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Abstract

We derive here improved upper bounds on the error probability of block codes which are transmitted
over fully interleaved Rician fading channels, coherently detected and maximum likelihood decoded. We
assume that the fading coefficients during each symbol are statistically independent (due to a perfect channel
interleaver), and that perfect estimates of these fading coefficients are provided to the receiver. The improved
upper bounds on the block and bit error probabilities are derived for fully interleaved fading channels with
various orders of space diversity, and are found by generalizing some recently introduced upper bounds
for the binary-input AWGN channel. The advantage of these bounds over the ubiquitous union bound is
demonstrated for some ensembles of turbo codes and low-density parity check codes, and it is especially
pronounced in a portion of the rate region exceeding the cutoff rate. Our generalization of the Duman and
Salehi bound which is based on certain variations of Gallager’s bounding technique, is demonstrated to be
the tightest reported upper bound. We therefore apply it to calculate numerically upper bounds on the
thresholds of some ensembles of turbo-like codes, referring to the optimal maximum likelihood decoding. For
certain ensembles of uniformly interleaved turbo codes, the upper bounds derived here also indicate good
match with computer simulation results of efficient iterative decoding algorithms.

Index terms: block codes, bounds, decoding error probability, distance spectrum, fading channels,
input-output weight distribution, maximum likelihood decoding, thresholds, turbo-like codes.
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I. Introduction

Channel coding is a necessary tool for designing reliable wireless communication systems over

fading channels (see [4] and references therein). As the error performance of efficiently coded

communication systems rarely admit exact expressions, tight analytical bounds emerge as a useful

theoretical and engineering tool for assessing performance and to gain insight into the effect of the

main system parameters. Since the advent of information theory, the search for efficient coding

systems has motivated the introduction of efficient bounding techniques tailored to specific codes or

some carefully chosen ensembles of codes. The motivation for introducing and applying such bounds

has increased with the recent introduction of turbo codes [3] and the rediscovery of the low density

parity check (LDPC) codes [19]. Clearly, the sought for bounds must not be subject to the union

bound limitation, as for long block length these families of codes perform reliably at rates above

the cutoff rate (R0) of the channel. Although the maximum likelihood (ML) decoding is mostly

prohibitively complex for long enough codes, the derivation of upper bounds on the ML decoding

error probability is of interest, providing an ultimate indication on the system performance. Further,

the fine structure of efficient coding families is usually not available, necessitating efficient bounds

to rely only on basic features, such as the distance spectrum or the input-output weight distribution

of the codes, which can usually be found by some analytical methods (e.g, [20]).

Improved upper bounds on the ML decoding error probability for a binary-input additive white

Gaussian noise (AWGN) channel were reported in the literature (e.g, [7], [9], [11], [16], [22], [23],

[24]) with a variety of applications to efficient coding techniques. However, most of the bounds on

the ML decoding error probability that have been reported so far for interleaved fading channels

were mainly based on the union bound (e.g, [1], [10], [15]).

In this paper, we derive new rigorous analytical upper bounds on the ML decoding error probability

of binary linear block codes, operating over fully interleaved (memoryless) Rician fading channels.

These bounds are applied in several ensembles of turbo-like codes, demonstrating their signifcant

advantage over the ubiquitous union bounds in a portion of the rate region above R0. Throughout

the paper, we assume a perfect side information on the channel i.i.d fading coefficients which are

available to the receiver. The theoretical implications of this assumption are discussed in [18].

Two bounding techniques are proposed here: The first upper bound is a modified and generalized

version of the Duman and Salehi bounds for a binary-input AWGN channel ([9], [11]), which

are based on modifying the classical Gallager bound [14]. We undertake this generalization and

modify the derivation of the Duman and Salehi upper bound on the bit error probability, as to

tighten the bound further. The second version of Duman and Salehi bounds [11] for a binary-input

AWGN channel is generalized for fully interleaved fading channels, and that generalization yields
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the tightest reported upper bound on the ML decoding error probability for coded communications

over interleaved fading channels (see also [28]). This bounding technique is also amenable for

calculations of upper bounds on the thresholds for ensembles of efficient codes, such as the regular

LDPC codes ([13]) and the regular ‘repeat and accumulate’ (RA) codes ([6]). The second upper

bound derived here is a generalization of the Engdahl and Zigangirov bound [12] for fully interleaved

fading channels, where this bound was originally derived for a binary-input AWGN channel.

In parallel to our study here, upper bounds for coded communications over fully interleaved fading

channel were derived by Divsalar and Biglieri ([8]), and also by Sason, Shamai and Divsalar ([27]).

It is demonstrated in our paper that the bounds proposed here (especially, the bound that stems

from the generalization of the Duman and Salehi bounds) compete favorably with the other reported

upper bounds (see also [28], [29]). For long enough block codes, the tightness of the upper bounds

proposed here is especially pronounced in a portion of the rate region exceeding the cutoff rate.

By generalizing the framework of the Duman and Salehi bounding technique, upper bounds on the

decoding error probability are studied for the mismatched case, where inaccurate estimates of the

independent fading coefficients are provided to the receiver (see [26] and [28]).

The paper is organized as follows: The model of the considered coded communication system

and further details which makes the presentation self-contained are introduced in section II. The

improved upper bounds on the ML decoding error probability and the approach for calculating

upper bounds on the thresholds of block codes which are transmitted over fully interleaved fading

channels is introduced in section III. In section IV, these bounds are applied to several ensembles

of turbo-like codes and for various orders of space diversity. These bounds are also compared

to computer simulation results of efficient iterative decoding algorithms, and a good match is

demonstrated in our examples. Section V concludes the paper.

II. Model and Preliminaries

A. The System Model

The model of the communication system is the following: The information bits are encoded, fully

interleaved and BPSK modulated. Then, the modulated signal is transmitted through a frequency

non-selective fading channel. We discuss in this paper fully interleaved Rician fading channels and

also Rayleigh fading channels where the latter may be combined with space diversity of order L,

based on the maximum ratio combining (MRC) principle. As a consequence of a perfect channel

interleaver (which clearly differs from the interleaver of the code), the fading coefficients which

correspond to the interleaved coded bits are assumed to be i.i.d. The noise added to the signal is

3



an additive white Gaussian noise (AWGN) with a zero mean and a double-side spectral density

of N0. At the receiver, assumed to be equipped with ideal channel state information (realizations

of the fading values), we assume that the fading coefficients received by these L antennas are

statistically independent. The received signal is coherently detected. Finally, the demodulated

bits are deinterleaved (according to the inverse permutation of the channel interleaver) and ML

decoded.

Considering a turbo code, we assume a termination to the all-zero state at the end of each frame

(block). Clearly, no termination is required for block codes in general and for LDPC codes and RA

codes in particular.

B. The Capacity and the Cutoff-Rate of Binary-Input Fully interleaved Fading

Channels

We denote the pdf of the non-negative1 fading a by p(a). Clearly, with a (ideally given to the

receiver) interpreted as part of the measurements and independent of the transmitted signals, it

follows:

p0(y, a) =
1√
2π

· exp


−

(
y − a

√
2Es/N0

)2

2


 · p(a)

p1(y, a) =
1√
2π

· exp


−

(
y + a

√
2Es/N0

)2

2


 · p(a)

,
−∞ < y < ∞

a ≥ 0
, (1)

where Es
N0

stands for the energy per symbol to the spectral noise density.

For the binary-input, memoryless and symmetric channels in (1), the probability distribution of the

input which acheives the channel capacity is clearly symmetric: Prob (x = 0) = Prob (x = 1) =
1
2
.

A straightforward calculation of the channel capacity (C) of the fully interleaved fading channels

in (1) provides the following equality:

C =
1√
2π

∫ ∞

−∞

∫ ∞

0
p(a) exp


−1

2

(
y + a

√
2Es

N0

)2

 log2




2

1 + exp

(
2ay

√
2Es

N0

)




da dy , (2)

in units of bits per channel use.
1The effect of the phases of the fading measurements is eliminated at the receiver and the fades during each symbol

are treated as non-negative random variables.
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For a fully interleaved Rician fading channel, the probability density function of the amplitudes of

the i.i.d fading coefficients is:

p(a) =

{
2a(K + 1) exp(−(K + 1)a2 −K) I0

(
2
√

K(K + 1) a
)

a ≥ 0
0 a < 0

, (3)

where the Rician parameter K stands for the power ratio of the direct to the diffused received path

of the fading channel, and I0(x) designates the Modified Bessel function of order zero:

I0(x) =
1
π

∫ π

0
exp(x cos θ)dθ , (−∞ < x < ∞) .

The probability density function of the i.i.d fading coefficients of a fully interleaved Rayleigh fading

channel with MRC diversity of order L admits the form:

p(a) =





2LLa2L−1 exp(−La2)
(L− 1)!

a ≥ 0

0 a < 0
. (4)

Clearly, for coded communications: Es = REb where Es, Eb designate the energies per coded

symbol and information bit, respectively, and R is the rate of the code (in bits per channel use).

The value of
Eb

N0
which corresponds to the channel capacity for a certain code rate R is calculated

numerically by solving the implicit equation: C = R, where C is expressed in (14), associated with

the appropriate expression for the probability density function p(a) of the fading coefficients.

When the bit error probability is allowed not to exceed a certain value Pb, then by applying the

rate-distortion theory with the Hamming distance between two binary codewords as a distortion

measure, the minimal theoretical value of
Eb

N0
is found by solving numerically the implicit equation:

C = R (1− h2(Pb)) , (5)

where h2(x) designates the binary entropy function: h2(x) = −x log2(x)− (1− x) log2(1− x) and

the capacity C of the considered fully interleaved fading channels is expressed in (2).

The cutoff rate (in bits per channel use) of a fully interleaved Rayleigh fading channel with MRC

space diversity of order L admits the form:

R0 = 1− log2

(
1 +

(
1 +

Es

LN0

)−L
)

,

or
Eb

N0
in terms of R is given by:

Eb

N0
=

L

R


(21−R − 1)

−
1
L − 1


 . (6)
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A straightforward calculation of the cutoff rate of a fully interleaved Rician fading channel yields:

R0 = 1− log2(1 + Z) , (7)

where:

Z =
∫ ∞

0
exp

(
−a2Es

N0

)
p(a)da

=

√√√√√√
4K(K + 1)3

π

(
K + 1 +

Es

N0

)3 ·
∫ π

0
exp


−

K(K + 1) sin2 θ +
KEs

N0

K + 1 +
Es

N0


 cos θ Q



−

√
2K(K + 1) cos θ√

K + 1 +
Es

N0




dθ

+
(K + 1) exp(−K)

K + 1 +
Es

N0

,

(8)

where the last transition in (8) results in by the substitution of p(a) in (3).

C. The Pairwise Error Probability and Union Bounds

For a fully interleaved Rician fading channel with a Rician factor K, the expression of the pairwise

ML decoding error probability for two codewords which differ in d symbols was derived in [30].

This derivation relied on the Craig’s identity [5] for the Q-function:

Q(x) =
1
π

∫ π
2

0
exp

(
− x2

2 sin2 θ

)
dθ , x ≥ 0 ,

where Q(u) =
1√
2π

∫ ∞

u
e−t2/2 dt is the probability that a zero mean and unit variance Gaussian

RV exceeds an arbitrary value u (−∞ < u < ∞).

Under the assumptions in subsection A, the following expressions for the pairwise error probability

refer to the case where the Hamming distance between the transmitted codeword (x) and another

competitive codeword (x̂) is d.

