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Abstract—This work provides new bounds on the difference
between the entropies of two discrete random variables in terms
of the local and total variation distances between their probability
mass functions. The derivation of the bounds relies on maximal
couplings, and the bounds apply to discrete random variables
which are defined over finite or countably infinite alphabets.
Loosened versions of these bounds are demonstrated to reproduce
some previously reported results. The use of the new entropy
bounds is exemplified for the Poisson approximation, where
bounds on the local and total variation distances follow from
Stein’s method. The full paper version for this work is available
at http://arxiv.org/abs/1209.5259.

Index Terms—Entropy, local distance, maximal coupling, Pois-
son approximation, Stein’s method, total variation distance.

I. INTRODUCTION

The question of quantifying the continuity (or lack of it) of
entropy, with respect to the topology on discrete probability
distributions induced by the total variation distance, is of basic
interest. The interplay between the entropy difference of two
discrete random variables and their total variation distance has
been extensively studied (see, e.g., [7], [8], [9, Lemma 1], [12],
[13], [16], [18], [22] and [26]).

The new bounds on the entropy difference of discrete
random variables, as introduced in this work [23], improve
some previously reported bounds. The derivation of the new
bounds relies on the notion of maximal coupling, which is
also known to be useful for the derivation of error bounds via
Stein’s method (see, e.g., [19, Chapter 2] and [20]). The link
between Stein’s method and information theory was pioneered
in [5] in the context of the compound Poisson distribution, and
a recent work [17] further links between information theory
and Stein’s method for discrete probability distributions.

To set definitions and notation, we introduce essential terms
that serve to derive the new bounds in this work [23].

Definition 1: A coupling of a pair of two random variables
(X,Y ) is a pair of two random variables (X̂, Ŷ ) with the
same marginal probability distributions as of (X,Y ).

Definition 2: For a pair of random variables (X,Y ), a
coupling (X̂, Ŷ ) is called a maximal coupling if P(X̂ = Ŷ )
is as large as possible among all the couplings of (X,Y ).

Definition 3: Let X and Y be discrete random variables
that take values in a set A, and let PX and PY be their
respective probability mass functions. The local distance and

total variation distance between X and Y are, respectively,

dloc(X,Y ) , sup
u∈A
|PX(u)− PY (u)| (1)

dTV(X,Y ) ,
1
2

∑
u∈A
|PX(u)− PY (u)|. (2)

The local distance is the l∞ distance between the probability
mass functions, the total variation distance is half the l1

distance, and it can be verified that dloc(X,Y ) ≤ dTV(X,Y ).
A basic property that links between maximal coupling and the
total variation distance is that if (X̂, Ŷ ) is a maximal coupling
of (X,Y ) then P(X̂ 6= Ŷ ) = dTV(X,Y ). Throughout, the
term ‘distribution’ refers to the probability mass function of
a discrete random variable defined over a finite or countably
infinite alphabet.

This work refines bounds on the entropy difference of two
discrete random variables via the use of maximal couplings,
leading to sharpened bounds that depend on both the local and
total variation distances. The reader is also referred to a recent
work in [16] that derived bounds for information measures by
relying on the notion of the minimum entropy coupling.

The main observation of this work is that if the local
distance between two probability distributions on a finite
alphabet is smaller than the total variation distance, then
the bounds on the entropy difference can be significantly
strengthened (see Section III). The second observation made
in this work is that there is an extension of the new bound
to countably infinite alphabets, where just knowing the total
variation distance between two distributions does not imply
anything about the difference of the respective entropies (i.e.,
one has discontinuity of entropy). It is shown in this work
that if one of the distributions is finitely supported, then
knowing also something about the local distance and the
tail behavior of the other distribution allows to bound the
difference of entropies in this case. This second observation is
applied in this work to obtain refined bounds on the entropy
of sums of independent (possibly non-identically distributed)
Bernoulli random variables that arise in numerous applications
(see Section IV). The application of the new bounds to the
Poisson approximation is facilitated by using bounds on the
total variation and local distances which follow from Stein’s
method, and the improvement that is obtained by these bounds
is exemplified in this work. For comparison, a looser version
of the new bounds was earlier applied in [21, Section II] and
[22] to get bounds on the entropy of sums of dependent and
non-identically distributed Bernoulli random variables.



