Arimoto-Rényi Conditional Entropy and Bayesian *M*-ary Hypothesis Testing

Igal Sason (Technion) Sergio Verdú (Princeton)

2017 IEEE International Symposium on Information Theory

Aachen, Germany June 25–30, 2017

Hypothesis Testing

- Bayesian *M*-ary hypothesis testing:
 - X is a random variable taking values on \mathcal{X} with $|\mathcal{X}| = M$;
 - a prior distribution P_X on \mathcal{X} ;
 - M hypotheses for the \mathcal{Y} -valued data $\{P_{Y|X=m}, m \in \mathcal{X}\}$.

A D A D A D A

Hypothesis Testing

- Bayesian *M*-ary hypothesis testing:
 - X is a random variable taking values on \mathcal{X} with $|\mathcal{X}| = M$;
 - a prior distribution P_X on \mathcal{X} ;
 - M hypotheses for the \mathcal{Y} -valued data $\{P_{Y|X=m}, m \in \mathcal{X}\}.$
- $\varepsilon_{X|Y}$: the minimum probability of error of X given Y

achieved by the maximum-a-posteriori (MAP) decision rule.

一日、

Interplay $\varepsilon_{X|Y} \longleftrightarrow$ information measures

• Bounds on $\varepsilon_{X|Y}$ involving information measures exist in the literature.

Interplay $\varepsilon_{X|Y} \longleftrightarrow$ information measures

- Bounds on $\varepsilon_{X|Y}$ involving information measures exist in the literature.
- Useful for
 - the analysis of M-ary hypothesis testing
 - proofs of coding theorems.

過 ト イヨ ト イヨト

Interplay $\varepsilon_{X|Y} \longleftrightarrow$ information measures

- \bullet Bounds on $\varepsilon_{X|Y}$ involving information measures exist in the literature.
- Useful for
 - the analysis of M-ary hypothesis testing
 - proofs of coding theorems.
- In this talk, we introduce:

upper and lower bounds on $\varepsilon_{X|Y}$ in terms of the Arimoto-Rényi conditional entropy $H_{\alpha}(X|Y)$ of any order α .

過 ト イヨ ト イヨト

The Rényi Entropy

Definition

Let P_X be a probability distribution on a discrete set \mathcal{X} . The Rényi entropy of order $\alpha \in (0, 1) \cup (1, \infty)$ of X is defined as

$$H_{\alpha}(X) = \frac{1}{1-\alpha} \log \sum_{x \in \mathcal{X}} P_X^{\alpha}(x)$$
(1)

By its continuous extension, $H_1(X) = H(X)$.

(日) (周) (三) (三)

The Binary Rényi Divergence

Definition

For $\alpha \in (0,1) \cup (1,\infty)$, the binary Rényi divergence of order α is given by

$$d_{\alpha}(p||q) = \frac{1}{\alpha - 1} \log \left(p^{\alpha} q^{1 - \alpha} + (1 - p)^{\alpha} (1 - q)^{1 - \alpha} \right).$$
(2)

3

The Binary Rényi Divergence

Definition

For $\alpha \in (0,1) \cup (1,\infty)$, the binary Rényi divergence of order α is given by

$$d_{\alpha}(p||q) = \frac{1}{\alpha - 1} \log \left(p^{\alpha} q^{1 - \alpha} + (1 - p)^{\alpha} (1 - q)^{1 - \alpha} \right).$$
(2)

$$\lim_{\alpha \uparrow 1} d_{\alpha}(p \| q) = d(p \| q) = p \log \frac{p}{q} + (1 - p) \log \frac{1 - p}{1 - q}.$$
 (3)

I. Sason & S. Verdú

3

Rényi Conditional Entropy ?

 $\bullet\,$ If we mimic the definition of H(X|Y) and define conditional Rényi entropy as

$$\sum_{y \in \mathcal{Y}} P_Y(y) H_\alpha(X|Y=y),$$

we find that, for $\alpha \neq 1,$ the conditional version may be larger than $H_{\alpha}(X)$!

3

Rényi Conditional Entropy ?

 $\bullet\,$ If we mimic the definition of H(X|Y) and define conditional Rényi entropy as

$$\sum_{y \in \mathcal{Y}} P_Y(y) H_\alpha(X|Y=y),$$

we find that, for $\alpha \neq 1$, the conditional version may be larger than $H_{\alpha}(X)$!

