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Introduction

Hypothesis Testing

Bayesian M -ary hypothesis testing:
I X is a random variable taking values on X with |X | =M ;
I a prior distribution PX on X ;
I M hypotheses for the Y-valued data {PY |X=m,m ∈ X}.
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Introduction

Hypothesis Testing

Bayesian M -ary hypothesis testing:
I X is a random variable taking values on X with |X | =M ;
I a prior distribution PX on X ;
I M hypotheses for the Y-valued data {PY |X=m,m ∈ X}.

εX|Y : the minimum probability of error of X given Y
I achieved by the maximum-a-posteriori (MAP) decision rule.
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Introduction

Interplay εX|Y ←→ information measures

Bounds on εX|Y involving information measures exist in the literature.
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Introduction

Interplay εX|Y ←→ information measures

Bounds on εX|Y involving information measures exist in the literature.

Useful for
I the analysis of M -ary hypothesis testing
I proofs of coding theorems.

In this talk, we introduce:

upper and lower bounds on εX|Y in terms of the Arimoto-Rényi

conditional entropy Hα(X|Y ) of any order α.
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Preliminaries

The Rényi Entropy

Definition

Let PX be a probability distribution on a discrete set X . The Rényi
entropy of order α ∈ (0, 1) ∪ (1,∞) of X is defined as

Hα(X) =
1

1− α
log
∑
x∈X

PαX(x) (1)

By its continuous extension, H1(X) = H(X).
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Preliminaries

The Binary Rényi Divergence

Definition

For α ∈ (0, 1) ∪ (1,∞), the binary Rényi divergence of order α is given by

dα(p‖q) =
1

α− 1
log
(
pαq1−α + (1− p)α(1− q)1−α

)
. (2)
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Definition

For α ∈ (0, 1) ∪ (1,∞), the binary Rényi divergence of order α is given by

dα(p‖q) =
1

α− 1
log
(
pαq1−α + (1− p)α(1− q)1−α

)
. (2)

lim
α↑1

dα(p‖q) = d(p‖q) = p log
p

q
+ (1− p) log 1− p

1− q
. (3)
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Preliminaries

Rényi Conditional Entropy ?

If we mimic the definition of H(X|Y ) and define conditional Rényi
entropy as ∑

y∈Y
PY (y)Hα(X|Y = y),

we find that, for α 6= 1, the conditional version may be larger than
Hα(X) !
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Preliminaries

Rényi Conditional Entropy ?

If we mimic the definition of H(X|Y ) and define conditional Rényi
entropy as ∑

y∈Y
PY (y)Hα(X|Y = y),

we find that, for α 6= 1, the conditional version may be larger than
Hα(X) !

To remedy this situation, Arimoto introduced a notion of conditional
Rényi entropy, Hα(X|Y ) (named Arimoto-Rényi conditional entropy),
which is upper bounded by Hα(X).
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Preliminaries

The Arimoto-Rényi Conditional Entropy (cont.)

Definition

Let PXY be defined on X × Y, where X is a discrete random variable.

If α ∈ (0, 1) ∪ (1,∞), then

Hα(X|Y ) = α
1−α log E

(∑
x∈X

PαX|Y (x|Y )

) 1
α

 (4)
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Preliminaries

The Arimoto-Rényi Conditional Entropy (cont.)

Definition

Let PXY be defined on X × Y, where X is a discrete random variable.

If α ∈ (0, 1) ∪ (1,∞), then

Hα(X|Y ) =
α

1− α
log E

(∑
x∈X

PαX|Y (x|Y )

) 1
α

 (4)

=
α

1− α
log

∑
y∈Y

PY (y) exp

(
1− α
α

Hα(X|Y = y)

)
, (5)

where (5) applies if Y is a discrete random variable.

Continuous extension at α = 0, 1,∞ with H1(X|Y ) = H(X|Y ).
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Fano meets Rényi

Fano’s Inequality

Let X take values in |X | =M , then

H(X|Y ) ≤ h(εX|Y ) + εX|Y log(M − 1) (6)
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Fano meets Rényi

Fano’s Inequality

Let X take values in |X | =M , then

H(X|Y ) ≤ h(εX|Y ) + εX|Y log(M − 1) (6)

= logM − d
(
εX|Y ‖1− 1

M

)
(7)
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Fano meets Rényi

Fano’s Inequality

Let X take values in |X | =M , then

H(X|Y ) ≤ h(εX|Y ) + εX|Y log(M − 1) (6)

= logM − d
(
εX|Y ‖1− 1

M

)
(7)

(7) is not nearly as popular as (6);

(7) turns out to be the version that admits an elegant (although not
immediate) generalization to the Arimoto-Rényi conditional entropy.
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Fano meets Rényi

Generalization of Fano’s Inequality

It is easy to get Fano’s inequality by averaging H(X|Y = y) with
respect to the observation y: H(X|Y ) =

∑
y∈Y PY (y)H(X|Y = y).
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an average of Rényi entropies of conditional distributions:

Hα(X|Y ) 6=
∑
y∈Y

PY (y)Hα(X|Y = y), α 6= 1. (8)

The standard proof of Fano’s inequality, also fails for Hα(X|Y ) of
order α 6= 1 since it does not satisfy the chain rule.
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Generalization of Fano’s Inequality

It is easy to get Fano’s inequality by averaging H(X|Y = y) with
respect to the observation y: H(X|Y ) =

∑
y∈Y PY (y)H(X|Y = y).