II. A KNOWN BOUND ON THE ENTROPY OF DISCRETE
RANDOM VARIABLES

The following theorem relies on a bound that first appeared
in [26, Eq. (4)] and proved by coupling. It was later introduced
in [13, Theorem 6] by re-proving the inequality in a different
way (without coupling), and it was also strengthened there by
showing an explicit case where the following bound is tight.
As is proved in [26, Section 3], the bound on the entropy
difference that is introduced in the following theorem improves
the bound in [7, Theorem 17.3.3] or [8, Lemma 2.7].

Theorem 1: Let X and Y be two discrete random variables
that take values in a setA, and let |A| = M . If dTV(X,Y ) ≤ ε,
then
|H(X)−H(Y )| ≤

{
ε log(M − 1) + h(ε) if ε ∈

[
0, 1− 1

M

]
log(M) if ε > 1− 1

M

where h denotes the binary entropy function.
A shortened proof of this theorem appears in [23, Section II]

via the use of maximal coupling.

III. NEW BOUNDS ON THE ENTROPY OF DISCRETE
RANDOM VARIABLES VIA COUPLING

In the cases where the known bound in Theorem 1 is tight,
it can be verified that the local distance is equal to the total
variation distance [23]. However, as is shown in the following,
if it is not the case (i.e., the local distance is smaller than
the total variation distance), then the bound in Theorem 1
is necessarily not tight. Furthermore, this section provides
new bounds that depend on both the total variation and local
distances. If these two distances are equal then the new bound
is particularized to the bound in Theorem 1 but otherwise,
it improves the bound in Theorem 1. The general approach
for proving the following new inequalities relies on maximal
coupling (see [23]). The new bound is the following:

Theorem 2: Let X and Y be two discrete random variables
that take values in a set A, and let |A| = M . Then,

|H(X)−H(Y )|
≤ dTV(X,Y ) log(Mα− 1) + h

(
dTV(X,Y )

)
(3)

where
α ,

dloc(X,Y )
dTV(X,Y )

(4)

denotes the ratio of the local and total variation distances
(so, α ∈ [ 2

M , 1]), and h denotes the binary entropy function.
Furthermore, if the probability mass functions of X and Y
satisfy the condition that 1

2 ≤
PX
PY
≤ 2 whenever PX , PY > 0,

then the bound in (3) is tightened to

|H(X)−H(Y )|

≤ dTV(X,Y ) log
(
Mα− 1

4

)
+ h
(
dTV(X,Y )

)
. (5)

Proof: See [23, Section III].
Remark 1: Since, in general, α ≤ 1 then the case where

α = 1 is the worst case for the bound in (3). In the latter
case, it is particularized to the bound in Theorem 1 (see [13,
Theorem 6] or [26, Eq. (4)]).

Remark 2: If α ≤ 1
N for some integer N (since α ∈

[
2
M , 1

]
then it yields that N ∈ {1, . . . , bM2 c}), the bound in (3)
implies that

|H(X)−H(Y )|

≤ dTV(X,Y ) log
(
M −N
N

)
+ h
(
dTV(X,Y )

)
. (6)

The bounds in (6) and [13, Theorem 7] are similar but they
hold under different conditions. The bound in [13, Theorem 7]
requires that PX , PY ≤ 1

N everywhere, whereas the bound in
(6) holds under the requirement that the ratio α of the local
and total variation distances satisfies α ≤ 1

N . None of these
conditions implies the other.