• To remedy this situation, Arimoto introduced a notion of conditional Rényi entropy, $H_{\alpha}(X|Y)$ (named Arimoto-Rényi conditional entropy), which is upper bounded by $H_{\alpha}(X)$.

The Arimoto-Rényi Conditional Entropy (cont.)

Definition

Let P_{XY} be defined on $\mathcal{X} \times \mathcal{Y}$, where X is a discrete random variable. • If $\alpha \in (0,1) \cup (1,\infty)$, then $H_{\alpha}(X|Y) = \frac{\alpha}{1-\alpha} \log \mathbb{E}\left[\left(\sum_{x \in \mathcal{X}} P_{X|Y}^{\alpha}(x|Y)\right)^{\frac{1}{\alpha}}\right]$ (4)

The Arimoto-Rényi Conditional Entropy (cont.)

Definition

Let P_{XY} be defined on $\mathcal{X} \times \mathcal{Y}$, where X is a discrete random variable. • If $\alpha \in (0,1) \cup (1,\infty)$, then $H_{\alpha}(X|Y) = \frac{\alpha}{1-\alpha} \log \mathbb{E}\left[\left(\sum_{x \in \mathcal{X}} P_{X|Y}^{\alpha}(x|Y)\right)^{\frac{1}{\alpha}}\right]$ $= \frac{\alpha}{1-\alpha} \log \sum_{y \in \mathcal{Y}} P_{Y}(y) \exp\left(\frac{1-\alpha}{\alpha} H_{\alpha}(X|Y=y)\right), \quad (5)$

where (5) applies if Y is a discrete random variable.

• Continuous extension at $\alpha = 0, 1, \infty$ with $H_1(X|Y) = H(X|Y)$.

イロト 不得下 イヨト イヨト 二日

Fano's Inequality

Let X take values in $|\mathcal{X}| = M$, then

$$H(X|Y) \le h(\varepsilon_{X|Y}) + \varepsilon_{X|Y}\log(M-1)$$
(6)

3

Fano's Inequality

Let X take values in $|\mathcal{X}| = M$, then

$$H(X|Y) \le h(\varepsilon_{X|Y}) + \varepsilon_{X|Y} \log(M-1)$$

$$= \log M - d(\varepsilon_{X|Y} \| 1 - \frac{1}{M})$$
(6)
(7)

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Fano's Inequality

Let X take values in $|\mathcal{X}| = M$, then

$$H(X|Y) \le h(\varepsilon_{X|Y}) + \varepsilon_{X|Y} \log(M-1)$$

$$= \log M - d(\varepsilon_{X|Y} \| 1 - \frac{1}{M})$$
(6)
(7)

- (7) is not nearly as popular as (6);
- (7) turns out to be the version that admits an elegant (although not immediate) generalization to the Arimoto-Rényi conditional entropy.

• It is easy to get Fano's inequality by averaging H(X|Y = y) with respect to the observation y: $H(X|Y) = \sum_{y \in \mathcal{Y}} P_Y(y) H(X|Y = y)$.

- It is easy to get Fano's inequality by averaging H(X|Y = y) with respect to the observation y: $H(X|Y) = \sum_{y \in \mathcal{Y}} P_Y(y) H(X|Y = y)$.
- This simple route is not viable in the case of H_α(X|Y) since it is not an average of Rényi entropies of conditional distributions:

$$H_{\alpha}(X|Y) \neq \sum_{y \in \mathcal{Y}} P_Y(y) H_{\alpha}(X|Y=y), \quad \alpha \neq 1.$$
(8)

()

- It is easy to get Fano's inequality by averaging H(X|Y = y) with respect to the observation y: $H(X|Y) = \sum_{y \in \mathcal{Y}} P_Y(y) H(X|Y = y)$.
- This simple route is not viable in the case of H_α(X|Y) since it is not an average of Rényi entropies of conditional distributions:

$$H_{\alpha}(X|Y) \neq \sum_{y \in \mathcal{Y}} P_Y(y) H_{\alpha}(X|Y=y), \quad \alpha \neq 1.$$
(8)

• The standard proof of Fano's inequality, also fails for $H_{\alpha}(X|Y)$ of order $\alpha \neq 1$ since it does not satisfy the chain rule.

