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Abstract—A new upper bound on the relative entropy is de-
rived as a function of the total variation distance for probability
measures defined on a common finite alphabet. The bound
improves a previously reported bound by Csiszár and Talata. It
is further extended to an upper bound on the Rényi divergence
of an arbitrary non-negative order (including ∞) as a function
of the total variation distance.
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1. INTRODUCTION

Consider two probability distributions P and Q defined
on a common measurable space (A,F ). The Csiszár-
Kemperman-Kullback-Pinsker inequality (a.k.a. Pinsker’s in-
equality) states that

1
2 |P −Q|2 log e ≤ D(P‖Q) (1)

where

D(P‖Q) = EP
[
log

dP
dQ

]
=

∫
A

dP (a) log
dP
dQ

(a) (2)

designates the relative entropy (a.k.a. the Kullback-Leibler
divergence) from P to Q, and

|P −Q| = 2 sup
F∈F

|P (F)−Q(F)| (3)

is the total variation distance between P and Q.
A “reverse Pinsker inequality” providing an upper bound

on the relative entropy in terms of the total variation distance
does not exist in general since we can find distributions that
are arbitrarily close in total variation but with arbitrarily
high relative entropy. Nevertheless, it is possible to introduce
constraints under which such reverse Pinsker inequalities can
be obtained. In the case where the probability measures P
and Q are defined on a common discrete (i.e., finite or
countable) set A,

D(P‖Q) =
∑
a∈A

P (a) log
P (a)

Q(a)
, (4)

|P −Q| =
∑
a∈A

∣∣P (a)−Q(a)
∣∣. (5)

One of the implications of (1) is that convergence in rela-
tive entropy implies convergence in total variation distance.

The total variation distance is bounded |P −Q| ≤ 2, whereas
the relative entropy is an unbounded information measure.

Improved versions of Pinsker’s inequality were studied,
e.g., in [9], [10], [14], [17], [22].

A “reverse Pinsker inequality” providing an upper bound
on the relative entropy in terms of the total variation distance
does not exist in general since we can find distributions that
are arbitrarily close in total variation but with arbitrarily
high relative entropy. Nevertheless, it is possible to introduce
constraints under which such reverse Pinsker inequalities can
be obtained. In the case of a finite alphabet A, Csiszár and
Talata [6, p. 1012] show that

D(P‖Q) ≤
(
log e

Qmin

)
· |P −Q|2, (6)

where

Qmin , min
a∈A

Q(a). (7)

Recent applications of (6) can be found in [12, Ap-
pendix D] and [21, Lemma 7] for the analysis of the third-
order asymptotics of the discrete memoryless channel with
or without cost constraints.

In addition to Qmin in (7), the bounds in this paper involve

β1 = min
a∈A

Q(a)

P (a)
, (8)

β2 = min
a∈A

P (a)

Q(a)
(9)

so, β1, β2 ∈ [0, 1].
In this paper, Section 2 derives a reverse Pinsker inequality

for probability measures defined on a common finite set,
improving the bound in (6). The utility of this inequality
is studied in Section 3, and it is extended in Section 4 to
Rényi divergences of an arbitrary non-negative order.

2. A NEW REVERSE PINSKER INEQUALITY FOR
DISTRIBUTIONS ON A FINITE SET

The present section introduces a strengthened version of
(6), followed by some remarks and an example.
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A. Main Result and Proof

Theorem 1. Let P and Q be probability measures defined on
a common finite set A, and assume that Q is strictly positive
on A. Then, the following inequality holds:

D(P‖Q) ≤ log

(
1 +
|P −Q|2
2Qmin

)
− β2 log e

2
· |P −Q|2

(10)

≤ log

(
1 +
|P −Q|2
2Qmin

)
(11)

where Qmin and β2 are given in (7) and (9), respectively.

Proof. Theorem 1 is proved by obtaining upper and lower
bounds on the χ2-divergence from P to Q

χ2(P‖Q) ,
∑
a∈A

(P (a)−Q(a))2

Q(a)
. (12)

A lower bound follows by invoking Jensen’s inequality

χ2(P‖Q) =
∑
a∈A

P (a)2

Q(a)
− 1 (13)

=
∑
a∈A

P (a) exp

(
log

P (a)

Q(a)

)
− 1 (14)

≥ exp

(∑
a∈A

P (a) log
P (a)

Q(a)

)
− 1 (15)

= exp
(
D(P‖Q)

)
− 1. (16)

Alternatively, (16) can be obtained by combining the equality

χ2(P‖Q) = exp
(
D2(P‖Q)

)
− 1 (17)

with the monotonicity of the Rényi divergence Dα(P‖Q) in
α, which implies that D2(P‖Q) ≥ D(P‖Q).