Corollary 1: Let X and Y be two discrete random variables
that take values in a set A, and let |A| = M . Assume that for
some positive constants ε1, ε2

dTV(X,Y ) ≤ ε1 ≤ 1− 1
Mε2

, (7)

dloc(X,Y )
dTV(X,Y )

≤ ε2 ≤ 1. (8)

Then,

|H(X)−H(Y )| ≤ ε1 log(Mε2 − 1) + h(ε1). (9)

Proof: See [23, Section III].
Remark 3: By considering the pair of probability mass

functions PX,Y and PX × PY (without abuse of notation, let
H(PX) , H(X)), then

H(PX × PY )−H(PX,Y ) = I(X;Y ).

Hence, Theorem 2 and Corollary 1 provide bounds on the
mutual information between two discrete random variables of
finite support, where these bounds are expressed in terms of the
local and total variation distances between the joint distribution
of (X,Y ) and the product of its marginal distributions. The
specialization of Theorem 2 to this setting tightens the bound
in [26, Theorem 1], and the former bound is particularized to
the latter known bound in the case where the local and total
variation distances are equal (which is the extreme case).

We proceed to consider the entropy difference of discrete
random variables in the case of countably infinite alphabets.

Theorem 3: Let A = {a1, a2, . . .} be a countably infinite
set. Let X and Y be discrete random variables where X takes
values in the set X = {a1, . . . , am} for some m ∈ N, and Y
takes values in the set A. Assume that for some η1, η2, η3 > 0,
the local and total variation distances between X and Y satisfy

η2 ≤ dTV(X,Y ) ≤ η1, dloc(X,Y ) ≤ η3 (10)

where η3 ≤ η2. Let M be an integer such that
∞∑
i=M

PY (ai) ≤ η3, M ≥ max
{
m+ 1,

η2
(1− η1)η3

}
(11)

and let η4 > 0 satisfy

−
∞∑
i=M

PY (ai) logPY (ai) ≤ η4. (12)



Then, the following inequality holds:

|H(X)−H(Y )| ≤ η1 log
(
Mη3
η2
− 1
)

+ h(η1) + η4. (13)

Proof: See [23].
Corollary 2: In the setting of X and Y in Theorem 3,

assume that dTV(X,Y ) ≤ η for some η ∈ (0, 1). Let
M , max

{
m+ 1, 1

1−η

}
, and assume that for some µ > 0

−
∞∑
i=M

PY (ai) logPY (ai) ≤ µ

then |H(X)−H(Y )| ≤ η log(M − 1) + h(η) + µ.
Proof: This corollary follows from Theorem 3 by setting

η2 = η3 = dloc(X,Y ) (note that dloc(X,Y ) ≤ dTV(X,Y )),
and then η1 and η4 are replaced by η and µ, respectively.

Remark 4: The result in Corollary 2 coincides with [21,
Theorem 4], which gives a bound on the entropy difference in
terms of the total variation distance by relying on the bound
in [26, Eq. (4)] or [13, Theorem 6].

IV. AN EXAMPLE: THE POISSON APPROXIMATION

In the following, we exemplify the use of the new bounds in
Section III, and also compare them with some existing bounds.

In many interesting applications, the exact distribution of
X is not available or is numerically hard to compute. In such
cases, a derivation of some good bounds on the local and total
variation distances between X and another random variable
Y with a known probability mass function can be valuable
to get a rigorous bound on the difference |H(X) − H(Y )|
via Theorems 2 or 3. As a result of the calculation of such
a bound on the entropy difference, it provides bounds on
the entropy of X in terms of another entropy (the entropy
of Y ) which is assumed to be easily calculable. For ex-
ample, assume that X =

∑n
i=1Xi is expressed as a sum

of Bernoulli random variables that are either independent or
weakly dependent, and may be also non-identically distributed.
Let Xi ∼ Bernoulli(pi), and assume that

∑n
i=1 pi = λ

where all of the pi’s are much smaller than 1. In this case,
the approximation of X by a Poisson distribution with mean
λ (according to the law of small numbers [15]) raises the
question: How close is H(X) to the entropy of the Poisson
distribution with mean λ ? (note that the latter entropy of
the Poisson distribution is calculated efficiently in [1]). This
question is especially interesting because the support of the
Poisson distribution is the countably infinite set of non-
negative integers, so a small total variation distance does not
necessarily yield a small difference between the two entropies.
This question was addressed in [21, Section 2] and [22] via
the use of Corollary 2 (which coincides with [21, Theorem 4]),
combined with an upper bound on the total variation distance
between X and Y where the latter bound is calculated via the
use of the Chen-Stein method (see, e.g., [19, Chapter 2]).