This simple route is not viable in the case of Hα(X|Y ) since it is not
an average of Rényi entropies of conditional distributions:

Hα(X|Y ) 6=
∑
y∈Y

PY (y)Hα(X|Y = y), α 6= 1. (8)

The standard proof of Fano’s inequality, also fails for Hα(X|Y ) of
order α 6= 1 since it does not satisfy the chain rule.

Before we generalize Fano’s inequality by linking εX|Y with Hα(X|Y )
for α ∈ [0,∞), note that for α =∞, the following equality holds:

εX|Y = 1− exp
(
−H∞(X|Y )

)
. (9)
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Fano meets Rényi

Generalization of Fano’s Inequality (cont.)

Lemma

Let α ∈ (0, 1) ∪ (1,∞) and (β, γ) ∈ (0,∞)2. Then,

fα,β,γ(u) = (γ(1− u)α + βuα)
1
α , u ∈ [0, 1] (10)

is

strictly convex for α ∈ (1,∞);

strictly concave for α ∈ (0, 1).

f ′′α,β,γ(u) = (α− 1)βγ
(
γ(1− u)α + βuα

) 1
α
−2(

u(1− u)
)α−2

(11)

which is strictly negative if α ∈ (0, 1), and strictly positive if α ∈ (1,∞).
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Fano meets Rényi

Generalization of Fano’s Inequality (cont.)

Theorem

Let PXY be a probability measure defined on X × Y with |X | =M <∞.
For all α ∈ (0,∞),

Hα(X|Y ) ≤ logM − dα
(
εX|Y ‖1− 1

M

)
. (12)

Equality holds in (12) if and only if, for all y,

PX|Y (x|y) =

{
εX|Y
M−1 , x 6= L∗(y)
1− εX|Y , x = L∗(y)

(13)

where L∗ : Y → X is a deterministic MAP decision rule.
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Fano meets Rényi

Generalization of Fano’s Inequality (cont.)

If X,Y are vectors of dimension n, then εX|Y → 0 ⇒ 1
nH(X|Y )→ 0.

However, the picture with Hα(X|Y ) is more nuanced !
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Fano meets Rényi

Generalization of Fano’s Inequality (cont.)

If X,Y are vectors of dimension n, then εX|Y → 0 ⇒ 1
nH(X|Y )→ 0.

However, the picture with Hα(X|Y ) is more nuanced !

Theorem

Assume

{Xn} is a sequence of random variables;

Xn takes values on Xn such that |Xn| ≤Mn for M ≥ 2 and all n;

{Yn} is a sequence of random variables, for which εXn|Yn → 0.

a) If α ∈ (1,∞], then Hα(Xn|Yn)→ 0;

b) If α = 1, then 1
n H(Xn|Yn)→ 0;

c) If α ∈ [0, 1), then 1
n Hα(Xn|Yn) is upper bounded by logM ;

nevertheless, it does not necessarily tend to 0.
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Fano meets Rényi

Lower Bound on Hα(X|Y )

Theorem

If α ∈ (0, 1) ∪ (1,∞), then

α

1− α
log gα(εX|Y ) ≤ Hα(X|Y ), (14)

with the piecewise linear function

gα(t) =
(
k(k + 1)

1
α − k

1
α (k + 1)

)
t+ k

1
α
+1 − (k − 1)(k + 1)

1
α (15)

on the interval t ∈
[
1− 1

k , 1−
1

k+1

)
for k ∈ {1, 2, . . .}.

Not restricted to finite M .
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Fano meets Rényi

Proof Outline

Lemma

Let X be a discrete random variable attaining maximal mass pmax. Then,
for α ∈ (0, 1) ∪ (1,∞),

Hα(X) ≥ sα(εX) (16)

where εX = 1− pmax is the minimum error probability of guessing X, and
sα : [0, 1)→ [0,∞) is given by

sα(x) :=
1

1− α
log

(⌊ 1

1− x

⌋
(1− x)α +

(
1− (1− x)

⌊ 1

1− x

⌋)α)
.

Equality holds in (16) if and only if PX has
⌊

1
pmax

⌋
masses equal to pmax.

The proof relies on the Schur-concavity of Hα(·).
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Fano meets Rényi

Proof Outline (cont.)

For every y ∈ Y, the lemma yields Hα(X |Y = y) ≥ sα
(
εX|Y (y)

)
.
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Fano meets Rényi

Proof Outline (cont.)