For of a fully interleaved Rician fading channel whose Rician factor is K, the expression for the

pairwise error probability results in by combining equations (25),(38) in [30]:

Prob (x → x̂ | WH(x, x̂) = d) =
1
π

∫ π
2

0




1 + K

1 + K +
Es/N0

sin2 θ




d

exp


−

Kd

1 +
(1 + K) sin2 θ

Es/N0


 dθ , (9)

where WH(x, x̂) designates the Hamming distance between the two binary codewords x and x̂.
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For fully interleaved Rayleigh fading channels with MRC space diversity of order L (where the fading

coefficients received by the L antennas are assumed to be i.i.d), the expression for the pairwise ML

decoding error probability results in by substituting K = 0 in (9), and by also replacing Es and d

in the left hand side of (9) with Es
L and dL, respectively:

Prob (x → x̂ | WH(x, x̂) = d) =
1
π

∫ π
2

0




1

1 +
Es/N0

L sin2 θ




dL

dθ . (10)

The union bound on the block error probability for a ML decoded linear and binary block code

(designated by Pe) admits the form:

Pe ≤
n∑

d=dmin

Sd Prob (x → x̂ | WH(x, x̂) = d) , (11)

where dmin denotes the minimal Hamming weight of the nonzero codewords of the code C, and the

expressions of the pairwise error probability for the fully interleaved fading channels studied here

are provided in (9), (10). Here, Sd is the appropriate coefficient of the distance spectrum of the

code, which designates the number of codewords whose Hamming weight equals d.

Similarly, the union bound on the bit error probability admits the form:

Pb ≤
n∑

d=dmin

S′d Prob (x → x̂ | WH(x, x̂) = d) , (12)

where:

S′d
4
=

k∑

ω=1

{ (
ω

k

)
·Aω,d

}
, (13)

and where Aω,d is the appropriate coefficient of the input-output weight distribution (enumeration)

of the considered systematic block code, and it denotes the number of codewords of the code C

possessing an overall Hamming weight d and a Hamming weight ω for the information (systematic)

bits.
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III. Improved Upper Bounds

A. Generalization and modification of the Duman and Salehi upper bounds

([9], [11])

The first type of improved upper bounds on the ML decoding error probability are derived here

by generalizing and modifying the Duman and Salehi bounds, which were specifically derived for

the binary-input AWGN channel. In this section, we introduce a generalization of these improved

upper bounds for fully interleaved fading channels.

Let C be a binary and linear block code of length n and rate R = k
n , and suppose that its

distance spectrum {Sd}n
d=1 is available. Without loss of generality, we assume that the all-zero

codeword is transmitted (based on the linearity of the code C and the symmetry of the channel).

Clearly, Es = REb, where Es, Eb designate the energies per coded symbol and information bit,

respectively. The binary-input channel is memoryless (due to a perfect channel interleaver) and

also has a symmetric output, which yields that the following equation holds for the conditional

probability density functions (pdf) with binary inputs: p0(y, a) = p1(−y, a), where yi = aixi + νi

(i = 1, 2, · · · , n) are the components of the demodulated signal, corresponding to antipodal signaling

xi ∈ {+
√

Es, −
√

Es}, i.i.d fading coefficients (ai) and samples (νi) of a zero-mean Gaussian noise

with variance N0
2 .

For the derivation of the upper bound on the block error probability, the block code C is partitioned

into a set of subcodes {Cd}n
d=1, where every subcode Cd includes all the codewords which possess

a constant Hamming weight d (d = 1, 2 , . . . , n) and also the all-zero codeword.

Let Pe(d) designate the conditional block error probability associated with the ML decoding of the

subcode Cd, when the all-zero codeword is transmitted. Based on the union bound as applied to

the subcodes, we get an upper bound on the ML decoding error probability of the block code C:

Pe ≤
n∑

d=dmin

Pe(d) , (14)

where d = dmin . . . , n is the Hamming weight of the non-zero codewords of the subcode Cd.

The generalization of the second version of Duman and Salehi bounds [11] relies on the classical

Gallager’s bounding technique [14] and yields the following upper bound on Pe(d) (see Appendix A):

Pe(d) ≤ (Sd)ρ

{(∫ ∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ p0(y, a)

1
ρ da dy

)(1−δ)ρ

·
(∫ ∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ p0(y, a)

1−λρ
ρ p1(y, a)λ da dy

)δρ
}n

,
0 < ρ ≤ 1

λ ≥ 0
,

(15)
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where δ
4
= d

n is the normalized Hamming weight (0 ≤ δ ≤ 1), and ψ is an arbitrary non-negative

function which satisfies the equation:

∫ ∞

−∞

∫ ∞

0
ψ(y, a) da dy = 1 . (16)

The function ψ can be regarded as a tilting measure which depends on the measurements y, a,

which are perfectly available to the receiver. Resorting to calculus of variations, we obtain the

following form for the optimal function ψ, as to provide the tightest upper bound of the family

above:

ψ(y, a) = β p0(y, a) ·
(

1 + α

[
p1(y, a)
p0(y, a)

]λ
)ρ

,
−∞ < y < ∞

a ≥ 0
, (17)

where α, β are non-negative numbers (see Appendix A).

For specific values of λ, ρ and δ, the parameter α is optimally determined as to satisfy the implicit

equation:

∫ ∞

−∞

∫ ∞

0
p0(y, a) ·

(
1 + α

[
p1(y, a)
p0(y, a)

]λ
)ρ−1

da dy

∫ ∞

−∞

∫ ∞

0
p0(y, a) ·

(
1 + α

[
p1(y, a)
p0(y, a)

]λ
)ρ

da dy

= 1− δ . (18)

The parameter β is then optimally determined by the following relation (which stems directly from

(16) and (17)):

β =

{∫ ∞

−∞

∫ ∞

0
p0(y, a) ·

(
1 + α

[
p1(y, a)
p0(y, a)

]λ
)ρ

da dy

}−1

. (19)

We note here that the left hand side of (18) is a decreasing function of the non-negative parameter

α, and it also admits every value between zero and unity (corresponding to α → ∞ and α = 0,

respectively). Therefore, the existence and uniqueness of a solution α for (18) is assured for any δ

(as 0 < δ < 1), and this solution can be determined numerically (e.g, by the bisection method).

We observe from our discussion so far that the minimization of the above upper bound on the block

error probability (which is based on the minimization of the upper bound on Pe(d) in (15) and the

calculation of the bound (14)) involves a numerical minimization over the parameters λ and ρ

(where λ ≥ 0 and 0 < ρ ≤ 1), for every particular subcode Cd (d = 1, 2, · · · , n). The optimal values

of α and β which are related to the optimal tilting measure ψ in (17) are numerically evaluated from

(18), (19) as a function of the two optimized parameters λ and ρ. That minimization is performed

separately for every subcode (where the number of the subcodes Cd doesn’t exceed the length n

of the block code C, and clearly we are interested only on the subcodes Cd for which Sd > 0, as

otherwise Pe(d) = 0).
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Suppose we wish to calculate an upper bound on the block error probability for an ensemble of

linear block codes whose average distance spectrum is calculable. Then, by applying the Jensen

inequality to the right hand side of (15), one gets: E[(Sd)ρ] ≤ (E[Sd])ρ, where 0 ≤ ρ ≤ 1. The

upper bound (15) stays therefore valid by also replacing Sd in its right hand side with the statistical

expectation E[Sd] (as was first noted in [9]).

Let C be a binary, systematic and linear block code (the fact that the code is systematic is necessary

for the derivation of the upper bound on the bit error probability, although that property was clearly

irrelevant for the derivation of the upper bound on the block error probability). Similarly to (14),

the upper bound on the bit error probability with ML decoding is:

Pb ≤
n∑

d=dmin

Pb(d) , (20)

where Pb(d) designates the conditional bit error probability of the subcode Cd with ML decoding,

when the all-zero vector is the transmitted codeword. We note that since the subcode Cd usually

forms a non-linear block code, then the conditional upper bound on the block/ bit error probabilities

may depend on the transmitted codeword in the subcode Cd (as opposed to the case for the

linear block code C, for which the conditional error probability doesn’t depend on the transmitted

codeword).

Our generalization and modification of the Duman and Salehi bound on the bit error probability

([9], [11]) is presented in appendix A, which finally results in the following form for the upper bound

on the conditional bit error probability:

Pb(d) ≤ (S′d)
ρ

{(∫ ∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ p0(y, a)

1
ρ da dy

)(1−δ)ρ

·
(∫ ∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ p0(y, a)

1−λρ
ρ p1(y, a)λ da dy

)δρ
}n

,
0 < ρ ≤ 1

λ ≥ 0
, (21)

where S′d is introduced in (13).

The concept of the minimization of the upper bound on the bit error probability is similar to

the concept which was described above for the upper bound on the block error probability. Also

here, the two parameters λ and ρ are optimized for every subcode Cd for which Sd > 0 (where

d = 1, 2, · · · , n), and the parameters α and β which are related to the optimal tilting measure ψ

in (17) are calculated numerically as a function of the other two parameters λ and ρ, based on

(18), (19) (where these equations are also valid for the optimized upper bound on the bit error

probability).

The main modification of the above upper bound on the bit error probability is that the union
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bound (20) is applied here to a significantly reduced number of subcodes, as compared to the

number of subcodes that were involved in the derivation of the Duman and Salehi bounds on the

bit error probability (see [9], [11]). The union bound (20) is applied to the constant Hamming weight

subcodes Cd (as is also the case for the derivation of the upper bound on the block error probability),

instead of applying the union bound on the subcodes which possess a constant information Hamming

weight (w) and also a constant overall Hamming weight (d) (as was the case in the derivation of

the Duman and Salehi upper bound on the bit error probability). That reduces considerably the

number of terms in the union bound (20) (as the reduced number of subcodes grows here linearly

with n, while it grows like n2 in the corresponding derivation of the Duman and Salehi upper bound

on the bit error probability). Clearly, that modification tightens the overall upper bound on the bit

error probability (20), as compared to the Duman and Salehi bound on the bit error probability.

Another modification performed in the derivation of the above bounds on the block and bit error

probabilities (as compared to the second version of Duman and Salehi bounds [11]) is connected

to equations (18) and (19) which facilitate to determine numerically the values of α and β which

are related to the optimal function ψ(y, a) in (17), and hence reduces considerably the complexity

of the optimization process over the remaining parameters (λ, ρ) in the upper bounds (15) and

(21). The reasonable complexity involved in the numerical two-parameters optimizations (which

are involved in the calculation of the proposed upper bounds) was demonstrated by an efficient

Matlab computer program. The numerical computation of the proposed upper bounds involves

relatively short run-times for the numerical calculation of the upper bounds derived here, even for

long block codes (such as the ensembles of turbo-like codes which are considered in section IV).

Following [9], we compare the partial bounds in (15),(21) with the corresponding union bounds for

every Hamming weight d, and then minimize between the two values for every term of the bounds

(14),(20) (see section 2).

The general features of our generalization of the Duman and Salehi bounding technique has been

addressed in [28], [29].

B. Generalization of Engdahl-Zigangirov upper bound [12]

Assume a binary and linear block code of length n and dimension k is BPSK modulated and

transmitted over a fully interleaved fading channel. As noted in section II, we assume throughout

the paper that a perfect channel side information (CSI) is available to the receiver. Let the vector

a = (a1, a2, , · · · , an) denote the perfect measurements of the i.i.d. fading samples, where E
[
a2

i

]
= 1.

