Upper Bounds on the Relative Entropy and Rényi Divergence as a Function of Total Variation Distance for Finite Alphabets

Igal Sason (Technion) Sergio Verdú (Princeton)
IEEE 2015 Information Theory Workshop
Jeju Island, Korea
October 12-15, 2015

Cast of Characters

- A finite set \mathcal{A} with σ-algebra \mathscr{F}
- Probability measures P, Q defined on the measurable space $(\mathcal{A}, \mathscr{F})$.
- $X \sim P$.
- $Y \sim Q$.

Cast of Characters

- A finite set \mathcal{A} with σ-algebra \mathscr{F}
- Probability measures P, Q defined on the measurable space $(\mathcal{A}, \mathscr{F})$.
- $X \sim P$.
- $Y \sim Q$.

Total Variation (TV) Distance

$$
\begin{aligned}
|P-Q| & =2 \sup _{\mathcal{F} \in \mathscr{F}}(P(\mathcal{F})-Q(\mathcal{F})) \\
& =\sum_{x \in \mathcal{A}}|P(x)-Q(x)| .
\end{aligned}
$$

Csiszár-Kemperman-Kullback-Pinsker Inequality

$$
D(P \| Q) \geq \frac{1}{2}|P-Q|^{2} \log e
$$

and the constant is tight in the sense that

$$
\inf _{P \neq Q} \frac{D(P \| Q)}{|P-Q|^{2}}=\frac{1}{2} \log e
$$

Csiszár-Kemperman-Kullback-Pinsker Inequality

$$
D(P \| Q) \geq \frac{1}{2}|P-Q|^{2} \log e
$$

and the constant is tight in the sense that

$$
\inf _{P \neq Q} \frac{D(P \| Q)}{|P-Q|^{2}}=\frac{1}{2} \log e
$$

An Implication of Pinsker's Inequality
Convergence in relative entropy \Longrightarrow convergence in TV distance.

Question

Is there a reverse Pinsker inequality that provides an upper bound on the relative entropy as a function of the TV distance ?

Question

Is there a reverse Pinsker inequality that provides an upper bound on the relative entropy as a function of the TV distance ?

No, for every $\varepsilon>0$ there exist P, Q s.t. $|P-Q| \leq \varepsilon, D(P \| Q)=\infty$.

A Reverse Pinsker Inequality [Csiszár and Talata, 2006]

If $Q_{\text {min }} \triangleq \min _{x \in \mathcal{A}} Q(x)>0$, then

$$
D(P \| Q) \leq \frac{\log e}{Q_{\min }} \cdot|P-Q|^{2}
$$

A Reverse Pinsker Inequality [Csiszár and Talata, 2006]

If $Q_{\text {min }} \triangleq \min _{x \in \mathcal{A}} Q(x)>0$, then

$$
D(P \| Q) \leq \frac{\log e}{Q_{\min }} \cdot|P-Q|^{2}
$$

A Reverse Pinsker Inequality [Verdú, ITA 2014]

If $P \ll Q$, let $\beta_{1} \in[0,1]$ be given by $\beta_{1}^{-1} \triangleq \sup _{x \in \mathcal{A}} \frac{\mathrm{~d} P}{\mathrm{~d} Q}(x)$.
Then, if $\beta_{1}<1$ as above,

$$
D(P \| Q) \leq \frac{\log \frac{1}{\beta_{1}}}{2\left(1-\beta_{1}\right)} \cdot|P-Q|
$$

Hence, if the relative information $i_{P \| Q}(x) \triangleq \log \frac{\mathrm{d} P}{\mathrm{~d} Q}(x)$ is bounded from above, a reverse Pinsker inequality exists.

New Reverse Pinsker Inequality

Theorem
a) If $P \ll Q$

$$
\begin{equation*}
D(P \| Q) \leq \log \left(1+\frac{|P-Q|^{2}}{2 Q_{\min }}\right) . \tag{1}
\end{equation*}
$$

b) Furthermore, if $Q \ll P$ and $\beta_{2} \in[0,1]$ is given by

$$
\beta_{2}=\min _{x \in \mathcal{A}} \frac{P(x)}{Q(x)}
$$

then the following tightened bound holds:

$$
\begin{equation*}
D(P \| Q) \leq \log \left(1+\frac{|P-Q|^{2}}{2 Q_{\min }}\right)-\frac{\beta_{2} \log e}{2} \cdot|P-Q|^{2} . \tag{2}
\end{equation*}
$$

Note on the Weaker Version of This Bound

This already improves the Csiszár-Talata inequality since

$$
\log \left(1+\frac{|P-Q|^{2}}{2 Q_{\min }}\right) \leq \frac{\log e}{2 Q_{\min }} \cdot|P-Q|^{2}
$$