A refined version of (16) is derived in the following. The
starting point is a refined version of Jensen’s inequality in
[20, Lemma 1], generalizing a result from [7, Theorem 1]),
which leads to (see [20, Theorem 7])

min
a∈A

P (a)

Q(a)
·D(Q‖P )

≤ log
(
1 + χ2(P‖Q)

)
−D(P‖Q) (18)

≤ max
a∈A

P (a)

Q(a)
·D(Q‖P ). (19)

From (19) and the definition of β2 in (9), we have

χ2(P‖Q)

≥ exp
(
D(P‖Q) + β2D(Q‖P )

)
− 1 (20)

≥ exp

(
D(P‖Q) +

β2 log e

2
· |P −Q|2

)
− 1 (21)

where (20) follows from (18) and the definition of β2 in (9),
and (21) follows from Pinsker’s inequality (1). Note that the
lower bound in (21) refines the lower bound in (16) since
β2 ∈ [0, 1].

An upper bound on χ2(P‖Q) is derived as follows:

χ2(P‖Q) =
∑
a∈A

(P (a)−Q(a))2

Q(a)

≤
∑
a∈A

(
P (a)−Q(a)

)2
Qmin

(22)

=
|P −Q|
Qmin

·max
a∈A
|P (a)−Q(a)| (23)

and, from (3),

|P −Q| ≥ 2max
a∈A
|P (a)−Q(a)|. (24)

Combining (23) and (24) yields

χ2(P‖Q) ≤ |P −Q|
2

2Qmin
. (25)

Finally, (10) follows by combining the upper and lower
bounds on the χ2-divergence in (21) and (25).

Remark 1. It is easy to check that Theorem 1 strengthens
the bound by Csiszár and Talata in (6) by at least a factor
of 2 since upper bounding the logarithm in (10) gives

D(P‖Q) ≤ (1− β2Qmin) log e

2Qmin
· |P −Q|2. (26)

In the finite-alphabet case, we can obtain another upper
bound on D(P‖Q) as a function of the `2 norm ‖P −Q‖2:

D(P‖Q) ≤ log

(
1 +
‖P −Q‖22
Qmin

)
− β2 log e

2
· ‖P −Q‖22

(27)

which follows by combining (21), (22), and ‖P − Q‖2 ≤
|P −Q|. Using the inequality log(1+x) ≤ x log e for x ≥ 0
in the right side of (27), and also loosening this bound by
ignoring the term β2 log e

2 · ‖P −Q‖22, we recover the bound

D(P‖Q) ≤ ‖P −Q‖
2
2 log e

Qmin
(28)

which appears in the proof of Property 4 of [21, Lemma 7],
and also used in [12, (174)].

Remark 2. The lower bounds on the χ2-divergence in (16)
and (21) improve the one in [6, Lemma 6.3] which states
that D(P‖Q) ≤ χ2(P‖Q) log e.

Remark 3. Reverse Pinsker inequalities have been also
derived in quantum information theory ([1], [2]), providing
upper bounds on the relative entropy of two quantum states
as a function of the trace norm distance when the minimal
eigenvalues of the states are positive (c.f. [1, Theorem 6]
and [2, Theorem 1]). These type of bounds are akin to
the weakend form in (11). When the variational distance is
much smaller than the minimal eigenvalue (see [1, Eq. (57)]),
the latter bounds have a quadratic scaling in this distance,
similarly to (11); they are also inversely proportional to the
minimal eigenvalue, similarly to the dependence of (11) in
Qmin.
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3. APPLICATIONS OF THEOREM 1
A. The Exponential Decay of the Probability for a Non-
Typical Sequence

To exemplify the utility of Theorem 1, we bound the
function

Lδ(Q) = min
P 6∈Tδ(Q)

D(P‖Q) (29)

where we have denoted the subset of probability measures
on (A,F ) which are δ-close to Q as

Tδ(Q) =
{
P : ∀ a ∈ A, |P (a)−Q(a)| ≤ δ Q(a)

}
(30)

Note that (a1, . . . , an) is strongly δ-typical according to Q
if its empirical distribution belongs to Tδ(Q). According to
Sanov’s theorem (e.g. [5, Theorem 11.4.1]), if the random
variables are independent distributed according to Q, then
the probability that (Y1, . . . , Yn), is not δ-typical vanishes
exponentially with exponent Lδ(Q).