We assume that the symbols ‘0’ and ‘1’ are mapped by the BPSK modulation to +
√

Es and −√Es,

respectively. As before, we also assume without loss of generality that the all-zero codeword is
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transmitted (due to the linearity of the code and the symmetry of the channel). The components

of the demodulated signal (y) are:

yi = ai

√
Es + νi i = 1, 2 , . . . , n , (22)

where {ai}n
i=1 are the i.i.d fading coefficients and {νi}n

i=1 are the i.i.d. zero-mean Gaussian noise

samples with variance E[ν2
i ] = N0

2 .

Define:

z =
n∑

i=1

ai yi

=
n∑

i=1

(
a2

i

√
Es + ai νi

)
.

(23)

Similarly to our approach in the derivation of the previous upper bound, the binary and linear

block code C is partitioned into constant Hamming weight subcodes (Cd), where the subcode Cd

(d = 1, 2, · · · , n) includes all the codewords with a Hamming weight d and also the all-zero codeword.

The fading samples of the channel are i.i.d random variables (RVs), so the pairwise ML decoding

error probability stays constant for all the competitive codewords of the same Hamming weight

d. As the binary-input symmetric-output channel is memoryless, we assume without any loss of

generality that a competitive codeword of Hamming weight d differs from the transmitted all-zero

codeword in its first d coordinates, i.e, the first d coordinated of the competitive codeword are ones

and the succeeding n− d components are zeros.

Let Wd (where d = 1, 2 . . . n) be the RV:

Wd =
d∑

i=1

(
a2

i

√
Es + ai νi

)
. (24)

If Wd < 0, then the codeword of Hamming weight d is preferred by the ML decoder (rather than

the all-zero codeword).

The case where z is small enough may yield an unreliable decision of the ML decoder (it may

happen for example when the channel undergoes a severe fade). We therefore introduce a threshold

ηz and we wish to optimize it in order to get the tightest upper bound among the following family

of upper bounds on the ML decoding error probability:

Pe ≤
n∑

d=1

{
Sd · Prob

(
Wd < 0 , z ≥ ηz

)}
+ Prob

(
z < ηz

)
, (25)

where {Sd}n
d=1 is the distance spectrum of the block code C.

In the asymptotic case where ηz → −∞, the upper bound (14) turns to be the well known union
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bound. Therefore, an optimization over the parameter ηz yields an upper bound which is uniformly

tighter than the ubiquitous union bound.

Let pWd|z,a(w|z, a) denote the conditional pdf of the random variable Wd, given the measurements

z, a. By Bayes’ rule, we get the equality:

pWd|z,a(w|z, a) =
pWd|a(w|a) · pz|Wd,a(z|w,a)

pz|a(z|a)
. (26)

The following probability density functions which appear in the right hand side of (26) possess

normal distributions:

pz|a(z|a) =
1

(
πN0

n∑

i=1

a2
i

)1/2
· exp





−

(
z −√Es

n∑

i=1

a2
i

)2

N0

n∑

i=1

a2
i





, (27)

pWd|a(w|a) =
1

(
πN0

d∑

i=1

a2
i

)1/2
· exp





−

(
w −√Es

d∑

i=1

a2
i

)2

N0

d∑

i=1

a2
i





, (28)

pz|Wd,a(z|w, a) =
1


πN0

n∑

i=d+1

a2
i




1/2
· exp





−


z − w −√Es

n∑

i=d+1

a2
i




2

N0

n∑

i=d+1

a2
i





. (29)

Based on Eqs. (26)-(29), we obtain the equality:

pWd|z,a(w|z,a) =
1

(
πN0

)1/2
·




1
d∑

i=1

a2
i

+
1

n∑

i=d+1

a2
i




1/2

· exp





− 1
N0




1
d∑

i=1

a2
i

+
1

n∑

i=d+1

a2
i







w −
z ·

d∑

i=1

a2
i

n∑

i=1

a2
i




2




.

(30)
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Therefore, the conditional probability that Wd is negative, given the measurements z,a is:

Prob (Wd < 0|z,a) =
∫ 0

−∞
pWd|z,a(w|z,a) dw = Q




√√√√√√√√√√

2
N0




1
n∑

i=d+1

a2
i

− 1
n∑

i=1

a2
i




z




. (31)

We introduce now the RVs:

u(d) =
d∑

i=1

a2
i , v(d) =

n∑

i=d+1

a2
i , (32)

where d = 1, 2 . . . n is the Hamming weight of the competitive codeword (for d = n : v(d)
4
= 0). The

RVs u(d), v(d) are statistically independent, as the fading coefficients are i.i.d RVs. The conditional

probability in (31) can be rewritten in the form:

Prob (Wd < 0|z,a) = Q

(√
2

N0

(
1

v(d)
− 1

u(d) + v(d)

)
z

)
. (33)

The joint conditional probability that Wd is negative and z exceeds an arbitrary threshold ηz when

the vector a is perfectly known to the receiver is calculated from (27), (32), (33):

Prob (Wd < 0 , z ≥ ηz|a)

=
∫ ∞

ηz

Prob (Wd < 0 | z,a) · pz|a(z|a) dz

=
∫ ∞

ηz

Q

(√
2

N0

(
1

v(d)
− 1

u(d) + v(d)

)
z

)
· 1

(
πN0

(
u(d) + v(d)

))1/2

· exp


−

(
z −

(
u(d) + v(d)

))2

N0

(
u(d) + v(d)

)


 dz .

(34)

From (32), (34) and the substitutions: z =
√

Es t and η = ηz√
Es

, one obtains the following expression

for the joint probability that Wd is negative and z exceeds the threshold ηz:

Prob (Wd < 0 , z ≥ ηz)

=

√
Es

πN0

∫ ∞

0

∫ ∞

0

∫ ∞

η
Q

(√
2Es

N0

(
1
v
− 1

u + v

)
t

)
· pu(d)(u) pv(d)(v)√

u + v

· exp


−Es

N0

(
t− (u + v)

)2

u + v


 dt du dv , (35)

14



where pu(d) and pv(d) designate the probability density functions of the statistically independent

RVs u(d) and v(d), respectively (note that the vector a also dictates the exact values of the RVs

u(d), v(d), where d = 1, 2 , . . . , n).

From (27), it can be easily verified that:

Prob (z ≤ ηz|a) =
∫ ηz

−∞
pz|a (z|a) dz = Q




√
2Es

N0




√√√√
n∑

i=1

a2
i −

η√√√√
n∑

i=1

a2
i







, (36)

where η
4
=

ηz√
Es

.

From (32): u(n) =
n∑

i=1

a2
i , and therefore (36) yields the equality:

Prob (z ≤ ηz) =
∫ ∞

0
Q

(√
2Es

N0

(√
u− η√

u

))
pu(n)(u) du . (37)

The substitution of (35),(37) in the right hand side of (25) finally leads to the following upper

bound on the ML decoding error probability, which is formulated in terms of the average distance

spectrum of the ensemble of codes:

Pe ≤
n∑

d=1

{
Sd ·

√
Es

πN0

∫ ∞

0

∫ ∞

0

∫ ∞

η
Q

(√
2Es

N0

(
1
v
− 1

u + v

)
t

)
· pu(d)(u)pv(d)(v)√

u + v

· exp


−Es

N0

(
t− (u + v)

)2

u + v


 dt du dv





+
∫ ∞

0
Q

(√
2Es

N0

u− η√
u

)
pu(n)(u) du . (38)

The tightest upper bound in (38) results by nulling the derivative of the upper bound with respect

to η, which yields the following implicit equation for the optimized parameter η:

n∑

d=1

{
Sd

∫ ∞

0

∫ ∞

0
Q

(√
2Es

N0

(
1
v
− 1

u + v

)
η

)
pu(d)(u)pv(d)(v)√

u + v

· exp


−Es

N0

(
η − (u + v)

)2

u + v


 du dv





=
∫ ∞

0

pu(n)(u)√
u

· exp

(
−Es

N0

(u− η)2

u

)
du . (39)

The existence and uniqueness of a solution η of (39) is proved in Appendix B, and the proof also

leads to a constructive algorithm which facilitate to evaluate numerically the optimal η in (38).
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An upper bound on the bit error probability (with the ML decoding) for an ensemble of linear,

binary block codes results in by simply replacing the average distance spectrum
{
Sd

}n

d=1
of the

ensemble of codes by the sequence
{
S′d

}n

d=1
as defined in Eq. (13) (similarly to the first bounding

technique presented here).

The upper bound (38) with the optimal η in (39) forms a generalization of the upper bound which

was derived by Engdahl & Zigangirov ([12]), as for the special case of a binary-input AWGN channel:

pu(d)(u) = δ(u− d) , pv(d)(v) = δ
(
v − (n− d)

)
, d = 1, 2 , . . . , n , (40)

where δ denotes the Dirac delta function. For this specific channel, the substitution of (40) in (38)

yields the upper bound:

Pe ≤
n∑

d=1

{
Sd

√
Es

πN0

1√
n

∫ ∞

η
Q

(√
2Es

N0

d

n(n− d)
t

)
· exp

(
−Es

N0

(t− n)2

t

)
dt

}

+Q

(√
2Es

N0

n− η√
n

)
,

(41)

which coincides with the Engdahl & Zigangirov upper bound [12] for the binary-input AWGN

channel. The substitution of (40) in the optimization equation (39) for the threshold η, yields the

simplified optimization equation:

n∑

d=1

Sd Q

(√
2Es

N0

d

n(n− d)
η

)
= 1 , (42)

which also agrees with the optimization equation in [12], derived for the particular case of a binary-

input AWGN channel.

Further algebraic simplifications of the upper bound expressed in Eqs. (38),(39) for fully interleaved

fading channels are proposed in Appendix C.

C. A calculation of an upper bound on the threshold for a general ensemble of

codes over fully interleaved fading channels

Let C be an ensemble of binary, linear (or geometrically uniform) block codes of length n and rate

R. In this section, we calculate an upper bound on the threshold of the energy per bit to spectral-

noise-density
(

Eb
N0

)
which ensures a vanishing ML decoding error probability over fully interleaved

fading channels, as the block length (n) tends asymptotically to infinity.
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Based on the above generalization and modification of Duman and Salehi upper bounds (see (14)–

(19)), we define the following expressions:

A
4
=

∫ +∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ p0(y, a)

1
ρ da dy

B
4
=

∫ +∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ p0(y, a)

1−λρ
ρ p1(y, a)λ da dy

,
λ > 0

0 < ρ ≤ 1
,

where the optimal function ψ which is expressed in (17)-(19) depends on the three parameters

λ, ρ, δ.

We also define the following notations which are related to the exponential behavior of the distance

spectrum of the code (or ensemble of codes):

rδ,n
4
=

ln(Sd)
n

, rδ
4
= lim

n→∞ rδ,n , δ
4
=

d

n
(0 ≤ δ ≤ 1).

The optimized upper bound (15) gets the following form when the block-length n tends to infinity:

Pe(d) ≤ min
λ>0, 0<ρ≤1

{
(Sd)ρ

[
A(1−δ)ρ Bδρ

]n}

= min
λ>0, 0<ρ≤1

e
−n

[
−(1−δ)ρ ln A−δρ ln B−ρrδ

]

= e
−nE

(
δ,R,

Eb
N0

)
, d = 1, 2 . . . n ,

where E
(
δ,R, Eb

N0

)
= max

λ>0, 0<ρ≤1

{
−(1− δ)ρ lnA− ρδ ln B − ρrδ

}
.

Based on the union bounding technique which yields inequality (14), we derive the following upper

bound on the ML decoding error probability:

Pe ≤ n e
−nE

(
R,

Eb
N0

)
.= e

−nE

(
R,

Eb
N0

)
, (43)

where

E
(
R, Eb

N0

)
= min

0<δ≤1
E

(
δ,R, Eb

N0

)

= min
0<δ≤1

max
0<ρ≤1, λ>0

{
−(1− δ)ρ lnA− ρδ lnB − ρrδ

}
.