Proof

The idea is to obtain upper and lower bounds on the χ^{2}-divergence

$$
\chi^{2}(P, Q) \triangleq \sum_{x \in \mathcal{A}} \frac{(P(x)-Q(x))^{2}}{Q(x)}
$$

Proof

The idea is to obtain upper and lower bounds on the χ^{2}-divergence

$$
\chi^{2}(P, Q) \triangleq \sum_{x \in \mathcal{A}} \frac{(P(x)-Q(x))^{2}}{Q(x)}
$$

Bounds on the χ^{2}-divergence

$$
\begin{gathered}
\chi^{2}(P \| Q)=e^{D_{2}(P \| Q)}-1 \\
\geq e^{D(P \| Q)}-1 . \\
\chi^{2}(P \| Q) \leq \frac{\sum_{x \in \mathcal{A}}(P(x)-Q(x))^{2}}{Q_{\min }} \\
\leq \frac{|P-Q|^{2}}{2 Q_{\min }} .
\end{gathered}
$$

Combining the bounds yields the weaker version of this inequality.

Distance From the Equiprobable Distribution

If P is a distribution on a finite set $\mathcal{A}, H(P)$ gauges the "distance" from U , the equiprobable distribution defined on \mathcal{A}, since

$$
H(P)=\log |\mathcal{A}|-D(P \| \mathrm{U})
$$

It is of interest to explore the relationship between $H(P)$ and $|P-\mathrm{U}|$.

Distance From the Equiprobable Distribution

If P is a distribution on a finite set $\mathcal{A}, H(P)$ gauges the "distance" from
U , the equiprobable distribution defined on \mathcal{A}, since

$$
H(P)=\log |\mathcal{A}|-D(P \| \mathbf{U})
$$

It is of interest to explore the relationship between $H(P)$ and $|P-\mathrm{U}|$.

Next, we determine the exact locus of the points $(H(P),|P-\mathrm{U}|)$ among all probability measures P defined on \mathcal{A}, and this region is compared to upper and lower bounds on $|P-\mathrm{U}|$ as a function of $H(P)$.

Distance From the Equiprobable Distribution

If P is a distribution on a finite set $\mathcal{A}, H(P)$ gauges the "distance" from U , the equiprobable distribution defined on \mathcal{A}, since

$$
H(P)=\log |\mathcal{A}|-D(P \| \mathbf{U})
$$

It is of interest to explore the relationship between $H(P)$ and $|P-\mathrm{U}|$.

Next, we determine the exact locus of the points $(H(P),|P-\mathrm{U}|)$ among all probability measures P defined on \mathcal{A}, and this region is compared to upper and lower bounds on $|P-\mathrm{U}|$ as a function of $H(P)$.

Notation

- $h(x)=-x \log x-(1-x) \log (1-x)$ for $x \in[0,1]$ denotes the binary entropy function;
- $d(x \| y)=x \log \frac{x}{y}+(1-x) \log \frac{1-x}{1-y}$ for $x, y \in[0,1]$ denotes the binary relative entropy.

Theorem

Let U be the equiprobable distribution on a $\{1, \ldots,|\mathcal{A}|\}$, with $1<|\mathcal{A}|<\infty$.
a) For $\Delta \in\left(0,2\left(1-|\mathcal{A}|^{-1}\right)\right]$,

$$
\begin{equation*}
\max _{P:|P-\mathrm{U}|=\Delta} H(P)=\log |\mathcal{A}|-\min _{m} d\left(|\mathcal{A}|^{-1} m+\frac{1}{2} \Delta \||\mathcal{A}|^{-1} m\right) \tag{3}
\end{equation*}
$$

where the minimum in the right side of (3) is over all positive integers m not exceeding $\min \left\{|\mathcal{A}|-1,|\mathcal{A}|\left(1-\frac{1}{2} \Delta\right)\right\}$. Denoting such an integer by m_{Δ}, the maximum in the left side of (3) is attained by

$$
P_{\Delta}(\ell)= \begin{cases}|\mathcal{A}|^{-1}+\frac{\Delta}{2 m_{\Delta}}{ }_{\Delta}, & \ell \in\left\{1, \ldots, m_{\Delta}\right\} \tag{4}\\ |\mathcal{A}|^{-1}-\frac{1\left(\mathcal{A} \mid-m_{\Delta}\right)}{2(}, & \ell \in\left\{m_{\Delta}+1, \ldots,|\mathcal{A}|\right\}\end{cases}
$$

Theorem (cont.)

b) Let $\quad h_{k}= \begin{cases}0, & k=0 \\ h\left(|\mathcal{A}|^{-1} k\right)+|\mathcal{A}|^{-1} k \log k, & k \in\{1, \ldots,|\mathcal{A}|-2\} \\ \log |\mathcal{A}|, & k=|\mathcal{A}|-1 .\end{cases}$