To state the next result, we invoke the following notions
from [14]. Given a probability measure Q, its balance
coefficient is given by

βQ = inf
A∈F : Q(A)≥ 1

2

Q(A). (31)

The function φ : (0, 12 ]→ [ 12 log e,∞) is given by

φ(p) =

{
1

4(1−2p) log
(

1−p
p

)
, p ∈

(
0, 12
)
,

1
2 log e, p = 1

2 .
(32)

Theorem 2. If Qmin > 0, then

φ(1− βQ)Q2
min δ

2 ≤ Lδ(Q) (33)

≤ log
(
1 + 2Qmin δ

2
)

(34)

where (34) holds if δ ≤ Q−1min − 1.

Proof. Ordentlich and Weinberger [14, Section 4] show the
refinement of Pinsker’s inequality:

φ(1− βQ) |P −Q|2 ≤ D(P‖Q). (35)

Note that if Qmin > 0 then βQ ≤ 1−Qmin < 1, and therefore
φ(1−βQ) is well defined and finite. If P 6∈ Tδ(Q) the simple
bound

|P −Q| > δQmin (36)

together with (35) yields (33).
The upper bound (34) follows from (11) and the fact that

if δ ≤ Q−1min − 1, then

min
P 6∈Tδ(Q)

|P −Q| = 2δQmin. (37)

If δ ≤ Q−1min − 1, the ratio between the upper and lower
bounds in (34), satisfies

1

Qmin
· log e

2φ(1− βQ)
· log

(
1 + 2Qmin δ

2
)

1
2 log e Qmin δ2

≤ 4

Qmin
(38)

where (38) follows from the fact that its second and third
factors are less than or equal to 1 and 4, respectively. Note
that the bounds in (33) and (34) scale like δ2 for δ ≈ 0.

B. Distance from Equiprobable

If P is a distribution on a finite set A, H(P ) gauges the
“distance” from U , the equiprobable distribution, since

H(P ) = log |A| −D(P‖U). (39)

Thus, it is of interest to explore the relationship between
H(P ) and |P − U |. Particularizing (1), [4, (2.2)] (see also
[24, pp. 30–31]), and (11) we obtain

|P − U | ≤
√

2

log e
·
(
log |A| −H(P )

)
, (40)

|P − U | ≤ 2

√
1− 1

|A| · exp
(
H(P )

)
, (41)

|P − U | ≥
√
2

(
exp
(
−H(P )

)
− 1

|A|

)
, (42)

respectively.
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Fig. 1. Bounds on |P − U | as a function of H(P ) for |A| = 4, and
|A| = 16. The point (H(P ), |P −U |) = (0, 2(1−|A|−1)) is depicted on
the y-axis. In the curves of the two plots, the bounds (a), (b) and (c) refer,
respectively, to (40), (41) and (42).
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The bounds in (40)–(42) are illustrated for |A| = 4, 16 in
Figure 1. For H(P ) = 0, |P − U | = 2(1− |A|−1) is shown
for reference in Figure 1; as the cardinality of the alphabet
increases, the gap between |P − U | and its upper bound is
reduced (and this gap decays asymptotically to zero).

Results on the more general problem of finding bounds
on |H(P ) − H(Q)| based on |P − Q| can be found in [5,
Theorem 17.3.3], [11], [16], [18], [26, Section 1.7] and [27].

4. EXTENSION OF THEOREM 1 TO RÉNYI DIVERGENCES

Definition 1. The Rényi divergence of order α ∈ [0,∞] from
P to Q is defined for α ∈ (0, 1) ∪ (1,∞) as

Dα(P ||Q) ,
1

α− 1
log

(∑
a∈A

Pα(a)Q1−α(a)

)
. (43)

Recall that D1(P‖Q) , D(P‖Q) is defined to be the
analytic extension of Dα(P ||Q) at α = 1 (if D(P ||Q) <∞,
L’Hôpital’s rule gives that D(P ||Q) = limα↑1Dα(P ||Q)).
The extreme cases of α = 0,∞ are defined as follows:

• If α = 0 then D0(P ||Q) = − logQ(Support(P )),
• If α = +∞ then

D∞(P ||Q) = log

(
sup
a∈A

P (a)

Q(a)

)
.