(44)

Then, we calculate numerically the minimal value of Eb
N0

which ensures that E
(
R, Eb

N0

)
> 0.

The minimization with respect to δ in (44) is over the range 0 < δ ≤ 1 (excluding δ = 0). However,

if for δ = 0: E
(
δ,R, Eb

N0

)
= 0, then it implies that the ML decoding error probability vanishes

polynomially (and not exponentially) when the block-length tends to infinity, as was also proved
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analytically for the ensemble of the regular RA codes [6].

The above condition ensures reliable communications for asymptotically large block length and Eb
N0

values above the minimal value calculated above. A similar approach was suggested by Divsalar [7]

as to determine thresholds for ensembles of codes operating over the AWGN channel. Since various

reported upper bounds on the ML decoding error probability can be derived as particular cases of

the generalization of the Duman and Salehi bound (see [28], [29]), our approach then furnishes an

upper bound on the thresholds with the aid of the generic generalized bound, as to provide the

tightest alternative.

As the above generalization of the Duman and Salehi bounds was based on Gallager’s bounding

technique, it should therefore achieve the channel capacity for the ensemble of fully random block

codes. In order to verify it numerically (based on the above condition which is related to (44))

for fully interleaved fading channels (and for any rate R of that ensemble codes), we express the

distance spectrum of this ensemble of codes:

Sd = 2−n(1−R) ·
(

n
d

)
.= 2−n(1−R) 2nh2(δ) , (45)

where h2(δ) = −δ log2(δ)− (1− δ) log2(1− δ) is the binary entropy function. Then, the following

exponential behavior of the distance spectrum for that ensemble of codes results:

rδ =
ln(Sd)

n
.=

[
h2(δ)− (1−R)

]
ln 2 ,

where .= designates exponential equivalence. Finally, the substitution of the asymptotic expression

for {rd} into (44) verifies numerically that the generalization of the Duman & Salehi bound achieves

the channel capacity for ensembles of fully random block codes with asymptotically infinite block

length. This result was proved theoretically in [29] without any decomposition of the random-like

code to equi-distance subcodes. It was noted in [8] that for the ensemble of rate-1
2 fully random block

code, the bound derived by Divsalar and Biglieri ensures (for large enough block length) reliable

communications over fully interleaved Rayleigh fading channels for Eb
N0

values above 3.06 dB, which

falls short by 1.2 dB of channel capacity. It was also noted in [8] that for a zero-rate code (R → 0),

the bound of Divsalar and Biglieri ensures reliable communications for Eb
N0

above -1 dB, falling short

by about 0.6 dB of channel capacity. This demonstrates the superiority of the generalized Duman

and Salehi bounds also at low rates where the relative tightness of the Divsalar and Biglieri bound

is enhanced.

We consider here thresholds for ensembles of structured codes operating over fully interleaved

fading channels. The first ensemble of structured codes considered here is the ensemble of uniformly

interleaved regular RA codes, which was proposed by Divsalar, Jin and McEliece [6]. This ensemble
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of serially concatenated codes (see Fig. 1a) consists of a repetition code (where each bit is repeated

q times), followed by a uniform interleaver and a differential encoder (accumulator). The exponent

of the distance spectrum of long enough RA codes (where the code rate is R = 1
q ) is determined in

[17]:

rδ
.= max

0≤u≤min (2δ, 2−2δ)

{(
f(u, δ) +

h2(u)
q

)
ln 2

}
, (46)

where

f(u, δ) = −h2(u) + (1− δ) h2

(
u

2(1− δ)

)
+ δ h2

(
u

2δ

)
. (47)

We simplified the numerical maximization expressed in (46), by nulling the derivative with respect

to u and the substitution v =
(

u
1−u

) 1
q , which yields the polynomial equation:

(1− a) v2q + 2(1− a) vq + v2 − a = 0 , (48)

where a = 4δ(1− δ). Since in the maximization above 0 ≤ u ≤ min (2δ, 2−2δ), u then lies between

zero and unity and v ≥ 0. The polynomial equation (48) has a single non-negative real root (as

0 ≤ a ≤ 1), and finally the inverse substitution u = vq

1+vq yields the value of the parameter u which

maximizes the right hand side of equation (46). This procedure simplifies the numerical calculation

of the asymptotic exponential behavior of the distance spectrum of regular RA codes. Since the

ensemble of RA codes is amenable to analysis, Eb
N0

thresholds for fully interleaved fading channels

are numerically derived here for q ≥ 3 and asymptotically infinite block length (it was proved in [6]

that the block error probability with ML decoding tends to zero for an asymptotically large block

length if q ≥ 3, and we therefore consider the case where q ≥ 3).

The second ensemble of structured codes considered here comprises the ensemble of regular LDPC

codes, which was proposed by Gallager [13]. This ensemble of codes is specified by a sparse parity

check matrix containing mostly 0’s and only a relatively small number of 1’s. An (n, j, k) LDPC

code is a block code of length n with a parity check matrix H, where each column contains a small

fixed number j (j ≥ 3) of 1’s and each row contains a small fixed number k of 1’s (where k > j). It

easily follows from this definition that the rate R of an (n, j, k) LDPC code satisfies the inequality

R ≥ 1 − j
k [13], which is also a good approximation for large blocks n and relatively small values

of j, k. More specifically the parity check matrix H in the ensemble of (n, j, k) LDPC codes are

constructed as follows: Divide the matrix into j sub-matrices, each containing a single 1 in each

column. The first of these sub-matrices contains all its 1’s in descending order: that is, the i-th

row contains 1’s in columns (i − 1)k + 1 to ik. The other sub-matrices are column permutations

of the first. The ensemble of (n, j, k) LDPC codes discussed here is then the ensemble of all codes

resulting from random permutations of the columns of each of the bottom j − 1 sub-matrices in
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the matrix H, with equal probability. This definition was proposed by Gallager for mathematical

convenience, which enabled the derivation of an upper bound on the distance spectrum of such

ensembles of LDPC codes, which is also asymptotically tight for an infinite block length [13].

According to the analysis in [13], we invoke the following expression for the asymptotic exponent

of the distance spectrum for the ensemble of the regular (n, j, k) LDPC codes:

rδ =
ln(Sd)

n
.= −(j − 1)H(δ) + j

(
µ(s)
k

+
(k − 1) ln 2

k
− sδ

)
(49)

where µ(s) = ln
[(

1+es

2

)k
+

(
1−es

2

)k]
and s is a real number, determined by solving the equation

δ
4
= d

n = µ′(s)
k . By substituting s = ln

(
1−u
1+u

)
, the equation is converted to the polynomial form:

(1− 2δ) uk − uk−1 − u + (1− 2δ) = 0 , (50)

where δ ≡ d
n is the normalized Hamming weight (0 ≤ δ ≤ 1). Moreover, the polynomial equation

has a single real root u in the interval (−1 ≤ u ≤ 1) for even values of k, yielding a single real

solution s for equation (50). For odd values of k, equation (50) has a single real root u in the

interval [−1, 1] for δ ≤ j
k ; if δ > j

k , then the limit case where s →∞ is the appropriate choice of s

in (49) for the calculation of rδ.

IV. Results

We examine here improved upper bounds on the ML decoding error probability for fully interleaved

fading channels with perfect CSI. These bounds are evaluated for certain ensembles of turbo-like

codes, and they are also compared with computer simulation results of suboptimal and practical

iterative decoding algorithms. As is demonstrated in the following, the tightness of these bounds

is especially pronounced in the rate region exceeding the cutoff rate, where the performance of

turbo-like codes is most appealing.

The first ensemble of codes which is considered here is the ensemble of the regular RA codes [6]

(see Fig. 1a). We examine here the case where the information block length is N = 1000 and the

number of repetitions of the outer code is q = 4, which yields a rate −1/4 turbo-like code. For

the calculations of the improved upper bounds on the bit error probability which were derived in

section III, the sequence {S′d}n
d=1 in (13) (where n = qN is the block length of these RA codes) is

calculated, based on the prior calculation of the input-output weight distribution of this ensemble

of codes in [6] (see Fig. 1b). The two bounds derived in section III and also the upper bound of

Divsalar and Biglieri in [8] are depicted in Fig. 2 for a fully interleaved Rayleigh fading channel. The
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union bound is regarded here as a benchmark, to assess the usefulness of all the improved bounding

techniques at rates beyond the cutoff rate. It is demonstrated here that the generalization of the

second version of Duman and Salehi bound ([9], [11]) yields the tightest reported bound. It is also

reflected in Fig. 2 that the generalization of the Engdahl & Zigangirov bound [12], results in an

upper bound which falls very close to the bound evaluated by Divsalar and Biglieri in [8]. Based

on the results depicted in Fig. 2, we get an upper bound on the bit error probability of 10−5 at

energy per bit to spectral noise density ratios
(

Eb
N0

)
of 1.85, 2.13, 2.15 and 2.85 dB corresponding to

curves 1, 2, 3, 4 respectively. It is evidenced that the generalization of the second version of Duman

and Salehi bound yields here a coding gain of 1.00 dB over the ubiquitous union bound, while

the other two improved upper bounds (Divsalar & Biglieri bound [8] and the generalized Engdahl

& Zigangirov bound) yield a coding gain of about 0.7 dB (with respect to the union bound).

Although the outer and inner component codes of these RA codes possess a very simple structure,

the improved upper bounds indicate their remarkable performance at rates considerably beyond

the cutoff rate, as is also demonstrated by computer simulation results of sum-product iterative

decoding algorithm (with 20 iterations). It is also reflected in Fig. 2 that the generalization of the

second version of Duman and Salehi upper bound falls below the simulated results of the iterative

decoding algorithm above for Eb
N0
≥ 1.63 dB, which is markedly below the

Eb

N0
value corresponding

to the cutoff rate of a fully interleaved Rayleigh fading channel (2.71 dB, based on (6) with L = 1

and R = 1
4). That observation demonstrates the mild sub-optimality of the iterative decoding

algorithm.

In order to assess the performance of ensembles of rate–1/3 turbo codes, rate-distortion curves

are depicted in Fig. 3, corresponding to rate-1/3 random block codes which operate over fully

interleaved Rayleigh fading channels with several orders of MRC space diversity (L). These curves

serve for estimating the closeness of the performance of the examined rate–1/3 ensemble of turbo

codes to the theoretical rate-distortion limits. By examining also the rate-distortion curves which

corresponds to fully interleaved Rician fading channels with perfect CSI at the receiver, we have

chosen to examine the value of K = 2.33 dB, as the rate-distortion curve for this channel falls

exactly between the rate-distortion curves for the two extreme cases (which refer to the fully

interleaved Rayleigh fading channel where K = 0 and the Gaussian channel, where K →∞).

We examine here upper bounds on the ML decoding error probability of the ensemble of rate–

1/3 uniformly interleaved turbo codes depicted in Fig. 4a, when these codes operate over fully

interleaved fading channels with perfect CSI. That ensemble of the turbo codes consists of two

identical recursive systematic convolutional (RSC) codes whose generators are G1(D) = G2(D) =
[
1, 1+D4

1+D+D2+D3+D4

]
and a uniform interleaver of length N = 1000. As in Fig. 1a, the components
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of that ensemble of codes are fixed and the interleaving is uniformly weighted over all possible

permutations of length N . For the calculation of the upper bounds on the bit error probability

in section III and the upper bound of Divsalar and Biglieri in [8], we first need to calculate the

sequence {S′d}n
d=1 in (13) (where n = 3008 is the block length of the terminated turbo code to

the all-zero state). To that end, we first calculated the input-output weight distribution of the

two identical RSC component codes above (based on the general technique which was proposed by

McEliece in [20]), then we calculated the input-output for the considered ensemble of uniformly

interleaved turbo codes (based on the relation between the input-output weight distribution of

uniformly interleaved turbo codes and the input-output weight distributions of its component codes

[2]) and finally applied (13) to the calculation of the sequence {S′d}n
d=1 (see Fig. 4b).

