the Rényi Entropy of a Function of a Discrete RV

Plot
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Figure: A plot of v(α) as a function of α > 0.
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Bounds on the Rényi Entropy of a Function of a Discrete RV

The Algorithm by Huffman Coding

1 Start from the pmf PX ∈ Pn with PX(1) ≥ . . . ≥ PX(n);
2 Merge successively pairs of probability masses by applying the

Huffman algorithm;

3 Stop the process in Step 2 when a probability mass function Q ∈ Pm
is obtained (with Q(1) ≥ . . . ≥ Q(m));

4 Construct the deterministic function f∗ ∈ Fn,m by setting
f∗(k) = j ∈ {1, . . . ,m} for all probability masses PX(k), with
k ∈ {1, . . . , n}, being merged in Steps 2–3 into the node of Q(j).
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An Optimization Problem

A Maximum Rényi Entropy Problem

max
Q∈Pm:PX≺Q

Hα(Q)

with X ∈ {1, . . . , n}, PX(1) ≥ . . . ≥ PX(n), m < n, and α > 0.

Solution: Q = Rm(PX)

If PX(1) <
1
m , then Rm(PX) is the equiprobable dist. on {1, . . . ,m};

Otherwise, Rm(PX) := Q ∈ Pm with

Q(i) =


PX(i), i ∈ {1, . . . , n∗},

1

m− n∗
n∑

j=n∗+1

PX(j), i ∈ {n∗ + 1, . . . ,m},

where n∗ is the max. integer i s.t. PX(i) ≥ 1
m−i

∑n
j=i+1 PX(j).
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Guessing

Application I: Guessing and Ranking functions

X is a discrete random variable taking values on a finite or countably
infinite set X = {1, . . . , |X |}.
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Application I: Guessing and Ranking functions

X is a discrete random variable taking values on a finite or countably
infinite set X = {1, . . . , |X |}.

One wishes to guess the value of X by repeatedly asking questions of
the form “Is X equal to x ?” until X is guessed correctly.

A guessing function is a 1-to-1 function g : X → X where the number
of guesses is equal to g(x) if X = x ∈ X .

For ρ > 0, E[gρ(X)] is minimized by selecting g to be a ranking
function gX , for which gX(x) = k if PX(x) is the k-th largest mass.
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Guessing

Hα(X) and Guessing Moments

Theorem (Arikan ’96)

Let X be a discrete random variable taking values on X = {1, . . . ,M}.
Let gX(·) be a ranking function of X. Then, for ρ > 0,

1
ρ logE

[
gρX(X)

]
≥ H 1

1+ρ
(X)− log(1 + logeM),

1
ρ logE

[
gρX(X)

]
≤ H 1

1+ρ
(X).
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Let gX(·) be a ranking function of X. Then, for ρ > 0,

1
ρ logE

[
gρX(X)

]
≥ H 1

1+ρ
(X)− log(1 + logeM),

1
ρ logE

[
gρX(X)

]
≤ H 1

1+ρ
(X).

Arikan’s result yields an asymptotically tight error exponent:

lim
n→∞

1
n logE

[
gρXn(X

n)
]
= ρH 1

1+ρ
(X), ∀ ρ > 0

when X1, . . . , Xn are i.i.d. [Xn := (X1, . . . , Xn)].
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Guessing

Theorem: Guessing Moments

Let

{Xi}ki=1 be i.i.d. with X1 ∼ PX taking values on a set X , |X | = n;

Yi = f(Xi), for every i ∈ {1, . . . , k}, where f ∈ Fn,m is a
deterministic function with m < n;

gXk : X k → {1, . . . , nk}, gY k : Yk → {1, . . . ,mk}

be, respectively, ranking functions of the random vectors

Xk := (X1, . . . , Xk), Y k := (Y1, . . . , Yk).
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Guessing

Theorem: Guessing Moments

Let

{Xi}ki=1 be i.i.d. with X1 ∼ PX taking values on a set X , |X | = n;

Yi = f(Xi), for every i ∈ {1, . . . , k}, where f ∈ Fn,m is a
deterministic function with m < n;

gXk : X k → {1, . . . , nk}, gY k : Yk → {1, . . . ,mk}

be, respectively, ranking functions of the random vectors

Xk := (X1, . . . , Xk), Y k := (Y1, . . . , Yk).

Notation

For m ∈ {2, . . . , n}, let
X̃m ∼ Rm(PX).
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Guessing

Theorem: Guessing Moments (Cont.)

1 The mutual information (in bits) satisfies

max
f∈Fn,m

I
(
X; f(X)

)
− 0.08607 ≤ I

(
X; f∗(X)

)
≤ max

f∈Fn,m
I
(
X; f(X)

)
.
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Theorem: Guessing Moments (Cont.)

1 The mutual information (in bits) satisfies

max
f∈Fn,m

I
(
X; f(X)

)
− 0.08607 ≤ I

(
X; f∗(X)

)
≤ max

f∈Fn,m
I
(
X; f(X)

)
.

2 For every deterministic function f ∈ Fn,m, for all ρ > 0,

1

k
log

E
[
gρ
Xk(X

k)
]

E
[
gρ
Y k

(Y k)
] ≥ ρ [H 1

1+ρ
(X)−H 1

1+ρ
(X̃m)

]
− ρ log(1 + k lnn)

k
.
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Theorem: Guessing Moments (Cont.)
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X; f∗(X)

)
≤ max

f∈Fn,m
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(
X; f(X)
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2 For every deterministic function f ∈ Fn,m, for all ρ > 0,

1

k
log

E
[
gρ
Xk(X

k)
]

E
[
gρ
Y k

(Y k)
] ≥ ρ [H 1

1+ρ
(X)−H 1

1+ρ
(X̃m)

]
− ρ log(1 + k lnn)

k
.

3 For f∗ ∈ Fn,m, with Yi = f∗(Xi) for all i ∈ {1, . . . , k}, for all ρ > 0,

1

k
log

E
[
gρ
Xk(X

k)
]

E
[
gρ
Y k

(Y k)
] ≤ ρ [H 1

1+ρ
(X)−H 1

1+ρ
(X̃m)

]
+
0.08607 ρ

1 + ρ

+
ρ log(1 + k lnm)

k
.
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Cumulant Generating Functions & Lossless Compression

Application II:

Non-Asymptotic Bounds for Optimal Fixed-to-Variable
Lossless Compression Codes

We rely on Campbell’s work (1965), providing bounds on the cumulant
generating function which are expressed in terms of Rényi entropies.
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Publication

Journal Paper

I. Sason, “Tight bounds on the Rényi entropy via majorization with
applications to guessing and compression,” Entropy, vol. 20, paper 896,
pp. 1–25, November 2018.

Follow-up Journal Paper

I. S., “On data-processing and majorization inequalities for f -divergences,”
Entropy, vol. 21, paper 1022, pp. 1–80, October 2019.

To be presented in part at IZS ’20.
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