In the following, we wish to tighten the bounds on the
entropy of a sum of independent Bernoulli random variables
that are not necessarily identically distributed. The bound

provided in [21, Proposition 1] relies on an upper bound on
the total variation distance between this sum and a Poisson
random variable with the same mean (see [3, Theorem 1] or [4,
Theorem 2.M]). In order to tighten the bound on the entropy in
the considered setting, we further rely on a lower bound on the
total variation distance (see [24, Theorem 1 and Corollary 1])
and an upper bound on the local distance (see [4, Theorem 2.Q
and Corollary 9.A.2]). The latter two bounds provide an upper
bound on the ratio of the local and total variation distances,
which enables to apply the bound in Theorem 3; it improves
the bound in Corollary 2 which solely relies on an upper
bound on the total variation distance. It is noted that the latter
looser bound, which relies on Corollary 2 was used in [22] for
estimating the entropy of a sum of Bernoulli random variables
in the more general setting where the summands are possibly
dependent.

Let X =
∑n
i=1Xi be a sum of independent Bernoulli ran-

dom variables with Xi ∼ Bernoulli(pi) for i ∈ {1, . . . , n}. Let∑n
i=1 pi = λ, and let Y ∼ Po(λ) be a Poisson random variable

with mean λ. From [3, Theorem 1] (or [4, Theorem 2.M]), the
following upper bound on the total variation distance holds:

dTV(X,Y ) ≤
(

1− e−λ

λ

) n∑
i=1

p2
i . (14)

Furthermore, from [24, Corollary 1], the following lower
bound on the total variation distance holds:

dTV(X,Y ) ≥ k
n∑
i=1

p2
i (15)

where

k ,
e

2λ
1− 1

θ

(
3 + 7

λ

)
θ + 2e−1/2

(16)

θ , 3 +
7
λ

+
1
λ
·
√

(3λ+ 7)
[
(3 + 2e−1/2)λ+ 7

]
. (17)

An upper bound on the local distance between a sum
of independent Bernoulli random variables and a Poisson
distribution with the same mean λ follows as a special case of
[4, Corollary 9.A.2] by setting l = 1 (so that the distribution
Ql in this corollary is specialized for l = 1 to the Poisson
distribution Po(λ), according to [4, Eq. (1.12) on p. 177]).
Since the upper bound on the right-hand side of the inequality
in [4, Corollary 9.A.2] does not depend on the (time) index
j, it follows that the same bound also holds while referring
to dloc(X,Y ) , supj∈N0

∣∣P(X = j) − Po(λ){j}
∣∣. Based

on the notation used in this corollary, it implies that if(
1−e−λ
λ

) ∑n
i=1 p

2
i ≤ 1

8 then the local distance between a sum
of independent Bernoulli random variables Xi ∼ Bernoulli(pi)
and a Poisson random variable with mean λ =

∑n
i=1 pi is

upper bounded by

dloc(X,Y ) ≤ 4 min

{√
2
eλ
, 2e−λ I0(λ)

}(
1− e−λ

λ

) n∑
i=1

p2
i

(18)



where this inequality holds due to [4, Proposition A.2.7 on
pp. 262–263], and I0 denotes the modified Bessel function
of order zero. Since an upper bound on the total variation
distance also forms an upper bound on the local distance, then
a combination of (14) and (18) gives that

dloc(X,Y )

≤ min
{

1, 4

√
2
eλ
, 8e−λ I0(λ)

} (
1− e−λ

λ

) n∑
i=1

p2
i . (19)

We now apply Theorem 3 to get rigorous bounds on the
entropy H(X) by estimating how close it is to H

(
Po(λ)

)
.