- 4 週 ト - 4 三 ト - 4 三 ト

- It is easy to get Fano's inequality by averaging H(X|Y = y) with respect to the observation y: $H(X|Y) = \sum_{y \in \mathcal{Y}} P_Y(y) H(X|Y = y)$.
- This simple route is not viable in the case of H_α(X|Y) since it is not an average of Rényi entropies of conditional distributions:

$$H_{\alpha}(X|Y) \neq \sum_{y \in \mathcal{Y}} P_Y(y) H_{\alpha}(X|Y=y), \quad \alpha \neq 1.$$
(8)

- The standard proof of Fano's inequality, also fails for $H_{\alpha}(X|Y)$ of order $\alpha \neq 1$ since it does not satisfy the chain rule.
- Before we generalize Fano's inequality by linking $\varepsilon_{X|Y}$ with $H_{\alpha}(X|Y)$ for $\alpha \in [0, \infty)$, note that for $\alpha = \infty$, the following equality holds:

$$\varepsilon_{X|Y} = 1 - \exp(-H_{\infty}(X|Y)).$$
(9)

(日) (周) (三) (三)

Lemma

Let $\alpha \in (0,1) \cup (1,\infty)$ and $(\beta,\gamma) \in (0,\infty)^2$. Then,

$$f_{\alpha,\beta,\gamma}(u) = (\gamma(1-u)^{\alpha} + \beta u^{\alpha})^{\frac{1}{\alpha}}, \quad u \in [0,1]$$
(10)

is

- strictly convex for $\alpha \in (1,\infty)$;
- strictly concave for $\alpha \in (0,1)$.

$$f_{\alpha,\beta,\gamma}^{\prime\prime}(u) = (\alpha - 1)\beta\gamma \Big(\gamma(1-u)^{\alpha} + \beta u^{\alpha}\Big)^{\frac{1}{\alpha}-2} \big(u(1-u)\Big)^{\alpha-2}$$
(11)

which is strictly negative if $\alpha \in (0,1)$, and strictly positive if $\alpha \in (1,\infty)$.

• • • • • • • • •

Theorem

Let P_{XY} be a probability measure defined on $\mathcal{X} \times \mathcal{Y}$ with $|\mathcal{X}| = M < \infty$. For all $\alpha \in (0, \infty)$,

$$H_{\alpha}(X|Y) \le \log M - d_{\alpha} \left(\varepsilon_{X|Y} \| 1 - \frac{1}{M} \right).$$
(12)

Equality holds in (12) if and only if, for all y,

$$P_{X|Y}(x|y) = \begin{cases} \frac{\varepsilon_{X|Y}}{M-1}, & x \neq \mathcal{L}^*(y) \\ 1 - \varepsilon_{X|Y}, & x = \mathcal{L}^*(y) \end{cases}$$
(13)

where $\mathcal{L}^* \colon \mathcal{Y} \to \mathcal{X}$ is a deterministic MAP decision rule.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

If X, Y are vectors of dimension n, then $\varepsilon_{X|Y} \to 0 \Rightarrow \frac{1}{n}H(X|Y) \to 0$. However, the picture with $H_{\alpha}(X|Y)$ is more nuanced !

くほと くほと くほと

If X, Y are vectors of dimension n, then $\varepsilon_{X|Y} \to 0 \Rightarrow \frac{1}{n}H(X|Y) \to 0$. However, the picture with $H_{\alpha}(X|Y)$ is more nuanced !

Theorem

Assume

- $\{X_n\}$ is a sequence of random variables;
- X_n takes values on \mathcal{X}_n such that $|\mathcal{X}_n| \leq M^n$ for $M \geq 2$ and all n;
- $\{Y_n\}$ is a sequence of random variables, for which $\varepsilon_{X_n|Y_n} \to 0$.
- a) If $\alpha \in (1, \infty]$, then $H_{\alpha}(X_n | Y_n) \to 0$;

b) If
$$\alpha = 1$$
, then $\frac{1}{n}H(X_n|Y_n) \to 0$;

c) If $\alpha \in [0,1)$, then $\frac{1}{n}H_{\alpha}(X_n|Y_n)$ is upper bounded by $\log M$; nevertheless, it does not necessarily tend to 0.

Lower Bound on $H_{\alpha}(X|Y)$

Theorem

If $\alpha \in (0,1) \cup (1,\infty)$, then

$$\frac{\alpha}{1-\alpha} \log g_{\alpha}(\varepsilon_{X|Y}) \le H_{\alpha}(X|Y), \tag{14}$$

with the piecewise linear function

$$g_{\alpha}(t) = \left(k(k+1)^{\frac{1}{\alpha}} - k^{\frac{1}{\alpha}}(k+1)\right)t + k^{\frac{1}{\alpha}+1} - (k-1)(k+1)^{\frac{1}{\alpha}}$$
(15)

on the interval $t \in \left[1 - \frac{1}{k}, 1 - \frac{1}{k+1}\right)$ for $k \in \{1, 2, \ldots\}$.