If $H \in\left[h_{k-1}, h_{k}\right)$ for $k \in\{1, \ldots,|\mathcal{A}|-1\}$, then

$$
\begin{equation*}
\min _{P: H(P)=H}|P-U|=2\left(1-(k+\theta)|\mathcal{A}|^{-1}\right) \tag{6}
\end{equation*}
$$

which is achieved by

$$
P_{\theta}^{(k)}(\ell)= \begin{cases}1-(k-1+\theta)|\mathcal{A}|^{-1}, & \ell=1 \tag{7}\\ |\mathcal{A}|^{-1}, & \ell \in\{2, \ldots, k\} \\ \theta|\mathcal{A}|^{-1}, & \ell=k+1 \\ 0, & \ell \in\{k+2, \ldots,|\mathcal{A}|\}\end{cases}
$$

where $\theta \in[0,1)$ is chosen so that $H\left(P_{\theta}^{(k)}\right)=H$.

Bounds

Most well-known bound on the entropy difference in terms of the total variation distance is

$$
\begin{equation*}
|H(P)-H(Q)| \leq|P-Q| \log \left(\frac{|\mathcal{A}|}{|P-Q|}\right) \tag{8}
\end{equation*}
$$

which holds if P, Q are probability measures defined on a finite set \mathcal{A} with $|P(a)-Q(a)| \leq \frac{1}{2}$ for all $a \in \mathcal{A}$.

Bounds

Most well-known bound on the entropy difference in terms of the total variation distance is

$$
\begin{equation*}
|H(P)-H(Q)| \leq|P-Q| \log \left(\frac{|\mathcal{A}|}{|P-Q|}\right) \tag{8}
\end{equation*}
$$

which holds if P, Q are probability measures defined on a finite set \mathcal{A} with $|P(a)-Q(a)| \leq \frac{1}{2}$ for all $a \in \mathcal{A}$.
Particularizing (8) to the case where $Q=\mathrm{U}$, and $\left|P(a)-\frac{1}{|\mathcal{A}|}\right| \leq \frac{1}{2}$ for all $a \in \mathcal{A}$ yields

$$
\begin{equation*}
H(P) \geq \log |\mathcal{A}|-|P-\mathrm{U}| \log \left(\frac{|\mathcal{A}|}{|P-\mathrm{U}|}\right) \tag{9}
\end{equation*}
$$

Bounds (cont.)

- The Bretagnolle-Huber inequality (1979)

$$
\begin{equation*}
\frac{1}{4}|P-Q|^{2} \leq 1-\exp (-D(P \| Q)) \tag{10}
\end{equation*}
$$

- Particularizing Pinsker's inequality, (10) and the reverse Pinsker inequality yield

$$
\begin{align*}
& H(P) \leq \log |\mathcal{A}|-\frac{1}{2}|P-\mathrm{U}|^{2} \log e \tag{11}\\
& H(P) \leq \log |\mathcal{A}|+\log \left(1-\frac{1}{4}|P-\mathrm{U}|^{2}\right) \tag{12}\\
& H(P) \geq \log |\mathcal{A}|-\log \left(1+\frac{|\mathcal{A}|}{2}|P-\mathrm{U}|^{2}\right) \tag{13}
\end{align*}
$$

- It can be checked that the lower bound on $H(P)$ in the previous slide is worse than (13), irrespectively of $|P-\mathrm{U}|$, if either $|\mathcal{A}|=2$ or $8 \leq|\mathcal{A}| \leq 102$ (note that $0 \leq|P-\mathrm{U}| \leq 2\left(1-|\mathcal{A}|^{-1}\right)$).

Exact Locus versus Bounds

Figure: The exact locus of $(H(P),|P-\mathrm{U}|)$ among all the probability measures P defined on a finite set \mathcal{A}, and bounds on $|P-\mathrm{U}|$ as a function of $H(P)$ for $|\mathcal{A}|=4$ (left plot), and $|\mathcal{A}|=256$ (right plot). The point $(H(P),|P-\mathrm{U}|)=\left(0,2\left(1-|\mathcal{A}|^{-1}\right)\right)$ is depicted on the y-axis. In the two plots, Curves (a), (b) and (c) refer, respectively, to (11), (12) and (13); the exact locus (shaded region) refers to Theorem 2.