Note that the improvement in the tightness of the bound in
Theorem 3, in comparison to the looser bound in Corollary 2,
is more remarkable when the ratio α of the local and total
variation distances is close to zero. This happens to be the
case if λ � 1 where due to the asymptotic expansion of I0
(see, e.g., [10, Eq. (8.451.5) on p. 973])

I0(λ) ≈ eλ√
2πλ

(
1 +

1
8λ

+
9

128λ2
+ . . .

)
, ifλ� 1

one gets from Eqs. (15)–(17) and (19), combined with the
limit in [24, Eq. (48)], that

α =
dloc(X,Y )
dTV(X,Y )

(if λ�1)

≤ 33.634√
λ

(20)

so, for large values of λ, the upper bound on the parameter α
in (4) decays to zero like the square-root of 1

λ .
As a possible application, consider a noiseless binary-

adder multiple-access channel (MAC) with n independent
users where each user transmits binary symbols, and the
channel output is the algebraic sum of the input symbols.
The capacity region of this MAC channel is an n-dimensional
polyhedron. One feature of this capacity region is the sum of
the rates that is given by RSUM ,

∑n
i=1Ri, and it is upper

bounded by the joint mutual information between the input
symbols X1, . . . , Xn and the corresponding channel output
Y =

∑n
i=1Xi, i.e.,

RSUM ≤ max
PX:PX=PX1 ...PXn

I(X1, . . . , Xn;Y )

where, since the MAC is noiseless and the output symbol is
the sum of the n input symbols then H(Y |X1, . . . , Xn) = 0,
and therefore I(X1, . . . , Xn;Y ) = H(Y ).1 Hence, in the
considered setting, the maximal sum rate is the maximal
entropy of the sum of n independent binary random variables
where Xi ∼ Bernoulli(pi) for i ∈ {1, . . . , n}. Under the
constraint that

∑n
i=1 E[Xi] ≤ λ, it follows from the maximal

entropy result in [11], [14] and [25] that the entropy of Y
is maximized when the n independent inputs are i.i.d. with
mean p = λ

n , and consequently the channel output Y is
Binomially distributed with Y ∼ Binom

(
n, λn

)
. For a very

large number of users, the calculation of the entropy of the
Binomial distribution is difficult, and it would be much easier

1The reader is referred to [6] for the consideration of the sum-rate for two
noiseless multiple-access channels with some similarity to the binary adder
channel, see footnote in [6, p. 43].

to calculate the entropy H
(
Po(λ)

)
for a Poisson distribution

with mean λ (see [1]).
In the following, we make use of Theorem 3 to get an upper

bound on the entropy difference

H
(
Po(λ)

)
−H

(
Binom

(
n,
λ

n

))
(21)

where, due to the maximal entropy result for the Poisson
distribution (see, e.g., [11], [14] or [25]), this difference is
positive. Let X ∼ Binom

(
n, λn

)
be a sum of n i.i.d. Bernoulli

random variables with probability of success p = λ
n , and let

Y ∼ Po(λ). From (14), the total variation distance in this case
is upper bounded by

dTV(X,Y ) ≤ λ(1− e−λ)
n

, η1. (22)

From (15) and (16), the following inequality holds:

dTV(X,Y ) ≥ e

2
1− 1

θ

(
3 + 7

λ

)
θ + 2e−1/2

λ

n
, η2 (23)

where θ is given in (17). Furthermore, for using Theorem 3,
one needs an upper bound on the local distance between the
Poisson and Binomial distributions. Eq. (19) gives that

dloc(X,Y )

≤ min
{

1, 4

√
2
πλ

, 8e−λ I0(λ)
}
λ
(
1− e−λ

)
n

, η3. (24)

Following the notation in Theorem 3, it follows that m = n+1.
From (11), one needs to choose an integer M such that

M ≥ max
{
n+ 2,

η2
η3(1− η1)

}
(25)

and ∞∑
j=M

Πλ(j) ≤ η3 (26)

where Πλ(j) , e−λ λj

j! for j ∈ N0 designates the probability
mass function of Po(λ). Based on Chernoff’s inequality,
∞∑
j=M

Πλ(j) = P(Y ≥M) ≤ exp
{
−
[
λ+M ln

(M
λe

)]}
.

