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Measures

Cast of Characters

A finite set A with σ-algebra F

Probability measures P,Q defined on the measurable space (A,F ).

X ∼ P .

Y ∼ Q.
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Measures

Cast of Characters

A finite set A with σ-algebra F

Probability measures P,Q defined on the measurable space (A,F ).

X ∼ P .

Y ∼ Q.

Total Variation (TV) Distance

|P −Q| = 2 sup
F∈F

(
P (F)−Q(F)

)
=
∑
x∈A

∣∣P (x)−Q(x)
∣∣.
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Pinsker’s Inequality

Csiszár-Kemperman-Kullback-Pinsker Inequality

D(P‖Q) ≥ 1
2 |P −Q|2 log e

and the constant is tight in the sense that

inf
P 6=Q

D(P‖Q)

|P −Q|2 = 1
2 log e.
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Pinsker’s Inequality

Csiszár-Kemperman-Kullback-Pinsker Inequality

D(P‖Q) ≥ 1
2 |P −Q|2 log e

and the constant is tight in the sense that

inf
P 6=Q

D(P‖Q)

|P −Q|2 = 1
2 log e.

An Implication of Pinsker’s Inequality

Convergence in relative entropy =⇒ convergence in TV distance.
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Reverse Pinsker’s Inequality

Question

Is there a reverse Pinsker inequality that provides an upper bound on the
relative entropy as a function of the TV distance ?
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Reverse Pinsker’s Inequality

Question

Is there a reverse Pinsker inequality that provides an upper bound on the
relative entropy as a function of the TV distance ?

No, for every ε > 0 there exist P , Q s.t. |P −Q| ≤ ε, D(P‖Q) =∞.
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Reverse Pinsker’s Inequality

A Reverse Pinsker Inequality [Csiszár and Talata, 2006]

If Qmin , minx∈AQ(x) > 0, then

D(P‖Q) ≤ log e

Qmin
· |P −Q|2.
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Reverse Pinsker’s Inequality

A Reverse Pinsker Inequality [Csiszár and Talata, 2006]

If Qmin , minx∈AQ(x) > 0, then

D(P‖Q) ≤ log e

Qmin
· |P −Q|2.

A Reverse Pinsker Inequality [Verdú, ITA 2014]

If P � Q, let β1 ∈ [0, 1] be given by β−1
1 , supx∈A

dP
dQ(x).

Then, if β1 < 1 as above,

D(P‖Q) ≤
log 1

β1

2(1− β1)
· |P −Q|.

Hence, if the relative information iP‖Q(x) , log dP
dQ(x) is bounded from

above, a reverse Pinsker inequality exists.

I. Sason S. Verdú ITW 2015, Jeju, Korea October 12–15, 2015. 5 / 20



Reverse Pinsker’s Inequality

New Reverse Pinsker Inequality

Theorem

a) If P � Q

D(P‖Q) ≤ log

(
1 +
|P −Q|2

2Qmin

)
. (1)

b) Furthermore, if Q� P and β2 ∈ [0, 1] is given by

β2 = min
x∈A

P (x)

Q(x)

then the following tightened bound holds:

D(P‖Q) ≤ log

(
1 +
|P −Q|2

2Qmin

)
− β2 log e

2
· |P −Q|2. (2)
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Reverse Pinsker’s Inequality

Note on the Weaker Version of This Bound

This already improves the Csiszár-Talata inequality since

log

(
1 +
|P −Q|2

2Qmin

)
≤ log e

2Qmin
· |P −Q|2.
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Reverse Pinsker’s Inequality

Proof

The idea is to obtain upper and lower bounds on the χ2-divergence

χ2(P,Q) ,
∑
x∈A

(P (x)−Q(x))2

Q(x)
.
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Reverse Pinsker’s Inequality

Proof

The idea is to obtain upper and lower bounds on the χ2-divergence

χ2(P,Q) ,
∑
x∈A

(P (x)−Q(x))2

Q(x)
.

Bounds on the χ2-divergence

χ2(P‖Q) = eD2(P‖Q) − 1

≥ eD(P‖Q) − 1.

χ2(P‖Q) ≤
∑
x∈A

(
P (x)−Q(x)

)2
Qmin

≤ |P −Q|
2

2Qmin
.

Combining the bounds yields the weaker version of this inequality.
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Distance From the Equiprobable Distribution

Distance From the Equiprobable Distribution

If P is a distribution on a finite set A, H(P ) gauges the “distance” from
U, the equiprobable distribution defined on A, since

H(P ) = log |A| −D(P‖U).