The improved upper bounds on the bit error probability which were derived in section III are

presented in Fig. 5a for the ensemble of the uniformly interleaved turbo codes depicted in Fig. 4a,

when the transmission takes place over a fully interleaved Rayleigh fading channel with perfect CSI.

These bounds on the ML decoding error probability are also compared in Fig. 5a with the union

bound and with computer simulation results of the Log-MAP iterative decoding algorithm (with

up to 10 iterations). Based on Fig. 5a, the two improved bounds that were derived in section III by

generalizing the Duman & Salehi bound and the Engdahl & Zigangirov bound yield upper bounds

on the bit error probability of 10−4 at Eb
N0

= 2.08 and 2.55 dB, and the union bound achieves the

same bit error probability at Eb
N0

= 3.25 dB (which results in coding gains of 1.17 and 0.70 dB

as compared to the union bound). Similarly to Fig. 2, the generalized second version of Duman

and Salehi bound provides here the tightest upper bound for ML decoding. Based on the iterative

decoding simulation results, the generalized Duman and Salehi bound falls very close to simulation

results of the Log-MAP iterative decoding algorithm for Eb
N0
≥ 2.0 dB (which is 1.24 dB below the

value of Eb
N0

which corresponds to the channel cutoff rate for a rate–1/3 code).

For the ensemble of turbo codes depicted in Fig. 4a, it is reflected in Figs. 5(a)-(c) that there is a

good match between the generalization of the second version of Duman and Salehi upper bound and

the computer simulation results of the Log-MAP iterative decoding algorithm (with 10 iterations).

This match is demonstrated for fully interleaved Rayleigh fading channels with various orders of

space diversity (based on the MRC principle) and perfect CSI. For fully interleaved Rayleigh fading

channels with a sufficiently high order of diversity (where the channels become more Gaussian in

nature), the generalization of the Engdahl & Zigangirov bound falls very close to the generalization

of the second version of Duman and Salehi bound (as is reflected in Figs. 5(b), 5(c)). It is

note that the complexity in the calculation of the generalized Engdahl & Zigangirov bound is

significantly lower than that of the generalized Duman & Salehi bound (since in the former bound,

an optimization over a single parameter is performed with respect to the whole code). Hence,
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the generalization of the Engahl & Zigangirov bound can be especially applied to fully interleaved

fading channels with a large order of space diversity.

It is demonstrated in Figs. 5(b),5(c) and 6 that the generalization of the second version of Duman

and Salehi bound yields remarkable coding gains as compared to the union bound, referring to the

ensemble of rate–1/3 turbo codes (depicted in Fig. 4a), operating over fully interleaved Rayleigh

fading channels with several orders of MRC diversity (L). As reflected in Fig. 6, we get an upper

bound on the bit error probability of 10−4 at Eb
N0

= 2.05, 1.51, 1.34 and 1.25 dB for L = 1, 2, 3 and

4 respectively. The corresponding union bounds with the same bit error probability are achieved at
Eb
N0

= 3.25, 2.66, 2.45 and 2.36 dB. These remarkable coding gains (which lie in the range between

1.1 and 1.2 dB) demonstrate the usefulness of our generalized second version of Duman and Salehi

bound at a portion of the rate region between the cutoff rate and the capacity. Based on Eqs. (2),

(4), the Shannon capacity corresponds to Eb
N0

= 0.49,−0.01,−0.17 and -0.25 dB for L = 1, 2, 3 and

4, respectively (see also the rate-distortion curves in Fig. 3 for fully interleaved Rayleigh fading

channels with MRC diversity). Hence, the improved upper bounds are within 1.5 to 1.6 dB from

capacity.

The ensemble performance of the uniformly interleaved turbo codes depicted in Fig. 4a is studied

in Fig. 7 for a fully interleaved Rician fading channel with a Rician factor of K = 2.33 dB. The

generalized Duman and Salehi bound and the ubiquitous union bound yield upper bounds on the

bit error probability of 10−4 at Eb
N0

= 1.59 and 2.65 dB respectively (see Fig. 7). Based on the rate

distortion theory, for an acceptable bit error probability of 10−4, the theoretical limit for a rate–1/3

code operating over the considered fully interleaved Rician fading channel with perfect CSI at the

receiver corresponds to Eb
N0

= 0.02 dB (as can be verified from Eqs. (2), (3) with K = 2.33 dB).

The generalized Duman and Salehi bound is then 1.57 dB above the Eb
N0

which corresponds to that

theoretical limit and 1.06 dB below the Eb
N0

value which corresponds to the channel’s cutoff rate

(2.65 dB, as can be verified from (7), (8)). These results also demonstrate the uselessness of the

union bound for long enough codes at rates above the cutoff rate of the channel.

In Fig. 8, we compare Gallager’s upper bound on the exponent of the distance spectrum of two

ensembles of (n, j, k) LDPC codes (which is rδ
ln 2 with rδ in (49)) with the exact exponent of the

distance spectrum for the ensemble of uniformly interleaved turbo codes which is depicted in Fig. 4a.

The exponent of the ensemble distance spectrum of these turbo codes (see curve 1) is based on

the numerical calculation of the distance spectrum of the uniformly interleaved turbo codes (with

the aid of the technique introduced in [2] and [20], which was explained above while referring to

Fig. 4b). The three ensembles of turbo-like codes considered in Fig. 8 possess almost the same

rate (1
3) and the same block length (3000). As was noted in [13], (49) is the exact asymptotic
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exponent of the ensemble distance spectrum of (n, j, k) LDPC codes when the block length n tends

to infinity. For any pair of (j, k), the minimal Hamming weight is typically increased linearly with

n. This observation is also reflected in curves 2, 3 of Fig. 8, as the exponent rδ gets negative

values for δ < δj,k (where δj,k depends on j, k [13]), and therefore the number of codewords which

possess a Hamming weight below nδj,k tends asymptotically to zero as n → ∞). Moreover, it is

demonstrated in Fig. 8 that for relatively small values of j, k, the increase in the values of j and k

such that the ratio j
k is kept fixed (which implies that the lower bound on the code rate (1 − j

k )

stays constant [13]) reduces the number of codewords characterized by low Hamming weights and

therefore also reduces the error floor which is theoretically associated with the ML decoding for

these ensembles of LDPC codes. That phenomenon is demonstrated in Figs. 9(a),(b) for some fully

interleaved fading channels with several orders of space diversity (L = 1, 4). Increasing the value

of j and k (as above) for a fixed block length n, affects therefore the upper bound on the distance

spectrum of the ensemble of (n, j, k) LDPC codes in a similar manner to the “spectral thinning”

effect [21], which characterizes the influence of increasing the interleaver length on the distance

spectrum of turbo codes. It is also demonstrated in Fig. 8 that the “spectral thinning” for the

considered ensembles of regular LDPC codes (see curves 2, 3) is more pronounced than for the

ensemble of turbo codes depicted in Fig. 4a (see curve 1). That justifies the superiority of the ML

bounds for the ensembles of (3000, 4, 6) and (3000, 6, 9) LDPC codes over the ML bounds for the

uniformly interleaved turbo code depicted in Fig. 4a, which is also evidenced in Fig. 9(a), 9(b) for

fully interleaved Rayleigh fading channels with or without diversity. These upper bounds on the

block error probability which are associated with the ML decoding relies on the generalization of

the second version of the Duman and Salehi bounds in section III.

The generalization of the second version of Duman & Salehi bounds was also applied to uniformly

interleaved turbo codes with interleavers of length not exceeding 1024 uncoded (information) bits,

because of inherent overflow limitations associated with the numerical calculation of the distance

spectrum of these ensembles of codes. However, this difficulty is circumvented by employing the

existing exponential upper bound on the ensemble distance spectrum of the (n, j, k) binary LDPC

codes [13]. Hence, for these ensembles of LDPC codes, we combine here the Gallager’s upper bound

on the distance spectrum with the generalization of the second version of Duman & Salehi bounds,

which yields a tight upper bound on the block error probability for these ensembles of codes,

coherently detected and ML decoded. Pursuing that approach, upper bounds on the block error

probability for regular LDPC codes of block length 3000–40000 are depicted in Figs. 10(a),(b) for

some fully interleaved Rayleigh fading channels with or without space diversity (based on the MRC

principle). These upper bounds on the ML decoding error probability indicate the unprecedented

performance of LDPC codes of length 5000–40000 coded bits as reflected by their closeness to

the ultimate Shannon capacity limit. That conclusion also conforms with the results depicted in
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[24] referring to the tangential sphere upper bounds on the ensemble performance of ML decoded

LDPC codes in the binary-input AWGN channel. The ML bounds on the block error probability of

regular LDPC codes (see Fig. 10(a), 10(b)) substantiate the conclusion that like turbo codes, LDPC

codes are strong alternatives for high performance communication systems, striving to approach

the ultimate limit of channel capacity.

Upper bounds on thresholds for ensembles of RA and regular LDPC codes (where the block length

tends to infinity) are depicted in Figs. 11(a),(b). These thresholds (which refer to the optimal

ML decoding) are calculated based on the approach discussed in section III (which relies on the

generalization of the second version of Duman & Salehi bounds). It is demonstrated that (n, j, k)

LDPC codes (with a sufficiently large value of n) nearly achieve the channel capacity for some fully

interleaved Rayleigh fading channels with or without space diversity (based on the MRC principle).

It is also demonstrated that by increasing the value of j and k (where the ratio j
k is kept constant),

the resulting upper bounds on the threshold values for long enough (n, j, k) LDPC codes approach

remarkably the channel capacity. These observations, demonstrated in Figs. 11(a),(b) for some fully

interleaved fading channels, conform with similar conclusion made by Gallager for the BSC case [13].

As expected, the upper bounds on the thresholds which are numerically calculated for the ensemble

of the regular RA codes (based on the approach in section IIIc) are considerably away from the

Shannon capacity limit as compared to the corresponding upper bounds on the thresholds which

were calculated by the same approach for regular LDPC codes (see Figs. 11(a),(b)). Obviously,

the degradation in performance of the RA codes as compared to LDPC codes (of the same rate) is

attributed to the extremely simple structure of the RA codes. On the other hand, RA codes are

demonstrated as efficient codes at rates considerably beyond the channel cutoff rate and since they

possess a simple and efficient iterative decoding algorithm, they constitute an attractive alternative

for ensuring reliable communication in a portion of the rates exceeding the channel cutoff rate. It

is also indicated in Figs. 11(a),(b), that for zero approaching rates, RA codes closely approach the

channel capacity, as was established in [17].

V. Summary and Conclusions

We introduce here tight rigorous upper bounds on the block and bit error probabilities of ML

decoded block codes, operating over fully interleaved fading channels with or without diversity.