The Rényi Divergence

In the discrete case, we have for $\alpha \in(0,1) \cup(1, \infty)$

$$
D_{\alpha}(P \| Q)=\frac{1}{\alpha-1} \log \left(\sum_{x \in \mathcal{A}} P^{\alpha}(x) Q^{1-\alpha}(x)\right) .
$$

The Rényi Divergence

In the discrete case, we have for $\alpha \in(0,1) \cup(1, \infty)$

$$
D_{\alpha}(P \| Q)=\frac{1}{\alpha-1} \log \left(\sum_{x \in \mathcal{A}} P^{\alpha}(x) Q^{1-\alpha}(x)\right) .
$$

Extreme cases:

- If $\alpha=0$ then $D_{0}(P \| Q)=-\log Q(\operatorname{Support}(P))$,
- If $\alpha=+\infty$ then $D_{\infty}(P \| Q)=\log \left(\right.$ ess $\left.\sup \frac{P}{Q}\right)$.
- If $D(P \| Q)<\infty$, then $D(P \| Q)=\lim _{\alpha \rightarrow 1^{-}} D_{\alpha}(P \| Q)$.

New Bounds on the Rényi Divergence

Theorem

Let $P \ll>Q$ be defined a common finite set \mathcal{A}, and assume that P, Q are strictly positive with minimum masses denoted by $P_{\min }$ and $Q_{\min }$, respectively. Let $\beta_{1}=\min _{a \in \mathcal{A}} Q(a) / P(a)$ and $\beta_{2}=\min _{a \in \mathcal{A}} P(a) / Q(a)$. Abbreviate $\delta \triangleq \frac{1}{2}|P-Q| \in[0,1]$. Then, the Rényi divergence of order $\alpha \in[0, \infty]$ satisfies

$$
D_{\alpha}(P \| Q) \leq \begin{cases}f_{1}, & \alpha \in(2, \infty] \tag{14}\\ f_{2}, & \alpha \in[1,2] \\ \min \left\{f_{2}, f_{3}, f_{4}\right\}, & \alpha \in\left(\frac{1}{2}, 1\right) \\ \min \left\{2 \log \left(\frac{1}{1-\delta}\right), f_{2}, f_{3}, f_{4}\right\}, & \alpha \in\left[0, \frac{1}{2}\right]\end{cases}
$$

Theorem (cont.)

For $\alpha \in[0, \infty]$,

$$
f_{1}\left(\alpha, \beta_{1}, \delta\right) \triangleq \begin{cases}\frac{1}{\alpha-1} \log \left(1+\frac{\delta\left(\beta_{1}^{1-\alpha}-1\right)}{1-\beta_{1}}\right), & \alpha \in[0,1) \cup(1, \infty) \\ \frac{\delta}{1-\beta_{1}} \log \frac{1}{\beta_{1}}, & \alpha=1 \tag{15}\\ \log \frac{1}{\beta_{1}}, & \alpha=\infty\end{cases}
$$

for $\alpha \in[0,2]$

$$
\begin{equation*}
f_{2}\left(\alpha, \beta_{1}, Q_{\min }, \delta\right) \triangleq \min \left\{f_{1}\left(\alpha, \beta_{1}, \delta\right), \log \left(1+\frac{2 \delta^{2}}{Q_{\min }}\right)\right\} \tag{16}
\end{equation*}
$$

and, for $\alpha \in[0,1), f_{3}$ and f_{4} are given by

$$
\begin{equation*}
f_{3}\left(\alpha, P_{\min }, \beta_{1}, \delta\right) \triangleq\left(\frac{\alpha}{1-\alpha}\right)\left[\log \left(1+\frac{2 \delta^{2}}{P_{\min }}\right)-2 \beta_{1} \delta^{2} \log e\right] \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
f_{4}\left(\beta_{2}, Q_{\min }, \delta\right) \triangleq \log \left(1+\frac{2 \delta^{2}}{Q_{\min }}\right)-2 \beta_{2} \delta^{2} \log e \tag{18}
\end{equation*}
$$

Relation with a Reverse Pinsker Inequality

By letting $\alpha \rightarrow 1$ in Theorem 3, we get

$$
D(P \| Q) \leq \frac{\log \frac{1}{\beta_{1}}}{2\left(1-\beta_{1}\right)} \cdot|P-Q|
$$

which coincides with the bound by Verdú (ITA '14). The bound on the Rényi divergence in Theorem 3 therefore generalizes the above bound on the relative entropy.

Plot: Bounds on the Rényi Divergence

Figure: The Rényi divergence $D_{\alpha}(P \| Q)$ for P and Q which are defined on a binary alphabet with $P(0)=Q(1)=0.65$, compared to (a) its upper bound in Theorem 3, and (b) its upper bound: $D_{\alpha}(P \| Q) \leq \frac{1}{\alpha-1} \log \left(1+\frac{|P-Q|}{2} \frac{\beta_{1}^{1-\alpha}-1}{1-\beta_{1}}\right)$. These bounds coincide here when $\alpha \in(1,1.291) \cup(2, \infty)$.

Summary

- This talk presents in part bounds among f-divergences which are derived for finite alphabets.
- The full paper version, which is currently under review and is available at http://arxiv.org/abs/1508.00335, derives bounds among f-divergences (and Rényi divergences) for general alphabets.