It is of interest to explore the relationship between H(P ) and |P − U|.
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Distance From the Equiprobable Distribution

If P is a distribution on a finite set A, H(P ) gauges the “distance” from
U, the equiprobable distribution defined on A, since

H(P ) = log |A| −D(P‖U).

It is of interest to explore the relationship between H(P ) and |P − U|.

Next, we determine the exact locus of the points (H(P ), |P − U|) among
all probability measures P defined on A, and this region is compared to
upper and lower bounds on |P − U| as a function of H(P ).
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Distance From the Equiprobable Distribution

Distance From the Equiprobable Distribution

If P is a distribution on a finite set A, H(P ) gauges the “distance” from
U, the equiprobable distribution defined on A, since

H(P ) = log |A| −D(P‖U).

It is of interest to explore the relationship between H(P ) and |P − U|.

Next, we determine the exact locus of the points (H(P ), |P − U|) among
all probability measures P defined on A, and this region is compared to
upper and lower bounds on |P − U| as a function of H(P ).

Notation

h(x) = −x log x− (1− x) log(1− x) for x ∈ [0, 1] denotes the binary
entropy function;

d(x‖y) = x log x
y + (1− x) log 1−x

1−y for x, y ∈ [0, 1] denotes the binary
relative entropy.
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Distance From the Equiprobable Distribution

Theorem

Let U be the equiprobable distribution on a {1, . . . , |A|}, with
1 < |A| <∞.

a) For ∆ ∈ (0, 2(1− |A|−1)],

max
P : |P−U|=∆

H(P ) = log |A| −min
m

d
(
|A|−1m+ 1

2 ∆ ‖ |A|−1m
)

(3)

where the minimum in the right side of (3) is over all positive integers
m not exceeding min

{
|A| − 1, |A| (1− 1

2 ∆)
}

. Denoting such an
integer by m∆, the maximum in the left side of (3) is attained by

P∆(`) =

{
|A|−1 + ∆

2m∆
` ∈ {1, . . . ,m∆},

|A|−1 − ∆
2(|A|−m∆) , ` ∈ {m∆ + 1, . . . , |A|}. (4)
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Distance From the Equiprobable Distribution

Theorem (cont.)

b) Let
hk =


0, k = 0
h
(
|A|−1k

)
+ |A|−1 k log k, k ∈ {1, . . . , |A| − 2}

log |A|, k = |A| − 1.
(5)

If H ∈ [hk−1, hk) for k ∈ {1, . . . , |A| − 1}, then

min
P : H(P )=H

|P − U| = 2
(
1− (k + θ) |A|−1

)
(6)

which is achieved by

P
(k)
θ (`) =


1− (k − 1 + θ) |A|−1, ` = 1
|A|−1, ` ∈ {2, . . . , k},
θ |A|−1, ` = k + 1
0, ` ∈ {k + 2, . . . , |A|}

(7)

where θ ∈ [0, 1) is chosen so that H(P
(k)
θ ) = H.
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Distance From the Equiprobable Distribution

Bounds

Most well-known bound on the entropy difference in terms of the total
variation distance is

|H(P )−H(Q)| ≤ |P −Q| log

( |A|
|P −Q|

)
(8)

which holds if P,Q are probability measures defined on a finite set A with∣∣P (a)−Q(a)
∣∣ ≤ 1

2 for all a ∈ A.
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Distance From the Equiprobable Distribution

Bounds

Most well-known bound on the entropy difference in terms of the total
variation distance is

|H(P )−H(Q)| ≤ |P −Q| log

( |A|
|P −Q|

)
(8)

which holds if P,Q are probability measures defined on a finite set A with∣∣P (a)−Q(a)
∣∣ ≤ 1

2 for all a ∈ A.

Particularizing (8) to the case where Q = U, and
∣∣∣P (a)− 1

|A|

∣∣∣ ≤ 1
2 for all

a ∈ A yields

H(P ) ≥ log |A| − |P − U| log

( |A|
|P − U|

)
. (9)
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Distance From the Equiprobable Distribution

Bounds (cont.)