• Not restricted to finite M.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Proof Outline

Lemma

Let X be a discrete random variable attaining maximal mass $p_{\max}.$ Then, for $\alpha\in(0,1)\cup(1,\infty)$,

$$H_{\alpha}(X) \ge s_{\alpha}(\varepsilon_X) \tag{16}$$

where $\varepsilon_X = 1 - p_{\max}$ is the minimum error probability of guessing X, and $s_\alpha \colon [0,1) \to [0,\infty)$ is given by

$$s_{\alpha}(x) := \frac{1}{1-\alpha} \log \left(\left\lfloor \frac{1}{1-x} \right\rfloor (1-x)^{\alpha} + \left(1 - (1-x) \left\lfloor \frac{1}{1-x} \right\rfloor \right)^{\alpha} \right).$$

Equality holds in (16) if and only if P_X has $\left\lfloor \frac{1}{p_{\max}} \right\rfloor$ masses equal to p_{\max} .

The proof relies on the Schur-concavity of $H_{\alpha}(\cdot)$.

Proof Outline (cont.)

For every $y \in \mathcal{Y}$, the lemma yields $H_{\alpha}(X | Y = y) \ge s_{\alpha}(\varepsilon_{X|Y}(y))$.

- 34

・ロン ・四 ・ ・ ヨン ・ ヨン

Proof Outline (cont.)

For every $y \in \mathcal{Y}$, the lemma yields $H_{\alpha}(X \mid Y = y) \ge s_{\alpha}(\varepsilon_{X \mid Y}(y))$. For $\alpha \in (0, 1)$, let $f_{\alpha} : [0, 1) \to [1, \infty)$ be defined as

$$f_{\alpha}(x) = \exp\left(\frac{1-\alpha}{\alpha} s_{\alpha}(x)\right)$$

- g_{α} is the piecewise linear function which coincides with f_{α} at all points $1 \frac{1}{k}$ for $k \in \mathbb{N}$;
- g_{α} is the lower convex envelope of f_{α} ;

$$\begin{aligned} H_{\alpha}(X|Y) &\geq \frac{\alpha}{1-\alpha} \log \mathbb{E}\left[f_{\alpha}\big(\varepsilon_{X|Y}(Y)\big)\right] \text{ (Lemma; } f_{\alpha} \text{ increasing)} \\ &\geq \frac{\alpha}{1-\alpha} \log \mathbb{E}\left[g_{\alpha}\big(\varepsilon_{X|Y}(Y)\big)\right] \ \left(g_{\alpha} \leq f_{\alpha}\right) \\ &\geq \frac{\alpha}{1-\alpha} \log g_{\alpha}(\varepsilon_{X|Y}) \text{ (Jensen)} \end{aligned}$$

- 3

くほと くほと くほと

Proof Outline (cont.)

For every $y \in \mathcal{Y}$, the lemma yields $H_{\alpha}(X | Y = y) \ge s_{\alpha}(\varepsilon_{X|Y}(y))$. For $\alpha \in (0, 1)$, let $f_{\alpha} : [0, 1) \to [1, \infty)$ be defined as

$$f_{\alpha}(x) = \exp\left(\frac{1-\alpha}{\alpha} s_{\alpha}(x)\right)$$

- g_{α} is the piecewise linear function which coincides with f_{α} at all points $1 \frac{1}{k}$ for $k \in \mathbb{N}$;
- g_{α} is the lower convex envelope of f_{α} ;

$$\begin{aligned} H_{\alpha}(X|Y) &\geq \frac{\alpha}{1-\alpha} \log \mathbb{E}\left[f_{\alpha}\big(\varepsilon_{X|Y}(Y)\big)\right] \text{ (Lemma; } f_{\alpha} \text{ increasing)} \\ &\geq \frac{\alpha}{1-\alpha} \log \mathbb{E}\left[g_{\alpha}\big(\varepsilon_{X|Y}(Y)\big)\right] \text{ (} g_{\alpha} \leq f_{\alpha} \text{)} \\ &\geq \frac{\alpha}{1-\alpha} \log g_{\alpha}(\varepsilon_{X|Y}) \text{ (Jensen)} \end{aligned}$$

For $\alpha \in (1,\infty)$, $-g_{\alpha}$ is the lower convex envelope of $-f_{\alpha}$, and f_{α} is monotonically decreasing. Proof is similar.