For every y ∈ Y, the lemma yields Hα(X |Y = y) ≥ sα
(
εX|Y (y)

)
.

For α ∈ (0, 1), let fα : [0, 1)→ [1,∞) be defined as

fα(x) = exp
(
1−α
α sα(x)

)
gα is the piecewise linear function which coincides with fα at all
points 1− 1

k for k ∈ N;

gα is the lower convex envelope of fα;

Hα(X|Y ) ≥ α
1−α logE

[
fα
(
εX|Y (Y )

)]
(Lemma; fα increasing)

≥ α
1−α logE

[
gα
(
εX|Y (Y )

)]
(gα ≤ fα)

≥ α
1−α log gα(εX|Y ) (Jensen)
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Fano meets Rényi

Proof Outline (cont.)

For every y ∈ Y, the lemma yields Hα(X |Y = y) ≥ sα
(
εX|Y (y)

)
.

For α ∈ (0, 1), let fα : [0, 1)→ [1,∞) be defined as

fα(x) = exp
(
1−α
α sα(x)

)
gα is the piecewise linear function which coincides with fα at all
points 1− 1

k for k ∈ N;

gα is the lower convex envelope of fα;

Hα(X|Y ) ≥ α
1−α logE

[
fα
(
εX|Y (Y )

)]
(Lemma; fα increasing)

≥ α
1−α logE

[
gα
(
εX|Y (Y )

)]
(gα ≤ fα)

≥ α
1−α log gα(εX|Y ) (Jensen)

For α ∈ (1,∞), −gα is the lower convex envelope of −fα, and fα is
monotonically decreasing. Proof is similar.
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Fano meets Rényi

Hα(X|Y )←→ εX|Y

0

0
8
9

1
2

2
3

3
4

4
5

↵ = 1
4

↵ = 1
4

↵ = 4

↵ = 4

1

2

3
b
it

s

"X|Y

Figure: Upper and lower bounds on Hα(X|Y ) in Theorems 5 and 7, respectively,
as a function of εX|Y ∈ [0, 1− 1

M ] for α = 1
4 (solid lines) and α = 4 (dash-dotted

lines) with M = 8.
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Fano meets Rényi

Asymptotic Tightness

Both upper and lower bounds on εX|Y are asymptotically tight as α→∞.
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As α→ 1, we get existing bounds as special cases:

Fano’s inequality,

Its counterpart by Kovalevsky (’68), and Tebbe and Dwyer (’68).
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Fano meets Rényi

Asymptotic Tightness

Both upper and lower bounds on εX|Y are asymptotically tight as α→∞.

Special cases

As α→ 1, we get existing bounds as special cases:

Fano’s inequality,

Its counterpart by Kovalevsky (’68), and Tebbe and Dwyer (’68).

Upper bound on εX|Y

The most useful domain of applicability of the counterpart to the
generalization of Fano’s inequality is εX|Y ∈ [0, 12 ], in which case the lower
bound specializes to (k = 1)

α

1− α
log
(
1 +

(
2

1
α − 2

)
εX|Y

)
≤ Hα(X|Y ). (17)
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List Decoding

List Decoding

Decision rule outputs a list of choices.

The extension of Fano’s inequality to list decoding, expressed in terms
of the conditional Shannon entropy, was initiated by Ahlswede, Gacs
and Körner (’66).

Useful for proving converse results.
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List Decoding

Generalization of Fano’s Inequality for List Decoding (cont.)

Theorem (Fixed List Size)

Let PXY be a probability measure defined on X × Y where |X | =M .
Consider a decision rulea L : Y →

(X
L

)
, and denote the decoding error

probability by PL = P
[
X /∈ L(Y )

]
. Then, for all α ∈ (0, 1) ∪ (1,∞),

Hα(X|Y ) ≤ logM − dα
(
PL‖1− L

M

)
(18)

with equality in (18) if and only if

PX|Y (x|y) =

{
PL
M−L , x /∈ L(y)
1−PL
L , x ∈ L(y).

(19)

a
(X
L

)
stands for the set of all subsets of X with cardinality L, with L ≤ |X |.
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Conclusions

Further Results

Explicit lower bounds on εX|Y as a function of Hα(X|Y ) for an
arbitrary α (also, for α < 0).

Lower bounds on the list decoding error probability for fixed list size
as a function of Hα(X|Y ) for an arbitrary α (also, for α < 0).

New bounds on εX|Y in terms of the Chernoff information and Rényi
divergence.

Application of Hα(X|Y )-εX|Y bounds: Analyzing the exponential
decay of the Arimoto-Rényi conditional entropy of the message given
the channel output for DMCs and random coding ensembles.

Journal Paper

I. Sason and S. Verdú, “Arimoto-Rényi conditional entropy and Bayesian
M -ary hypothesis testing,” submitted to the IEEE Trans. on Information
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