The Bretagnolle-Huber inequality (1979)

1
4 |P −Q|2 ≤ 1− exp

(
−D(P‖Q)

)
. (10)

Particularizing Pinsker’s inequality, (10) and the reverse Pinsker
inequality yield

H(P ) ≤ log |A| − 1
2 |P − U|2 log e, (11)

H(P ) ≤ log |A|+ log
(
1− 1

4 |P − U|2
)
, (12)

H(P ) ≥ log |A| − log
(

1 + |A|
2 |P − U|2

)
. (13)

It can be checked that the lower bound on H(P ) in the previous slide
is worse than (13), irrespectively of |P − U|, if either |A| = 2 or
8 ≤ |A| ≤ 102 (note that 0 ≤ |P − U| ≤ 2(1− |A|−1)).
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Distance From the Equiprobable Distribution

Exact Locus versus Bounds

H(P ) (bits)

|P
�

U
|

(a)

(b)

(c)

H(P ) (bits)

|P
�

U
|

(a)

(b)

(c)

Figure: The exact locus of (H(P ), |P − U|) among all the probability measures
P defined on a finite set A, and bounds on |P − U| as a function of H(P ) for
|A| = 4 (left plot), and |A| = 256 (right plot). The point
(H(P ), |P − U|) = (0, 2(1− |A|−1)) is depicted on the y-axis. In the two plots,
Curves (a), (b) and (c) refer, respectively, to (11), (12) and (13); the exact locus
(shaded region) refers to Theorem 2.
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Distance From the Equiprobable Distribution

The Rényi Divergence

In the discrete case, we have for α ∈ (0, 1) ∪ (1,∞)

Dα(P ||Q) =
1

α− 1
log

(∑
x∈A

Pα(x)Q1−α(x)

)
.
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Distance From the Equiprobable Distribution

The Rényi Divergence

In the discrete case, we have for α ∈ (0, 1) ∪ (1,∞)

Dα(P ||Q) =
1

α− 1
log

(∑
x∈A

Pα(x)Q1−α(x)

)
.

Extreme cases:

If α = 0 then D0(P ||Q) = − logQ(Support(P )),

If α = +∞ then D∞(P ||Q) = log
(

ess sup P
Q

)
.

If D(P ||Q) <∞, then D(P ||Q) = limα→1− Dα(P ||Q).
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Distance From the Equiprobable Distribution

New Bounds on the Rényi Divergence

Theorem

Let P �� Q be defined a common finite set A, and assume that P,Q
are strictly positive with minimum masses denoted by Pmin and Qmin,
respectively. Let β1 = mina∈AQ(a)/P (a) and β2 = mina∈A P (a)/Q(a).
Abbreviate δ , 1

2 |P −Q| ∈ [0, 1]. Then, the Rényi divergence of order
α ∈ [0,∞] satisfies

Dα(P‖Q) ≤



f1, α ∈ (2,∞]

f2, α ∈ [1, 2]

min {f2, f3, f4} , α ∈
(

1
2 , 1
)

min
{

2 log
(

1
1−δ

)
, f2, f3, f4

}
, α ∈

[
0, 1

2

]
(14)
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Distance From the Equiprobable Distribution

Theorem (cont.)

For α ∈ [0,∞],

f1(α, β1, δ) ,


1

α−1 log
(

1 +
δ(β1−α

1 −1)
1−β1

)
, α ∈ [0, 1) ∪ (1,∞)

δ
1−β1

log 1
β1
, α = 1,

log 1
β1
, α =∞

(15)

for α ∈ [0, 2]

f2(α, β1, Qmin, δ) , min

{
f1(α, β1, δ), log

(
1 +

2δ2

Qmin

)}
(16)

and, for α ∈ [0, 1), f3 and f4 are given by

f3(α, Pmin, β1, δ) ,

(
α

1− α

)[
log

(
1 +

2δ2

Pmin

)
− 2β1δ

2 log e

]
, (17)

f4(β2, Qmin, δ) , log

(
1 +

2δ2

Qmin

)
− 2β2δ

2 log e. (18)
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Distance From the Equiprobable Distribution

Relation with a Reverse Pinsker Inequality

By letting α→ 1 in Theorem 3, we get

D(P‖Q) ≤
log 1

β1

2(1− β1)
· |P −Q|

which coincides with the bound by Verdú (ITA ’14). The bound on the
Rényi divergence in Theorem 3 therefore generalizes the above bound on
the relative entropy.
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Distance From the Equiprobable Distribution

Plot: Bounds on the Rényi Divergence
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Figure: The Rényi divergence Dα(P‖Q) for P and Q which are defined on a
binary alphabet with P (0) = Q(1) = 0.65, compared to (a) its upper bound in

Theorem 3, and (b) its upper bound: Dα(P‖Q) ≤ 1
α−1 log

(
1 + |P−Q|

2
β1−α
1 −1
1−β1

)
.

These bounds coincide here when α ∈ (1, 1.291) ∪ (2,∞).
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Distance From the Equiprobable Distribution

Summary

This talk presents in part bounds among f -divergences which are
derived for finite alphabets.

The full paper version, which is currently under review and is available
at http://arxiv.org/abs/1508.00335, derives bounds among
f -divergences (and Rényi divergences) for general alphabets.
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