I. Sason & S. Verdú

ISIT 2017, Aachen, Germany

Asymptotic Tightness

Both upper and lower bounds on $\varepsilon_{X|Y}$ are asymptotically tight as $\alpha \to \infty$.

3

くほと くほと くほと

Asymptotic Tightness

Both upper and lower bounds on $\varepsilon_{X|Y}$ are asymptotically tight as $\alpha \to \infty$.

Special cases

As $\alpha \rightarrow 1$, we get existing bounds as special cases:

- Fano's inequality,
- Its counterpart by Kovalevsky ('68), and Tebbe and Dwyer ('68).

・ 同 ト ・ 三 ト ・ 三 ト

Asymptotic Tightness

Both upper and lower bounds on $\varepsilon_{X|Y}$ are asymptotically tight as $\alpha \to \infty$.

Special cases

As $\alpha \rightarrow 1$, we get existing bounds as special cases:

- Fano's inequality,
- Its counterpart by Kovalevsky ('68), and Tebbe and Dwyer ('68).

Upper bound on $\varepsilon_{X|Y}$

The most useful domain of applicability of the counterpart to the generalization of Fano's inequality is $\varepsilon_{X|Y} \in [0, \frac{1}{2}]$, in which case the lower bound specializes to (k = 1)

$$\frac{\alpha}{1-\alpha}\log\left(1+\left(2^{\frac{1}{\alpha}}-2\right)\varepsilon_{X|Y}\right) \le H_{\alpha}(X|Y).$$
(17)

3

イロト イポト イヨト イヨト

List Decoding

- Decision rule outputs a list of choices.
- The extension of Fano's inequality to list decoding, expressed in terms of the conditional Shannon entropy, was initiated by Ahlswede, Gacs and Körner ('66).
- Useful for proving converse results.

Generalization of Fano's Inequality for List Decoding (cont.)

Theorem (Fixed List Size)

Let P_{XY} be a probability measure defined on $\mathcal{X} \times \mathcal{Y}$ where $|\mathcal{X}| = M$. Consider a decision rule^a $\mathcal{L} : \mathcal{Y} \to {\mathcal{X} \choose L}$, and denote the decoding error probability by $P_{\mathcal{L}} = \mathbb{P}[X \notin \mathcal{L}(Y)]$. Then, for all $\alpha \in (0,1) \cup (1,\infty)$,

$$H_{\alpha}(X|Y) \le \log M - d_{\alpha} \left(P_{\mathcal{L}} \| 1 - \frac{L}{M} \right)$$
(18)

with equality in (18) if and only if

$$P_{X|Y}(x|y) = \begin{cases} \frac{P_{\mathcal{L}}}{M-L}, & x \notin \mathcal{L}(y) \\ \frac{1-P_{\mathcal{L}}}{L}, & x \in \mathcal{L}(y). \end{cases}$$
(19)

 ${}^{a}\binom{\mathcal{X}}{L}$ stands for the set of all subsets of \mathcal{X} with cardinality L, with $L \leq |\mathcal{X}|$.

イロト 不得下 イヨト イヨト 二日

Further Results

- Explicit lower bounds on $\varepsilon_{X|Y}$ as a function of $H_{\alpha}(X|Y)$ for an arbitrary α (also, for $\alpha < 0$).
- Lower bounds on the list decoding error probability for fixed list size as a function of $H_{\alpha}(X|Y)$ for an arbitrary α (also, for $\alpha < 0$).
- New bounds on $\varepsilon_{X|Y}$ in terms of the Chernoff information and Rényi divergence.
- Application of $H_{\alpha}(X|Y)$ - $\varepsilon_{X|Y}$ bounds: Analyzing the exponential decay of the Arimoto-Rényi conditional entropy of the message given the channel output for DMCs and random coding ensembles.

Journal Paper

I. Sason and S. Verdú, "Arimoto-Rényi conditional entropy and Bayesian *M*-ary hypothesis testing," submitted to the *IEEE Trans. on Information Theory* in September 2016, and revised in May 2017.

[Online]. Available at https://arxiv.org/abs/1701.01974.