We assume throughout perfect fading side information available to the receiver. The two improved

bounding techniques proposed here are modified and generalized versions of the recently introduced

bounds for the AWGN channel by Duman & Salehi ([9], [11]) and Engdahl & Zigangirov [12] (see

section III). The improved upper bounds on the block and bit error probabilities with ML decoding
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rely solely on the distance spectrum and the input-output weight distribution of the codes (or

ensembles of codes) and, to that end, we apply the general distance spectrum evaluation technique

introduced in [20]. These improved upper bounds are applied to uniformly interleaved turbo codes

[2] (with a termination at the all-zero state), regular low-density parity check (LDPC) codes [13]

and some other ensembles of turbo-like codes [6], operating over fully interleaved fading channels

with several orders of space diversity. These bounds (referring to ML decoding) are observed also to

closely approximate the unprecedented performance achieved by sub-optimal and practical iterative

decoding algorithms. Hence, the improved upper bounds studied here can be also applied as a fast

technique to approximately assess the performance of iterative decoding.

We apply the generalized Duman & Salehi version II bound (derived in section III) to determine

upper bounds on the thresholds of some ensembles of codes operating over interleaved fading

channels and ML decoded. This bound achieves the channel capacity for fully random block codes

[29], and in this respect it outperforms a recent bound by Divsalar and Biglieri [8] even at low rates.

We also apply the generalized Duman & Salehi second version bound to regular LDPC codes and

numerically determine their thresholds for some parameters of the codes and for some orders of

space diversity (based on the MRC principle). The thresholds for the regular LDPC codes fall very

close to channel capacity, as demonstrated in Figs. 11a, 11b. This bounding technique is applied

in particular to regular rate −1
3 LDPC codes with block length 3K–40K coded bits, operating

over fully interleaved fading channels (see Figs. 10a, 10b). These bounds demonstrate that for the

considered ensemble of regular LDPC codes with a block length of 10K coded bits, a block error

probability of 10−5 is ensured at energy per bit to a noise spectral density
(

Eb
N0

)
of about 0.8 dB

away from the channel capacity (either without diversity or with MRC diversity of order 4).

This bound also provides upper bounds on thresholds for ML decoding of the regular repeat-

accumulate (RA) codes [6]. Although the thresholds for RA codes are less impressive than those

corresponding to regular LDPC codes (see Figs. 11a, 11b), the simple encoding and the low-

complexity of the iterative decoding algorithm for RA codes compensate in certain cases for the

degradation in their performance. The second bounding technique which is proposed here is a

generalization of the Engdahl & Zigangirov bound for the AWGN channel ([12]). It depends on

a single parameter that is determined by a numerical solution of an optimization equation (see

Eq. (28) and Appendix B (proving the existence and uniqueness of a solution for this equation and

also providing an efficient algorithm for solving it). The optimization for this bound is performed

once as it applies to the whole block code, without partitioning the block code to constant Hamming

weight subcodes and optimizing the parameter for every subcode separately (we demonstrated

that for the generalized Engdahl & Zigangirov bound, the partitioning of the linear block code to

subcodes results in a looser upper bound). Surprisingly, this bound is approximately as tight as
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the Divsalar & Biglieri bound [8] (see Fig. 2) and is considerably easier for numerical evaluation

(a numerical optimization of three parameters in the Divsalar and Biglieri [8] is required for every

constant Hamming subcode separately). We note that the more Gaussian in nature the channel

is, the smaller the gap between the generalized Engdahl & Zigangirov bound and the generalized

second version of the Duman & Salehi bound. This phenomenon is reflected by comparing Figs. 5a,

5b and 5c and noticing that increasing the order of the receiver’s space diversity (based on the

MRC principle) for a fully interleaved fading channel, implies that the probability density function

of the channel resembles more strongly the AWGN channel (including LDPC codes and terminated

turbo codes) operating over fading channels with relatively large space diversity order (of at least

4 in the examples here).

It is demonstrated here that the second version of Duman & Salehi bound yields the tightest

reported upper bound for fully interleaved fading channels (see Figs. 2, 5–7), and its calculation

requires modest complexity (as it involves a numerical optimization over two instead of three

parameters for every constant Hamming weight subcode separately).

The results of our ML decoding bounding techniques are put in perspective by comparison with the

associated Shannon channel capacity of those fading channels with a binary input (see Fig. 3) and

with simulated results of efficiently iterative decoded turbo codes (employing the Log-MAP based

iterative decoding algorithm). The comparison shows that the considered uniformly interleaved

turbo code (depicted in Fig. 4a) with a relatively moderate interleaver length (N = 1000), operates

1.55 and 1.75 dB away from the channel capacity (referring to a bit error probability of 10−4) for

a Rayleigh fading channel without or with diversity (of order 4) respectively (see Figs. 3, 5a and

5b). As expected, the performance of the considered turbo codes and regular LDPC codes in a

fully interleaved Rayleigh fading channel is significantly improved by diversity. For example, for

the considered ensemble of uniformly interleaved turbo codes, the improved upper bounds which

are based on the generalized Duman & Salehi bounding technique predict a bit error probability

of 10−4 at Eb
N0

of 2.05, 1.57, 1.35, 1.28 and 1.17 dB for respective diversity orders of 1, 2, 3, 4 and

6 (see Figs. 5(c) and 6).

The generalization of the second version of the Duman and Salehi bounds provides the natural

bridge between the 1963 and 1965 Gallager bounds ([13],[14]), and it is suitable for both random and

fixed codes (as evidenced in [28], [29]). Many recent useful bounds were demonstrated in [28] and

[29] as special cases of the generalization of the Duman and Salehi bounds, which was applied here

to certain ensembles of codes operating over fully interleaved fading channels with perfect channel

state information. By generalizing the framework of the Duman and Salehi bounding technique,

upper bounds on the decoding error probability for the mismatched case, where inaccurate estimates

of the independent fading samples are provided to the receiver, are studied in [26], [28].
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Appendix A: The Generalized Duman & Salehi Bounding Tech-

nique for Fully Interleaved Fading Channels – Technical Details:

Let y and a denote the received signal sequence and the perfect measurements of the i.i.d. fades

respectively (as mentioned in section III, the effect of the phase is eliminated according to the

assumption of perfect CSI). Let r = (y, a) denote the (2n)-dimensional vector, where n is the

code’s block-length. The upper bound (15) is based on Gallager’s bounding technique [14], which

yields:

Pe(d) ≤
∫ +∞

−∞
· · ·

∫ +∞

−∞︸ ︷︷ ︸
n−dimensions

(w.r.t.y)

∫ ∞

0
· · ·

∫ ∞

0︸ ︷︷ ︸
n−dimensions

(w.r.t.a)

[
p(r|0)

]1−λρ





∑

c∈Cd
c 6=0

[
p(r|c)

]λ





ρ

da dy , (A.1)

where λ ≥ 0 , 0 ≤ ρ ≤ 1 and d = 1, 2 . . . n.

By introducing an arbitrary non-negative function of the form:

Ψ(r) =
n∏

i=1

ψ(yi, ai) , (A.2)

which also satisfies equality (16), we get from (A.1):

Pe(d) ≤
∫ +∞

−∞
· · ·

∫ +∞

−∞︸ ︷︷ ︸
n−dimensions

∫ ∞

0
· · ·

∫ ∞

0︸ ︷︷ ︸
n−dimensions

n∏

i=1

ψ(yi, ai)





∑

c∈Cd
c 6=0

n∏

i=1

ψ(yi, ai)
− 1

ρ p0(yi, ai)
1−λρ

ρ ·
[
pci(yi, ai)

]λ





ρ

da dy ,

(A.3)

where ci equals ‘1’ or ‘0’ for d and n − d indices of i respectively, and the probability density

functions p0, p1 are expressed in (1). By applying Jensen inequality to the right hand side of (A.3),

as ψ in (4) is an arbitrary probability density function, we find for 0 ≤ ρ ≤ 1 and λ ≥ 0 that:

Pe(d)

≤





∑

c∈Cd
c6=0

∫ +∞

−∞
· · ·

∫ +∞

−∞︸ ︷︷ ︸
n−dimensions

∫ ∞

0
· · ·

∫ ∞

0︸ ︷︷ ︸
n−dimensions

∏n
i=1 ψ(yi, ai)

1− 1
ρ p0(yi, ai)

1−λρ
ρ ·

[
pci(yi, ai)

]λ
da dy





ρ

=

{
Sd

(∫ +∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ p0(y, a)

1−λρ
ρ p1(y, a)λ da dy

)d

·
(∫ +∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ p0(y, a)

1
ρ da dy

)n−d
}ρ

= (Sd)ρ

(∫ +∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ g1(y, a) da dy

)(n−d)ρ (∫ +∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ g2(y, a) da dy

)dρ

,

(A.4)
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where {Sd}n
d=1 denotes the distance spectrum of the considered linear block code C (Sd is also the

number of non-zero codewords of the constant Hamming weight subcode Cd defined in section 3)

and:

g1(y, a) = p0(y, a)
1
ρ

g2(y, a) = p0(y, a)
1
ρ

[
p1(y, a)
p0(y, a)

]λ ,
−∞ < y < +∞

a ≥ 0
. (A.5)

The upper bound (15) results from (A.4) and (A.5), by substituting δ = d
n (where δ is the normalized

Hamming weight).

Resorting to calculus of variations, we obtain the following implicit equation for the optimal function

ψ which yields the tightest upper bound on the conditional block error probability (Pe(d)) within

the family of bounds in (A.4):



(1− δ)
(
1− 1

ρ

)
g1(y, a)

∫ +∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ g1(y, a) da dy

+
δ
(
1− 1

ρ

)
g2(y, a)

∫ +∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ g2(y, a) da dy


 ψ(y, a)−

1
ρ + ζ = 0 ,

(A.6)

where ζ designates the Lagrange multiplier.

Based on (A.6), it follows that the optimal ψ in (A.4) is of the form:

ψ(y, a) =
(
k1 g1(y, a) + k2 g2(y, a)

)ρ
, (A.7)

where k1 and k2 are non-negative constants.

The substitution of g1, g2 in (A.5) into (A.7) yields equation (17), where α and β are non-negative

numbers (as by comparing (A.7) and (17), one gets: α = k2
k1

and β = (k1)ρ for some non-negative

numbers k1, k2).

The optimal ratio k2
k1

in the function ψ (A.7) satisfies from (A.6) and (A.7) the implicit equation:

k2

k1
=

δ

1− δ

∫ +∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ g1(y, a) da dy

∫ +∞

−∞

∫ ∞

0
ψ(y, a)1−

1
ρ g2(y, a) da dy

. (A.8)

The substitution of g1, g2 from (A.5) with the optimal function ψ into the right hand side of (A.8),

and the substitution of the relation α = k2
k1

into the left hand side of (A.8) yields the equation:

α =
δ

1− δ

∫ +∞

−∞

∫ ∞

0
p0(y, a)

(
1 + α

[
p1(y, a)
p0(y, a)

]λ
)ρ−1

da dy

∫ +∞

−∞

∫ ∞

0
p0(y, a)

(
1 + α

[
p1(y, a)
p0(y, a)

]λ
)ρ−1 [

p1(y, a)
p0(y, a)

]λ

da dy

,
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or alternatively:

1−δ
δ

=

∫ +∞

−∞

∫ ∞

0
p0(y, a)

(
1 + α

[
p1(y, a)
p0(y, a)

]λ
)ρ−1

da dy

∫ +∞

−∞

∫ ∞

0
p0(y, a)

(
1 + α

[
p1(y, a)
p0(y, a)

]λ
)ρ−1

α

[
p1(y, a)
p0(y, a)

]λ

da dy

=

∫ +∞

−∞

∫ ∞

0
p0(y, a)

(
1 + α

[
p1(y, a)
p0(y, a)

]λ
)ρ−1

da dy

∫ +∞

−∞

∫ ∞

0
p0(y, a)

(
1 + α

[
p1(y, a)
p0(y, a)

]λ
)ρ

da dy −
∫ +∞

−∞

∫ ∞

0
p0(y, a)

(
1 + α

[
p1(y, a)
p0(y, a)

]λ
)ρ−1

da dy

= 1∫ +∞

−∞

∫ ∞

0
p0(y, a)

(
1 + α

[
p1(y, a)
p0(y, a)

]λ
)ρ

da dy

∫ +∞

−∞

∫ ∞

0
p0(y, a)

(
1 + α

[
p1(y, a)
p0(y, a)

]λ
)ρ−1

da dy

− 1

,

which then yields (18).