Pinsker’s inequality was extended by Gilardoni [10] for
a Rényi divergence of order α ∈ (0, 1] (see also [8, Theo-
rem 30]), and it gets the form

α
2 |P −Q|2 log e ≤ Dα(P‖Q).

A tight lower bound on the Rényi divergence of order α > 0
as a function of the total variation distance is given in [19],
which is consistent with Vajda’s tight lower bound for f -
divergences in [23, Theorem 3].

Motivated by these findings, we extend the upper bound
on the relative entropy in Theorem 1 to Rényi divergences
of an arbitrary order.

Theorem 3. Assume that P,Q are strictly positive with
minimum masses denoted by Pmin and Qmin, respectively.
Let β1 and β2 be given in (8) and (9), respectively, and
abbreviate δ , 1

2 |P−Q| ∈ [0, 1]. Then, the Rényi divergence
of order α ∈ [0,∞] satisfies

Dα(P‖Q)

≤



f1, α ∈ (2,∞]

f2, α ∈ [1, 2]

min {f2, f3, f4} , α ∈
(
1
2 , 1
)

min
{
2 log

(
1

1−δ

)
, f2, f3, f4

}
, α ∈

[
0, 12
]

(44)

where, for α ∈ [0,∞],

f1(α, β1, δ)

,



1
α−1 log

(
1 +

δ(β1−α
1 −1)
1−β1

)
α ∈ [0, 1) ∪ (1,∞)

δ
1−β1

log 1
β1
, α = 1,

log 1
β1
, α =∞

(45)

for α ∈ [0, 2]

f2(α, β1, Qmin, δ)

, min

{
f1(α, β1, δ), log

(
1 +

2δ2

Qmin

)}
(46)

and, for α ∈ [0, 1), f3 and f4 are given by

f3(α, Pmin, β1, δ)

,

(
α

1− α

)[
log

(
1 +

2δ2

Pmin

)
− 2β1δ

2 log e

]
, (47)

f4(β2, Qmin, δ)

, min

{
log

(
1 +

2δ2

Qmin

)
− 2β2δ

2 log e,

log

(
1 +

min{δ, 2δ2}
Qmin

)}
. (48)

Proof. See [20, Section 7.C].

Remark 4. A simple bound, albeit looser than the one in
Theorem 3 is

Dα(P‖Q) ≤ log

(
1 +
|P −Q|
2Qmin

)
(49)

which is asymptotically tight as α → ∞ in the case of a
binary alphabet with equiprobable Q.

Example 1. Figure 2 illustrates the bound in (45), which
is valid for all α ∈ [0,∞] (see [20, Theorem 23]), and the
upper bounds of Theorem 3 in the case of binary alphabets.

5. SUMMARY

We derive in this paper some “reverse Pinsker inequalities”
for probability measures P � Q defined on a common
finite set, which provide lower bounds on the total variation
distance P−Q as a function of the relative entropy D(P‖Q)
under the assumption of a bounded relative information or
Qmin > 0. More general results for an arbitrary alphabet are
available in [20, Section 5].

In [20], we study bounds among various f -divergences,
dealing with arbitrary alphabets and deriving bounds on the
ratios of various distance measures. New expressions of
the Rényi divergence in terms of the relative information
spectrum are derived, leading to upper and lower bounds on
the Rényi divergence in terms of the variational distance.
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Fig. 2. The Rényi divergence Dα(P‖Q) for P and Q which are defined
on a binary alphabet with P (0) = Q(1) = 0.65, compared to (a) its upper
bound in (44), and (b) its upper bound in (45) (see [20, Theorem 23]). The
two bounds coincide here when α ∈ (1, 1.291) ∪ (2,∞).
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[9] A. A. Fedotov, P. Harremoës and F. Topsøe, “Refinements of Pinsker’s
inequality,” IEEE Trans. on Information Theory, vol. 49, no. 6,
pp. 1491–1498, June 2003.

[10] G. L. Gilardoni, “On Pinsker’s and Vajda’s type inequalities for
Csiszár’s f -divergences,” IEEE Trans. on Information Theory, vol. 56,
no. 11, pp. 5377–5386, November 2010.

[11] S. W. Ho and R. W. Yeung, “The interplay between entropy and
variational distance,” IEEE Trans. on Information Theory, vol. 56,
no. 12, pp. 5906–5929, December 2010.
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