Let M ≥ λe2, then it follows from (26) and (27) that it is
sufficient for M to satisfy the condition exp

(
−(λ+M)

)
≤ η3.

Combining it with (25) leads to the following possible choice:

M , max
{
n+ 2,

η2
η3(1− η1)

, λe2, ln
( 1
η3

)
− λ
}

(27)

where η1, η2 and η3 are introduced in (22), (23), and (24)
respectively. Finally, for the use of Theorem 3, one needs to
choose η4 > 0 such that

∑∞
j=M

{
−Πλ(j) log

(
Πλ(j)

)}
≤ η4.

From the analysis in [21, Eqs. (43)–(47)], it follows from the
last inequality and [21, Eq. (47)] that η4 here is equal to µ in
[21, Eq. (23)], i.e.,

η4 ,

[(
λ log

( e
λ

))
+

+ λ2 +
6 log(2π) + 1

12

]
exp

{
−
[
λ+ (M − 2) log

(
M − 2
λe

)]}
(28)



where M is introduced in (27), and (x)+ , max{x, 0} for
every x ∈ R. At this stage, we are ready to apply Theorem 3
to derive a bound on the non-negative difference between the
entropies in (21). From Theorem 3, it follows that

0 ≤ H
(
Po(λ)

)
−H

(
Binom

(
n,
λ

n

))
≤ η1 log

(
Mη3
η2
− 1
)

+ h(η1) + η4. (29)

For comparison, it follows from Corollary 2 that the upper
bound on the right-hand side of (29) is replaced by

η1 log(M̃ − 1) + h(η1) + η4 (30)

where
M̃ , max

{
n+ 2,

1
1− η1

}
. (31)

Note that the bound in (29) improves the bound in (30) if
η3 < η2 (i.e., if the upper bound on the local distance is
smaller than the lower bound on the total variation distance).
Furthermore, the latter bound does not take into account the
parameters η2 and η3. As a numerical example, for n = 106

and p = 0.1, let’s check the bound on the entropy difference
in (21) for λ = np (i.e., λ = 105). Eqs. (22)–(24), (27),
(28) and (31) yield that η1 = 10−1, η2 = 9.5 · 10−3,
η3 = 1.0 · 10−3, η4 ≈ 0, and M = M̃ = 106 + 2; the
two bounds in (29) and (30) are, respectively, equal to 1.483
and 1.707 nats, respectively. The value of H

(
Po(λ)

)
is 7.175

nats, so the entropy H
(
Binom(n, λn )

)
ranges between 5.693

to 7.175 nats. Note that for n = 106 and λ = 104, where
p = λ

n is decreased from 10−1 to 10−2, the upper bounds on
(21) are decreased, respectively, to 0.183 and 0.194 nats, and
H
(
Po(λ)

)
= 6.024 nats. The Poisson approximation is more

accurate in the latter case, consistently with the law of small
numbers (see, e.g., [15]).

Remark 5: The above example considers the use of Theo-
rem 3 for the estimation of the entropy of a sum of independent
Bernoulli random variables. The more general case of the
estimation of the entropy (via rigorous bounds) for a sum of
possibly dependent Bernoulli random variables was considered
in [22] by using the looser bound in Corollary 2 with an upper
bound on the total variation distance that follows from the
Chen-Stein method (see [2, Theorem 1]). It is noted that,
in principle, also the sharper bound in Theorem 3 can be
applied to obtain bounds on the entropy for a sum of possibly
dependent Bernoulli random variables. To this end, in addition
to the upper bound on the total variation distance in [2,
Theorem 1], one needs to rely on a lower bound on the total
variation distance (see [4, Chapter 3]) and an upper bound on
the local distance (see [4, Theorem 2.Q on p. 42]). It is noted,
however, that these distance bounds are much simplified in the
setting of independent summands.
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