For the derivation of the upper bound on the bit error probability (21), let Cw,d designate the

subcode of the considered systematic and linear block code C which in addition to the all-zero

codeword also consists all the codewords which exhibit information (systematic) bits with a Ham-

ming weight w and an overall Hamming weight d (where w = 1, 2 , . . . , k and d = 1, 2 , . . . , n). By

Gallager’s bounding technique [14], we find:

Pb(d)

≤
∫ +∞

−∞
· · ·

∫ +∞

−∞︸ ︷︷ ︸
n−dimensions
(w.r.t.y)

∫ ∞

0
· · ·

∫ ∞

0︸ ︷︷ ︸
n−dimensions
(w.r.t.a)

p(r|0)





k∑

w=1

w

k

∑

c∈Cw,d
c 6=0

[
p(r|c)
p(r|0)

]λ





ρ

da dy

=
∫ +∞

−∞
· · ·

∫ +∞

−∞︸ ︷︷ ︸
n−dimensions
(w.r.t.y)

∫ ∞

0
· · ·

∫ ∞

0︸ ︷︷ ︸
n−dimensions
(w.r.t.a)

[
p(r|0)

]1−λρ





k∑

w=1

w

k

∑

c∈Cw,d
c6=0

[
p(r|c)

]λ





ρ

da dy ,

0 ≤ ρ ≤ 1 ,
λ ≥ 0 .

(A.9)

Similarly to the derivation of the upper bound on the block error probability from (A.1), we derive

the upper bound (21) on Pb(d) from (A.9) (which is similar to (15) but for the replacement of the

distance spectrum {Sd}n
d=1 by {S′d}n

d=1 as expressed in (13)).

The main difference in the derivation of the above upper bound on the bit error probability as
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compared to the derivation of the Duman and Salehi bound in [9] is explained in section III (which

further tightens the bound).

Appendix B: On the existence and uniqueness of a solution to the

optimization equation (39)

It is proved here that there always exists a unique solution to the optimization Eq. (39), derived

in section III. This statement holds for every distance spectrum of a linear block code C. It is

also independent of the block length n, the code’s rate R and the energy per bit to spectral noise

density ratio Eb
N0

.

To that end, we denote by R(η) the right hand side of the optimization Eq. (39):

R(η) =
∫ ∞

0

pu(n)(t)√
t

· exp

(
−Es

N0

(t− η)2

t

)
dt . (B.1)

Based on the statistic independence of the non-negative RVs: u(d), v(d) introduced in Eq. (32)

(where d = 1, 2 , . . . , n) and the equality: u(n) = u(d) + v(d), we get:

pu(n)(t) =
(
pu(d) ∗ pv(d)

)
(t)

=
∫ t

0
pu(d)(u) · pv(d)(t− u) du ,

(B.2)

where ‘∗’ stands for the convolution operation.

Combining Eqs. (B.1),(B.2) with the substitution t = uv, the function R(η) admits the expression:

R(η) =
∫ ∞

0

∫ ∞

0

pu(d)(u) · pv(d)(v)√
u + v

· exp


−Es

N0

(
η − (u + v)

)2

u + v


 du dv , (B.3)

for −∞ < η < +∞.

We denote here by L(η) the left hand side of the optimization Eq. (39), and based on Eq. (B.3) we

find the equality:

L(η)
R(η)

=
n∑

d=1

Sd fd(η) , (B.4)
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where {Sd}n
d=1 denotes the distance spectrum of the linear block code C and

fd(η) =

∫ ∞

0

∫ ∞

0
Q

(√
2Es

N0

(1
v
− 1

u + v

)
η

)
pu(d)(u) · pv(d)(v)√

u + v
· exp


−Es

N0

(
η − (u + v)

)2

u + v


 du dv

∫ ∞

0

∫ ∞

0

pu(d)(u) · pv(d)(v)√
u + v

· exp


−Es

N0

(
η − (u + v)

)2

u + v


 du dv

,

(B.5)

for d = 1, 2 , . . . , n and −∞ < η < +∞.

Based on some elementary properties of the Q-function, it can be verified by Eq. (B.5) that fd(η)

is a monotonic decreasing and non-negative function, which also satisfies the equalities:

lim
η→−∞ fd(η) = 1 , fd(0) =

1
2

, lim
η→+∞ fd(η) = 0 . (B.6)

Therefore, by Eqs. (B.4),(B.6), we conclude the following:

lim
η→−∞

L(η)
R(η)

=
n∑

d=1

Sd ,
L(0)
R(0)

=
1
2

n∑

d=1

Sd , lim
η→+∞

L(η)
R(η)

= 0 . (B.7)

Since {fd(η)}n
d=1 (where −∞ < η < +∞) are non-negative and decreasing functions of η and

also {Sd}n
d=1 is a non-negative sequence, we get from Eq. (B.4) that also the function: L(η)

R(η) is a

monotonic decreasing and non-negative function of η. Moreover, based on Eq. (B.7), we get by the

mean value theorem for continuous functions, that the equation L(η)
R(η) = 1 has a solution η, which is

also unique (because of the monotonicity of the function L(η)
R(η)). We also note that the Eq. (39) is

equivalent to the equation: L(η)
R(η) = 1, and that completes our proof for the existence and uniqueness

of a solution to the optimization Eq. (39).

Moreover, under the mild condition
n∑

d=1

Sd ≥ 2 (which states that there are at least two non-zero

codewords of the considered block code C), we get from Eq. (B.7) that the unique solution of

Eq. (39) is non-negative.

Appendix C: Simplifications of the Generalized Engdahl-Zigangirov

Bound [12]

In this appendix we simplify by some algebraic manipulations the upper bound and its correspond-

ing optimization equation, which are derived in section III as a generalization of Engdahl-Zigangirov
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bound.

Let the function J be the inner integral of the triple integrals introduced in the upper bound (38):

J
(
u, v, η,

Es

N0

)
=

√
Es

πN0

∫ ∞

η
Q

(√
2Es

N0

(
1
v
− 1

u + v

)
η

)
exp


−Es

N0

(
t− (u + v)

)2

u + v


 dt , (C.1)

where u, v ≥ 0 and based on our comment in Appendix B, η ≥ 0.

By applying Craig’s identity ([5]) to the evaluation of J , we reach the equality:

J
(
u, v, η,

Es

N0

)
(C.2)

=
√

2(u + v)
π

∫ π
2

0

sinφ

A(φ)
· exp

(
−2Es

N0

u + u2

v

A2(φ)

)
Q

(√
Es

(u + v)N0

ηA2(φ)− 2(u + v) sin2 φ

A(φ) sinφ

)
dφ ,

where A(φ) =
√

2u

v
+ 2 sin2 φ and u, v, η are non-negative.

The upper bound in (38) admits the following form (based on Eq. (C.1)):

Pe ≤
n∑

d=1





Sd

∫ ∞

0

∫ ∞

0
pu(d)(u) · pv(d)(v) ·

J
(
u, v, η,

Es

N0

)

√
u + v

du dv





+
∫ ∞

0
Q

(√
2Es

N0

u− η√
u

)
pu(n)(u) du .

(C.3)

The transformations t = u + v, u = αt (where t ≥ 0 and 0 ≤ α ≤ 1), further simplifies the upper

bound in Eq. (C.3) and the optimization equation (39) (for the parameter η), reading now:

Pe ≤
n∑

d=1

{
Sd

∫ ∞

0

∫ 1

0
g1

(
t, α, d, η,

Es

N0

)
dα dt

}
+

∫ ∞

0
Q

(√
2Es

N0

u− η√
u

)
pu(n)(u) du . (C.4)

where:

g1

(
t, α, d, η,

Es

N0

)
=
√

t pu(d)(αt) pv(d)

(
(1− α)t

)
J

(
αt, (1− α)t, η,

Es

N0

)
,

and t ≥ 0, 0 ≤ α ≤ 1.

By the same substitutions, the optimization equation for the parameter η admits the simplified

form:

n∑

d=1

{
Sd

∫ ∞

0

∫ 1

0
g2

(
t, α, d, η,

Es

N0

)
dα dt

}
=

∫ ∞

0

pu(n)(u)√
u

· exp

(
−Es

N0

(u− n)2

u

)
du , (C.5)
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where:

g2

(
t, α, d, η,

Es

N0

)
=
√

t pu(d)(αt) pv(d)

(
(1− α)t

)
exp

(
−Es

N0

(η − t)2

t

)
Q

(√
2Es

N0

α

(1− α)t
η

)
,

(C.6)

and t ≥ 0, 0 ≤ α ≤ 1.

In the special case of a fully interleaved Rayleigh fading channel with MRC space diversity of order

L, we get the following pdf for the RVs introduced in Eq. (32):

pu(d)(u) =
LdL udL−1 e−Lu

(dL− 1)!
u ≥ 0 , d = 1, 2 , . . . , n

pv(d)(v) =
L(n−d)L v(n−d)L−1 e−Lv

(
(n− d)L− 1

)
!

v ≥ 0 , d = 1, 2 , . . . , n− 1 .

(C.7)

If d = n, then v(d) = 0, which yields that pv(d)(v) = δ(v). Based on Eqs. (C.4),(C.5), and by

substituting the pdf in (C.7), we finally get the following upper bound on the ML decoding error

probability:

Pe ≤
∫ ∞

0

xnL−1 e−x

(nL− 1)!
· g(x, η) dx , (C.8)

where the optimized value of η satisfies the equation:

∫ ∞

0

xnL−1 e−x

(nL− 1)!
· h(x, η) dx = 0 , (C.9)

and where,

g(x, η) = f1(x, η) + f2(x, η) ,

f1(x, η) = (nL− 1) ·
√

L

x

∫ 1

0
J

(
αx

L
,

(1− α)x
L

, η,
Es

N0

)
P (α) dα ,

f2(x, η) = Q

(√
2Es

N0

x− Lη√
Lx

)
.

(C.10)

The function J is introduced in Eqs. (C.1),(C.2) and P (α)
4
= P

(
α,

{
Sd

}n

d=1

)
is the polynomial

function:

P (α) =
n−1∑

d=1

{
Sd

(
nL− 2
dL− 1

)
αdL−1 (1− α)(n−d)L−1

}
. (C.11)

The function h in Eq. (C.9) admits the form:

h(x, η) = f3(x, η) + f4(x, η) ,

where
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f3(x, η) = (nL− 1)

√
L

x
· exp

(
− Es

LN0

(Lη − x)2

x

) ∫ 1

0
P (α)Q

(√
2Es

N0

α

1− α

x

L
η

)
dα ,

f4(x, η) =

√
L

x
exp

(
− Es

LN0

(Lη − x)2

x

)
. (C.12)

It can be analytically shown that the functions h, g expressed in Eqs. (C.10),(C.12) are bounded

on the interval [0,∞). Since the function f(x) = xnL−1 e−x

(nL−1)! (where x ≥ 0) is a pdf, the integrals in

Eqs. (C.8),(C.9) are interpreted as statistical means.
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Figure Captions

Figure 1: (a) Block diagram of a uniformly interleaved rate–1/4 RA code. The block is composed
of N = 1024 information bits, the number of repetitions is q = 4, and the interleaver
length is qN = 4096.
(b) The sequence {S′d}qN

d=1 defined in (13), which is calculated for the rate 1/4 RA code
depicted in Fig. 1(a).

Figure 2: A comparison between some upper bounds on the bit error probability (referring to the
ML decoding) for the ensemble of rate–1/4 RA codes depicted in Fig. 1(a), where the
codes are operating over a fully interleaved Rayleigh fading channel with perfect CSI.
1. The generalization of the Duman & Salehi bound.
2. The Divsalar & Biglieri bound [8].
3. The generalized Engdahl & Zigangirov bound.
4. The generalized Viterbi & Viterbi bound [27].
5. The union bound.
These bounds are also compared with computer simulation results of the sum-product
iterative decoding algorithm (with 20 iterations).

Figure 3: Plots of the theoretical rate-distortion curves (with respect ot the bit error probability)
for rate–1/3 block codes which operate over fully interleaved Rayleigh fading channels
with perfect CSI and MRC diversity of orders L = 1, 2, 3, 4 or L →∞ (where the latter
corresponds to a binary-input AWGN channel).

Figure 4: (a) Block diagram of the ensemble of uniformly interleaved rate–
1
3

turbo codes, where

the components of the turbo codes are fixed RSC codes with identical generators:
G1(D) = G2(D) =

[
1, 1+D4

1+D+D2+D3+D4

]
, and the interleaver is of length N = 1000.

Termination of the trellis of both component codes to the all-zero state is assumed
after N information bits.
(b) The sequence {S′d}n

d=1 defined in (13), which is calculated for the ensemble of
uniformly interleaved turbo codes depicted in Fig. 4(a).

Figure 5: Comparison between improved upper bounds on the bit error probability (section III)
and the union bound, for the ensemble of the rate–1/3 uniformly interleaved turbo
codes (Fig. 4(a)). The codes operate over fully interleaved Rayleigh fading channels
with various orders (L) of MRC diversity and perfect CSI.
These bounds are depicted for: (a) L = 1, (b) L = 4, (c) L = 6, and are compared with
computer simulation results of the Log-MAP based iterative decoding algorithm (with
up to 10 iterations).

Figure 6: Comparison between the generalization of the second version of Duman and Salehi
bounds (see section III) and the union bound. These bounds on the bit error probability
are applied to the ensemble of the rate–1/3 uniformly interleaved turbo codes depicted
in Fig. 4(a). The codes operate over fully interleaved Rayleigh fading channels with
perfecr CSI and MRC space diversity of orders L = 1, 2, 3, 4.

Figure 7: Comparison between the generalization of the second version of Duman and Salehi
bounds (see section III) and the union bound on the ML decoded bit error probability.
These bounds are applied to the ensemble of the rate–1/3 uniformly interleaved turbo
codes depicted in Fig. 4(a), operating over a fully interleaved Rician fading channel
(with K = 2.33 dB) and prefect CSI. Computer simulation results of the Log-MAP
based iterative decoding algorithm (with up to 10 iterations) are also shown.



Figure 8: Comparison between the normalized logarithms (on base 2) of the distance spectrum
of some rate–1

3 ensembles of codes, plotted versus the normalized Hamming weights of
their codewords. The normalization is with respect to the common block length (3000)
of these codes.

1. The ensemble of uniformly interleaved turbo codes depicted in Fig. 4(a).

2. Gallager’s ensemble of (3000, 4, 6) LDPC codes, (rate ∼ 1
3).

3. Gallager’s ensemble of (3000, 6, 9) LDPC codes, (rate ∼ 1
3).

4. The ensemble of fully random block codes of length n = 3000 and rate R = 1
3 .

The Gallager’s upper bounds on the distance spectra of the ensembles of the regular
LDPC codes [13] are depicted in curves 2,3.

Figure 9: Comparison between the generalization of Duman and Salehi bounds (section III) and
the union bounds on the block error probability with ML decoding. These bounds
are applied to some code ensembles operating over fully interleaved Rayleigh fading
channels with or without MRC space diversity: L = 1, 4 in Figures 9(a) and 9(b),
respectively.

1. The ensemble of uniformly interleaved turbo codes depicted in Fig. 4(a), (rate 1
3).

2. Gallager’s ensemble of (3000, 4, 6) LDPC codes, (rate ∼ 1
3).

3. Gallager’s ensemble of (3000, 6, 9) LDPC codes, (rate ∼ 1
3).

Figure 10: Generalized Duman and Salehi upper bounds on the ML decoding error probability
of some ensembles of Gallager’s (n, 6, 9) LDPC codes with block lengths n = 3K, 5K,
10K, 20K and 40K. The code rates of these ensembles of regular LDPC codes approach
1
3 . Fully interleaved Rayleigh fading channels with and without space diversity are
examined.
Fig. 10(a) – no space diversity, Fig. 10(b) – MRC space diversity of order L = 4.
The upper bounds on the asymptotic thresholds (where n → +∞) referring to the ML
decoding are compared in terms of Eb

N0
with the channel capacity.

Figure 11: Comparison between generalized Duman and Salehi upper bounds on the Eb
N0

thresholds
(where n → +∞) for ML decoded ensembles of Gallager’s LDPC codes and uniformly
interleaved RA codes. The ensembles of codes operate over fully interleaved Rayleigh
fading channels with perfect CSI.
Fig. 11(a) – no space diversity, Fig. 11(b) - MRC space diversity of order L = 4.

Rate-2
3 : 1a - (j = 3, k = 9), 1b - (j = 4, k = 12), 1c - (j = 6, k = 18) LDPC codes.

Rate-3
5 : 2a - (j = 4, k = 10), 2b - (j = 6, k = 15) LDPC codes.

Rate-1
2 : 3a - (j = 3, k = 6), 3b - (j = 4, k = 8), 3c - (j = 8, k = 16) LDPC codes.

Rate-2
5 : 4a - (j = 3, k = 5), 4b - (j = 6, k = 10) LDPC codes.

Rate-1
3 : 5a - RA codes (q = 3), 5b - (j = 4, k = 6), 5c - (j = 8, k = 12) LDPC codes.

Rate-1
4 : 6a - RA codes (q = 4), 6b - (j = 3, k = 4), 6c - (j = 6, k = 8) LDPC codes.

Rate-1
5 : 7a - RA codes (q = 5), 7b - (j = 4, k = 5) LDPC codes.

Rate-1
6 : 8 - RA codes (q = 6).

Rate-1
7 : 9 - RA codes (q = 7).

Rate-1
8 : 10a - RA codes (q = 8), 10b - (j = 7, k = 8) LDPC codes.



qN coded 
bitsN information bits a repetition code

(q repetitions)
uniform interleaver

of length qN

differential

encoder

Figure 1a.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

−50

10
0

10
50

10
100

10
150

10
200

10
250

10
300

Hamming weight of the codewords (d)

T
he

 s
eq

ue
nc

e 
S

(d
),

 e
xp

re
ss

ed
 in

 e
q.

 (
10

)

Figure 1b.



1 1.5 2 2.5 3 3.5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No [dB]

B
it 

er
ro

r 
pr

ob
ab

ili
ty

20 iterations1 2

2

3

3

4 5

Figure 2.



−1 −0.5 0 0.5
10

−5

10
−4

10
−3

10
−2

Eb/ No [dB]

B
IT

 e
rr

or
 p

ro
ba

bi
lit

y

L = 1L = 2L = 3L = 4L −−> infinity

Figure 3.



y
2

y
1

y
3

uniform
interleaver
(N=1000)

binary input

Figure 4a.

0 500 1000 1500 2000 2500 3000
10

−50

10
0

10
50

10
100

10
150

10
200

10
250

10
300

Hamming weight of the codewords (d)

Th
e 

se
qu

en
ce

 S
(d

), 
ex

pr
es

se
d 

in
 e

q.
 (1

0)

Figure 4b.



1.5 2 2.5 3 3.5 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No [dB]

BI
T 

er
ro

r p
ro

ba
bi

lit
y

union ML boundimproved ML bounds

1 iteration

3 itr.

5 itr.
7 itr.
10 itr.

1 2

1: Generalized second version of Duman and Salehi bound

2: Generalized Engdahl − Zigangirov bound

Figure 5a.

0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/ No [dB]

BI
T 

er
ro

r p
ro

ba
bi

lit
y

1 iteration

3 itr.

5 itr.

7 itr.

10 itr.

Improved bounds union bound

1 2

1: Generalized second version of Duman and Salehi bound

2: Generalized Engdahl − Zigangirov bound

Figure 5b.



0.5 1 1.5 2 2.5 3
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No [dB]

B
IT

 e
rr

or
 p

ro
ba

bi
lit

y

Improved ML bounds union ML bound
1 2

1: Generalized second version of Duman and Salehi bound

2: Generalized Engdahl & Zigangirov bound

1 iteration

3 itr.

5 itr.

8 itr.

Figure 5c.



1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No [dB]

U
pp

er
 b

ou
nd

s 
on

 th
e 

BI
T 

er
ro

r p
ro

ba
bi

lit
y

L = 1 L = 1

(improved bound) (union bound)

L = 2L = 3L = 4L = 2L = 3L = 4

Figure 6.

0.5 1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No [dB]

BI
T 

er
ro

r p
ro

ba
bi

lit
y

improved

upper bound

union bound

(tight form)

1 iteration

3 itr.

7 itr.

5 itr.

10 iterations

Figure 7.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Hamming weight of the codewords/ block length

lo
g2

(d
is

ta
nc

e 
sp

ec
tr

um
)/

 b
lo

ck
 le

ng
th

1

1

2

3

4

Figure 8.



1.5 2 2.5 3 3.5 4
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

1: The turbo code in Fig. 5

2: (3000, 4, 6) LDPC codes 3: (3000, 6, 9) LDPC codes

1

2

3

Eb/No [dB]

BL
O

C
K 

er
ro

r p
ro

ba
bi

lit
y

Figure 9a.

0.5 1 1.5 2 2.5 3
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No [dB]

BL
O

C
K 

er
ro

r p
ro

ba
bi

lit
y

1: The turbo code in Fig. 5

2: (3000, 4, 6) LDPC codes 3: (3000, 6, 9) LDPC codes

1

2

3

Figure 9b.



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Capacity

limit

Threshold

for the LDPC

ensemble

5 4 3 2 1

1: n = 3K
2: n = 5K
3: n = 10K
4: n = 20K
5: n = 40K

Eb/No [dB]

BL
O

C
K 

er
ro

r p
ro

ba
bi

lit
y

Figure 10a.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Capacity

limit

Threshold for

the LDPC

ensemble

5 4 3 2 1

1: n = 3K
2: n = 5K
3: n = 10K
4: n = 20K
5: n = 40K

Eb/No [dB]

BL
O

C
K 

er
ro

r p
ro

ba
bi

lit
y

Figure 10b.



0.1 0.2 0.3 0.4 0.5 0.6 0.7
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Rate [bits/ symbol]

Eb
/N

o 
[d

B]

1a

1b
1c

2a
2b

3a

3b
3c

4a

4b

5a

5b
5c

6a

6b

6c
7a

7b
8

9
10a

10b

Channel capacity limit

Channel cutoff rate

Figure 11a.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Rate [bits/ symbol]

Eb
/N

o 
[d

B]

1a

1b
1c

2a
2b

3a

3b
3c

4a

4b

5a

5b
5c

6a

6b

6c

7a

7b
8

9
10a
10b

Channel capacity limit

Channel cutoff rate

Figure 11b.


